vfs_lockf.c revision 1.82 1 /* $NetBSD: vfs_lockf.c,v 1.82 2024/12/07 02:11:42 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.82 2024/12/07 02:11:42 riastradh Exp $");
39
40 #include <sys/param.h>
41 #include <sys/types.h>
42
43 #include <sys/atomic.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/kauth.h>
47 #include <sys/kernel.h>
48 #include <sys/kmem.h>
49 #include <sys/lockf.h>
50 #include <sys/proc.h>
51 #include <sys/systm.h>
52 #include <sys/uidinfo.h>
53 #include <sys/vnode.h>
54
55 /*
56 * The lockf structure is a kernel structure which contains the information
57 * associated with a byte range lock. The lockf structures are linked into
58 * the vnode structure. Locks are sorted by the starting byte of the lock for
59 * efficiency.
60 *
61 * lf_next is used for two purposes, depending on whether the lock is
62 * being held, or is in conflict with an existing lock. If this lock
63 * is held, it indicates the next lock on the same vnode.
64 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
65 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
66 */
67
68 TAILQ_HEAD(locklist, lockf);
69
70 struct lockf {
71 kcondvar_t lf_cv; /* Signalling */
72 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
73 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
74 off_t lf_start; /* The byte # of the start of the lock */
75 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
76 void *lf_id; /* process or file description holding lock */
77 struct lockf **lf_head; /* Back pointer to the head of lockf list */
78 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
79 struct locklist lf_blkhd; /* List of requests blocked on this lock */
80 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
81 struct uidinfo *lf_uip; /* Cached pointer to uidinfo */
82 };
83
84 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
85 #define MAXDEPTH 50
86
87 static kmutex_t lockf_lock __cacheline_aligned;
88 static char lockstr[] = "lockf";
89
90 /*
91 * This variable controls the maximum number of processes that will
92 * be checked in doing deadlock detection.
93 */
94 int maxlockdepth = MAXDEPTH;
95
96 #ifdef LOCKF_DEBUG
97 int lockf_debug = 0;
98 #endif
99
100 #define SELF 0x1
101 #define OTHERS 0x2
102
103 /*
104 * XXX TODO
105 * Misc cleanups: "void *id" should be visible in the API as a
106 * "struct proc *".
107 * (This requires rototilling all VFS's which support advisory locking).
108 */
109
110 /*
111 * If there's a lot of lock contention on a single vnode, locking
112 * schemes which allow for more paralleism would be needed. Given how
113 * infrequently byte-range locks are actually used in typical BSD
114 * code, a more complex approach probably isn't worth it.
115 */
116
117 /*
118 * We enforce a limit on locks by uid, so that a single user cannot
119 * run the kernel out of memory. For now, the limit is pretty coarse.
120 * There is no limit on root.
121 *
122 * Splitting a lock will always succeed, regardless of current allocations.
123 * If you're slightly above the limit, we still have to permit an allocation
124 * so that the unlock can succeed. If the unlocking causes too many splits,
125 * however, you're totally cutoff.
126 */
127 #define MAXLOCKSPERUID (2 * maxfiles)
128
129 #ifdef LOCKF_DEBUG
130 /*
131 * Print out a lock.
