vfs_lockf.c revision 1.83 1 /* $NetBSD: vfs_lockf.c,v 1.83 2024/12/07 02:27:38 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.83 2024/12/07 02:27:38 riastradh Exp $");
39
40 #include <sys/param.h>
41 #include <sys/types.h>
42
43 #include <sys/atomic.h>
44 #include <sys/fcntl.h>
45 #include <sys/file.h>
46 #include <sys/kauth.h>
47 #include <sys/kernel.h>
48 #include <sys/kmem.h>
49 #include <sys/lockf.h>
50 #include <sys/proc.h>
51 #include <sys/sdt.h>
52 #include <sys/systm.h>
53 #include <sys/uidinfo.h>
54 #include <sys/vnode.h>
55
56 /*
57 * The lockf structure is a kernel structure which contains the information
58 * associated with a byte range lock. The lockf structures are linked into
59 * the vnode structure. Locks are sorted by the starting byte of the lock for
60 * efficiency.
61 *
62 * lf_next is used for two purposes, depending on whether the lock is
63 * being held, or is in conflict with an existing lock. If this lock
64 * is held, it indicates the next lock on the same vnode.
65 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
66 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
67 */
68
69 TAILQ_HEAD(locklist, lockf);
70
71 struct lockf {
72 kcondvar_t lf_cv; /* Signalling */
73 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
74 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
75 off_t lf_start; /* The byte # of the start of the lock */
76 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
77 void *lf_id; /* process or file description holding lock */
78 struct lockf **lf_head; /* Back pointer to the head of lockf list */
79 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
80 struct locklist lf_blkhd; /* List of requests blocked on this lock */
81 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
82 struct uidinfo *lf_uip; /* Cached pointer to uidinfo */
83 };
84
85 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
86 #define MAXDEPTH 50
87
88 static kmutex_t lockf_lock __cacheline_aligned;
89 static char lockstr[] = "lockf";
90
91 /*
92 * This variable controls the maximum number of processes that will
93 * be checked in doing deadlock detection.
94 */
95 int maxlockdepth = MAXDEPTH;
96
97 #ifdef LOCKF_DEBUG
98 int lockf_debug = 0;
99 #endif
100
101 #define SELF 0x1
102 #define OTHERS 0x2
103
104 /*
105 * XXX TODO
106 * Misc cleanups: "void *id" should be visible in the API as a
107 * "struct proc *".
108 * (This requires rototilling all VFS's which support advisory locking).
109 */
110
111 /*
112 * If there's a lot of lock contention on a single vnode, locking
113 * schemes which allow for more paralleism would be needed. Given how
114 * infrequently byte-range locks are actually used in typical BSD
115 * code, a more complex approach probably isn't worth it.
116 */
117
118 /*
119 * We enforce a limit on locks by uid, so that a single user cannot
120 * run the kernel out of memory. For now, the limit is pretty coarse.
121 * There is no limit on root.
122 *
123 * Splitting a lock will always succeed, regardless of current allocations.
124 * If you're slightly above the limit, we still have to permit an allocation
125 * so that the unlock can succeed. If the unlocking causes too many splits,
126 * however, you're totally cutoff.
127 */
128 #define MAXLOCKSPERUID (2 * maxfiles)
129
130 #ifdef LOCKF_DEBUG
131 /*
132 * Print out a lock.
