vfs_vnode.c revision 1.14.2.3 1 1.14.2.3 yamt /* $NetBSD: vfs_vnode.c,v 1.14.2.3 2012/10/30 17:22:39 yamt Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.2 rmind * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1 rmind * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 1.1 rmind *
11 1.1 rmind * Redistribution and use in source and binary forms, with or without
12 1.1 rmind * modification, are permitted provided that the following conditions
13 1.1 rmind * are met:
14 1.1 rmind * 1. Redistributions of source code must retain the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer.
16 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 rmind * notice, this list of conditions and the following disclaimer in the
18 1.1 rmind * documentation and/or other materials provided with the distribution.
19 1.1 rmind *
20 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
31 1.1 rmind */
32 1.1 rmind
33 1.1 rmind /*
34 1.1 rmind * Copyright (c) 1989, 1993
35 1.1 rmind * The Regents of the University of California. All rights reserved.
36 1.1 rmind * (c) UNIX System Laboratories, Inc.
37 1.1 rmind * All or some portions of this file are derived from material licensed
38 1.1 rmind * to the University of California by American Telephone and Telegraph
39 1.1 rmind * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 1.1 rmind * the permission of UNIX System Laboratories, Inc.
41 1.1 rmind *
42 1.1 rmind * Redistribution and use in source and binary forms, with or without
43 1.1 rmind * modification, are permitted provided that the following conditions
44 1.1 rmind * are met:
45 1.1 rmind * 1. Redistributions of source code must retain the above copyright
46 1.1 rmind * notice, this list of conditions and the following disclaimer.
47 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 rmind * notice, this list of conditions and the following disclaimer in the
49 1.1 rmind * documentation and/or other materials provided with the distribution.
50 1.1 rmind * 3. Neither the name of the University nor the names of its contributors
51 1.1 rmind * may be used to endorse or promote products derived from this software
52 1.1 rmind * without specific prior written permission.
53 1.1 rmind *
54 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 rmind * SUCH DAMAGE.
65 1.1 rmind *
66 1.1 rmind * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
67 1.1 rmind */
68 1.1 rmind
69 1.1 rmind /*
70 1.8 rmind * The vnode cache subsystem.
71 1.1 rmind *
72 1.8 rmind * Life-cycle
73 1.1 rmind *
74 1.8 rmind * Normally, there are two points where new vnodes are created:
75 1.8 rmind * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
76 1.8 rmind * starts in one of the following ways:
77 1.8 rmind *
78 1.8 rmind * - Allocation, via getnewvnode(9) and/or vnalloc(9).
79 1.8 rmind * - Reclamation of inactive vnode, via vget(9).
80 1.8 rmind *
81 1.14.2.3 yamt * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82 1.14.2.3 yamt * was another, traditional way. Currently, only the draining thread
83 1.14.2.3 yamt * recycles the vnodes. This behaviour might be revisited.
84 1.14.2.3 yamt *
85 1.8 rmind * The life-cycle ends when the last reference is dropped, usually
86 1.8 rmind * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
87 1.8 rmind * the file system that vnode is inactive. Via this call, file system
88 1.14.2.3 yamt * indicates whether vnode can be recycled (usually, it checks its own
89 1.14.2.3 yamt * references, e.g. count of links, whether the file was removed).
90 1.8 rmind *
91 1.8 rmind * Depending on indication, vnode can be put into a free list (cache),
92 1.8 rmind * or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
93 1.8 rmind * underlying file system from the vnode, and finally destroyed.
94 1.8 rmind *
95 1.8 rmind * Reference counting
96 1.8 rmind *
97 1.8 rmind * Vnode is considered active, if reference count (vnode_t::v_usecount)
98 1.8 rmind * is non-zero. It is maintained using: vref(9) and vrele(9), as well
99 1.8 rmind * as vput(9), routines. Common points holding references are e.g.
100 1.8 rmind * file openings, current working directory, mount points, etc.
101 1.8 rmind *
102 1.8 rmind * Note on v_usecount and its locking
103 1.8 rmind *
104 1.8 rmind * At nearly all points it is known that v_usecount could be zero,
105 1.8 rmind * the vnode_t::v_interlock will be held. To change v_usecount away
106 1.8 rmind * from zero, the interlock must be held. To change from a non-zero
107 1.8 rmind * value to zero, again the interlock must be held.
108 1.8 rmind *
109 1.8 rmind * There is a flag bit, VC_XLOCK, embedded in v_usecount. To raise
110 1.8 rmind * v_usecount, if the VC_XLOCK bit is set in it, the interlock must
111 1.8 rmind * be held. To modify the VC_XLOCK bit, the interlock must be held.
112 1.8 rmind * We always keep the usecount (v_usecount & VC_MASK) non-zero while
113 1.8 rmind * the VC_XLOCK bit is set.
114 1.8 rmind *
115 1.8 rmind * Unless the VC_XLOCK bit is set, changing the usecount from a non-zero
116 1.8 rmind * value to a non-zero value can safely be done using atomic operations,
117 1.8 rmind * without the interlock held.
118 1.8 rmind *
119 1.8 rmind * Even if the VC_XLOCK bit is set, decreasing the usecount to a non-zero
120 1.8 rmind * value can be done using atomic operations, without the interlock held.
121 1.8 rmind *
122 1.8 rmind * Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
123 1.8 rmind * mntvnode_lock is still held.
124 1.1 rmind */
125 1.1 rmind
126 1.1 rmind #include <sys/cdefs.h>
127 1.14.2.3 yamt __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.14.2.3 2012/10/30 17:22:39 yamt Exp $");
128 1.1 rmind
129 1.1 rmind #include <sys/param.h>
130 1.1 rmind #include <sys/kernel.h>
131 1.1 rmind
132 1.1 rmind #include <sys/atomic.h>
133 1.1 rmind #include <sys/buf.h>
134 1.1 rmind #include <sys/conf.h>
135 1.1 rmind #include <sys/device.h>
136 1.1 rmind #include <sys/kauth.h>
137 1.1 rmind #include <sys/kmem.h>
138 1.1 rmind #include <sys/kthread.h>
139 1.1 rmind #include <sys/module.h>
140 1.1 rmind #include <sys/mount.h>
141 1.1 rmind #include <sys/namei.h>
142 1.1 rmind #include <sys/syscallargs.h>
143 1.1 rmind #include <sys/sysctl.h>
144 1.1 rmind #include <sys/systm.h>
145 1.1 rmind #include <sys/vnode.h>
146 1.1 rmind #include <sys/wapbl.h>
147 1.1 rmind
148 1.1 rmind #include <uvm/uvm.h>
149 1.1 rmind #include <uvm/uvm_readahead.h>
150 1.1 rmind
151 1.6 rmind u_int numvnodes __cacheline_aligned;
152 1.1 rmind
153 1.6 rmind static pool_cache_t vnode_cache __read_mostly;
154 1.1 rmind
155 1.14.2.3 yamt /*
156 1.14.2.3 yamt * There are two free lists: one is for vnodes which have no buffer/page
157 1.14.2.3 yamt * references and one for those which do (i.e. v_holdcnt is non-zero).
