vfs_vnode.c revision 1.15.6.3 1 1.15.6.3 tls /* $NetBSD: vfs_vnode.c,v 1.15.6.3 2014/08/20 00:04:29 tls Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.2 rmind * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This code is derived from software contributed to The NetBSD Foundation
8 1.1 rmind * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1 rmind * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 1.1 rmind *
11 1.1 rmind * Redistribution and use in source and binary forms, with or without
12 1.1 rmind * modification, are permitted provided that the following conditions
13 1.1 rmind * are met:
14 1.1 rmind * 1. Redistributions of source code must retain the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer.
16 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 rmind * notice, this list of conditions and the following disclaimer in the
18 1.1 rmind * documentation and/or other materials provided with the distribution.
19 1.1 rmind *
20 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
31 1.1 rmind */
32 1.1 rmind
33 1.1 rmind /*
34 1.1 rmind * Copyright (c) 1989, 1993
35 1.1 rmind * The Regents of the University of California. All rights reserved.
36 1.1 rmind * (c) UNIX System Laboratories, Inc.
37 1.1 rmind * All or some portions of this file are derived from material licensed
38 1.1 rmind * to the University of California by American Telephone and Telegraph
39 1.1 rmind * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 1.1 rmind * the permission of UNIX System Laboratories, Inc.
41 1.1 rmind *
42 1.1 rmind * Redistribution and use in source and binary forms, with or without
43 1.1 rmind * modification, are permitted provided that the following conditions
44 1.1 rmind * are met:
45 1.1 rmind * 1. Redistributions of source code must retain the above copyright
46 1.1 rmind * notice, this list of conditions and the following disclaimer.
47 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
48 1.1 rmind * notice, this list of conditions and the following disclaimer in the
49 1.1 rmind * documentation and/or other materials provided with the distribution.
50 1.1 rmind * 3. Neither the name of the University nor the names of its contributors
51 1.1 rmind * may be used to endorse or promote products derived from this software
52 1.1 rmind * without specific prior written permission.
53 1.1 rmind *
54 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 1.1 rmind * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 1.1 rmind * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 1.1 rmind * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 1.1 rmind * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 1.1 rmind * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 1.1 rmind * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 1.1 rmind * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 1.1 rmind * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 1.1 rmind * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 1.1 rmind * SUCH DAMAGE.
65 1.1 rmind *
66 1.1 rmind * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
67 1.1 rmind */
68 1.1 rmind
69 1.1 rmind /*
70 1.8 rmind * The vnode cache subsystem.
71 1.1 rmind *
72 1.8 rmind * Life-cycle
73 1.1 rmind *
74 1.8 rmind * Normally, there are two points where new vnodes are created:
75 1.8 rmind * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
76 1.8 rmind * starts in one of the following ways:
77 1.8 rmind *
78 1.8 rmind * - Allocation, via getnewvnode(9) and/or vnalloc(9).
79 1.8 rmind * - Reclamation of inactive vnode, via vget(9).
80 1.8 rmind *
81 1.15.6.1 tls * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82 1.15.6.1 tls * was another, traditional way. Currently, only the draining thread
83 1.15.6.1 tls * recycles the vnodes. This behaviour might be revisited.
84 1.15.6.1 tls *
85 1.8 rmind * The life-cycle ends when the last reference is dropped, usually
86 1.8 rmind * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
87 1.8 rmind * the file system that vnode is inactive. Via this call, file system
88 1.15.6.1 tls * indicates whether vnode can be recycled (usually, it checks its own
89 1.15.6.1 tls * references, e.g. count of links, whether the file was removed).
90 1.8 rmind *
91 1.8 rmind * Depending on indication, vnode can be put into a free list (cache),
92 1.8 rmind * or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
93 1.8 rmind * underlying file system from the vnode, and finally destroyed.
94 1.8 rmind *
95 1.8 rmind * Reference counting
96 1.8 rmind *
97 1.8 rmind * Vnode is considered active, if reference count (vnode_t::v_usecount)
98 1.8 rmind * is non-zero. It is maintained using: vref(9) and vrele(9), as well
99 1.8 rmind * as vput(9), routines. Common points holding references are e.g.
100 1.8 rmind * file openings, current working directory, mount points, etc.
101 1.8 rmind *
102 1.8 rmind * Note on v_usecount and its locking
103 1.8 rmind *
104 1.8 rmind * At nearly all points it is known that v_usecount could be zero,
105 1.8 rmind * the vnode_t::v_interlock will be held. To change v_usecount away
106 1.8 rmind * from zero, the interlock must be held. To change from a non-zero
107 1.8 rmind * value to zero, again the interlock must be held.
108 1.8 rmind *
109 1.15.6.3 tls * Changing the usecount from a non-zero value to a non-zero value can
110 1.15.6.3 tls * safely be done using atomic operations, without the interlock held.
111 1.8 rmind *
112 1.8 rmind * Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
113 1.8 rmind * mntvnode_lock is still held.
114 1.15.6.3 tls *
115 1.15.6.3 tls * See PR 41374.
116 1.1 rmind */
117 1.1 rmind
118 1.1 rmind #include <sys/cdefs.h>
119 1.15.6.3 tls __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.15.6.3 2014/08/20 00:04:29 tls Exp $");
120 1.15.6.3 tls
121 1.15.6.3 tls #define _VFS_VNODE_PRIVATE
122 1.1 rmind
123 1.1 rmind #include <sys/param.h>
124 1.1 rmind #include <sys/kernel.h>
125 1.1 rmind
126 1.1 rmind #include <sys/atomic.h>
127 1.1 rmind #include <sys/buf.h>
128 1.1 rmind #include <sys/conf.h>
129 1.1 rmind #include <sys/device.h>
130 1.15.6.3 tls #include <sys/hash.h>
131 1.1 rmind #include <sys/kauth.h>
132 1.1 rmind #include <sys/kmem.h>
133 1.1 rmind #include <sys/kthread.h>
134 1.1 rmind #include <sys/module.h>
135 1.1 rmind #include <sys/mount.h>
136 1.1 rmind #include <sys/namei.h>
137 1.1 rmind #include <sys/syscallargs.h>
138 1.1 rmind #include <sys/sysctl.h>
139 1.1 rmind #include <sys/systm.h>
140 1.1 rmind #include <sys/vnode.h>
141 1.1 rmind #include <sys/wapbl.h>
142 1.15.6.3 tls #include <sys/fstrans.h>
143 1.1 rmind
144 1.1 rmind #include <uvm/uvm.h>
145 1.1 rmind #include <uvm/uvm_readahead.h>
146 1.1 rmind
147 1.15.6.3 tls /* Flags to vrelel. */
148 1.15.6.3 tls #define VRELEL_ASYNC_RELE 0x0001 /* Always defer to vrele thread. */
149 1.15.6.3 tls #define VRELEL_CHANGING_SET 0x0002 /* VI_CHANGING set by caller. */
150 1.15.6.3 tls
151 1.15.6.3 tls struct vcache_key {
152 1.15.6.3 tls struct mount *vk_mount;
153 1.15.6.3 tls const void *vk_key;
154 1.15.6.3 tls size_t vk_key_len;
155 1.15.6.3 tls };
156 1.15.6.3 tls struct vcache_node {
157 1.15.6.3 tls SLIST_ENTRY(vcache_node) vn_hash;
158 1.15.6.3 tls struct vnode *vn_vnode;
159 1.15.6.3 tls struct vcache_key vn_key;
160 1.15.6.3 tls };
161 1.15.6.3 tls
162 1.6 rmind u_int numvnodes __cacheline_aligned;
163 1.1 rmind
164 1.6 rmind static pool_cache_t vnode_cache __read_mostly;
165 1.15.6.3 tls static struct mount *dead_mount;
166 1.1 rmind
167 1.15.6.1 tls /*
168 1.15.6.1 tls * There are two free lists: one is for vnodes which have no buffer/page
169 1.15.6.1 tls * references and one for those which do (i.e. v_holdcnt is non-zero).
170 1.15.6.1 tls * Vnode recycling mechanism first attempts to look into the former list.
171 1.15.6.1 tls */
172 1.15.6.1 tls static kmutex_t vnode_free_list_lock __cacheline_aligned;
173 1.6 rmind static vnodelst_t vnode_free_list __cacheline_aligned;
174 1.6 rmind static vnodelst_t vnode_hold_list __cacheline_aligned;
175 1.15.6.1 tls static kcondvar_t vdrain_cv __cacheline_aligned;
176 1.6 rmind
177 1.15.6.1 tls static vnodelst_t vrele_list __cacheline_aligned;
178 1.6 rmind static kmutex_t vrele_lock __cacheline_aligned;
179 1.6 rmind static kcondvar_t vrele_cv __cacheline_aligned;
180 1.6 rmind static lwp_t * vrele_lwp __cacheline_aligned;
181 1.6 rmind static int vrele_pending __cacheline_aligned;
182 1.6 rmind static int vrele_gen __cacheline_aligned;
183 1.1 rmind
184 1.15.6.3 tls static struct {
185 1.15.6.3 tls kmutex_t lock;
186 1.15.6.3 tls u_long hashmask;
187 1.15.6.3 tls SLIST_HEAD(hashhead, vcache_node) *hashtab;
188 1.15.6.3 tls pool_cache_t pool;
189 1.15.6.3 tls } vcache __cacheline_aligned;
190 1.15.6.3 tls
191 1.12 hannken static int cleanvnode(void);
192 1.15.6.3 tls static void vcache_init(void);
193 1.15.6.3 tls static void vcache_reinit(void);
194 1.15.6.3 tls static void vclean(vnode_t *);
195 1.15.6.3 tls static void vrelel(vnode_t *, int);
196 1.12 hannken static void vdrain_thread(void *);
197 1.1 rmind static void vrele_thread(void *);
198 1.11 christos static void vnpanic(vnode_t *, const char *, ...)