133 */
134 static void
135 lf_print(const char *tag, struct lockf *lock)
136 {
137
138 printf("%s: lock %p for ", tag, lock);
139 if (lock->lf_flags & F_POSIX)
140 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
141 else
142 printf("file %p", (struct file *)lock->lf_id);
143 printf(" %s, start %jd, end %jd",
144 lock->lf_type == F_RDLCK ? "shared" :
145 lock->lf_type == F_WRLCK ? "exclusive" :
146 lock->lf_type == F_UNLCK ? "unlock" :
147 "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
148 if (TAILQ_FIRST(&lock->lf_blkhd))
149 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
150 else
151 printf("\n");
152 }
153
154 static void
155 lf_printlist(const char *tag, struct lockf *lock)
156 {
157 struct lockf *lf, *blk;
158
159 printf("%s: Lock list:\n", tag);
160 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
161 printf("\tlock %p for ", lf);
162 if (lf->lf_flags & F_POSIX)
163 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
164 else
165 printf("file %p", (struct file *)lf->lf_id);
166 printf(", %s, start %jd, end %jd",
167 lf->lf_type == F_RDLCK ? "shared" :
168 lf->lf_type == F_WRLCK ? "exclusive" :
169 lf->lf_type == F_UNLCK ? "unlock" :
170 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
171 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
172 if (blk->lf_flags & F_POSIX)
173 printf("; proc %d",
174 ((struct proc *)blk->lf_id)->p_pid);
175 else
176 printf("; file %p", (struct file *)blk->lf_id);
177 printf(", %s, start %jd, end %jd",
178 blk->lf_type == F_RDLCK ? "shared" :
179 blk->lf_type == F_WRLCK ? "exclusive" :
180 blk->lf_type == F_UNLCK ? "unlock" :
181 "unknown",
182 (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
183 if (TAILQ_FIRST(&blk->lf_blkhd))
184 panic("lf_printlist: bad list");
185 }
186 printf("\n");
187 }
188 }
189 #endif /* LOCKF_DEBUG */
190
191 /*
192 * 3 options for allowfail.
193 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
194 */
195 static struct lockf *
196 lf_alloc(int allowfail)
197 {
198 struct uidinfo *uip;
199 struct lockf *lock;
200 u_long lcnt;
201 const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
202
203 uip = uid_find(uid);
204 lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
205 if (uid && allowfail && lcnt >
206 (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
207 atomic_dec_ulong(&uip->ui_lockcnt);
208 return NULL;
209 }
210
211 lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
212 lock->lf_uip = uip;
213 cv_init(&lock->lf_cv, lockstr);
214 return lock;
215 }
216
217 static void
218 lf_free(struct lockf *lock)
219 {
220
221 atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
222 cv_destroy(&lock->lf_cv);
223 kmem_free(lock, sizeof(*lock));
224 }
225
226 /*
227 * Walk the list of locks for an inode to
228 * find an overlapping lock (if any).
229 *
230 * NOTE: this returns only the FIRST overlapping lock. There
231 * may be more than one.
232 */
233 static int
234 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
235 struct lockf ***prev, struct lockf **overlap)
236 {
237 off_t start, end;
238
239 *overlap = lf;
240 if (lf == NULL)
241 return 0;
242 #ifdef LOCKF_DEBUG
243 if (lockf_debug & 2)
244 lf_print("lf_findoverlap: looking for overlap in", lock);
245 #endif /* LOCKF_DEBUG */
246 start = lock->lf_start;
247 end = lock->lf_end;
248 while (lf != NULL) {
249 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
250 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
251 *prev = &lf->lf_next;
252 *overlap = lf = lf->lf_next;
253 continue;
254 }
255 #ifdef LOCKF_DEBUG
256 if (lockf_debug & 2)
257 lf_print("\tchecking", lf);
258 #endif /* LOCKF_DEBUG */
259 /*
260 * OK, check for overlap
261 *
262 * Six cases:
263 * 0) no overlap
264 * 1) overlap == lock