158 1.14.2.3 yamt * Vnode recycling mechanism first attempts to look into the former list.
159 1.14.2.3 yamt */
160 1.14.2.3 yamt static kmutex_t vnode_free_list_lock __cacheline_aligned;
161 1.6 rmind static vnodelst_t vnode_free_list __cacheline_aligned;
162 1.6 rmind static vnodelst_t vnode_hold_list __cacheline_aligned;
163 1.14.2.3 yamt static kcondvar_t vdrain_cv __cacheline_aligned;
164 1.6 rmind
165 1.14.2.3 yamt static vnodelst_t vrele_list __cacheline_aligned;
166 1.6 rmind static kmutex_t vrele_lock __cacheline_aligned;
167 1.6 rmind static kcondvar_t vrele_cv __cacheline_aligned;
168 1.6 rmind static lwp_t * vrele_lwp __cacheline_aligned;
169 1.6 rmind static int vrele_pending __cacheline_aligned;
170 1.6 rmind static int vrele_gen __cacheline_aligned;
171 1.1 rmind
172 1.12 hannken static int cleanvnode(void);
173 1.12 hannken static void vdrain_thread(void *);
174 1.1 rmind static void vrele_thread(void *);
175 1.11 christos static void vnpanic(vnode_t *, const char *, ...)
176 1.11 christos __attribute__((__format__(__printf__, 2, 3)));
177 1.1 rmind
178 1.1 rmind /* Routines having to do with the management of the vnode table. */
179 1.1 rmind extern int (**dead_vnodeop_p)(void *);
180 1.1 rmind
181 1.1 rmind void
182 1.1 rmind vfs_vnode_sysinit(void)
183 1.1 rmind {
184 1.1 rmind int error;
185 1.1 rmind
186 1.1 rmind vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
187 1.1 rmind NULL, IPL_NONE, NULL, NULL, NULL);
188 1.1 rmind KASSERT(vnode_cache != NULL);
189 1.1 rmind
190 1.1 rmind mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
191 1.1 rmind TAILQ_INIT(&vnode_free_list);
192 1.1 rmind TAILQ_INIT(&vnode_hold_list);
193 1.1 rmind TAILQ_INIT(&vrele_list);
194 1.1 rmind
195 1.1 rmind mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
196 1.12 hannken cv_init(&vdrain_cv, "vdrain");
197 1.1 rmind cv_init(&vrele_cv, "vrele");
198 1.12 hannken error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
199 1.12 hannken NULL, NULL, "vdrain");
200 1.12 hannken KASSERT(error == 0);
201 1.1 rmind error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
202 1.1 rmind NULL, &vrele_lwp, "vrele");
203 1.1 rmind KASSERT(error == 0);
204 1.1 rmind }
205 1.1 rmind
206 1.1 rmind /*
207 1.1 rmind * Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a
208 1.13 hannken * marker vnode.
209 1.1 rmind */
210 1.1 rmind vnode_t *
211 1.1 rmind vnalloc(struct mount *mp)
212 1.1 rmind {
213 1.1 rmind vnode_t *vp;
214 1.1 rmind
215 1.13 hannken vp = pool_cache_get(vnode_cache, PR_WAITOK);
216 1.13 hannken KASSERT(vp != NULL);
217 1.1 rmind
218 1.1 rmind memset(vp, 0, sizeof(*vp));
219 1.9 rmind uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
220 1.1 rmind cv_init(&vp->v_cv, "vnode");
221 1.1 rmind /*
222 1.1 rmind * Done by memset() above.
223 1.1 rmind * LIST_INIT(&vp->v_nclist);
224 1.1 rmind * LIST_INIT(&vp->v_dnclist);
225 1.1 rmind */
226 1.1 rmind
227 1.1 rmind if (mp != NULL) {
228 1.1 rmind vp->v_mount = mp;
229 1.1 rmind vp->v_type = VBAD;
230 1.1 rmind vp->v_iflag = VI_MARKER;
231 1.1 rmind } else {
232 1.1 rmind rw_init(&vp->v_lock);
233 1.1 rmind }
234 1.1 rmind
235 1.1 rmind return vp;
236 1.1 rmind }
237 1.1 rmind
238 1.1 rmind /*
239 1.1 rmind * Free an unused, unreferenced vnode.
240 1.1 rmind */
241 1.1 rmind void
242 1.1 rmind vnfree(vnode_t *vp)
243 1.1 rmind {
244 1.1 rmind
245 1.1 rmind KASSERT(vp->v_usecount == 0);
246 1.1 rmind
247 1.1 rmind if ((vp->v_iflag & VI_MARKER) == 0) {
248 1.1 rmind rw_destroy(&vp->v_lock);
249 1.1 rmind mutex_enter(&vnode_free_list_lock);
250 1.1 rmind numvnodes--;
251 1.1 rmind mutex_exit(&vnode_free_list_lock);
252 1.1 rmind }
253 1.1 rmind
254 1.9 rmind /*
255 1.9 rmind * Note: the vnode interlock will either be freed, of reference
256 1.9 rmind * dropped (if VI_LOCKSHARE was in use).
257 1.9 rmind */
258 1.9 rmind uvm_obj_destroy(&vp->v_uobj, true);
259 1.1 rmind cv_destroy(&vp->v_cv);
260 1.1 rmind pool_cache_put(vnode_cache, vp);
261 1.1 rmind }
262 1.1 rmind
263 1.1 rmind /*
264 1.12 hannken * cleanvnode: grab a vnode from freelist, clean and free it.
265 1.5 rmind *
266 1.5 rmind * => Releases vnode_free_list_lock.
267 1.1 rmind */
268 1.12 hannken static int
269 1.12 hannken cleanvnode(void)
270 1.1 rmind {
271 1.1 rmind vnode_t *vp;
272 1.1 rmind vnodelst_t *listhd;
273 1.1 rmind
274 1.1 rmind KASSERT(mutex_owned(&vnode_free_list_lock));
275 1.1 rmind retry:
276 1.1 rmind listhd = &vnode_free_list;
277 1.1 rmind try_nextlist:
278 1.1 rmind TAILQ_FOREACH(vp, listhd, v_freelist) {
279 1.1 rmind /*
280 1.1 rmind * It's safe to test v_usecount and v_iflag
281 1.1 rmind * without holding the interlock here, since
282 1.1 rmind * these vnodes should never appear on the
283 1.1 rmind * lists.