199 1.15.6.2 tls __printflike(2, 3);
200 1.15.6.3 tls static void vwait(vnode_t *, int);
201 1.1 rmind
202 1.1 rmind /* Routines having to do with the management of the vnode table. */
203 1.1 rmind extern int (**dead_vnodeop_p)(void *);
204 1.15.6.3 tls extern struct vfsops dead_vfsops;
205 1.1 rmind
206 1.1 rmind void
207 1.1 rmind vfs_vnode_sysinit(void)
208 1.1 rmind {
209 1.15.6.3 tls int error __diagused;
210 1.1 rmind
211 1.1 rmind vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
212 1.1 rmind NULL, IPL_NONE, NULL, NULL, NULL);
213 1.1 rmind KASSERT(vnode_cache != NULL);
214 1.1 rmind
215 1.15.6.3 tls dead_mount = vfs_mountalloc(&dead_vfsops, NULL);
216 1.15.6.3 tls KASSERT(dead_mount != NULL);
217 1.15.6.3 tls dead_mount->mnt_iflag = IMNT_MPSAFE;
218 1.15.6.3 tls
219 1.1 rmind mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
220 1.1 rmind TAILQ_INIT(&vnode_free_list);
221 1.1 rmind TAILQ_INIT(&vnode_hold_list);
222 1.1 rmind TAILQ_INIT(&vrele_list);
223 1.1 rmind
224 1.15.6.3 tls vcache_init();
225 1.15.6.3 tls
226 1.1 rmind mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
227 1.12 hannken cv_init(&vdrain_cv, "vdrain");
228 1.1 rmind cv_init(&vrele_cv, "vrele");
229 1.12 hannken error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
230 1.12 hannken NULL, NULL, "vdrain");
231 1.12 hannken KASSERT(error == 0);
232 1.1 rmind error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
233 1.1 rmind NULL, &vrele_lwp, "vrele");
234 1.1 rmind KASSERT(error == 0);
235 1.1 rmind }
236 1.1 rmind
237 1.1 rmind /*
238 1.1 rmind * Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a
239 1.13 hannken * marker vnode.
240 1.1 rmind */
241 1.1 rmind vnode_t *
242 1.1 rmind vnalloc(struct mount *mp)
243 1.1 rmind {
244 1.1 rmind vnode_t *vp;
245 1.1 rmind
246 1.13 hannken vp = pool_cache_get(vnode_cache, PR_WAITOK);
247 1.13 hannken KASSERT(vp != NULL);
248 1.1 rmind
249 1.1 rmind memset(vp, 0, sizeof(*vp));
250 1.9 rmind uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
251 1.1 rmind cv_init(&vp->v_cv, "vnode");
252 1.1 rmind /*
253 1.1 rmind * Done by memset() above.
254 1.1 rmind * LIST_INIT(&vp->v_nclist);
255 1.1 rmind * LIST_INIT(&vp->v_dnclist);
256 1.1 rmind */
257 1.1 rmind
258 1.1 rmind if (mp != NULL) {
259 1.1 rmind vp->v_mount = mp;
260 1.1 rmind vp->v_type = VBAD;
261 1.1 rmind vp->v_iflag = VI_MARKER;
262 1.15.6.3 tls return vp;
263 1.1 rmind }
264 1.1 rmind
265 1.15.6.3 tls mutex_enter(&vnode_free_list_lock);
266 1.15.6.3 tls numvnodes++;
267 1.15.6.3 tls if (numvnodes > desiredvnodes + desiredvnodes / 10)
268 1.15.6.3 tls cv_signal(&vdrain_cv);
269 1.15.6.3 tls mutex_exit(&vnode_free_list_lock);
270 1.15.6.3 tls
271 1.15.6.3 tls rw_init(&vp->v_lock);
272 1.15.6.3 tls vp->v_usecount = 1;
273 1.15.6.3 tls vp->v_type = VNON;
274 1.15.6.3 tls vp->v_size = vp->v_writesize = VSIZENOTSET;
275 1.15.6.3 tls
276 1.1 rmind return vp;
277 1.1 rmind }
278 1.1 rmind
279 1.1 rmind /*
280 1.1 rmind * Free an unused, unreferenced vnode.
281 1.1 rmind */
282 1.1 rmind void
283 1.1 rmind vnfree(vnode_t *vp)
284 1.1 rmind {
285 1.1 rmind
286 1.1 rmind KASSERT(vp->v_usecount == 0);
287 1.1 rmind
288 1.1 rmind if ((vp->v_iflag & VI_MARKER) == 0) {
289 1.1 rmind rw_destroy(&vp->v_lock);
290 1.1 rmind mutex_enter(&vnode_free_list_lock);
291 1.1 rmind numvnodes--;
292 1.1 rmind mutex_exit(&vnode_free_list_lock);
293 1.1 rmind }
294 1.1 rmind
295 1.9 rmind /*
296 1.9 rmind * Note: the vnode interlock will either be freed, of reference
297 1.9 rmind * dropped (if VI_LOCKSHARE was in use).
298 1.9 rmind */
299 1.9 rmind uvm_obj_destroy(&vp->v_uobj, true);
300 1.1 rmind cv_destroy(&vp->v_cv);
301 1.1 rmind pool_cache_put(vnode_cache, vp);
302 1.1 rmind }
303 1.1 rmind
304 1.1 rmind /*
305 1.12 hannken * cleanvnode: grab a vnode from freelist, clean and free it.
306 1.5 rmind *
307 1.5 rmind * => Releases vnode_free_list_lock.
308 1.1 rmind */
309 1.12 hannken static int
310 1.12 hannken cleanvnode(void)
311 1.1 rmind {
312 1.1 rmind vnode_t *vp;
313 1.1 rmind vnodelst_t *listhd;
314 1.15.6.3 tls struct mount *mp;
315 1.1 rmind
316 1.1 rmind KASSERT(mutex_owned(&vnode_free_list_lock));
317 1.15.6.3 tls
318 1.1 rmind listhd = &vnode_free_list;
319 1.1 rmind try_nextlist:
320 1.1 rmind TAILQ_FOREACH(vp, listhd, v_freelist) {
321 1.1 rmind /*
322 1.1 rmind * It's safe to test v_usecount and v_iflag
323 1.1 rmind * without holding the interlock here, since
324 1.1 rmind * these vnodes should never appear on the
325 1.1 rmind * lists.
326 1.1 rmind */
327 1.5 rmind KASSERT(vp->v_usecount == 0);
328 1.5 rmind KASSERT((vp->v_iflag & VI_CLEAN) == 0);
329 1.5 rmind KASSERT(vp->v_freelisthd == listhd);
330 1.5 rmind
331 1.9 rmind if (!mutex_tryenter(vp->v_interlock))
332 1.1 rmind continue;
333 1.15.6.3 tls if ((vp->v_iflag & VI_XLOCK) != 0) {
334 1.15.6.3 tls mutex_exit(vp->v_interlock);
335 1.15.6.3 tls continue;
336 1.15.6.3 tls }
337 1.15.6.3 tls mp = vp->v_mount;
338 1.15.6.3 tls if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
339 1.15.6.3 tls mutex_exit(vp->v_interlock);
340 1.15.6.3 tls continue;
341 1.15.6.3 tls }
342 1.15.6.3 tls break;
343 1.1 rmind }
344 1.1 rmind
345 1.1 rmind if (vp == NULL) {
346 1.1 rmind if (listhd == &vnode_free_list) {
347 1.1 rmind listhd = &vnode_hold_list;
348 1.1 rmind goto try_nextlist;
349 1.1 rmind }
350 1.1 rmind mutex_exit(&vnode_free_list_lock);
351 1.12 hannken return EBUSY;
352 1.1 rmind }
353 1.1 rmind
354 1.1 rmind /* Remove it from the freelist. */
355 1.1 rmind TAILQ_REMOVE(listhd, vp, v_freelist);
356 1.1 rmind vp->v_freelisthd = NULL;
357 1.1 rmind mutex_exit(&vnode_free_list_lock);
358 1.1 rmind
359 1.1 rmind KASSERT(vp->v_usecount == 0);
360 1.1 rmind
361 1.1 rmind /*
362 1.1 rmind * The vnode is still associated with a file system, so we must
363 1.12 hannken * clean it out before freeing it. We need to add a reference
364 1.15.6.3 tls * before doing this.
365 1.1 rmind */
366 1.15.6.3 tls vp->v_usecount = 1;
367 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) == 0);
368 1.15.6.3 tls vp->v_iflag |= VI_CHANGING;
369 1.15.6.3 tls vclean(vp);
370 1.15.6.3 tls vrelel(vp, VRELEL_CHANGING_SET);
371 1.15.6.3 tls fstrans_done(mp);
372 1.12 hannken
373 1.12 hannken return 0;
374 1.1 rmind }
375 1.1 rmind
376 1.1 rmind /*
377 1.12 hannken * getnewvnode: return a fresh vnode.
378 1.5 rmind *
379 1.5 rmind * => Returns referenced vnode, moved into the mount queue.
380 1.9 rmind * => Shares the interlock specified by 'slock', if it is not NULL.
381 1.1 rmind */
382 1.1 rmind int
383 1.1 rmind getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
384 1.9 rmind kmutex_t *slock, vnode_t **vpp)
385 1.1 rmind {
386 1.15.6.3 tls struct uvm_object *uobj __diagused;
387 1.1 rmind vnode_t *vp;
388 1.12 hannken int error = 0;
389 1.1 rmind
390 1.1 rmind if (mp != NULL) {
391 1.1 rmind /*
392 1.4 rmind * Mark filesystem busy while we are creating a vnode.