132 */
133 static void
134 lf_print(const char *tag, struct lockf *lock)
135 {
136
137 printf("%s: lock %p for ", tag, lock);
138 if (lock->lf_flags & F_POSIX)
139 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
140 else
141 printf("file %p", (struct file *)lock->lf_id);
142 printf(" %s, start %jd, end %jd",
143 lock->lf_type == F_RDLCK ? "shared" :
144 lock->lf_type == F_WRLCK ? "exclusive" :
145 lock->lf_type == F_UNLCK ? "unlock" :
146 "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
147 if (TAILQ_FIRST(&lock->lf_blkhd))
148 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
149 else
150 printf("\n");
151 }
152
153 static void
154 lf_printlist(const char *tag, struct lockf *lock)
155 {
156 struct lockf *lf, *blk;
157
158 printf("%s: Lock list:\n", tag);
159 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
160 printf("\tlock %p for ", lf);
161 if (lf->lf_flags & F_POSIX)
162 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
163 else
164 printf("file %p", (struct file *)lf->lf_id);
165 printf(", %s, start %jd, end %jd",
166 lf->lf_type == F_RDLCK ? "shared" :
167 lf->lf_type == F_WRLCK ? "exclusive" :
168 lf->lf_type == F_UNLCK ? "unlock" :
169 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
170 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
171 if (blk->lf_flags & F_POSIX)
172 printf("; proc %d",
173 ((struct proc *)blk->lf_id)->p_pid);
174 else
175 printf("; file %p", (struct file *)blk->lf_id);
176 printf(", %s, start %jd, end %jd",
177 blk->lf_type == F_RDLCK ? "shared" :
178 blk->lf_type == F_WRLCK ? "exclusive" :
179 blk->lf_type == F_UNLCK ? "unlock" :
180 "unknown",
181 (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
182 if (TAILQ_FIRST(&blk->lf_blkhd))
183 panic("lf_printlist: bad list");
184 }
185 printf("\n");
186 }
187 }
188 #endif /* LOCKF_DEBUG */
189
190 /*
191 * 3 options for allowfail.
192 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
193 */
194 static struct lockf *
195 lf_alloc(int allowfail)
196 {
197 struct uidinfo *uip;
198 struct lockf *lock;
199 u_long lcnt;
200 const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
201
202 uip = uid_find(uid);
203 lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
204 if (uid && allowfail && lcnt >
205 (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
206 atomic_dec_ulong(&uip->ui_lockcnt);
207 return NULL;
208 }
209
210 lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
211 lock->lf_uip = uip;
212 cv_init(&lock->lf_cv, lockstr);
213 return lock;
214 }
215
216 static void
217 lf_free(struct lockf *lock)
218 {
219
220 atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
221 cv_destroy(&lock->lf_cv);
222 kmem_free(lock, sizeof(*lock));
223 }
224
225 /*
226 * Walk the list of locks for an inode to
227 * find an overlapping lock (if any).
228 *
229 * NOTE: this returns only the FIRST overlapping lock. There
230 * may be more than one.
231 */
232 static int
233 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
234 struct lockf ***prev, struct lockf **overlap)
235 {
236 off_t start, end;
237
238 *overlap = lf;
239 if (lf == NULL)
240 return 0;
241 #ifdef LOCKF_DEBUG
242 if (lockf_debug & 2)
243 lf_print("lf_findoverlap: looking for overlap in", lock);
244 #endif /* LOCKF_DEBUG */
245 start = lock->lf_start;
246 end = lock->lf_end;
247 while (lf != NULL) {
248 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
249 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
250 *prev = &lf->lf_next;
251 *overlap = lf = lf->lf_next;
252 continue;
253 }
254 #ifdef LOCKF_DEBUG
255 if (lockf_debug & 2)
256 lf_print("\tchecking", lf);
257 #endif /* LOCKF_DEBUG */
258 /*
259 * OK, check for overlap
260 *
261 * Six cases:
262 * 0) no overlap
263 * 1) overlap == lock