284 1.1 rmind */
285 1.5 rmind KASSERT(vp->v_usecount == 0);
286 1.5 rmind KASSERT((vp->v_iflag & VI_CLEAN) == 0);
287 1.5 rmind KASSERT(vp->v_freelisthd == listhd);
288 1.5 rmind
289 1.9 rmind if (!mutex_tryenter(vp->v_interlock))
290 1.1 rmind continue;
291 1.1 rmind if ((vp->v_iflag & VI_XLOCK) == 0)
292 1.1 rmind break;
293 1.9 rmind mutex_exit(vp->v_interlock);
294 1.1 rmind }
295 1.1 rmind
296 1.1 rmind if (vp == NULL) {
297 1.1 rmind if (listhd == &vnode_free_list) {
298 1.1 rmind listhd = &vnode_hold_list;
299 1.1 rmind goto try_nextlist;
300 1.1 rmind }
301 1.1 rmind mutex_exit(&vnode_free_list_lock);
302 1.12 hannken return EBUSY;
303 1.1 rmind }
304 1.1 rmind
305 1.1 rmind /* Remove it from the freelist. */
306 1.1 rmind TAILQ_REMOVE(listhd, vp, v_freelist);
307 1.1 rmind vp->v_freelisthd = NULL;
308 1.1 rmind mutex_exit(&vnode_free_list_lock);
309 1.1 rmind
310 1.1 rmind KASSERT(vp->v_usecount == 0);
311 1.1 rmind
312 1.1 rmind /*
313 1.1 rmind * The vnode is still associated with a file system, so we must
314 1.12 hannken * clean it out before freeing it. We need to add a reference
315 1.1 rmind * before doing this. If the vnode gains another reference while
316 1.1 rmind * being cleaned out then we lose - retry.
317 1.1 rmind */
318 1.1 rmind atomic_add_int(&vp->v_usecount, 1 + VC_XLOCK);
319 1.1 rmind vclean(vp, DOCLOSE);
320 1.1 rmind KASSERT(vp->v_usecount >= 1 + VC_XLOCK);
321 1.1 rmind atomic_add_int(&vp->v_usecount, -VC_XLOCK);
322 1.12 hannken if (vp->v_usecount > 1) {
323 1.1 rmind /*
324 1.1 rmind * Don't return to freelist - the holder of the last
325 1.1 rmind * reference will destroy it.
326 1.1 rmind */
327 1.1 rmind vrelel(vp, 0); /* releases vp->v_interlock */
328 1.1 rmind mutex_enter(&vnode_free_list_lock);
329 1.1 rmind goto retry;
330 1.1 rmind }
331 1.1 rmind
332 1.12 hannken KASSERT((vp->v_iflag & VI_CLEAN) == VI_CLEAN);
333 1.12 hannken mutex_exit(vp->v_interlock);
334 1.12 hannken if (vp->v_type == VBLK || vp->v_type == VCHR) {
335 1.12 hannken spec_node_destroy(vp);
336 1.12 hannken }
337 1.12 hannken vp->v_type = VNON;
338 1.12 hannken
339 1.5 rmind KASSERT(vp->v_data == NULL);
340 1.5 rmind KASSERT(vp->v_uobj.uo_npages == 0);
341 1.14.2.1 yamt KASSERT(radix_tree_empty_tree_p(&vp->v_uobj.uo_pages));
342 1.5 rmind KASSERT(vp->v_numoutput == 0);
343 1.5 rmind KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
344 1.1 rmind
345 1.12 hannken vrele(vp);
346 1.12 hannken
347 1.12 hannken return 0;
348 1.1 rmind }
349 1.1 rmind
350 1.1 rmind /*
351 1.12 hannken * getnewvnode: return a fresh vnode.
352 1.5 rmind *
353 1.5 rmind * => Returns referenced vnode, moved into the mount queue.
354 1.9 rmind * => Shares the interlock specified by 'slock', if it is not NULL.
355 1.1 rmind */
356 1.1 rmind int
357 1.1 rmind getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
358 1.9 rmind kmutex_t *slock, vnode_t **vpp)
359 1.1 rmind {
360 1.1 rmind struct uvm_object *uobj;
361 1.1 rmind vnode_t *vp;
362 1.12 hannken int error = 0;
363 1.1 rmind
364 1.1 rmind if (mp != NULL) {
365 1.1 rmind /*
366 1.4 rmind * Mark filesystem busy while we are creating a vnode.
367 1.4 rmind * If unmount is in progress, this will fail.
368 1.1 rmind */
369 1.1 rmind error = vfs_busy(mp, NULL);
370 1.1 rmind if (error)
371 1.1 rmind return error;
372 1.1 rmind }
373 1.1 rmind
374 1.1 rmind vp = NULL;
375 1.1 rmind
376 1.12 hannken /* Allocate a new vnode. */
377 1.1 rmind mutex_enter(&vnode_free_list_lock);
378 1.12 hannken numvnodes++;
379 1.12 hannken if (numvnodes > desiredvnodes + desiredvnodes / 10)
380 1.12 hannken cv_signal(&vdrain_cv);
381 1.12 hannken mutex_exit(&vnode_free_list_lock);
382 1.14 hannken vp = vnalloc(NULL);
383 1.1 rmind
384 1.1 rmind KASSERT(vp->v_freelisthd == NULL);
385 1.1 rmind KASSERT(LIST_EMPTY(&vp->v_nclist));
386 1.1 rmind KASSERT(LIST_EMPTY(&vp->v_dnclist));
387 1.1 rmind
388 1.5 rmind /* Initialize vnode. */
389 1.14 hannken vp->v_usecount = 1;
390 1.1 rmind vp->v_type = VNON;
391 1.1 rmind vp->v_tag = tag;
392 1.1 rmind vp->v_op = vops;
393 1.1 rmind vp->v_data = NULL;
394 1.1 rmind
395 1.1 rmind uobj = &vp->v_uobj;
396 1.1 rmind KASSERT(uobj->pgops == &uvm_vnodeops);
397 1.1 rmind KASSERT(uobj->uo_npages == 0);
398 1.14.2.1 yamt KASSERT(radix_tree_empty_tree_p(&vp->v_uobj.uo_pages));
399 1.1 rmind vp->v_size = vp->v_writesize = VSIZENOTSET;
400 1.1 rmind
401 1.9 rmind /* Share the vnode_t::v_interlock, if requested. */
402 1.9 rmind if (slock) {
403 1.9 rmind /* Set the interlock and mark that it is shared. */
404 1.9 rmind KASSERT(vp->v_mount == NULL);
405 1.9 rmind mutex_obj_hold(slock);
406 1.9 rmind uvm_obj_setlock(&vp->v_uobj, slock);
407 1.9 rmind KASSERT(vp->v_interlock == slock);
408 1.9 rmind vp->v_iflag |= VI_LOCKSHARE;
409 1.9 rmind }
410 1.9 rmind
411 1.5 rmind /* Finally, move vnode into the mount queue. */
412 1.5 rmind vfs_insmntque(vp, mp);
413 1.5 rmind
414 1.1 rmind if (mp != NULL) {
415 1.1 rmind if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
416 1.1 rmind vp->v_vflag |= VV_MPSAFE;
417 1.1 rmind vfs_unbusy(mp, true, NULL);
418 1.1 rmind }
419 1.1 rmind
420 1.5 rmind *vpp = vp;
421 1.4 rmind return 0;
422 1.1 rmind }
423 1.1 rmind
424 1.1 rmind /*
425 1.1 rmind * This is really just the reverse of getnewvnode(). Needed for
426 1.1 rmind * VFS_VGET functions who may need to push back a vnode in case
427 1.1 rmind * of a locking race.