393 1.4 rmind * If unmount is in progress, this will fail.
394 1.1 rmind */
395 1.1 rmind error = vfs_busy(mp, NULL);
396 1.1 rmind if (error)
397 1.1 rmind return error;
398 1.1 rmind }
399 1.1 rmind
400 1.1 rmind vp = NULL;
401 1.1 rmind
402 1.12 hannken /* Allocate a new vnode. */
403 1.14 hannken vp = vnalloc(NULL);
404 1.1 rmind
405 1.1 rmind KASSERT(vp->v_freelisthd == NULL);
406 1.1 rmind KASSERT(LIST_EMPTY(&vp->v_nclist));
407 1.1 rmind KASSERT(LIST_EMPTY(&vp->v_dnclist));
408 1.15.6.3 tls KASSERT(vp->v_data == NULL);
409 1.1 rmind
410 1.5 rmind /* Initialize vnode. */
411 1.1 rmind vp->v_tag = tag;
412 1.1 rmind vp->v_op = vops;
413 1.1 rmind
414 1.1 rmind uobj = &vp->v_uobj;
415 1.1 rmind KASSERT(uobj->pgops == &uvm_vnodeops);
416 1.1 rmind KASSERT(uobj->uo_npages == 0);
417 1.1 rmind KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
418 1.1 rmind
419 1.9 rmind /* Share the vnode_t::v_interlock, if requested. */
420 1.9 rmind if (slock) {
421 1.9 rmind /* Set the interlock and mark that it is shared. */
422 1.9 rmind KASSERT(vp->v_mount == NULL);
423 1.9 rmind mutex_obj_hold(slock);
424 1.9 rmind uvm_obj_setlock(&vp->v_uobj, slock);
425 1.9 rmind KASSERT(vp->v_interlock == slock);
426 1.9 rmind vp->v_iflag |= VI_LOCKSHARE;
427 1.9 rmind }
428 1.9 rmind
429 1.5 rmind /* Finally, move vnode into the mount queue. */
430 1.5 rmind vfs_insmntque(vp, mp);
431 1.5 rmind
432 1.1 rmind if (mp != NULL) {
433 1.1 rmind if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
434 1.1 rmind vp->v_vflag |= VV_MPSAFE;
435 1.1 rmind vfs_unbusy(mp, true, NULL);
436 1.1 rmind }
437 1.1 rmind
438 1.5 rmind *vpp = vp;
439 1.4 rmind return 0;
440 1.1 rmind }
441 1.1 rmind
442 1.1 rmind /*
443 1.1 rmind * This is really just the reverse of getnewvnode(). Needed for
444 1.1 rmind * VFS_VGET functions who may need to push back a vnode in case
445 1.1 rmind * of a locking race.
446 1.1 rmind */
447 1.1 rmind void
448 1.1 rmind ungetnewvnode(vnode_t *vp)
449 1.1 rmind {
450 1.1 rmind
451 1.1 rmind KASSERT(vp->v_usecount == 1);
452 1.1 rmind KASSERT(vp->v_data == NULL);
453 1.1 rmind KASSERT(vp->v_freelisthd == NULL);
454 1.1 rmind
455 1.9 rmind mutex_enter(vp->v_interlock);
456 1.1 rmind vp->v_iflag |= VI_CLEAN;
457 1.1 rmind vrelel(vp, 0);
458 1.1 rmind }
459 1.1 rmind
460 1.1 rmind /*
461 1.12 hannken * Helper thread to keep the number of vnodes below desiredvnodes.
462 1.12 hannken */
463 1.12 hannken static void
464 1.12 hannken vdrain_thread(void *cookie)
465 1.12 hannken {
466 1.12 hannken int error;
467 1.12 hannken
468 1.12 hannken mutex_enter(&vnode_free_list_lock);
469 1.12 hannken
470 1.12 hannken for (;;) {
471 1.12 hannken cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
472 1.12 hannken while (numvnodes > desiredvnodes) {
473 1.12 hannken error = cleanvnode();
474 1.12 hannken if (error)
475 1.12 hannken kpause("vndsbusy", false, hz, NULL);
476 1.12 hannken mutex_enter(&vnode_free_list_lock);
477 1.12 hannken if (error)
478 1.12 hannken break;
479 1.12 hannken }
480 1.12 hannken }
481 1.12 hannken }
482 1.12 hannken
483 1.12 hannken /*
484 1.1 rmind * Remove a vnode from its freelist.
485 1.1 rmind */
486 1.1 rmind void
487 1.1 rmind vremfree(vnode_t *vp)
488 1.1 rmind {
489 1.1 rmind
490 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
491 1.1 rmind KASSERT(vp->v_usecount == 0);
492 1.1 rmind
493 1.1 rmind /*
494 1.1 rmind * Note that the reference count must not change until
495 1.1 rmind * the vnode is removed.
496 1.1 rmind */
497 1.1 rmind mutex_enter(&vnode_free_list_lock);
498 1.1 rmind if (vp->v_holdcnt > 0) {
499 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_hold_list);
500 1.1 rmind } else {
501 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_free_list);
502 1.1 rmind }
503 1.1 rmind TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
504 1.1 rmind vp->v_freelisthd = NULL;
505 1.1 rmind mutex_exit(&vnode_free_list_lock);
506 1.1 rmind }
507 1.1 rmind
508 1.1 rmind /*
509 1.4 rmind * vget: get a particular vnode from the free list, increment its reference
510 1.4 rmind * count and lock it.
511 1.4 rmind *
512 1.4 rmind * => Should be called with v_interlock held.
513 1.4 rmind *
514 1.15.6.3 tls * If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean().
515 1.4 rmind * In that case, we cannot grab the vnode, so the process is awakened when
516 1.4 rmind * the transition is completed, and an error returned to indicate that the
517 1.15.6.3 tls * vnode is no longer usable.
518 1.1 rmind */
519 1.1 rmind int
520 1.1 rmind vget(vnode_t *vp, int flags)
521 1.1 rmind {
522 1.1 rmind int error = 0;
523 1.1 rmind
524 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
525 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
526 1.1 rmind KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
527 1.1 rmind
528 1.1 rmind /*
529 1.1 rmind * Before adding a reference, we must remove the vnode
530 1.1 rmind * from its freelist.
531 1.1 rmind */
532 1.1 rmind if (vp->v_usecount == 0) {
533 1.1 rmind vremfree(vp);
534 1.1 rmind vp->v_usecount = 1;
535 1.1 rmind } else {
536 1.1 rmind atomic_inc_uint(&vp->v_usecount);
537 1.1 rmind }
538 1.1 rmind
539 1.1 rmind /*
540 1.15.6.3 tls * If the vnode is in the process of changing state we wait
541 1.15.6.3 tls * for the change to complete and take care not to return
542 1.15.6.3 tls * a clean vnode.
543 1.1 rmind */
544 1.15.6.3 tls if ((vp->v_iflag & VI_CHANGING) != 0) {
545 1.1 rmind if ((flags & LK_NOWAIT) != 0) {
546 1.1 rmind vrelel(vp, 0);
547 1.1 rmind return EBUSY;
548 1.1 rmind }
549 1.15.6.3 tls vwait(vp, VI_CHANGING);
550 1.15.6.1 tls if ((vp->v_iflag & VI_CLEAN) != 0) {
551 1.15.6.1 tls vrelel(vp, 0);
552 1.15.6.1 tls return ENOENT;
553 1.15.6.1 tls }
554 1.15.6.1 tls }
555 1.15.6.1 tls
556 1.1 rmind /*
557 1.1 rmind * Ok, we got it in good shape. Just locking left.
558 1.1 rmind */
559 1.1 rmind KASSERT((vp->v_iflag & VI_CLEAN) == 0);
560 1.9 rmind mutex_exit(vp->v_interlock);
561 1.1 rmind if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
562 1.1 rmind error = vn_lock(vp, flags);
563 1.1 rmind if (error != 0) {
564 1.1 rmind vrele(vp);
565 1.1 rmind }
566 1.1 rmind }
567 1.1 rmind return error;
568 1.1 rmind }
569 1.1 rmind
570 1.1 rmind /*
571 1.4 rmind * vput: unlock and release the reference.
572 1.1 rmind */
573 1.1 rmind void
574 1.1 rmind vput(vnode_t *vp)
575 1.1 rmind {
576 1.1 rmind
577 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
578 1.1 rmind
579 1.1 rmind VOP_UNLOCK(vp);
580 1.1 rmind vrele(vp);
581 1.1 rmind }
582 1.1 rmind
583 1.1 rmind /*
584 1.1 rmind * Try to drop reference on a vnode. Abort if we are releasing the
585 1.1 rmind * last reference. Note: this _must_ succeed if not the last reference.
586 1.1 rmind */
587 1.1 rmind static inline bool
588 1.1 rmind vtryrele(vnode_t *vp)
589 1.1 rmind {
590 1.1 rmind u_int use, next;
591 1.1 rmind
592 1.1 rmind for (use = vp->v_usecount;; use = next) {
593 1.1 rmind if (use == 1) {
594 1.1 rmind return false;
595 1.1 rmind }
596 1.15.6.3 tls KASSERT(use > 1);
597 1.1 rmind next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
598 1.1 rmind if (__predict_true(next == use)) {
599 1.1 rmind return true;
600 1.1 rmind }
601 1.1 rmind }
602 1.1 rmind }
603 1.1 rmind
604 1.1 rmind /*
605 1.1 rmind * Vnode release. If reference count drops to zero, call inactive
606 1.1 rmind * routine and either return to freelist or free to the pool.