265 * 2) overlap contains lock
266 * 3) lock contains overlap
267 * 4) overlap starts before lock
268 * 5) overlap ends after lock
269 */
270 if ((lf->lf_end != -1 && start > lf->lf_end) ||
271 (end != -1 && lf->lf_start > end)) {
272 /* Case 0 */
273 #ifdef LOCKF_DEBUG
274 if (lockf_debug & 2)
275 printf("no overlap\n");
276 #endif /* LOCKF_DEBUG */
277 if ((type & SELF) && end != -1 && lf->lf_start > end)
278 return 0;
279 *prev = &lf->lf_next;
280 *overlap = lf = lf->lf_next;
281 continue;
282 }
283 if ((lf->lf_start == start) && (lf->lf_end == end)) {
284 /* Case 1 */
285 #ifdef LOCKF_DEBUG
286 if (lockf_debug & 2)
287 printf("overlap == lock\n");
288 #endif /* LOCKF_DEBUG */
289 return 1;
290 }
291 if ((lf->lf_start <= start) &&
292 (end != -1) &&
293 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
294 /* Case 2 */
295 #ifdef LOCKF_DEBUG
296 if (lockf_debug & 2)
297 printf("overlap contains lock\n");
298 #endif /* LOCKF_DEBUG */
299 return 2;
300 }
301 if (start <= lf->lf_start &&
302 (end == -1 ||
303 (lf->lf_end != -1 && end >= lf->lf_end))) {
304 /* Case 3 */
305 #ifdef LOCKF_DEBUG
306 if (lockf_debug & 2)
307 printf("lock contains overlap\n");
308 #endif /* LOCKF_DEBUG */
309 return 3;
310 }
311 if ((lf->lf_start < start) &&
312 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
313 /* Case 4 */
314 #ifdef LOCKF_DEBUG
315 if (lockf_debug & 2)
316 printf("overlap starts before lock\n");
317 #endif /* LOCKF_DEBUG */
318 return 4;
319 }
320 if ((lf->lf_start > start) &&
321 (end != -1) &&
322 ((lf->lf_end > end) || (lf->lf_end == -1))) {
323 /* Case 5 */
324 #ifdef LOCKF_DEBUG
325 if (lockf_debug & 2)
326 printf("overlap ends after lock\n");
327 #endif /* LOCKF_DEBUG */
328 return 5;
329 }
330 panic("lf_findoverlap: default");
331 }
332 return 0;
333 }
334
335 /*
336 * Split a lock and a contained region into
337 * two or three locks as necessary.
338 */
339 static void
340 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
341 {
342 struct lockf *splitlock;
343
344 #ifdef LOCKF_DEBUG
345 if (lockf_debug & 2) {
346 lf_print("lf_split", lock1);
347 lf_print("splitting from", lock2);
348 }
349 #endif /* LOCKF_DEBUG */
350 /*
351 * Check to see if splitting into only two pieces.
352 */
353 if (lock1->lf_start == lock2->lf_start) {
354 lock1->lf_start = lock2->lf_end + 1;
355 lock2->lf_next = lock1;
356 return;
357 }
358 if (lock1->lf_end == lock2->lf_end) {
359 lock1->lf_end = lock2->lf_start - 1;
360 lock2->lf_next = lock1->lf_next;
361 lock1->lf_next = lock2;
362 return;
363 }
364 /*
365 * Make a new lock consisting of the last part of
366 * the encompassing lock
367 */
368 splitlock = *sparelock;
369 *sparelock = NULL;
370 cv_destroy(&splitlock->lf_cv);
371 memcpy(splitlock, lock1, sizeof(*splitlock));
372 cv_init(&splitlock->lf_cv, lockstr);
373
374 splitlock->lf_start = lock2->lf_end + 1;
375 TAILQ_INIT(&splitlock->lf_blkhd);
376 lock1->lf_end = lock2->lf_start - 1;
377 /*
378 * OK, now link it in
379 */
380 splitlock->lf_next = lock1->lf_next;
381 lock2->lf_next = splitlock;
382 lock1->lf_next = lock2;
383 }
384
385 /*
386 * Wakeup a blocklist
387 */
388 static void
389 lf_wakelock(struct lockf *listhead)
390 {
391 struct lockf *wakelock;
392
393 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
394 KASSERT(wakelock->lf_next == listhead);
395 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
396 wakelock->lf_next = NULL;
397 #ifdef LOCKF_DEBUG
398 if (lockf_debug & 2)
399 lf_print("lf_wakelock: awakening", wakelock);
400 #endif
401 cv_broadcast(&wakelock->lf_cv);
402 }
403 }
404
405 /*
406 * Remove a byte-range lock on an inode.
407 *
408 * Generally, find the lock (or an overlap to that lock)
409 * and remove it (or shrink it), then wakeup anyone we can.