428 1.1 rmind */
429 1.1 rmind void
430 1.1 rmind ungetnewvnode(vnode_t *vp)
431 1.1 rmind {
432 1.1 rmind
433 1.1 rmind KASSERT(vp->v_usecount == 1);
434 1.1 rmind KASSERT(vp->v_data == NULL);
435 1.1 rmind KASSERT(vp->v_freelisthd == NULL);
436 1.1 rmind
437 1.9 rmind mutex_enter(vp->v_interlock);
438 1.1 rmind vp->v_iflag |= VI_CLEAN;
439 1.1 rmind vrelel(vp, 0);
440 1.1 rmind }
441 1.1 rmind
442 1.1 rmind /*
443 1.12 hannken * Helper thread to keep the number of vnodes below desiredvnodes.
444 1.12 hannken */
445 1.12 hannken static void
446 1.12 hannken vdrain_thread(void *cookie)
447 1.12 hannken {
448 1.12 hannken int error;
449 1.12 hannken
450 1.12 hannken mutex_enter(&vnode_free_list_lock);
451 1.12 hannken
452 1.12 hannken for (;;) {
453 1.12 hannken cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
454 1.12 hannken while (numvnodes > desiredvnodes) {
455 1.12 hannken error = cleanvnode();
456 1.12 hannken if (error)
457 1.12 hannken kpause("vndsbusy", false, hz, NULL);
458 1.12 hannken mutex_enter(&vnode_free_list_lock);
459 1.12 hannken if (error)
460 1.12 hannken break;
461 1.12 hannken }
462 1.12 hannken }
463 1.12 hannken }
464 1.12 hannken
465 1.12 hannken /*
466 1.1 rmind * Remove a vnode from its freelist.
467 1.1 rmind */
468 1.1 rmind void
469 1.1 rmind vremfree(vnode_t *vp)
470 1.1 rmind {
471 1.1 rmind
472 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
473 1.1 rmind KASSERT(vp->v_usecount == 0);
474 1.1 rmind
475 1.1 rmind /*
476 1.1 rmind * Note that the reference count must not change until
477 1.1 rmind * the vnode is removed.
478 1.1 rmind */
479 1.1 rmind mutex_enter(&vnode_free_list_lock);
480 1.1 rmind if (vp->v_holdcnt > 0) {
481 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_hold_list);
482 1.1 rmind } else {
483 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_free_list);
484 1.1 rmind }
485 1.1 rmind TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
486 1.1 rmind vp->v_freelisthd = NULL;
487 1.1 rmind mutex_exit(&vnode_free_list_lock);
488 1.1 rmind }
489 1.1 rmind
490 1.1 rmind /*
491 1.1 rmind * Try to gain a reference to a vnode, without acquiring its interlock.
492 1.1 rmind * The caller must hold a lock that will prevent the vnode from being
493 1.1 rmind * recycled or freed.
494 1.1 rmind */
495 1.1 rmind bool
496 1.1 rmind vtryget(vnode_t *vp)
497 1.1 rmind {
498 1.1 rmind u_int use, next;
499 1.1 rmind
500 1.1 rmind /*
501 1.1 rmind * If the vnode is being freed, don't make life any harder
502 1.1 rmind * for vclean() by adding another reference without waiting.
503 1.1 rmind * This is not strictly necessary, but we'll do it anyway.
504 1.1 rmind */
505 1.1 rmind if (__predict_false((vp->v_iflag & VI_XLOCK) != 0)) {
506 1.1 rmind return false;
507 1.1 rmind }
508 1.1 rmind for (use = vp->v_usecount;; use = next) {
509 1.1 rmind if (use == 0 || __predict_false((use & VC_XLOCK) != 0)) {
510 1.1 rmind /* Need interlock held if first reference. */
511 1.1 rmind return false;
512 1.1 rmind }
513 1.1 rmind next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
514 1.1 rmind if (__predict_true(next == use)) {
515 1.1 rmind return true;
516 1.1 rmind }
517 1.1 rmind }
518 1.1 rmind }
519 1.1 rmind
520 1.1 rmind /*
521 1.4 rmind * vget: get a particular vnode from the free list, increment its reference
522 1.4 rmind * count and lock it.
523 1.4 rmind *
524 1.4 rmind * => Should be called with v_interlock held.
525 1.4 rmind *
526 1.4 rmind * If VI_XLOCK is set, the vnode is being eliminated in vgone()/vclean().
527 1.4 rmind * In that case, we cannot grab the vnode, so the process is awakened when
528 1.4 rmind * the transition is completed, and an error returned to indicate that the
529 1.4 rmind * vnode is no longer usable (e.g. changed to a new file system type).
530 1.1 rmind */
531 1.1 rmind int
532 1.1 rmind vget(vnode_t *vp, int flags)
533 1.1 rmind {
534 1.1 rmind int error = 0;
535 1.1 rmind
536 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
537 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
538 1.1 rmind KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
539 1.1 rmind
540 1.1 rmind /*
541 1.1 rmind * Before adding a reference, we must remove the vnode
542 1.1 rmind * from its freelist.
543 1.1 rmind */
544 1.1 rmind if (vp->v_usecount == 0) {
545 1.1 rmind vremfree(vp);
546 1.1 rmind vp->v_usecount = 1;
547 1.1 rmind } else {
548 1.1 rmind atomic_inc_uint(&vp->v_usecount);
549 1.1 rmind }
550 1.1 rmind
551 1.1 rmind /*
552 1.1 rmind * If the vnode is in the process of being cleaned out for
553 1.1 rmind * another use, we wait for the cleaning to finish and then
554 1.1 rmind * return failure. Cleaning is determined by checking if
555 1.1 rmind * the VI_XLOCK flag is set.
556 1.1 rmind */
557 1.1 rmind if ((vp->v_iflag & VI_XLOCK) != 0) {
558 1.1 rmind if ((flags & LK_NOWAIT) != 0) {
559 1.1 rmind vrelel(vp, 0);
560 1.1 rmind return EBUSY;
561 1.1 rmind }
562 1.1 rmind vwait(vp, VI_XLOCK);
563 1.1 rmind vrelel(vp, 0);
564 1.1 rmind return ENOENT;
565 1.1 rmind }
566 1.1 rmind
567 1.1 rmind /*
568 1.1 rmind * Ok, we got it in good shape. Just locking left.
569 1.1 rmind */
570 1.1 rmind KASSERT((vp->v_iflag & VI_CLEAN) == 0);
571 1.9 rmind mutex_exit(vp->v_interlock);
572 1.1 rmind if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
573 1.1 rmind error = vn_lock(vp, flags);
574 1.1 rmind if (error != 0) {
575 1.1 rmind vrele(vp);
576 1.1 rmind }
577 1.1 rmind }
578 1.1 rmind return error;
579 1.1 rmind }
580 1.1 rmind
581 1.1 rmind /*
582 1.4 rmind * vput: unlock and release the reference.
583 1.1 rmind */
584 1.1 rmind void
585 1.1 rmind vput(vnode_t *vp)
586 1.1 rmind {
587 1.1 rmind
588 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
589 1.1 rmind
590 1.1 rmind VOP_UNLOCK(vp);
591 1.1 rmind vrele(vp);
592 1.1 rmind }
593 1.1 rmind
594 1.1 rmind /*
595 1.1 rmind * Try to drop reference on a vnode. Abort if we are releasing the
596 1.1 rmind * last reference. Note: this _must_ succeed if not the last reference.