264 * 2) overlap contains lock
265 * 3) lock contains overlap
266 * 4) overlap starts before lock
267 * 5) overlap ends after lock
268 */
269 if ((lf->lf_end != -1 && start > lf->lf_end) ||
270 (end != -1 && lf->lf_start > end)) {
271 /* Case 0 */
272 #ifdef LOCKF_DEBUG
273 if (lockf_debug & 2)
274 printf("no overlap\n");
275 #endif /* LOCKF_DEBUG */
276 if ((type & SELF) && end != -1 && lf->lf_start > end)
277 return 0;
278 *prev = &lf->lf_next;
279 *overlap = lf = lf->lf_next;
280 continue;
281 }
282 if ((lf->lf_start == start) && (lf->lf_end == end)) {
283 /* Case 1 */
284 #ifdef LOCKF_DEBUG
285 if (lockf_debug & 2)
286 printf("overlap == lock\n");
287 #endif /* LOCKF_DEBUG */
288 return 1;
289 }
290 if ((lf->lf_start <= start) &&
291 (end != -1) &&
292 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
293 /* Case 2 */
294 #ifdef LOCKF_DEBUG
295 if (lockf_debug & 2)
296 printf("overlap contains lock\n");
297 #endif /* LOCKF_DEBUG */
298 return 2;
299 }
300 if (start <= lf->lf_start &&
301 (end == -1 ||
302 (lf->lf_end != -1 && end >= lf->lf_end))) {
303 /* Case 3 */
304 #ifdef LOCKF_DEBUG
305 if (lockf_debug & 2)
306 printf("lock contains overlap\n");
307 #endif /* LOCKF_DEBUG */
308 return 3;
309 }
310 if ((lf->lf_start < start) &&
311 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
312 /* Case 4 */
313 #ifdef LOCKF_DEBUG
314 if (lockf_debug & 2)
315 printf("overlap starts before lock\n");
316 #endif /* LOCKF_DEBUG */
317 return 4;
318 }
319 if ((lf->lf_start > start) &&
320 (end != -1) &&
321 ((lf->lf_end > end) || (lf->lf_end == -1))) {
322 /* Case 5 */
323 #ifdef LOCKF_DEBUG
324 if (lockf_debug & 2)
325 printf("overlap ends after lock\n");
326 #endif /* LOCKF_DEBUG */
327 return 5;
328 }
329 panic("lf_findoverlap: default");
330 }
331 return 0;
332 }
333
334 /*
335 * Split a lock and a contained region into
336 * two or three locks as necessary.
337 */
338 static void
339 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
340 {
341 struct lockf *splitlock;
342
343 #ifdef LOCKF_DEBUG
344 if (lockf_debug & 2) {
345 lf_print("lf_split", lock1);
346 lf_print("splitting from", lock2);
347 }
348 #endif /* LOCKF_DEBUG */
349 /*
350 * Check to see if splitting into only two pieces.
351 */
352 if (lock1->lf_start == lock2->lf_start) {
353 lock1->lf_start = lock2->lf_end + 1;
354 lock2->lf_next = lock1;
355 return;
356 }
357 if (lock1->lf_end == lock2->lf_end) {
358 lock1->lf_end = lock2->lf_start - 1;
359 lock2->lf_next = lock1->lf_next;
360 lock1->lf_next = lock2;
361 return;
362 }
363 /*
364 * Make a new lock consisting of the last part of
365 * the encompassing lock
366 */
367 splitlock = *sparelock;
368 *sparelock = NULL;
369 cv_destroy(&splitlock->lf_cv);
370 memcpy(splitlock, lock1, sizeof(*splitlock));
371 cv_init(&splitlock->lf_cv, lockstr);
372
373 splitlock->lf_start = lock2->lf_end + 1;
374 TAILQ_INIT(&splitlock->lf_blkhd);
375 lock1->lf_end = lock2->lf_start - 1;
376 /*
377 * OK, now link it in
378 */
379 splitlock->lf_next = lock1->lf_next;
380 lock2->lf_next = splitlock;
381 lock1->lf_next = lock2;
382 }
383
384 /*
385 * Wakeup a blocklist
386 */
387 static void
388 lf_wakelock(struct lockf *listhead)
389 {
390 struct lockf *wakelock;
391
392 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
393 KASSERT(wakelock->lf_next == listhead);
394 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
395 wakelock->lf_next = NULL;
396 #ifdef LOCKF_DEBUG
397 if (lockf_debug & 2)
398 lf_print("lf_wakelock: awakening", wakelock);
399 #endif
400 cv_broadcast(&wakelock->lf_cv);
401 }
402 }
403
404 /*
405 * Remove a byte-range lock on an inode.
406 *
407 * Generally, find the lock (or an overlap to that lock)
408 * and remove it (or shrink it), then wakeup anyone we can.