410 */
411 static int
412 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
413 {
414 struct lockf **head = unlock->lf_head;
415 struct lockf *lf = *head;
416 struct lockf *overlap, **prev;
417 int ovcase;
418
419 if (lf == NULL)
420 return 0;
421 #ifdef LOCKF_DEBUG
422 if (unlock->lf_type != F_UNLCK)
423 panic("lf_clearlock: bad type");
424 if (lockf_debug & 1)
425 lf_print("lf_clearlock", unlock);
426 #endif /* LOCKF_DEBUG */
427 prev = head;
428 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
429 &prev, &overlap)) != 0) {
430 /*
431 * Wakeup the list of locks to be retried.
432 */
433 lf_wakelock(overlap);
434
435 switch (ovcase) {
436
437 case 1: /* overlap == lock */
438 *prev = overlap->lf_next;
439 lf_free(overlap);
440 break;
441
442 case 2: /* overlap contains lock: split it */
443 if (overlap->lf_start == unlock->lf_start) {
444 overlap->lf_start = unlock->lf_end + 1;
445 break;
446 }
447 lf_split(overlap, unlock, sparelock);
448 overlap->lf_next = unlock->lf_next;
449 break;
450
451 case 3: /* lock contains overlap */
452 *prev = overlap->lf_next;
453 lf = overlap->lf_next;
454 lf_free(overlap);
455 continue;
456
457 case 4: /* overlap starts before lock */
458 overlap->lf_end = unlock->lf_start - 1;
459 prev = &overlap->lf_next;
460 lf = overlap->lf_next;
461 continue;
462
463 case 5: /* overlap ends after lock */
464 overlap->lf_start = unlock->lf_end + 1;
465 break;
466 }
467 break;
468 }
469 #ifdef LOCKF_DEBUG
470 if (lockf_debug & 1)
471 lf_printlist("lf_clearlock", unlock);
472 #endif /* LOCKF_DEBUG */
473 return 0;
474 }
475
476 /*
477 * Walk the list of locks for an inode and
478 * return the first blocking lock.
479 */
480 static struct lockf *
481 lf_getblock(struct lockf *lock)
482 {
483 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
484
485 prev = lock->lf_head;
486 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
487 /*
488 * We've found an overlap, see if it blocks us
489 */
490 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
491 return overlap;
492 /*
493 * Nope, point to the next one on the list and
494 * see if it blocks us
495 */
496 lf = overlap->lf_next;
497 }
498 return NULL;
499 }
500
501 /*
502 * Set a byte-range lock.
503 */
504 static int
505 lf_setlock(struct lockf *lock, struct lockf **sparelock,
506 kmutex_t *interlock)
507 {
508 struct lockf *block;
509 struct lockf **head = lock->lf_head;
510 struct lockf **prev, *overlap, *ltmp;
511 int ovcase, needtolink, error;
512
513 #ifdef LOCKF_DEBUG
514 if (lockf_debug & 1)
515 lf_print("lf_setlock", lock);
516 #endif /* LOCKF_DEBUG */
517
518 /*
519 * Scan lock list for this file looking for locks that would block us.
520 */
521 while ((block = lf_getblock(lock)) != NULL) {
522 /*
523 * Free the structure and return if nonblocking.
524 */
525 if ((lock->lf_flags & F_WAIT) == 0) {
526 lf_free(lock);
527 return SET_ERROR(EAGAIN);
528 }
529 /*
530 * We are blocked. Since flock style locks cover
531 * the whole file, there is no chance for deadlock.
532 * For byte-range locks we must check for deadlock.
533 *
534 * Deadlock detection is done by looking through the
535 * wait channels to see if there are any cycles that
536 * involve us. MAXDEPTH is set just to make sure we
537 * do not go off into neverneverland.