607 1.1 rmind */
608 1.15.6.3 tls static void
609 1.1 rmind vrelel(vnode_t *vp, int flags)
610 1.1 rmind {
611 1.1 rmind bool recycle, defer;
612 1.1 rmind int error;
613 1.1 rmind
614 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
615 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
616 1.1 rmind KASSERT(vp->v_freelisthd == NULL);
617 1.1 rmind
618 1.1 rmind if (__predict_false(vp->v_op == dead_vnodeop_p &&
619 1.1 rmind (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
620 1.11 christos vnpanic(vp, "dead but not clean");
621 1.1 rmind }
622 1.1 rmind
623 1.1 rmind /*
624 1.1 rmind * If not the last reference, just drop the reference count
625 1.1 rmind * and unlock.
626 1.1 rmind */
627 1.1 rmind if (vtryrele(vp)) {
628 1.15.6.3 tls if ((flags & VRELEL_CHANGING_SET) != 0) {
629 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) != 0);
630 1.15.6.3 tls vp->v_iflag &= ~VI_CHANGING;
631 1.15.6.3 tls cv_broadcast(&vp->v_cv);
632 1.15.6.3 tls }
633 1.9 rmind mutex_exit(vp->v_interlock);
634 1.1 rmind return;
635 1.1 rmind }
636 1.1 rmind if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
637 1.11 christos vnpanic(vp, "%s: bad ref count", __func__);
638 1.1 rmind }
639 1.1 rmind
640 1.1 rmind KASSERT((vp->v_iflag & VI_XLOCK) == 0);
641 1.1 rmind
642 1.15 hannken #ifdef DIAGNOSTIC
643 1.15 hannken if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
644 1.15 hannken vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
645 1.15 hannken vprint("vrelel: missing VOP_CLOSE()", vp);
646 1.15 hannken }
647 1.15 hannken #endif
648 1.15 hannken
649 1.1 rmind /*
650 1.1 rmind * If not clean, deactivate the vnode, but preserve
651 1.1 rmind * our reference across the call to VOP_INACTIVE().
652 1.1 rmind */
653 1.1 rmind if ((vp->v_iflag & VI_CLEAN) == 0) {
654 1.1 rmind recycle = false;
655 1.1 rmind
656 1.1 rmind /*
657 1.1 rmind * XXX This ugly block can be largely eliminated if
658 1.1 rmind * locking is pushed down into the file systems.
659 1.1 rmind *
660 1.1 rmind * Defer vnode release to vrele_thread if caller
661 1.15.6.3 tls * requests it explicitly or is the pagedaemon.
662 1.1 rmind */
663 1.1 rmind if ((curlwp == uvm.pagedaemon_lwp) ||
664 1.1 rmind (flags & VRELEL_ASYNC_RELE) != 0) {
665 1.1 rmind defer = true;
666 1.1 rmind } else if (curlwp == vrele_lwp) {
667 1.15.6.1 tls /*
668 1.15.6.3 tls * We have to try harder.
669 1.15.6.1 tls */
670 1.9 rmind mutex_exit(vp->v_interlock);
671 1.15.6.3 tls error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
672 1.15.6.3 tls KASSERT(error == 0);
673 1.15.6.1 tls mutex_enter(vp->v_interlock);
674 1.1 rmind defer = false;
675 1.4 rmind } else {
676 1.1 rmind /* If we can't acquire the lock, then defer. */
677 1.9 rmind mutex_exit(vp->v_interlock);
678 1.15.6.3 tls error = vn_lock(vp,
679 1.15.6.3 tls LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
680 1.15.6.3 tls defer = (error != 0);
681 1.15.6.3 tls mutex_enter(vp->v_interlock);
682 1.1 rmind }
683 1.1 rmind
684 1.15.6.3 tls KASSERT(mutex_owned(vp->v_interlock));
685 1.15.6.3 tls KASSERT(! (curlwp == vrele_lwp && defer));
686 1.15.6.3 tls
687 1.1 rmind if (defer) {
688 1.1 rmind /*
689 1.1 rmind * Defer reclaim to the kthread; it's not safe to
690 1.1 rmind * clean it here. We donate it our last reference.
691 1.1 rmind */
692 1.15.6.3 tls if ((flags & VRELEL_CHANGING_SET) != 0) {
693 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) != 0);
694 1.15.6.3 tls vp->v_iflag &= ~VI_CHANGING;
695 1.15.6.3 tls cv_broadcast(&vp->v_cv);
696 1.15.6.3 tls }
697 1.1 rmind mutex_enter(&vrele_lock);
698 1.1 rmind TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
699 1.1 rmind if (++vrele_pending > (desiredvnodes >> 8))
700 1.1 rmind cv_signal(&vrele_cv);
701 1.1 rmind mutex_exit(&vrele_lock);
702 1.9 rmind mutex_exit(vp->v_interlock);
703 1.1 rmind return;
704 1.1 rmind }
705 1.1 rmind
706 1.1 rmind /*
707 1.15.6.3 tls * If the node got another reference while we
708 1.15.6.3 tls * released the interlock, don't try to inactivate it yet.
709 1.15.6.3 tls */
710 1.15.6.3 tls if (__predict_false(vtryrele(vp))) {
711 1.15.6.3 tls VOP_UNLOCK(vp);
712 1.15.6.3 tls if ((flags & VRELEL_CHANGING_SET) != 0) {
713 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) != 0);
714 1.15.6.3 tls vp->v_iflag &= ~VI_CHANGING;
715 1.15.6.3 tls cv_broadcast(&vp->v_cv);
716 1.15.6.3 tls }
717 1.15.6.3 tls mutex_exit(vp->v_interlock);
718 1.15.6.3 tls return;
719 1.15.6.3 tls }
720 1.15.6.3 tls
721 1.15.6.3 tls if ((flags & VRELEL_CHANGING_SET) == 0) {
722 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) == 0);
723 1.15.6.3 tls vp->v_iflag |= VI_CHANGING;
724 1.15.6.3 tls }
725 1.15.6.3 tls mutex_exit(vp->v_interlock);
726 1.15.6.3 tls
727 1.15.6.3 tls /*
728 1.1 rmind * The vnode can gain another reference while being
729 1.1 rmind * deactivated. If VOP_INACTIVE() indicates that
730 1.1 rmind * the described file has been deleted, then recycle
731 1.1 rmind * the vnode irrespective of additional references.
732 1.1 rmind * Another thread may be waiting to re-use the on-disk
733 1.1 rmind * inode.
734 1.1 rmind *
735 1.1 rmind * Note that VOP_INACTIVE() will drop the vnode lock.
736 1.1 rmind */
737 1.1 rmind VOP_INACTIVE(vp, &recycle);
738 1.9 rmind mutex_enter(vp->v_interlock);
739 1.1 rmind if (!recycle) {
740 1.1 rmind if (vtryrele(vp)) {
741 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) != 0);
742 1.15.6.3 tls vp->v_iflag &= ~VI_CHANGING;
743 1.15.6.3 tls cv_broadcast(&vp->v_cv);
744 1.9 rmind mutex_exit(vp->v_interlock);
745 1.1 rmind return;
746 1.1 rmind }
747 1.1 rmind }
748 1.1 rmind
749 1.1 rmind /* Take care of space accounting. */
750 1.1 rmind if (vp->v_iflag & VI_EXECMAP) {
751 1.1 rmind atomic_add_int(&uvmexp.execpages,
752 1.1 rmind -vp->v_uobj.uo_npages);
753 1.1 rmind atomic_add_int(&uvmexp.filepages,
754 1.1 rmind vp->v_uobj.uo_npages);
755 1.1 rmind }
756 1.1 rmind vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
757 1.1 rmind vp->v_vflag &= ~VV_MAPPED;
758 1.1 rmind
759 1.1 rmind /*
760 1.1 rmind * Recycle the vnode if the file is now unused (unlinked),
761 1.1 rmind * otherwise just free it.
762 1.1 rmind */
763 1.1 rmind if (recycle) {
764 1.15.6.3 tls vclean(vp);
765 1.1 rmind }
766 1.1 rmind KASSERT(vp->v_usecount > 0);
767 1.15.6.3 tls } else { /* vnode was already clean */
768 1.15.6.3 tls if ((flags & VRELEL_CHANGING_SET) == 0) {
769 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) == 0);
770 1.15.6.3 tls vp->v_iflag |= VI_CHANGING;
771 1.15.6.3 tls }
772 1.1 rmind }
773 1.1 rmind
774 1.1 rmind if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
775 1.1 rmind /* Gained another reference while being reclaimed. */
776 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) != 0);
777 1.15.6.3 tls vp->v_iflag &= ~VI_CHANGING;
778 1.15.6.3 tls cv_broadcast(&vp->v_cv);
779 1.9 rmind mutex_exit(vp->v_interlock);
780 1.1 rmind return;
781 1.1 rmind }
782 1.1 rmind
783 1.1 rmind if ((vp->v_iflag & VI_CLEAN) != 0) {
784 1.1 rmind /*
785 1.1 rmind * It's clean so destroy it. It isn't referenced
786 1.1 rmind * anywhere since it has been reclaimed.
787 1.1 rmind */
788 1.1 rmind KASSERT(vp->v_holdcnt == 0);
789 1.1 rmind KASSERT(vp->v_writecount == 0);
790 1.9 rmind mutex_exit(vp->v_interlock);
791 1.1 rmind vfs_insmntque(vp, NULL);
792 1.1 rmind if (vp->v_type == VBLK || vp->v_type == VCHR) {
793 1.1 rmind spec_node_destroy(vp);
794 1.1 rmind }
795 1.1 rmind vnfree(vp);
796 1.1 rmind } else {
797 1.1 rmind /*
798 1.1 rmind * Otherwise, put it back onto the freelist. It
799 1.1 rmind * can't be destroyed while still associated with
800 1.1 rmind * a file system.