597 1.1 rmind */
598 1.1 rmind static inline bool
599 1.1 rmind vtryrele(vnode_t *vp)
600 1.1 rmind {
601 1.1 rmind u_int use, next;
602 1.1 rmind
603 1.1 rmind for (use = vp->v_usecount;; use = next) {
604 1.1 rmind if (use == 1) {
605 1.1 rmind return false;
606 1.1 rmind }
607 1.1 rmind KASSERT((use & VC_MASK) > 1);
608 1.1 rmind next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
609 1.1 rmind if (__predict_true(next == use)) {
610 1.1 rmind return true;
611 1.1 rmind }
612 1.1 rmind }
613 1.1 rmind }
614 1.1 rmind
615 1.1 rmind /*
616 1.1 rmind * Vnode release. If reference count drops to zero, call inactive
617 1.1 rmind * routine and either return to freelist or free to the pool.
618 1.1 rmind */
619 1.1 rmind void
620 1.1 rmind vrelel(vnode_t *vp, int flags)
621 1.1 rmind {
622 1.1 rmind bool recycle, defer;
623 1.1 rmind int error;
624 1.1 rmind
625 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
626 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
627 1.1 rmind KASSERT(vp->v_freelisthd == NULL);
628 1.1 rmind
629 1.1 rmind if (__predict_false(vp->v_op == dead_vnodeop_p &&
630 1.1 rmind (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
631 1.11 christos vnpanic(vp, "dead but not clean");
632 1.1 rmind }
633 1.1 rmind
634 1.1 rmind /*
635 1.1 rmind * If not the last reference, just drop the reference count
636 1.1 rmind * and unlock.
637 1.1 rmind */
638 1.1 rmind if (vtryrele(vp)) {
639 1.1 rmind vp->v_iflag |= VI_INACTREDO;
640 1.9 rmind mutex_exit(vp->v_interlock);
641 1.1 rmind return;
642 1.1 rmind }
643 1.1 rmind if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
644 1.11 christos vnpanic(vp, "%s: bad ref count", __func__);
645 1.1 rmind }
646 1.1 rmind
647 1.1 rmind KASSERT((vp->v_iflag & VI_XLOCK) == 0);
648 1.1 rmind
649 1.14.2.2 yamt #ifdef DIAGNOSTIC
650 1.14.2.2 yamt if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
651 1.14.2.2 yamt vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
652 1.14.2.2 yamt vprint("vrelel: missing VOP_CLOSE()", vp);
653 1.14.2.2 yamt }
654 1.14.2.2 yamt #endif
655 1.14.2.2 yamt
656 1.1 rmind /*
657 1.1 rmind * If not clean, deactivate the vnode, but preserve
658 1.1 rmind * our reference across the call to VOP_INACTIVE().
659 1.1 rmind */
660 1.1 rmind retry:
661 1.1 rmind if ((vp->v_iflag & VI_CLEAN) == 0) {
662 1.1 rmind recycle = false;
663 1.1 rmind vp->v_iflag |= VI_INACTNOW;
664 1.1 rmind
665 1.1 rmind /*
666 1.1 rmind * XXX This ugly block can be largely eliminated if
667 1.1 rmind * locking is pushed down into the file systems.
668 1.1 rmind *
669 1.1 rmind * Defer vnode release to vrele_thread if caller
670 1.1 rmind * requests it explicitly.
671 1.1 rmind */
672 1.1 rmind if ((curlwp == uvm.pagedaemon_lwp) ||
673 1.1 rmind (flags & VRELEL_ASYNC_RELE) != 0) {
674 1.1 rmind /* The pagedaemon can't wait around; defer. */
675 1.1 rmind defer = true;
676 1.1 rmind } else if (curlwp == vrele_lwp) {
677 1.1 rmind /* We have to try harder. */
678 1.1 rmind vp->v_iflag &= ~VI_INACTREDO;
679 1.9 rmind mutex_exit(vp->v_interlock);
680 1.1 rmind error = vn_lock(vp, LK_EXCLUSIVE);
681 1.1 rmind if (error != 0) {
682 1.1 rmind /* XXX */
683 1.11 christos vnpanic(vp, "%s: unable to lock %p",
684 1.11 christos __func__, vp);
685 1.1 rmind }
686 1.1 rmind defer = false;
687 1.1 rmind } else if ((vp->v_iflag & VI_LAYER) != 0) {
688 1.1 rmind /*
689 1.1 rmind * Acquiring the stack's lock in vclean() even
690 1.1 rmind * for an honest vput/vrele is dangerous because
691 1.1 rmind * our caller may hold other vnode locks; defer.
692 1.1 rmind */
693 1.1 rmind defer = true;
694 1.4 rmind } else {
695 1.1 rmind /* If we can't acquire the lock, then defer. */
696 1.1 rmind vp->v_iflag &= ~VI_INACTREDO;
697 1.9 rmind mutex_exit(vp->v_interlock);
698 1.1 rmind error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
699 1.1 rmind if (error != 0) {
700 1.1 rmind defer = true;
701 1.9 rmind mutex_enter(vp->v_interlock);
702 1.1 rmind } else {
703 1.1 rmind defer = false;
704 1.1 rmind }
705 1.1 rmind }
706 1.1 rmind
707 1.1 rmind if (defer) {
708 1.1 rmind /*
709 1.1 rmind * Defer reclaim to the kthread; it's not safe to
710 1.1 rmind * clean it here. We donate it our last reference.
711 1.1 rmind */
712 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
713 1.1 rmind KASSERT((vp->v_iflag & VI_INACTPEND) == 0);
714 1.1 rmind vp->v_iflag &= ~VI_INACTNOW;
715 1.1 rmind vp->v_iflag |= VI_INACTPEND;
716 1.1 rmind mutex_enter(&vrele_lock);
717 1.1 rmind TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
718 1.1 rmind if (++vrele_pending > (desiredvnodes >> 8))
719 1.1 rmind cv_signal(&vrele_cv);
720 1.1 rmind mutex_exit(&vrele_lock);
721 1.9 rmind mutex_exit(vp->v_interlock);
722 1.1 rmind return;
723 1.1 rmind }
724 1.1 rmind
725 1.1 rmind /*
726 1.1 rmind * The vnode can gain another reference while being
727 1.1 rmind * deactivated. If VOP_INACTIVE() indicates that
728 1.1 rmind * the described file has been deleted, then recycle
729 1.1 rmind * the vnode irrespective of additional references.
730 1.1 rmind * Another thread may be waiting to re-use the on-disk
731 1.1 rmind * inode.
732 1.1 rmind *
733 1.1 rmind * Note that VOP_INACTIVE() will drop the vnode lock.
734 1.1 rmind */
735 1.1 rmind VOP_INACTIVE(vp, &recycle);
736 1.9 rmind mutex_enter(vp->v_interlock);
737 1.1 rmind vp->v_iflag &= ~VI_INACTNOW;
738 1.1 rmind if (!recycle) {
739 1.1 rmind if (vtryrele(vp)) {
740 1.9 rmind mutex_exit(vp->v_interlock);
741 1.1 rmind return;
742 1.1 rmind }
743 1.1 rmind
744 1.1 rmind /*
745 1.1 rmind * If we grew another reference while
746 1.1 rmind * VOP_INACTIVE() was underway, retry.