538 */
539 if ((lock->lf_flags & F_POSIX) &&
540 (block->lf_flags & F_POSIX)) {
541 struct lwp *wlwp;
542 volatile const struct lockf *waitblock;
543 int i = 0;
544 struct proc *p;
545
546 p = (struct proc *)block->lf_id;
547 KASSERT(p != NULL);
548 while (i++ < maxlockdepth) {
549 mutex_enter(p->p_lock);
550 if (p->p_nlwps > 1) {
551 mutex_exit(p->p_lock);
552 break;
553 }
554 wlwp = LIST_FIRST(&p->p_lwps);
555 lwp_lock(wlwp);
556 if (wlwp->l_wchan == NULL ||
557 wlwp->l_wmesg != lockstr) {
558 lwp_unlock(wlwp);
559 mutex_exit(p->p_lock);
560 break;
561 }
562 waitblock = wlwp->l_wchan;
563 lwp_unlock(wlwp);
564 mutex_exit(p->p_lock);
565 /* Get the owner of the blocking lock */
566 waitblock = waitblock->lf_next;
567 if ((waitblock->lf_flags & F_POSIX) == 0)
568 break;
569 p = (struct proc *)waitblock->lf_id;
570 if (p == curproc) {
571 lf_free(lock);
572 return SET_ERROR(EDEADLK);
573 }
574 }
575 /*
576 * If we're still following a dependency chain
577 * after maxlockdepth iterations, assume we're in
578 * a cycle to be safe.
579 */
580 if (i >= maxlockdepth) {
581 lf_free(lock);
582 return SET_ERROR(EDEADLK);
583 }
584 }
585 /*
586 * For flock type locks, we must first remove
587 * any shared locks that we hold before we sleep
588 * waiting for an exclusive lock.
589 */
590 if ((lock->lf_flags & F_FLOCK) &&
591 lock->lf_type == F_WRLCK) {
592 lock->lf_type = F_UNLCK;
593 (void) lf_clearlock(lock, NULL);
594 lock->lf_type = F_WRLCK;
595 }
596 /*
597 * Add our lock to the blocked list and sleep until we're free.
598 * Remember who blocked us (for deadlock detection).
599 */
600 lock->lf_next = block;
601 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
602 #ifdef LOCKF_DEBUG
603 if (lockf_debug & 1) {
604 lf_print("lf_setlock: blocking on", block);
605 lf_printlist("lf_setlock", block);
606 }
607 #endif /* LOCKF_DEBUG */
608 error = cv_wait_sig(&lock->lf_cv, interlock);
609
610 /*
611 * We may have been awoken by a signal (in
612 * which case we must remove ourselves from the
613 * blocked list) and/or by another process
614 * releasing a lock (in which case we have already
615 * been removed from the blocked list and our
616 * lf_next field set to NULL).
617 */
618 if (lock->lf_next != NULL) {
619 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
620 lock->lf_next = NULL;
621 }
622 if (error) {
623 lf_free(lock);
624 return error;
625 }
626 }
627 /*
628 * No blocks!! Add the lock. Note that we will
629 * downgrade or upgrade any overlapping locks this
630 * process already owns.
631 *
632 * Skip over locks owned by other processes.
633 * Handle any locks that overlap and are owned by ourselves.
634 */
635 prev = head;
636 block = *head;
637 needtolink = 1;
638 for (;;) {
639 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
640 if (ovcase)
641 block = overlap->lf_next;
642 /*
643 * Six cases:
644 * 0) no overlap
645 * 1) overlap == lock
646 * 2) overlap contains lock
647 * 3) lock contains overlap
648 * 4) overlap starts before lock
649 * 5) overlap ends after lock
650 */
651 switch (ovcase) {
652 case 0: /* no overlap */
653 if (needtolink) {
654 *prev = lock;
655 lock->lf_next = overlap;
656 }
657 break;
658
659 case 1: /* overlap == lock */
660 /*
661 * If downgrading lock, others may be
662 * able to acquire it.
663 */
664 if (lock->lf_type == F_RDLCK &&
665 overlap->lf_type == F_WRLCK)
666 lf_wakelock(overlap);
667 overlap->lf_type = lock->lf_type;
668 lf_free(lock);
669 lock = overlap; /* for debug output below */
670 break;
671
672 case 2: /* overlap contains lock */
673 /*
674 * Check for common starting point and different types.