409 */
410 static int
411 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
412 {
413 struct lockf **head = unlock->lf_head;
414 struct lockf *lf = *head;
415 struct lockf *overlap, **prev;
416 int ovcase;
417
418 if (lf == NULL)
419 return 0;
420 #ifdef LOCKF_DEBUG
421 if (unlock->lf_type != F_UNLCK)
422 panic("lf_clearlock: bad type");
423 if (lockf_debug & 1)
424 lf_print("lf_clearlock", unlock);
425 #endif /* LOCKF_DEBUG */
426 prev = head;
427 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
428 &prev, &overlap)) != 0) {
429 /*
430 * Wakeup the list of locks to be retried.
431 */
432 lf_wakelock(overlap);
433
434 switch (ovcase) {
435
436 case 1: /* overlap == lock */
437 *prev = overlap->lf_next;
438 lf_free(overlap);
439 break;
440
441 case 2: /* overlap contains lock: split it */
442 if (overlap->lf_start == unlock->lf_start) {
443 overlap->lf_start = unlock->lf_end + 1;
444 break;
445 }
446 lf_split(overlap, unlock, sparelock);
447 overlap->lf_next = unlock->lf_next;
448 break;
449
450 case 3: /* lock contains overlap */
451 *prev = overlap->lf_next;
452 lf = overlap->lf_next;
453 lf_free(overlap);
454 continue;
455
456 case 4: /* overlap starts before lock */
457 overlap->lf_end = unlock->lf_start - 1;
458 prev = &overlap->lf_next;
459 lf = overlap->lf_next;
460 continue;
461
462 case 5: /* overlap ends after lock */
463 overlap->lf_start = unlock->lf_end + 1;
464 break;
465 }
466 break;
467 }
468 #ifdef LOCKF_DEBUG
469 if (lockf_debug & 1)
470 lf_printlist("lf_clearlock", unlock);
471 #endif /* LOCKF_DEBUG */
472 return 0;
473 }
474
475 /*
476 * Walk the list of locks for an inode and
477 * return the first blocking lock.
478 */
479 static struct lockf *
480 lf_getblock(struct lockf *lock)
481 {
482 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
483
484 prev = lock->lf_head;
485 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
486 /*
487 * We've found an overlap, see if it blocks us
488 */
489 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
490 return overlap;
491 /*
492 * Nope, point to the next one on the list and
493 * see if it blocks us
494 */
495 lf = overlap->lf_next;
496 }
497 return NULL;
498 }
499
500 /*
501 * Set a byte-range lock.
502 */
503 static int
504 lf_setlock(struct lockf *lock, struct lockf **sparelock,
505 kmutex_t *interlock)
506 {
507 struct lockf *block;
508 struct lockf **head = lock->lf_head;
509 struct lockf **prev, *overlap, *ltmp;
510 int ovcase, needtolink, error;
511
512 #ifdef LOCKF_DEBUG
513 if (lockf_debug & 1)
514 lf_print("lf_setlock", lock);
515 #endif /* LOCKF_DEBUG */
516
517 /*
518 * Scan lock list for this file looking for locks that would block us.
519 */
520 while ((block = lf_getblock(lock)) != NULL) {
521 /*
522 * Free the structure and return if nonblocking.
523 */
524 if ((lock->lf_flags & F_WAIT) == 0) {
525 lf_free(lock);
526 return EAGAIN;
527 }
528 /*
529 * We are blocked. Since flock style locks cover
530 * the whole file, there is no chance for deadlock.
531 * For byte-range locks we must check for deadlock.
532 *
533 * Deadlock detection is done by looking through the
534 * wait channels to see if there are any cycles that
535 * involve us. MAXDEPTH is set just to make sure we
536 * do not go off into neverneverland.