747 1.1 rmind */
748 1.1 rmind if ((vp->v_iflag & VI_INACTREDO) != 0) {
749 1.1 rmind goto retry;
750 1.1 rmind }
751 1.1 rmind }
752 1.1 rmind
753 1.1 rmind /* Take care of space accounting. */
754 1.1 rmind if (vp->v_iflag & VI_EXECMAP) {
755 1.1 rmind atomic_add_int(&uvmexp.execpages,
756 1.1 rmind -vp->v_uobj.uo_npages);
757 1.1 rmind atomic_add_int(&uvmexp.filepages,
758 1.1 rmind vp->v_uobj.uo_npages);
759 1.1 rmind }
760 1.1 rmind vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
761 1.1 rmind vp->v_vflag &= ~VV_MAPPED;
762 1.1 rmind
763 1.1 rmind /*
764 1.1 rmind * Recycle the vnode if the file is now unused (unlinked),
765 1.1 rmind * otherwise just free it.
766 1.1 rmind */
767 1.1 rmind if (recycle) {
768 1.1 rmind vclean(vp, DOCLOSE);
769 1.1 rmind }
770 1.1 rmind KASSERT(vp->v_usecount > 0);
771 1.1 rmind }
772 1.1 rmind
773 1.1 rmind if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
774 1.1 rmind /* Gained another reference while being reclaimed. */
775 1.9 rmind mutex_exit(vp->v_interlock);
776 1.1 rmind return;
777 1.1 rmind }
778 1.1 rmind
779 1.1 rmind if ((vp->v_iflag & VI_CLEAN) != 0) {
780 1.1 rmind /*
781 1.1 rmind * It's clean so destroy it. It isn't referenced
782 1.1 rmind * anywhere since it has been reclaimed.
783 1.1 rmind */
784 1.1 rmind KASSERT(vp->v_holdcnt == 0);
785 1.1 rmind KASSERT(vp->v_writecount == 0);
786 1.9 rmind mutex_exit(vp->v_interlock);
787 1.1 rmind vfs_insmntque(vp, NULL);
788 1.1 rmind if (vp->v_type == VBLK || vp->v_type == VCHR) {
789 1.1 rmind spec_node_destroy(vp);
790 1.1 rmind }
791 1.1 rmind vnfree(vp);
792 1.1 rmind } else {
793 1.1 rmind /*
794 1.1 rmind * Otherwise, put it back onto the freelist. It
795 1.1 rmind * can't be destroyed while still associated with
796 1.1 rmind * a file system.
797 1.1 rmind */
798 1.1 rmind mutex_enter(&vnode_free_list_lock);
799 1.1 rmind if (vp->v_holdcnt > 0) {
800 1.1 rmind vp->v_freelisthd = &vnode_hold_list;
801 1.1 rmind } else {
802 1.1 rmind vp->v_freelisthd = &vnode_free_list;
803 1.1 rmind }
804 1.1 rmind TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
805 1.1 rmind mutex_exit(&vnode_free_list_lock);
806 1.9 rmind mutex_exit(vp->v_interlock);
807 1.1 rmind }
808 1.1 rmind }
809 1.1 rmind
810 1.1 rmind void
811 1.1 rmind vrele(vnode_t *vp)
812 1.1 rmind {
813 1.1 rmind
814 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
815 1.1 rmind
816 1.1 rmind if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
817 1.1 rmind return;
818 1.1 rmind }
819 1.9 rmind mutex_enter(vp->v_interlock);
820 1.1 rmind vrelel(vp, 0);
821 1.1 rmind }
822 1.1 rmind
823 1.1 rmind /*
824 1.1 rmind * Asynchronous vnode release, vnode is released in different context.
825 1.1 rmind */
826 1.1 rmind void
827 1.1 rmind vrele_async(vnode_t *vp)
828 1.1 rmind {
829 1.1 rmind
830 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
831 1.1 rmind
832 1.1 rmind if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
833 1.1 rmind return;
834 1.1 rmind }
835 1.9 rmind mutex_enter(vp->v_interlock);
836 1.1 rmind vrelel(vp, VRELEL_ASYNC_RELE);
837 1.1 rmind }
838 1.1 rmind
839 1.1 rmind static void
840 1.1 rmind vrele_thread(void *cookie)
841 1.1 rmind {
842 1.1 rmind vnode_t *vp;
843 1.1 rmind
844 1.1 rmind for (;;) {
845 1.1 rmind mutex_enter(&vrele_lock);
846 1.1 rmind while (TAILQ_EMPTY(&vrele_list)) {
847 1.1 rmind vrele_gen++;
848 1.1 rmind cv_broadcast(&vrele_cv);
849 1.1 rmind cv_timedwait(&vrele_cv, &vrele_lock, hz);
850 1.1 rmind }
851 1.1 rmind vp = TAILQ_FIRST(&vrele_list);
852 1.1 rmind TAILQ_REMOVE(&vrele_list, vp, v_freelist);
853 1.1 rmind vrele_pending--;
854 1.1 rmind mutex_exit(&vrele_lock);
855 1.1 rmind
856 1.1 rmind /*
857 1.1 rmind * If not the last reference, then ignore the vnode
858 1.1 rmind * and look for more work.
859 1.1 rmind */
860 1.9 rmind mutex_enter(vp->v_interlock);
861 1.1 rmind KASSERT((vp->v_iflag & VI_INACTPEND) != 0);
862 1.1 rmind vp->v_iflag &= ~VI_INACTPEND;
863 1.1 rmind vrelel(vp, 0);
864 1.1 rmind }
865 1.1 rmind }
866 1.1 rmind
867 1.2 rmind void
868 1.2 rmind vrele_flush(void)
869 1.2 rmind {
870 1.2 rmind int gen;
871 1.2 rmind
872 1.2 rmind mutex_enter(&vrele_lock);
873 1.2 rmind gen = vrele_gen;
874 1.2 rmind while (vrele_pending && gen == vrele_gen) {
875 1.2 rmind cv_broadcast(&vrele_cv);
876 1.2 rmind cv_wait(&vrele_cv, &vrele_lock);
877 1.2 rmind }
878 1.2 rmind mutex_exit(&vrele_lock);
879 1.2 rmind }
880 1.2 rmind
881 1.1 rmind /*
882 1.1 rmind * Vnode reference, where a reference is already held by some other
883 1.1 rmind * object (for example, a file structure).
884 1.1 rmind */
885 1.1 rmind void
886 1.1 rmind vref(vnode_t *vp)
887 1.1 rmind {
888 1.1 rmind
889 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
890 1.1 rmind KASSERT(vp->v_usecount != 0);
891 1.1 rmind
892 1.1 rmind atomic_inc_uint(&vp->v_usecount);
893 1.1 rmind }
894 1.1 rmind
895 1.1 rmind /*
896 1.1 rmind * Page or buffer structure gets a reference.
897 1.1 rmind * Called with v_interlock held.