801 1.1 rmind */
802 1.1 rmind mutex_enter(&vnode_free_list_lock);
803 1.1 rmind if (vp->v_holdcnt > 0) {
804 1.1 rmind vp->v_freelisthd = &vnode_hold_list;
805 1.1 rmind } else {
806 1.1 rmind vp->v_freelisthd = &vnode_free_list;
807 1.1 rmind }
808 1.1 rmind TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
809 1.1 rmind mutex_exit(&vnode_free_list_lock);
810 1.15.6.3 tls KASSERT((vp->v_iflag & VI_CHANGING) != 0);
811 1.15.6.3 tls vp->v_iflag &= ~VI_CHANGING;
812 1.15.6.3 tls cv_broadcast(&vp->v_cv);
813 1.9 rmind mutex_exit(vp->v_interlock);
814 1.1 rmind }
815 1.1 rmind }
816 1.1 rmind
817 1.1 rmind void
818 1.1 rmind vrele(vnode_t *vp)
819 1.1 rmind {
820 1.1 rmind
821 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
822 1.1 rmind
823 1.15.6.3 tls if (vtryrele(vp)) {
824 1.1 rmind return;
825 1.1 rmind }
826 1.9 rmind mutex_enter(vp->v_interlock);
827 1.1 rmind vrelel(vp, 0);
828 1.1 rmind }
829 1.1 rmind
830 1.1 rmind /*
831 1.1 rmind * Asynchronous vnode release, vnode is released in different context.
832 1.1 rmind */
833 1.1 rmind void
834 1.1 rmind vrele_async(vnode_t *vp)
835 1.1 rmind {
836 1.1 rmind
837 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
838 1.1 rmind
839 1.15.6.3 tls if (vtryrele(vp)) {
840 1.1 rmind return;
841 1.1 rmind }
842 1.9 rmind mutex_enter(vp->v_interlock);
843 1.1 rmind vrelel(vp, VRELEL_ASYNC_RELE);
844 1.1 rmind }
845 1.1 rmind
846 1.1 rmind static void
847 1.1 rmind vrele_thread(void *cookie)
848 1.1 rmind {
849 1.15.6.3 tls vnodelst_t skip_list;
850 1.1 rmind vnode_t *vp;
851 1.15.6.3 tls struct mount *mp;
852 1.15.6.3 tls
853 1.15.6.3 tls TAILQ_INIT(&skip_list);
854 1.1 rmind
855 1.15.6.3 tls mutex_enter(&vrele_lock);
856 1.1 rmind for (;;) {
857 1.1 rmind while (TAILQ_EMPTY(&vrele_list)) {
858 1.1 rmind vrele_gen++;
859 1.1 rmind cv_broadcast(&vrele_cv);
860 1.1 rmind cv_timedwait(&vrele_cv, &vrele_lock, hz);
861 1.15.6.3 tls TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
862 1.1 rmind }
863 1.1 rmind vp = TAILQ_FIRST(&vrele_list);
864 1.15.6.3 tls mp = vp->v_mount;
865 1.1 rmind TAILQ_REMOVE(&vrele_list, vp, v_freelist);
866 1.15.6.3 tls if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
867 1.15.6.3 tls TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
868 1.15.6.3 tls continue;
869 1.15.6.3 tls }
870 1.1 rmind vrele_pending--;
871 1.1 rmind mutex_exit(&vrele_lock);
872 1.1 rmind
873 1.1 rmind /*
874 1.1 rmind * If not the last reference, then ignore the vnode
875 1.1 rmind * and look for more work.
876 1.1 rmind */
877 1.9 rmind mutex_enter(vp->v_interlock);
878 1.1 rmind vrelel(vp, 0);
879 1.15.6.3 tls fstrans_done(mp);
880 1.15.6.3 tls mutex_enter(&vrele_lock);
881 1.1 rmind }
882 1.1 rmind }
883 1.1 rmind
884 1.2 rmind void
885 1.2 rmind vrele_flush(void)
886 1.2 rmind {
887 1.2 rmind int gen;
888 1.2 rmind
889 1.2 rmind mutex_enter(&vrele_lock);
890 1.2 rmind gen = vrele_gen;
891 1.2 rmind while (vrele_pending && gen == vrele_gen) {
892 1.2 rmind cv_broadcast(&vrele_cv);
893 1.2 rmind cv_wait(&vrele_cv, &vrele_lock);
894 1.2 rmind }
895 1.2 rmind mutex_exit(&vrele_lock);
896 1.2 rmind }
897 1.2 rmind
898 1.1 rmind /*
899 1.1 rmind * Vnode reference, where a reference is already held by some other
900 1.1 rmind * object (for example, a file structure).
901 1.1 rmind */
902 1.1 rmind void
903 1.1 rmind vref(vnode_t *vp)
904 1.1 rmind {
905 1.1 rmind
906 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
907 1.1 rmind KASSERT(vp->v_usecount != 0);
908 1.1 rmind
909 1.1 rmind atomic_inc_uint(&vp->v_usecount);
910 1.1 rmind }
911 1.1 rmind
912 1.1 rmind /*
913 1.1 rmind * Page or buffer structure gets a reference.
914 1.1 rmind * Called with v_interlock held.
915 1.1 rmind */
916 1.1 rmind void
917 1.1 rmind vholdl(vnode_t *vp)
918 1.1 rmind {
919 1.1 rmind
920 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
921 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
922 1.1 rmind
923 1.1 rmind if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
924 1.1 rmind mutex_enter(&vnode_free_list_lock);
925 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_free_list);
926 1.1 rmind TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
927 1.1 rmind vp->v_freelisthd = &vnode_hold_list;
928 1.1 rmind TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
929 1.1 rmind mutex_exit(&vnode_free_list_lock);
930 1.1 rmind }
931 1.1 rmind }
932 1.1 rmind
933 1.1 rmind /*
934 1.1 rmind * Page or buffer structure frees a reference.
935 1.1 rmind * Called with v_interlock held.
936 1.1 rmind */
937 1.1 rmind void
938 1.1 rmind holdrelel(vnode_t *vp)
939 1.1 rmind {
940 1.1 rmind
941 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
942 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
943 1.1 rmind
944 1.1 rmind if (vp->v_holdcnt <= 0) {
945 1.11 christos vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
946 1.1 rmind }
947 1.1 rmind
948 1.1 rmind vp->v_holdcnt--;
949 1.1 rmind if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
950 1.1 rmind mutex_enter(&vnode_free_list_lock);
951 1.1 rmind KASSERT(vp->v_freelisthd == &vnode_hold_list);
952 1.1 rmind TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
953 1.1 rmind vp->v_freelisthd = &vnode_free_list;
954 1.1 rmind TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
955 1.1 rmind mutex_exit(&vnode_free_list_lock);
956 1.1 rmind }
957 1.1 rmind }
958 1.1 rmind
959 1.1 rmind /*
960 1.1 rmind * Disassociate the underlying file system from a vnode.
961 1.1 rmind *
962 1.1 rmind * Must be called with the interlock held, and will return with it held.
963 1.1 rmind */
964 1.15.6.3 tls static void
965 1.15.6.3 tls vclean(vnode_t *vp)
966 1.1 rmind {
967 1.1 rmind lwp_t *l = curlwp;
968 1.15.6.3 tls bool recycle, active, doclose;
969 1.1 rmind int error;
970 1.1 rmind
971 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
972 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
973 1.1 rmind KASSERT(vp->v_usecount != 0);
974 1.1 rmind
975 1.1 rmind /* If already clean, nothing to do. */
976 1.1 rmind if ((vp->v_iflag & VI_CLEAN) != 0) {
977 1.1 rmind return;
978 1.1 rmind }
979 1.1 rmind
980 1.15.6.3 tls active = (vp->v_usecount > 1);
981 1.15.6.3 tls doclose = ! (active && vp->v_type == VBLK &&
982 1.15.6.3 tls spec_node_getmountedfs(vp) != NULL);
983 1.15.6.3 tls mutex_exit(vp->v_interlock);
984 1.15.6.3 tls
985 1.15.6.3 tls vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
986 1.15.6.3 tls
987 1.1 rmind /*
988 1.1 rmind * Prevent the vnode from being recycled or brought into use
989 1.1 rmind * while we clean it out.
990 1.1 rmind */
991 1.15.6.3 tls mutex_enter(vp->v_interlock);
992 1.15.6.3 tls KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0);
993 1.1 rmind vp->v_iflag |= VI_XLOCK;
994 1.1 rmind if (vp->v_iflag & VI_EXECMAP) {
995 1.1 rmind atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
996 1.1 rmind atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
997 1.1 rmind }
998 1.1 rmind vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
999 1.9 rmind mutex_exit(vp->v_interlock);
1000 1.1 rmind
1001 1.1 rmind /*
1002 1.1 rmind * Clean out any cached data associated with the vnode.
1003 1.1 rmind * If purging an active vnode, it must be closed and
1004 1.1 rmind * deactivated before being reclaimed. Note that the
1005 1.1 rmind * VOP_INACTIVE will unlock the vnode.