537 */
538 if ((lock->lf_flags & F_POSIX) &&
539 (block->lf_flags & F_POSIX)) {
540 struct lwp *wlwp;
541 volatile const struct lockf *waitblock;
542 int i = 0;
543 struct proc *p;
544
545 p = (struct proc *)block->lf_id;
546 KASSERT(p != NULL);
547 while (i++ < maxlockdepth) {
548 mutex_enter(p->p_lock);
549 if (p->p_nlwps > 1) {
550 mutex_exit(p->p_lock);
551 break;
552 }
553 wlwp = LIST_FIRST(&p->p_lwps);
554 lwp_lock(wlwp);
555 if (wlwp->l_wchan == NULL ||
556 wlwp->l_wmesg != lockstr) {
557 lwp_unlock(wlwp);
558 mutex_exit(p->p_lock);
559 break;
560 }
561 waitblock = wlwp->l_wchan;
562 lwp_unlock(wlwp);
563 mutex_exit(p->p_lock);
564 /* Get the owner of the blocking lock */
565 waitblock = waitblock->lf_next;
566 if ((waitblock->lf_flags & F_POSIX) == 0)
567 break;
568 p = (struct proc *)waitblock->lf_id;
569 if (p == curproc) {
570 lf_free(lock);
571 return EDEADLK;
572 }
573 }
574 /*
575 * If we're still following a dependency chain
576 * after maxlockdepth iterations, assume we're in
577 * a cycle to be safe.
578 */
579 if (i >= maxlockdepth) {
580 lf_free(lock);
581 return EDEADLK;
582 }
583 }
584 /*
585 * For flock type locks, we must first remove
586 * any shared locks that we hold before we sleep
587 * waiting for an exclusive lock.
588 */
589 if ((lock->lf_flags & F_FLOCK) &&
590 lock->lf_type == F_WRLCK) {
591 lock->lf_type = F_UNLCK;
592 (void) lf_clearlock(lock, NULL);
593 lock->lf_type = F_WRLCK;
594 }
595 /*
596 * Add our lock to the blocked list and sleep until we're free.
597 * Remember who blocked us (for deadlock detection).
598 */
599 lock->lf_next = block;
600 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
601 #ifdef LOCKF_DEBUG
602 if (lockf_debug & 1) {
603 lf_print("lf_setlock: blocking on", block);
604 lf_printlist("lf_setlock", block);
605 }
606 #endif /* LOCKF_DEBUG */
607 error = cv_wait_sig(&lock->lf_cv, interlock);
608
609 /*
610 * We may have been awoken by a signal (in
611 * which case we must remove ourselves from the
612 * blocked list) and/or by another process
613 * releasing a lock (in which case we have already
614 * been removed from the blocked list and our
615 * lf_next field set to NULL).
616 */
617 if (lock->lf_next != NULL) {
618 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
619 lock->lf_next = NULL;
620 }
621 if (error) {
622 lf_free(lock);
623 return error;
624 }
625 }
626 /*
627 * No blocks!! Add the lock. Note that we will
628 * downgrade or upgrade any overlapping locks this
629 * process already owns.
630 *
631 * Skip over locks owned by other processes.
632 * Handle any locks that overlap and are owned by ourselves.
633 */
634 prev = head;
635 block = *head;
636 needtolink = 1;
637 for (;;) {
638 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
639 if (ovcase)
640 block = overlap->lf_next;
641 /*
642 * Six cases:
643 * 0) no overlap
644 * 1) overlap == lock
645 * 2) overlap contains lock
646 * 3) lock contains overlap
647 * 4) overlap starts before lock
648 * 5) overlap ends after lock
649 */
650 switch (ovcase) {
651 case 0: /* no overlap */
652 if (needtolink) {
653 *prev = lock;
654 lock->lf_next = overlap;
655 }
656 break;
657
658 case 1: /* overlap == lock */
659 /*
660 * If downgrading lock, others may be
661 * able to acquire it.
662 */
663 if (lock->lf_type == F_RDLCK &&
664 overlap->lf_type == F_WRLCK)
665 lf_wakelock(overlap);
666 overlap->lf_type = lock->lf_type;
667 lf_free(lock);
668 lock = overlap; /* for debug output below */
669 break;
670
671 case 2: /* overlap contains lock */
672 /*
673 * Check for common starting point and different types.