898 1.1 rmind */
899 1.1 rmind void
900 1.1 rmind vholdl(vnode_t *vp)
901 1.1 rmind {
902 1.1 rmind
903 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
904 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
905 1.1 rmind
906 1.1 rmind if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
907 1.1 rmind mutex_enter(&vnode_free_list_lock);
908 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_free_list);
909 1.1 rmind TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
910 1.1 rmind vp->v_freelisthd = &vnode_hold_list;
911 1.1 rmind TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
912 1.1 rmind mutex_exit(&vnode_free_list_lock);
913 1.1 rmind }
914 1.1 rmind }
915 1.1 rmind
916 1.1 rmind /*
917 1.1 rmind * Page or buffer structure frees a reference.
918 1.1 rmind * Called with v_interlock held.
919 1.1 rmind */
920 1.1 rmind void
921 1.1 rmind holdrelel(vnode_t *vp)
922 1.1 rmind {
923 1.1 rmind
924 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
925 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
926 1.1 rmind
927 1.1 rmind if (vp->v_holdcnt <= 0) {
928 1.11 christos vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
929 1.1 rmind }
930 1.1 rmind
931 1.1 rmind vp->v_holdcnt--;
932 1.1 rmind if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
933 1.1 rmind mutex_enter(&vnode_free_list_lock);
934 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_hold_list);
935 1.1 rmind TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
936 1.1 rmind vp->v_freelisthd = &vnode_free_list;
937 1.1 rmind TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
938 1.1 rmind mutex_exit(&vnode_free_list_lock);
939 1.1 rmind }
940 1.1 rmind }
941 1.1 rmind
942 1.1 rmind /*
943 1.1 rmind * Disassociate the underlying file system from a vnode.
944 1.1 rmind *
945 1.1 rmind * Must be called with the interlock held, and will return with it held.
946 1.1 rmind */
947 1.1 rmind void
948 1.1 rmind vclean(vnode_t *vp, int flags)
949 1.1 rmind {
950 1.1 rmind lwp_t *l = curlwp;
951 1.1 rmind bool recycle, active;
952 1.1 rmind int error;
953 1.1 rmind
954 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
955 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
956 1.1 rmind KASSERT(vp->v_usecount != 0);
957 1.1 rmind
958 1.1 rmind /* If cleaning is already in progress wait until done and return. */
959 1.1 rmind if (vp->v_iflag & VI_XLOCK) {
960 1.1 rmind vwait(vp, VI_XLOCK);
961 1.1 rmind return;
962 1.1 rmind }
963 1.1 rmind
964 1.1 rmind /* If already clean, nothing to do. */
965 1.1 rmind if ((vp->v_iflag & VI_CLEAN) != 0) {
966 1.1 rmind return;
967 1.1 rmind }
968 1.1 rmind
969 1.1 rmind /*
970 1.1 rmind * Prevent the vnode from being recycled or brought into use
971 1.1 rmind * while we clean it out.
972 1.1 rmind */
973 1.1 rmind vp->v_iflag |= VI_XLOCK;
974 1.1 rmind if (vp->v_iflag & VI_EXECMAP) {
975 1.1 rmind atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
976 1.1 rmind atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
977 1.1 rmind }
978 1.1 rmind vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
979 1.1 rmind active = (vp->v_usecount & VC_MASK) > 1;
980 1.1 rmind
981 1.1 rmind /* XXXAD should not lock vnode under layer */
982 1.9 rmind mutex_exit(vp->v_interlock);
983 1.1 rmind VOP_LOCK(vp, LK_EXCLUSIVE);
984 1.1 rmind
985 1.1 rmind /*
986 1.1 rmind * Clean out any cached data associated with the vnode.
987 1.1 rmind * If purging an active vnode, it must be closed and
988 1.1 rmind * deactivated before being reclaimed. Note that the
989 1.1 rmind * VOP_INACTIVE will unlock the vnode.
990 1.1 rmind */
991 1.1 rmind if (flags & DOCLOSE) {
992 1.1 rmind error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
993 1.1 rmind if (error != 0) {
994 1.1 rmind /* XXX, fix vn_start_write's grab of mp and use that. */
995 1.1 rmind
996 1.1 rmind if (wapbl_vphaswapbl(vp))
997 1.1 rmind WAPBL_DISCARD(wapbl_vptomp(vp));
998 1.1 rmind error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
999 1.1 rmind }
1000 1.1 rmind KASSERT(error == 0);
1001 1.1 rmind KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1002 1.1 rmind if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1003 1.1 rmind spec_node_revoke(vp);
1004 1.1 rmind }
1005 1.1 rmind }
1006 1.1 rmind if (active) {
1007 1.1 rmind VOP_INACTIVE(vp, &recycle);
1008 1.1 rmind } else {
1009 1.1 rmind /*
1010 1.1 rmind * Any other processes trying to obtain this lock must first
1011 1.1 rmind * wait for VI_XLOCK to clear, then call the new lock operation.
1012 1.1 rmind */
1013 1.1 rmind VOP_UNLOCK(vp);
1014 1.1 rmind }
1015 1.1 rmind
1016 1.1 rmind /* Disassociate the underlying file system from the vnode. */
1017 1.1 rmind if (VOP_RECLAIM(vp)) {
1018 1.11 christos vnpanic(vp, "%s: cannot reclaim", __func__);
1019 1.1 rmind }
1020 1.1 rmind
1021 1.7 rmind KASSERT(vp->v_data == NULL);
1022 1.1 rmind KASSERT(vp->v_uobj.uo_npages == 0);
1023 1.7 rmind
1024 1.1 rmind if (vp->v_type == VREG && vp->v_ractx != NULL) {
1025 1.1 rmind uvm_ra_freectx(vp->v_ractx);
1026 1.1 rmind vp->v_ractx = NULL;
1027 1.1 rmind }
1028 1.7 rmind
1029 1.7 rmind /* Purge name cache. */
1030 1.1 rmind cache_purge(vp);
1031 1.1 rmind
1032 1.1 rmind /* Done with purge, notify sleepers of the grim news. */
1033 1.9 rmind mutex_enter(vp->v_interlock);
1034 1.1 rmind vp->v_op = dead_vnodeop_p;
1035 1.1 rmind vp->v_tag = VT_NON;
1036 1.1 rmind KNOTE(&vp->v_klist, NOTE_REVOKE);
1037 1.1 rmind vp->v_iflag &= ~VI_XLOCK;
1038 1.1 rmind vp->v_vflag &= ~VV_LOCKSWORK;
1039 1.1 rmind if ((flags & DOCLOSE) != 0) {
1040 1.1 rmind vp->v_iflag |= VI_CLEAN;
1041 1.1 rmind }
1042 1.1 rmind cv_broadcast(&vp->v_cv);
1043 1.1 rmind
1044 1.1 rmind KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1045 1.1 rmind }
1046 1.1 rmind
1047 1.1 rmind /*
1048 1.1 rmind * Recycle an unused vnode to the front of the free list.
1049 1.1 rmind * Release the passed interlock if the vnode will be recycled.