675 */
676 if (overlap->lf_type == lock->lf_type) {
677 lf_free(lock);
678 lock = overlap; /* for debug output below */
679 break;
680 }
681 if (overlap->lf_start == lock->lf_start) {
682 *prev = lock;
683 lock->lf_next = overlap;
684 overlap->lf_start = lock->lf_end + 1;
685 } else
686 lf_split(overlap, lock, sparelock);
687 lf_wakelock(overlap);
688 break;
689
690 case 3: /* lock contains overlap */
691 /*
692 * If downgrading lock, others may be able to
693 * acquire it, otherwise take the list.
694 */
695 if (lock->lf_type == F_RDLCK &&
696 overlap->lf_type == F_WRLCK) {
697 lf_wakelock(overlap);
698 } else {
699 while ((ltmp =
700 TAILQ_FIRST(&overlap->lf_blkhd))
701 != NULL) {
702 KASSERT(ltmp->lf_next == overlap);
703 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
704 lf_block);
705 ltmp->lf_next = lock;
706 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
707 ltmp, lf_block);
708 }
709 }
710 /*
711 * Add the new lock if necessary and delete the
712 * overlap.
713 */
714 if (needtolink) {
715 *prev = lock;
716 lock->lf_next = overlap->lf_next;
717 prev = &lock->lf_next;
718 needtolink = 0;
719 } else
720 *prev = overlap->lf_next;
721 lf_free(overlap);
722 continue;
723
724 case 4: /* overlap starts before lock */
725 /*
726 * Add lock after overlap on the list.
727 */
728 lock->lf_next = overlap->lf_next;
729 overlap->lf_next = lock;
730 overlap->lf_end = lock->lf_start - 1;
731 prev = &lock->lf_next;
732 lf_wakelock(overlap);
733 needtolink = 0;
734 continue;
735
736 case 5: /* overlap ends after lock */
737 /*
738 * Add the new lock before overlap.
739 */
740 if (needtolink) {
741 *prev = lock;
742 lock->lf_next = overlap;
743 }
744 overlap->lf_start = lock->lf_end + 1;
745 lf_wakelock(overlap);
746 break;
747 }
748 break;
749 }
750 #ifdef LOCKF_DEBUG
751 if (lockf_debug & 1) {
752 lf_print("lf_setlock: got the lock", lock);
753 lf_printlist("lf_setlock", lock);
754 }
755 #endif /* LOCKF_DEBUG */
756 return 0;
757 }
758
759 /*
760 * Check whether there is a blocking lock,
761 * and if so return its process identifier.
762 */
763 static int
764 lf_getlock(struct lockf *lock, struct flock *fl)
765 {
766 struct lockf *block;
767
768 #ifdef LOCKF_DEBUG
769 if (lockf_debug & 1)
770 lf_print("lf_getlock", lock);
771 #endif /* LOCKF_DEBUG */
772
773 if ((block = lf_getblock(lock)) != NULL) {
774 fl->l_type = block->lf_type;
775 fl->l_whence = SEEK_SET;
776 fl->l_start = block->lf_start;
777 if (block->lf_end == -1)
778 fl->l_len = 0;
779 else
780 fl->l_len = block->lf_end - block->lf_start + 1;
781 if (block->lf_flags & F_POSIX)
782 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
783 else
784 fl->l_pid = -1;
785 } else {
786 fl->l_type = F_UNLCK;
787 }
788 return 0;
789 }
790
791 /*
792 * Do an advisory lock operation.
793 */
794 int
795 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
796 {
797 struct flock *fl = ap->a_fl;
798 struct lockf *lock = NULL;
799 struct lockf *sparelock;
800 kmutex_t *interlock = &lockf_lock;
801 off_t start, end;
802 int error = 0;
803
804 KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
805
806 /*
807 * Convert the flock structure into a start and end.
808 */
809 switch (fl->l_whence) {
810 case SEEK_SET:
811 case SEEK_CUR:
812 /*
813 * Caller is responsible for adding any necessary offset
814 * when SEEK_CUR is used.