674 */
675 if (overlap->lf_type == lock->lf_type) {
676 lf_free(lock);
677 lock = overlap; /* for debug output below */
678 break;
679 }
680 if (overlap->lf_start == lock->lf_start) {
681 *prev = lock;
682 lock->lf_next = overlap;
683 overlap->lf_start = lock->lf_end + 1;
684 } else
685 lf_split(overlap, lock, sparelock);
686 lf_wakelock(overlap);
687 break;
688
689 case 3: /* lock contains overlap */
690 /*
691 * If downgrading lock, others may be able to
692 * acquire it, otherwise take the list.
693 */
694 if (lock->lf_type == F_RDLCK &&
695 overlap->lf_type == F_WRLCK) {
696 lf_wakelock(overlap);
697 } else {
698 while ((ltmp =
699 TAILQ_FIRST(&overlap->lf_blkhd))
700 != NULL) {
701 KASSERT(ltmp->lf_next == overlap);
702 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
703 lf_block);
704 ltmp->lf_next = lock;
705 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
706 ltmp, lf_block);
707 }
708 }
709 /*
710 * Add the new lock if necessary and delete the
711 * overlap.
712 */
713 if (needtolink) {
714 *prev = lock;
715 lock->lf_next = overlap->lf_next;
716 prev = &lock->lf_next;
717 needtolink = 0;
718 } else
719 *prev = overlap->lf_next;
720 lf_free(overlap);
721 continue;
722
723 case 4: /* overlap starts before lock */
724 /*
725 * Add lock after overlap on the list.
726 */
727 lock->lf_next = overlap->lf_next;
728 overlap->lf_next = lock;
729 overlap->lf_end = lock->lf_start - 1;
730 prev = &lock->lf_next;
731 lf_wakelock(overlap);
732 needtolink = 0;
733 continue;
734
735 case 5: /* overlap ends after lock */
736 /*
737 * Add the new lock before overlap.
738 */
739 if (needtolink) {
740 *prev = lock;
741 lock->lf_next = overlap;
742 }
743 overlap->lf_start = lock->lf_end + 1;
744 lf_wakelock(overlap);
745 break;
746 }
747 break;
748 }
749 #ifdef LOCKF_DEBUG
750 if (lockf_debug & 1) {
751 lf_print("lf_setlock: got the lock", lock);
752 lf_printlist("lf_setlock", lock);
753 }
754 #endif /* LOCKF_DEBUG */
755 return 0;
756 }
757
758 /*
759 * Check whether there is a blocking lock,
760 * and if so return its process identifier.
761 */
762 static int
763 lf_getlock(struct lockf *lock, struct flock *fl)
764 {
765 struct lockf *block;
766
767 #ifdef LOCKF_DEBUG
768 if (lockf_debug & 1)
769 lf_print("lf_getlock", lock);
770 #endif /* LOCKF_DEBUG */
771
772 if ((block = lf_getblock(lock)) != NULL) {
773 fl->l_type = block->lf_type;
774 fl->l_whence = SEEK_SET;
775 fl->l_start = block->lf_start;
776 if (block->lf_end == -1)
777 fl->l_len = 0;
778 else
779 fl->l_len = block->lf_end - block->lf_start + 1;
780 if (block->lf_flags & F_POSIX)
781 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
782 else
783 fl->l_pid = -1;
784 } else {
785 fl->l_type = F_UNLCK;
786 }
787 return 0;
788 }
789
790 /*
791 * Do an advisory lock operation.
792 */
793 int
794 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
795 {
796 struct flock *fl = ap->a_fl;
797 struct lockf *lock = NULL;
798 struct lockf *sparelock;
799 kmutex_t *interlock = &lockf_lock;
800 off_t start, end;
801 int error = 0;
802
803 KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
804
805 /*
806 * Convert the flock structure into a start and end.
807 */
808 switch (fl->l_whence) {
809 case SEEK_SET:
810 case SEEK_CUR:
811 /*
812 * Caller is responsible for adding any necessary offset
813 * when SEEK_CUR is used.