1006 1.1 rmind */
1007 1.15.6.3 tls if (doclose) {
1008 1.1 rmind error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1009 1.1 rmind if (error != 0) {
1010 1.1 rmind if (wapbl_vphaswapbl(vp))
1011 1.1 rmind WAPBL_DISCARD(wapbl_vptomp(vp));
1012 1.1 rmind error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1013 1.1 rmind }
1014 1.1 rmind KASSERT(error == 0);
1015 1.1 rmind KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1016 1.1 rmind if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1017 1.1 rmind spec_node_revoke(vp);
1018 1.1 rmind }
1019 1.1 rmind }
1020 1.1 rmind if (active) {
1021 1.1 rmind VOP_INACTIVE(vp, &recycle);
1022 1.1 rmind } else {
1023 1.1 rmind /*
1024 1.1 rmind * Any other processes trying to obtain this lock must first
1025 1.1 rmind * wait for VI_XLOCK to clear, then call the new lock operation.
1026 1.1 rmind */
1027 1.1 rmind VOP_UNLOCK(vp);
1028 1.1 rmind }
1029 1.1 rmind
1030 1.1 rmind /* Disassociate the underlying file system from the vnode. */
1031 1.1 rmind if (VOP_RECLAIM(vp)) {
1032 1.11 christos vnpanic(vp, "%s: cannot reclaim", __func__);
1033 1.1 rmind }
1034 1.1 rmind
1035 1.7 rmind KASSERT(vp->v_data == NULL);
1036 1.1 rmind KASSERT(vp->v_uobj.uo_npages == 0);
1037 1.7 rmind
1038 1.1 rmind if (vp->v_type == VREG && vp->v_ractx != NULL) {
1039 1.1 rmind uvm_ra_freectx(vp->v_ractx);
1040 1.1 rmind vp->v_ractx = NULL;
1041 1.1 rmind }
1042 1.7 rmind
1043 1.7 rmind /* Purge name cache. */
1044 1.1 rmind cache_purge(vp);
1045 1.1 rmind
1046 1.15.6.3 tls /* Move to dead mount. */
1047 1.15.6.3 tls vp->v_vflag &= ~VV_ROOT;
1048 1.15.6.3 tls atomic_inc_uint(&dead_mount->mnt_refcnt);
1049 1.15.6.3 tls vfs_insmntque(vp, dead_mount);
1050 1.15.6.3 tls
1051 1.1 rmind /* Done with purge, notify sleepers of the grim news. */
1052 1.9 rmind mutex_enter(vp->v_interlock);
1053 1.15.6.3 tls if (doclose) {
1054 1.15.6.3 tls vp->v_op = dead_vnodeop_p;
1055 1.15.6.3 tls vp->v_vflag |= VV_LOCKSWORK;
1056 1.15.6.3 tls vp->v_iflag |= VI_CLEAN;
1057 1.15.6.3 tls } else {
1058 1.15.6.3 tls vp->v_op = spec_vnodeop_p;
1059 1.15.6.3 tls vp->v_vflag &= ~VV_LOCKSWORK;
1060 1.15.6.3 tls }
1061 1.1 rmind vp->v_tag = VT_NON;
1062 1.1 rmind KNOTE(&vp->v_klist, NOTE_REVOKE);
1063 1.1 rmind vp->v_iflag &= ~VI_XLOCK;
1064 1.1 rmind cv_broadcast(&vp->v_cv);
1065 1.1 rmind
1066 1.1 rmind KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1067 1.1 rmind }
1068 1.1 rmind
1069 1.1 rmind /*
1070 1.15.6.3 tls * Recycle an unused vnode if caller holds the last reference.
1071 1.1 rmind */
1072 1.15.6.3 tls bool
1073 1.15.6.3 tls vrecycle(vnode_t *vp)
1074 1.1 rmind {
1075 1.1 rmind
1076 1.15.6.3 tls mutex_enter(vp->v_interlock);
1077 1.15.6.3 tls
1078 1.1 rmind KASSERT((vp->v_iflag & VI_MARKER) == 0);
1079 1.1 rmind
1080 1.15.6.3 tls if (vp->v_usecount != 1) {
1081 1.9 rmind mutex_exit(vp->v_interlock);
1082 1.15.6.3 tls return false;
1083 1.1 rmind }
1084 1.15.6.3 tls if ((vp->v_iflag & VI_CHANGING) != 0)
1085 1.15.6.3 tls vwait(vp, VI_CHANGING);
1086 1.15.6.3 tls if (vp->v_usecount != 1) {
1087 1.15.6.3 tls mutex_exit(vp->v_interlock);
1088 1.15.6.3 tls return false;
1089 1.15.6.3 tls } else if ((vp->v_iflag & VI_CLEAN) != 0) {
1090 1.15.6.3 tls mutex_exit(vp->v_interlock);
1091 1.15.6.3 tls return true;
1092 1.1 rmind }
1093 1.15.6.3 tls vp->v_iflag |= VI_CHANGING;
1094 1.15.6.3 tls vclean(vp);
1095 1.15.6.3 tls vrelel(vp, VRELEL_CHANGING_SET);
1096 1.15.6.3 tls return true;
1097 1.1 rmind }
1098 1.1 rmind
1099 1.1 rmind /*
1100 1.1 rmind * Eliminate all activity associated with the requested vnode
1101 1.1 rmind * and with all vnodes aliased to the requested vnode.
1102 1.1 rmind */
1103 1.1 rmind void
1104 1.1 rmind vrevoke(vnode_t *vp)
1105 1.1 rmind {
1106 1.15.6.2 tls vnode_t *vq;
1107 1.1 rmind enum vtype type;
1108 1.1 rmind dev_t dev;
1109 1.1 rmind
1110 1.1 rmind KASSERT(vp->v_usecount > 0);
1111 1.1 rmind
1112 1.9 rmind mutex_enter(vp->v_interlock);
1113 1.1 rmind if ((vp->v_iflag & VI_CLEAN) != 0) {
1114 1.9 rmind mutex_exit(vp->v_interlock);
1115 1.1 rmind return;
1116 1.1 rmind } else if (vp->v_type != VBLK && vp->v_type != VCHR) {
1117 1.1 rmind atomic_inc_uint(&vp->v_usecount);
1118 1.15.6.3 tls mutex_exit(vp->v_interlock);
1119 1.15.6.3 tls vgone(vp);
1120 1.1 rmind return;
1121 1.1 rmind } else {
1122 1.1 rmind dev = vp->v_rdev;
1123 1.1 rmind type = vp->v_type;
1124 1.9 rmind mutex_exit(vp->v_interlock);
1125 1.1 rmind }
1126 1.1 rmind
1127 1.15.6.2 tls while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
1128 1.15.6.3 tls vgone(vq);
1129 1.1 rmind }
1130 1.1 rmind }
1131 1.1 rmind
1132 1.1 rmind /*
1133 1.1 rmind * Eliminate all activity associated with a vnode in preparation for
1134 1.1 rmind * reuse. Drops a reference from the vnode.
1135 1.1 rmind */
1136 1.1 rmind void
1137 1.1 rmind vgone(vnode_t *vp)
1138 1.1 rmind {
1139 1.1 rmind
1140 1.9 rmind mutex_enter(vp->v_interlock);
1141 1.15.6.3 tls if ((vp->v_iflag & VI_CHANGING) != 0)
1142 1.15.6.3 tls vwait(vp, VI_CHANGING);
1143 1.15.6.3 tls vp->v_iflag |= VI_CHANGING;
1144 1.15.6.3 tls vclean(vp);
1145 1.15.6.3 tls vrelel(vp, VRELEL_CHANGING_SET);
1146 1.15.6.3 tls }
1147 1.15.6.3 tls
1148 1.15.6.3 tls static inline uint32_t
1149 1.15.6.3 tls vcache_hash(const struct vcache_key *key)
1150 1.15.6.3 tls {
1151 1.15.6.3 tls uint32_t hash = HASH32_BUF_INIT;
1152 1.15.6.3 tls
1153 1.15.6.3 tls hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
1154 1.15.6.3 tls hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
1155 1.15.6.3 tls return hash;
1156 1.15.6.3 tls }
1157 1.15.6.3 tls
1158 1.15.6.3 tls static void
1159 1.15.6.3 tls vcache_init(void)
1160 1.15.6.3 tls {
1161 1.15.6.3 tls
1162 1.15.6.3 tls vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
1163 1.15.6.3 tls "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
1164 1.15.6.3 tls KASSERT(vcache.pool != NULL);
1165 1.15.6.3 tls mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
1166 1.15.6.3 tls vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
1167 1.15.6.3 tls &vcache.hashmask);
1168 1.15.6.3 tls }
1169 1.15.6.3 tls
1170 1.15.6.3 tls static void
1171 1.15.6.3 tls vcache_reinit(void)
1172 1.15.6.3 tls {
1173 1.15.6.3 tls int i;
1174 1.15.6.3 tls uint32_t hash;
1175 1.15.6.3 tls u_long oldmask, newmask;
1176 1.15.6.3 tls struct hashhead *oldtab, *newtab;
1177 1.15.6.3 tls struct vcache_node *node;
1178 1.15.6.3 tls
1179 1.15.6.3 tls newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
1180 1.15.6.3 tls mutex_enter(&vcache.lock);
1181 1.15.6.3 tls oldtab = vcache.hashtab;
1182 1.15.6.3 tls oldmask = vcache.hashmask;
1183 1.15.6.3 tls vcache.hashtab = newtab;
1184 1.15.6.3 tls vcache.hashmask = newmask;
1185 1.15.6.3 tls for (i = 0; i <= oldmask; i++) {
1186 1.15.6.3 tls while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
1187 1.15.6.3 tls SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
1188 1.15.6.3 tls hash = vcache_hash(&node->vn_key);
1189 1.15.6.3 tls SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
1190 1.15.6.3 tls node, vn_hash);
1191 1.15.6.3 tls }
1192 1.15.6.3 tls }
1193 1.15.6.3 tls mutex_exit(&vcache.lock);
1194 1.15.6.3 tls hashdone(oldtab, HASH_SLIST, oldmask);
1195 1.15.6.3 tls }
1196 1.15.6.3 tls
1197 1.15.6.3 tls static inline struct vcache_node *
1198 1.15.6.3 tls vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
1199 1.15.6.3 tls {
1200 1.15.6.3 tls struct hashhead *hashp;
1201 1.15.6.3 tls struct vcache_node *node;
1202 1.15.6.3 tls
1203 1.15.6.3 tls KASSERT(mutex_owned(&vcache.lock));
1204 1.15.6.3 tls
1205 1.15.6.3 tls hashp = &vcache.hashtab[hash & vcache.hashmask];
1206 1.15.6.3 tls SLIST_FOREACH(node, hashp, vn_hash) {
1207 1.15.6.3 tls if (key->vk_mount != node->vn_key.vk_mount)
1208 1.15.6.3 tls continue;
1209 1.15.6.3 tls if (key->vk_key_len != node->vn_key.vk_key_len)
1210 1.15.6.3 tls continue;
1211 1.15.6.3 tls if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
1212 1.15.6.3 tls continue;
1213 1.15.6.3 tls return node;
1214 1.15.6.3 tls }
1215 1.15.6.3 tls return NULL;
1216 1.15.6.3 tls }
1217 1.15.6.3 tls
1218 1.15.6.3 tls /*
1219 1.15.6.3 tls * Get a vnode / fs node pair by key and return it referenced through vpp.