815 */
816 start = fl->l_start;
817 break;
818
819 case SEEK_END:
820 if (fl->l_start > __type_max(off_t) - size)
821 return SET_ERROR(EINVAL);
822 start = size + fl->l_start;
823 break;
824
825 default:
826 return SET_ERROR(EINVAL);
827 }
828
829 if (fl->l_len == 0)
830 end = -1;
831 else {
832 if (fl->l_len >= 0) {
833 if (start >= 0 &&
834 fl->l_len - 1 > __type_max(off_t) - start)
835 return SET_ERROR(EINVAL);
836 end = start + (fl->l_len - 1);
837 } else {
838 /* lockf() allows -ve lengths */
839 if (start < 0)
840 return SET_ERROR(EINVAL);
841 end = start - 1;
842 start += fl->l_len;
843 }
844 }
845 if (start < 0)
846 return SET_ERROR(EINVAL);
847
848 /*
849 * Allocate locks before acquiring the interlock. We need two
850 * locks in the worst case.
851 */
852 switch (ap->a_op) {
853 case F_SETLK:
854 case F_UNLCK:
855 /*
856 * XXX For F_UNLCK case, we can re-use the lock.
857 */
858 if ((ap->a_flags & F_FLOCK) == 0) {
859 /*
860 * Byte-range lock might need one more lock.
861 */
862 sparelock = lf_alloc(0);
863 if (sparelock == NULL) {
864 error = SET_ERROR(ENOMEM);
865 goto quit;
866 }
867 break;
868 }
869 /* FALLTHROUGH */
870
871 case F_GETLK:
872 sparelock = NULL;
873 break;
874
875 default:
876 return SET_ERROR(EINVAL);
877 }
878
879 switch (ap->a_op) {
880 case F_SETLK:
881 lock = lf_alloc(1);
882 break;
883 case F_UNLCK:
884 if (start == 0 || end == -1) {
885 /* never split */
886 lock = lf_alloc(0);
887 } else {
888 /* might split */
889 lock = lf_alloc(2);
890 }
891 break;
892 case F_GETLK:
893 lock = lf_alloc(0);
894 break;
895 }
896 if (lock == NULL) {
897 error = SET_ERROR(ENOMEM);
898 goto quit;
899 }
900
901 mutex_enter(interlock);
902
903 /*
904 * Avoid the common case of unlocking when inode has no locks.
905 */
906 if (*head == (struct lockf *)0) {
907 if (ap->a_op != F_SETLK) {
908 fl->l_type = F_UNLCK;
909 error = 0;
910 goto quit_unlock;
911 }
912 }
913
914 /*
915 * Create the lockf structure.
916 */
917 lock->lf_start = start;
918 lock->lf_end = end;
919 lock->lf_head = head;
920 lock->lf_type = fl->l_type;
921 lock->lf_next = (struct lockf *)0;
922 TAILQ_INIT(&lock->lf_blkhd);
923 lock->lf_flags = ap->a_flags;
924 if (lock->lf_flags & F_POSIX) {
925 KASSERT(curproc == (struct proc *)ap->a_id);
926 }
927 lock->lf_id = ap->a_id;
928
929 /*
930 * Do the requested operation.
931 */
932 switch (ap->a_op) {
933
934 case F_SETLK:
935 error = lf_setlock(lock, &sparelock, interlock);
936 lock = NULL; /* lf_setlock freed it */
937 break;
938
939 case F_UNLCK:
940 error = lf_clearlock(lock, &sparelock);
941 break;
942
943 case F_GETLK:
944 error = lf_getlock(lock, fl);
945 break;
946
947 default:
948 break;
949 /* NOTREACHED */
950 }
951
952 quit_unlock:
953 mutex_exit(interlock);
954 quit:
955 if (lock)
956 lf_free(lock);
957 if (sparelock)
958 lf_free(sparelock);
959
960 return error;
961 }
962
963 /*
964 * Initialize subsystem.
965 *
966 * XXX We use a global lock. This could be the vnode interlock, but
967 * the deadlock detection code may need to inspect locks belonging to
968 * other files.
969 */
970 void
971 lf_init(void)
972 {
973
974 mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
975 }
976