814 */
815 start = fl->l_start;
816 break;
817
818 case SEEK_END:
819 if (fl->l_start > __type_max(off_t) - size)
820 return EINVAL;
821 start = size + fl->l_start;
822 break;
823
824 default:
825 return EINVAL;
826 }
827
828 if (fl->l_len == 0)
829 end = -1;
830 else {
831 if (fl->l_len >= 0) {
832 if (start >= 0 &&
833 fl->l_len - 1 > __type_max(off_t) - start)
834 return EINVAL;
835 end = start + (fl->l_len - 1);
836 } else {
837 /* lockf() allows -ve lengths */
838 if (start < 0)
839 return EINVAL;
840 end = start - 1;
841 start += fl->l_len;
842 }
843 }
844 if (start < 0)
845 return EINVAL;
846
847 /*
848 * Allocate locks before acquiring the interlock. We need two
849 * locks in the worst case.
850 */
851 switch (ap->a_op) {
852 case F_SETLK:
853 case F_UNLCK:
854 /*
855 * XXX For F_UNLCK case, we can re-use the lock.
856 */
857 if ((ap->a_flags & F_FLOCK) == 0) {
858 /*
859 * Byte-range lock might need one more lock.
860 */
861 sparelock = lf_alloc(0);
862 if (sparelock == NULL) {
863 error = ENOMEM;
864 goto quit;
865 }
866 break;
867 }
868 /* FALLTHROUGH */
869
870 case F_GETLK:
871 sparelock = NULL;
872 break;
873
874 default:
875 return EINVAL;
876 }
877
878 switch (ap->a_op) {
879 case F_SETLK:
880 lock = lf_alloc(1);
881 break;
882 case F_UNLCK:
883 if (start == 0 || end == -1) {
884 /* never split */
885 lock = lf_alloc(0);
886 } else {
887 /* might split */
888 lock = lf_alloc(2);
889 }
890 break;
891 case F_GETLK:
892 lock = lf_alloc(0);
893 break;
894 }
895 if (lock == NULL) {
896 error = ENOMEM;
897 goto quit;
898 }
899
900 mutex_enter(interlock);
901
902 /*
903 * Avoid the common case of unlocking when inode has no locks.
904 */
905 if (*head == (struct lockf *)0) {
906 if (ap->a_op != F_SETLK) {
907 fl->l_type = F_UNLCK;
908 error = 0;
909 goto quit_unlock;
910 }
911 }
912
913 /*
914 * Create the lockf structure.
915 */
916 lock->lf_start = start;
917 lock->lf_end = end;
918 lock->lf_head = head;
919 lock->lf_type = fl->l_type;
920 lock->lf_next = (struct lockf *)0;
921 TAILQ_INIT(&lock->lf_blkhd);
922 lock->lf_flags = ap->a_flags;
923 if (lock->lf_flags & F_POSIX) {
924 KASSERT(curproc == (struct proc *)ap->a_id);
925 }
926 lock->lf_id = ap->a_id;
927
928 /*
929 * Do the requested operation.
930 */
931 switch (ap->a_op) {
932
933 case F_SETLK:
934 error = lf_setlock(lock, &sparelock, interlock);
935 lock = NULL; /* lf_setlock freed it */
936 break;
937
938 case F_UNLCK:
939 error = lf_clearlock(lock, &sparelock);
940 break;
941
942 case F_GETLK:
943 error = lf_getlock(lock, fl);
944 break;
945
946 default:
947 break;
948 /* NOTREACHED */
949 }
950
951 quit_unlock:
952 mutex_exit(interlock);
953 quit:
954 if (lock)
955 lf_free(lock);
956 if (sparelock)
957 lf_free(sparelock);
958
959 return error;
960 }
961
962 /*
963 * Initialize subsystem.
964 *
965 * XXX We use a global lock. This could be the vnode interlock, but
966 * the deadlock detection code may need to inspect locks belonging to
967 * other files.
968 */
969 void
970 lf_init(void)
971 {
972
973 mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
974 }
975