1220 1.15.6.3 tls */
1221 1.15.6.3 tls int
1222 1.15.6.3 tls vcache_get(struct mount *mp, const void *key, size_t key_len,
1223 1.15.6.3 tls struct vnode **vpp)
1224 1.15.6.3 tls {
1225 1.15.6.3 tls int error;
1226 1.15.6.3 tls uint32_t hash;
1227 1.15.6.3 tls const void *new_key;
1228 1.15.6.3 tls struct vnode *vp;
1229 1.15.6.3 tls struct vcache_key vcache_key;
1230 1.15.6.3 tls struct vcache_node *node, *new_node;
1231 1.15.6.3 tls
1232 1.15.6.3 tls new_key = NULL;
1233 1.15.6.3 tls *vpp = NULL;
1234 1.15.6.3 tls
1235 1.15.6.3 tls vcache_key.vk_mount = mp;
1236 1.15.6.3 tls vcache_key.vk_key = key;
1237 1.15.6.3 tls vcache_key.vk_key_len = key_len;
1238 1.15.6.3 tls hash = vcache_hash(&vcache_key);
1239 1.15.6.3 tls
1240 1.15.6.3 tls again:
1241 1.15.6.3 tls mutex_enter(&vcache.lock);
1242 1.15.6.3 tls node = vcache_hash_lookup(&vcache_key, hash);
1243 1.15.6.3 tls
1244 1.15.6.3 tls /* If found, take a reference or retry. */
1245 1.15.6.3 tls if (__predict_true(node != NULL && node->vn_vnode != NULL)) {
1246 1.15.6.3 tls vp = node->vn_vnode;
1247 1.15.6.3 tls mutex_enter(vp->v_interlock);
1248 1.15.6.3 tls mutex_exit(&vcache.lock);
1249 1.15.6.3 tls error = vget(vp, 0);
1250 1.15.6.3 tls if (error == ENOENT)
1251 1.15.6.3 tls goto again;
1252 1.15.6.3 tls if (error == 0)
1253 1.15.6.3 tls *vpp = vp;
1254 1.15.6.3 tls KASSERT((error != 0) == (*vpp == NULL));
1255 1.15.6.3 tls return error;
1256 1.15.6.3 tls }
1257 1.15.6.3 tls
1258 1.15.6.3 tls /* If another thread loads this node, wait and retry. */
1259 1.15.6.3 tls if (node != NULL) {
1260 1.15.6.3 tls KASSERT(node->vn_vnode == NULL);
1261 1.15.6.3 tls mutex_exit(&vcache.lock);
1262 1.15.6.3 tls kpause("vcache", false, mstohz(20), NULL);
1263 1.15.6.3 tls goto again;
1264 1.15.6.3 tls }
1265 1.15.6.3 tls mutex_exit(&vcache.lock);
1266 1.15.6.3 tls
1267 1.15.6.3 tls /* Allocate and initialize a new vcache / vnode pair. */
1268 1.15.6.3 tls error = vfs_busy(mp, NULL);
1269 1.15.6.3 tls if (error)
1270 1.15.6.3 tls return error;
1271 1.15.6.3 tls new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1272 1.15.6.3 tls new_node->vn_vnode = NULL;
1273 1.15.6.3 tls new_node->vn_key = vcache_key;
1274 1.15.6.3 tls vp = vnalloc(NULL);
1275 1.15.6.3 tls mutex_enter(&vcache.lock);
1276 1.15.6.3 tls node = vcache_hash_lookup(&vcache_key, hash);
1277 1.15.6.3 tls if (node == NULL) {
1278 1.15.6.3 tls SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1279 1.15.6.3 tls new_node, vn_hash);
1280 1.15.6.3 tls node = new_node;
1281 1.15.6.3 tls }
1282 1.15.6.3 tls mutex_exit(&vcache.lock);
1283 1.15.6.3 tls
1284 1.15.6.3 tls /* If another thread beat us inserting this node, retry. */
1285 1.15.6.3 tls if (node != new_node) {
1286 1.15.6.3 tls pool_cache_put(vcache.pool, new_node);
1287 1.15.6.3 tls KASSERT(vp->v_usecount == 1);
1288 1.15.6.3 tls vp->v_usecount = 0;
1289 1.15.6.3 tls vnfree(vp);
1290 1.15.6.3 tls vfs_unbusy(mp, false, NULL);
1291 1.15.6.3 tls goto again;
1292 1.15.6.3 tls }
1293 1.15.6.3 tls
1294 1.15.6.3 tls /* Load the fs node. Exclusive as new_node->vn_vnode is NULL. */
1295 1.15.6.3 tls error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
1296 1.15.6.3 tls if (error) {
1297 1.15.6.3 tls mutex_enter(&vcache.lock);
1298 1.15.6.3 tls SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1299 1.15.6.3 tls new_node, vcache_node, vn_hash);
1300 1.15.6.3 tls mutex_exit(&vcache.lock);
1301 1.15.6.3 tls pool_cache_put(vcache.pool, new_node);
1302 1.15.6.3 tls KASSERT(vp->v_usecount == 1);
1303 1.15.6.3 tls vp->v_usecount = 0;
1304 1.15.6.3 tls vnfree(vp);
1305 1.15.6.3 tls vfs_unbusy(mp, false, NULL);
1306 1.15.6.3 tls KASSERT(*vpp == NULL);
1307 1.15.6.3 tls return error;
1308 1.15.6.3 tls }
1309 1.15.6.3 tls KASSERT(new_key != NULL);
1310 1.15.6.3 tls KASSERT(memcmp(key, new_key, key_len) == 0);
1311 1.15.6.3 tls KASSERT(vp->v_op != NULL);
1312 1.15.6.3 tls vfs_insmntque(vp, mp);
1313 1.15.6.3 tls if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1314 1.15.6.3 tls vp->v_vflag |= VV_MPSAFE;
1315 1.15.6.3 tls vfs_unbusy(mp, true, NULL);
1316 1.15.6.3 tls
1317 1.15.6.3 tls /* Finished loading, finalize node. */
1318 1.15.6.3 tls mutex_enter(&vcache.lock);
1319 1.15.6.3 tls new_node->vn_key.vk_key = new_key;
1320 1.15.6.3 tls new_node->vn_vnode = vp;
1321 1.15.6.3 tls mutex_exit(&vcache.lock);
1322 1.15.6.3 tls *vpp = vp;
1323 1.15.6.3 tls return 0;
1324 1.15.6.3 tls }
1325 1.15.6.3 tls
1326 1.15.6.3 tls /*
1327 1.15.6.3 tls * Prepare key change: lock old and new cache node.
1328 1.15.6.3 tls * Return an error if the new node already exists.
1329 1.15.6.3 tls */
1330 1.15.6.3 tls int
1331 1.15.6.3 tls vcache_rekey_enter(struct mount *mp, struct vnode *vp,
1332 1.15.6.3 tls const void *old_key, size_t old_key_len,
1333 1.15.6.3 tls const void *new_key, size_t new_key_len)
1334 1.15.6.3 tls {
1335 1.15.6.3 tls uint32_t old_hash, new_hash;
1336 1.15.6.3 tls struct vcache_key old_vcache_key, new_vcache_key;
1337 1.15.6.3 tls struct vcache_node *node, *new_node;
1338 1.15.6.3 tls
1339 1.15.6.3 tls old_vcache_key.vk_mount = mp;
1340 1.15.6.3 tls old_vcache_key.vk_key = old_key;
1341 1.15.6.3 tls old_vcache_key.vk_key_len = old_key_len;
1342 1.15.6.3 tls old_hash = vcache_hash(&old_vcache_key);
1343 1.15.6.3 tls
1344 1.15.6.3 tls new_vcache_key.vk_mount = mp;
1345 1.15.6.3 tls new_vcache_key.vk_key = new_key;
1346 1.15.6.3 tls new_vcache_key.vk_key_len = new_key_len;
1347 1.15.6.3 tls new_hash = vcache_hash(&new_vcache_key);
1348 1.15.6.3 tls
1349 1.15.6.3 tls new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1350 1.15.6.3 tls new_node->vn_vnode = NULL;
1351 1.15.6.3 tls new_node->vn_key = new_vcache_key;
1352 1.15.6.3 tls
1353 1.15.6.3 tls mutex_enter(&vcache.lock);
1354 1.15.6.3 tls node = vcache_hash_lookup(&new_vcache_key, new_hash);
1355 1.15.6.3 tls if (node != NULL) {
1356 1.15.6.3 tls mutex_exit(&vcache.lock);
1357 1.15.6.3 tls pool_cache_put(vcache.pool, new_node);
1358 1.15.6.3 tls return EEXIST;
1359 1.15.6.3 tls }
1360 1.15.6.3 tls SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
1361 1.15.6.3 tls new_node, vn_hash);
1362 1.15.6.3 tls node = vcache_hash_lookup(&old_vcache_key, old_hash);
1363 1.15.6.3 tls KASSERT(node != NULL);
1364 1.15.6.3 tls KASSERT(node->vn_vnode == vp);
1365 1.15.6.3 tls node->vn_vnode = NULL;
1366 1.15.6.3 tls node->vn_key = old_vcache_key;
1367 1.15.6.3 tls mutex_exit(&vcache.lock);
1368 1.15.6.3 tls return 0;
1369 1.15.6.3 tls }
1370 1.15.6.3 tls
1371 1.15.6.3 tls /*
1372 1.15.6.3 tls * Key change complete: remove old node and unlock new node.