1050 1.1 rmind */
1051 1.1 rmind int
1052 1.1 rmind vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l)
1053 1.1 rmind {
1054 1.1 rmind
1055 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
1056 1.1 rmind
1057 1.9 rmind mutex_enter(vp->v_interlock);
1058 1.1 rmind if (vp->v_usecount != 0) {
1059 1.9 rmind mutex_exit(vp->v_interlock);
1060 1.4 rmind return 0;
1061 1.1 rmind }
1062 1.1 rmind if (inter_lkp) {
1063 1.1 rmind mutex_exit(inter_lkp);
1064 1.1 rmind }
1065 1.1 rmind vremfree(vp);
1066 1.1 rmind vp->v_usecount = 1;
1067 1.1 rmind vclean(vp, DOCLOSE);
1068 1.1 rmind vrelel(vp, 0);
1069 1.4 rmind return 1;
1070 1.1 rmind }
1071 1.1 rmind
1072 1.1 rmind /*
1073 1.1 rmind * Eliminate all activity associated with the requested vnode
1074 1.1 rmind * and with all vnodes aliased to the requested vnode.
1075 1.1 rmind */
1076 1.1 rmind void
1077 1.1 rmind vrevoke(vnode_t *vp)
1078 1.1 rmind {
1079 1.1 rmind vnode_t *vq, **vpp;
1080 1.1 rmind enum vtype type;
1081 1.1 rmind dev_t dev;
1082 1.1 rmind
1083 1.1 rmind KASSERT(vp->v_usecount > 0);
1084 1.1 rmind
1085 1.9 rmind mutex_enter(vp->v_interlock);
1086 1.1 rmind if ((vp->v_iflag & VI_CLEAN) != 0) {
1087 1.9 rmind mutex_exit(vp->v_interlock);
1088 1.1 rmind return;
1089 1.1 rmind } else if (vp->v_type != VBLK && vp->v_type != VCHR) {
1090 1.1 rmind atomic_inc_uint(&vp->v_usecount);
1091 1.1 rmind vclean(vp, DOCLOSE);
1092 1.1 rmind vrelel(vp, 0);
1093 1.1 rmind return;
1094 1.1 rmind } else {
1095 1.1 rmind dev = vp->v_rdev;
1096 1.1 rmind type = vp->v_type;
1097 1.9 rmind mutex_exit(vp->v_interlock);
1098 1.1 rmind }
1099 1.1 rmind
1100 1.1 rmind vpp = &specfs_hash[SPECHASH(dev)];
1101 1.1 rmind mutex_enter(&device_lock);
1102 1.1 rmind for (vq = *vpp; vq != NULL;) {
1103 1.1 rmind /* If clean or being cleaned, then ignore it. */
1104 1.9 rmind mutex_enter(vq->v_interlock);
1105 1.1 rmind if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 ||
1106 1.10 christos vq->v_type != type || vq->v_rdev != dev) {
1107 1.9 rmind mutex_exit(vq->v_interlock);
1108 1.1 rmind vq = vq->v_specnext;
1109 1.1 rmind continue;
1110 1.1 rmind }
1111 1.1 rmind mutex_exit(&device_lock);
1112 1.1 rmind if (vq->v_usecount == 0) {
1113 1.1 rmind vremfree(vq);
1114 1.1 rmind vq->v_usecount = 1;
1115 1.1 rmind } else {
1116 1.1 rmind atomic_inc_uint(&vq->v_usecount);
1117 1.1 rmind }
1118 1.1 rmind vclean(vq, DOCLOSE);
1119 1.1 rmind vrelel(vq, 0);
1120 1.1 rmind mutex_enter(&device_lock);
1121 1.1 rmind vq = *vpp;
1122 1.1 rmind }
1123 1.1 rmind mutex_exit(&device_lock);
1124 1.1 rmind }
1125 1.1 rmind
1126 1.1 rmind /*
1127 1.1 rmind * Eliminate all activity associated with a vnode in preparation for
1128 1.1 rmind * reuse. Drops a reference from the vnode.
1129 1.1 rmind */
1130 1.1 rmind void
1131 1.1 rmind vgone(vnode_t *vp)
1132 1.1 rmind {
1133 1.1 rmind
1134 1.9 rmind mutex_enter(vp->v_interlock);
1135 1.1 rmind vclean(vp, DOCLOSE);
1136 1.1 rmind vrelel(vp, 0);
1137 1.1 rmind }
1138 1.1 rmind
1139 1.1 rmind /*
1140 1.1 rmind * Update outstanding I/O count and do wakeup if requested.
1141 1.1 rmind */
1142 1.1 rmind void
1143 1.1 rmind vwakeup(struct buf *bp)
1144 1.1 rmind {
1145 1.1 rmind vnode_t *vp;
1146 1.1 rmind
1147 1.1 rmind if ((vp = bp->b_vp) == NULL)
1148 1.1 rmind return;
1149 1.1 rmind
1150 1.9 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1151 1.1 rmind KASSERT(mutex_owned(bp->b_objlock));
1152 1.1 rmind
1153 1.1 rmind if (--vp->v_numoutput < 0)
1154 1.11 christos vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1155 1.1 rmind if (vp->v_numoutput == 0)
1156 1.1 rmind cv_broadcast(&vp->v_cv);
1157 1.1 rmind }
1158 1.1 rmind
1159 1.1 rmind /*
1160 1.1 rmind * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
1161 1.1 rmind * recycled.
1162 1.1 rmind */
1163 1.1 rmind void
1164 1.1 rmind vwait(vnode_t *vp, int flags)
1165 1.1 rmind {
1166 1.1 rmind
1167 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
1168 1.1 rmind KASSERT(vp->v_usecount != 0);
1169 1.1 rmind
1170 1.1 rmind while ((vp->v_iflag & flags) != 0)
1171 1.9 rmind cv_wait(&vp->v_cv, vp->v_interlock);
1172 1.1 rmind }
1173 1.1 rmind
1174 1.1 rmind int
1175 1.3 rmind vfs_drainvnodes(long target)
1176 1.1 rmind {
1177 1.12 hannken int error;
1178 1.12 hannken
1179 1.12 hannken mutex_enter(&vnode_free_list_lock);
1180 1.1 rmind
1181 1.1 rmind while (numvnodes > target) {
1182 1.12 hannken error = cleanvnode();
1183 1.12 hannken if (error != 0)
1184 1.12 hannken return error;
1185 1.1 rmind mutex_enter(&vnode_free_list_lock);
1186 1.1 rmind }
1187 1.12 hannken
1188 1.12 hannken mutex_exit(&vnode_free_list_lock);
1189 1.12 hannken
1190 1.1 rmind return 0;
1191 1.1 rmind }
1192 1.1 rmind
1193 1.1 rmind void
1194 1.11 christos vnpanic(vnode_t *vp, const char *fmt, ...)
1195 1.1 rmind {
1196 1.11 christos va_list ap;
1197 1.11 christos
1198 1.1 rmind #ifdef DIAGNOSTIC
1199 1.1 rmind vprint(NULL, vp);
1200 1.1 rmind #endif
1201 1.11 christos va_start(ap, fmt);
1202 1.11 christos vpanic(fmt, ap);
1203 1.11 christos va_end(ap);
1204 1.1 rmind }
1205