1373 1.15.6.3 tls */
1374 1.15.6.3 tls void
1375 1.15.6.3 tls vcache_rekey_exit(struct mount *mp, struct vnode *vp,
1376 1.15.6.3 tls const void *old_key, size_t old_key_len,
1377 1.15.6.3 tls const void *new_key, size_t new_key_len)
1378 1.15.6.3 tls {
1379 1.15.6.3 tls uint32_t old_hash, new_hash;
1380 1.15.6.3 tls struct vcache_key old_vcache_key, new_vcache_key;
1381 1.15.6.3 tls struct vcache_node *node;
1382 1.15.6.3 tls
1383 1.15.6.3 tls old_vcache_key.vk_mount = mp;
1384 1.15.6.3 tls old_vcache_key.vk_key = old_key;
1385 1.15.6.3 tls old_vcache_key.vk_key_len = old_key_len;
1386 1.15.6.3 tls old_hash = vcache_hash(&old_vcache_key);
1387 1.15.6.3 tls
1388 1.15.6.3 tls new_vcache_key.vk_mount = mp;
1389 1.15.6.3 tls new_vcache_key.vk_key = new_key;
1390 1.15.6.3 tls new_vcache_key.vk_key_len = new_key_len;
1391 1.15.6.3 tls new_hash = vcache_hash(&new_vcache_key);
1392 1.15.6.3 tls
1393 1.15.6.3 tls mutex_enter(&vcache.lock);
1394 1.15.6.3 tls node = vcache_hash_lookup(&new_vcache_key, new_hash);
1395 1.15.6.3 tls KASSERT(node != NULL && node->vn_vnode == NULL);
1396 1.15.6.3 tls KASSERT(node->vn_key.vk_key_len == new_key_len);
1397 1.15.6.3 tls node->vn_vnode = vp;
1398 1.15.6.3 tls node->vn_key = new_vcache_key;
1399 1.15.6.3 tls node = vcache_hash_lookup(&old_vcache_key, old_hash);
1400 1.15.6.3 tls KASSERT(node != NULL);
1401 1.15.6.3 tls KASSERT(node->vn_vnode == NULL);
1402 1.15.6.3 tls SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
1403 1.15.6.3 tls node, vcache_node, vn_hash);
1404 1.15.6.3 tls mutex_exit(&vcache.lock);
1405 1.15.6.3 tls pool_cache_put(vcache.pool, node);
1406 1.15.6.3 tls }
1407 1.15.6.3 tls
1408 1.15.6.3 tls /*
1409 1.15.6.3 tls * Remove a vnode / fs node pair from the cache.
1410 1.15.6.3 tls */
1411 1.15.6.3 tls void
1412 1.15.6.3 tls vcache_remove(struct mount *mp, const void *key, size_t key_len)
1413 1.15.6.3 tls {
1414 1.15.6.3 tls uint32_t hash;
1415 1.15.6.3 tls struct vcache_key vcache_key;
1416 1.15.6.3 tls struct vcache_node *node;
1417 1.15.6.3 tls
1418 1.15.6.3 tls vcache_key.vk_mount = mp;
1419 1.15.6.3 tls vcache_key.vk_key = key;
1420 1.15.6.3 tls vcache_key.vk_key_len = key_len;
1421 1.15.6.3 tls hash = vcache_hash(&vcache_key);
1422 1.15.6.3 tls
1423 1.15.6.3 tls mutex_enter(&vcache.lock);
1424 1.15.6.3 tls node = vcache_hash_lookup(&vcache_key, hash);
1425 1.15.6.3 tls KASSERT(node != NULL);
1426 1.15.6.3 tls SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1427 1.15.6.3 tls node, vcache_node, vn_hash);
1428 1.15.6.3 tls mutex_exit(&vcache.lock);
1429 1.15.6.3 tls pool_cache_put(vcache.pool, node);
1430 1.1 rmind }
1431 1.1 rmind
1432 1.1 rmind /*
1433 1.1 rmind * Update outstanding I/O count and do wakeup if requested.
1434 1.1 rmind */
1435 1.1 rmind void
1436 1.1 rmind vwakeup(struct buf *bp)
1437 1.1 rmind {
1438 1.1 rmind vnode_t *vp;
1439 1.1 rmind
1440 1.1 rmind if ((vp = bp->b_vp) == NULL)
1441 1.1 rmind return;
1442 1.1 rmind
1443 1.9 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1444 1.1 rmind KASSERT(mutex_owned(bp->b_objlock));
1445 1.1 rmind
1446 1.1 rmind if (--vp->v_numoutput < 0)
1447 1.11 christos vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1448 1.1 rmind if (vp->v_numoutput == 0)
1449 1.1 rmind cv_broadcast(&vp->v_cv);
1450 1.1 rmind }
1451 1.1 rmind
1452 1.1 rmind /*
1453 1.15.6.3 tls * Test a vnode for being or becoming dead. Returns one of:
1454 1.15.6.3 tls * EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
1455 1.15.6.3 tls * ENOENT: vnode is dead.
1456 1.15.6.3 tls * 0: otherwise.
1457 1.15.6.3 tls *
1458 1.15.6.3 tls * Whenever this function returns a non-zero value all future
1459 1.15.6.3 tls * calls will also return a non-zero value.
1460 1.15.6.3 tls */
1461 1.15.6.3 tls int
1462 1.15.6.3 tls vdead_check(struct vnode *vp, int flags)
1463 1.15.6.3 tls {
1464 1.15.6.3 tls
1465 1.15.6.3 tls KASSERT(mutex_owned(vp->v_interlock));
1466 1.15.6.3 tls if (ISSET(vp->v_iflag, VI_XLOCK)) {
1467 1.15.6.3 tls if (ISSET(flags, VDEAD_NOWAIT))
1468 1.15.6.3 tls return EBUSY;
1469 1.15.6.3 tls vwait(vp, VI_XLOCK);
1470 1.15.6.3 tls KASSERT(ISSET(vp->v_iflag, VI_CLEAN));
1471 1.15.6.3 tls }
1472 1.15.6.3 tls if (ISSET(vp->v_iflag, VI_CLEAN))
1473 1.15.6.3 tls return ENOENT;
1474 1.15.6.3 tls return 0;
1475 1.15.6.3 tls }
1476 1.15.6.3 tls
1477 1.15.6.3 tls /*
1478 1.1 rmind * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
1479 1.1 rmind * recycled.
1480 1.1 rmind */
1481 1.15.6.3 tls static void
1482 1.1 rmind vwait(vnode_t *vp, int flags)
1483 1.1 rmind {
1484 1.1 rmind
1485 1.9 rmind KASSERT(mutex_owned(vp->v_interlock));
1486 1.1 rmind KASSERT(vp->v_usecount != 0);
1487 1.1 rmind
1488 1.1 rmind while ((vp->v_iflag & flags) != 0)
1489 1.9 rmind cv_wait(&vp->v_cv, vp->v_interlock);
1490 1.1 rmind }
1491 1.1 rmind
1492 1.1 rmind int
1493 1.3 rmind vfs_drainvnodes(long target)
1494 1.1 rmind {
1495 1.12 hannken int error;
1496 1.12 hannken
1497 1.12 hannken mutex_enter(&vnode_free_list_lock);
1498 1.1 rmind
1499 1.1 rmind while (numvnodes > target) {
1500 1.12 hannken error = cleanvnode();
1501 1.12 hannken if (error != 0)
1502 1.12 hannken return error;
1503 1.1 rmind mutex_enter(&vnode_free_list_lock);
1504 1.1 rmind }
1505 1.12 hannken
1506 1.12 hannken mutex_exit(&vnode_free_list_lock);
1507 1.12 hannken
1508 1.15.6.3 tls vcache_reinit();
1509 1.15.6.3 tls
1510 1.1 rmind return 0;
1511 1.1 rmind }
1512 1.1 rmind
1513 1.1 rmind void
1514 1.11 christos vnpanic(vnode_t *vp, const char *fmt, ...)
1515 1.1 rmind {
1516 1.11 christos va_list ap;
1517 1.11 christos
1518 1.1 rmind #ifdef DIAGNOSTIC
1519 1.1 rmind vprint(NULL, vp);
1520 1.1 rmind #endif
1521 1.11 christos va_start(ap, fmt);
1522 1.11 christos vpanic(fmt, ap);
1523 1.11 christos va_end(ap);
1524 1.1 rmind }
1525