vfs_vnode.c revision 1.105.2.9 1 /* $NetBSD: vfs_vnode.c,v 1.105.2.9 2020/02/29 20:21:03 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997-2011, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
67 */
68
69 /*
70 * The vnode cache subsystem.
71 *
72 * Life-cycle
73 *
74 * Normally, there are two points where new vnodes are created:
75 * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
76 * starts in one of the following ways:
77 *
78 * - Allocation, via vcache_get(9) or vcache_new(9).
79 * - Reclamation of inactive vnode, via vcache_vget(9).
80 *
81 * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82 * was another, traditional way. Currently, only the draining thread
83 * recycles the vnodes. This behaviour might be revisited.
84 *
85 * The life-cycle ends when the last reference is dropped, usually
86 * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
87 * the file system that vnode is inactive. Via this call, file system
88 * indicates whether vnode can be recycled (usually, it checks its own
89 * references, e.g. count of links, whether the file was removed).
90 *
91 * Depending on indication, vnode can be put into a free list (cache),
92 * or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to
93 * disassociate underlying file system from the vnode, and finally
94 * destroyed.
95 *
96 * Vnode state
97 *
98 * Vnode is always in one of six states:
99 * - MARKER This is a marker vnode to help list traversal. It
100 * will never change its state.
101 * - LOADING Vnode is associating underlying file system and not
102 * yet ready to use.
103 * - LOADED Vnode has associated underlying file system and is
104 * ready to use.
105 * - BLOCKED Vnode is active but cannot get new references.
106 * - RECLAIMING Vnode is disassociating from the underlying file
107 * system.
108 * - RECLAIMED Vnode has disassociated from underlying file system
109 * and is dead.
110 *
111 * Valid state changes are:
112 * LOADING -> LOADED
113 * Vnode has been initialised in vcache_get() or
114 * vcache_new() and is ready to use.
115 * LOADED -> RECLAIMING
116 * Vnode starts disassociation from underlying file
117 * system in vcache_reclaim().
118 * RECLAIMING -> RECLAIMED
119 * Vnode finished disassociation from underlying file
120 * system in vcache_reclaim().
121 * LOADED -> BLOCKED
122 * vcache_rekey*() is changing the vnode key.
123 * BLOCKED -> LOADED
124 * The block condition is over.
125 * LOADING -> RECLAIMED
126 * Either vcache_get() or vcache_new() failed to
127 * associate the underlying file system or vcache_rekey*()
128 * drops a vnode used as placeholder.
129 *
130 * Of these states LOADING, BLOCKED and RECLAIMING are intermediate
131 * and it is possible to wait for state change.
132 *
133 * State is protected with v_interlock with one exception:
134 * to change from LOADING both v_interlock and vcache_lock must be held
135 * so it is possible to check "state == LOADING" without holding
136 * v_interlock. See vcache_get() for details.
137 *
138 * Reference counting
139 *
140 * Vnode is considered active, if reference count (vnode_t::v_usecount)
141 * is non-zero. It is maintained using: vref(9) and vrele(9), as well
142 * as vput(9), routines. Common points holding references are e.g.
143 * file openings, current working directory, mount points, etc.
144 *
145 * Note on v_usecount and its locking
146 *
147 * At nearly all points it is known that v_usecount could be zero,
148 * the vnode_t::v_interlock will be held. To change the count away
149 * from zero, the interlock must be held. To change from a non-zero
150 * value to zero, again the interlock must be held.
151 *
152 * Changing the usecount from a non-zero value to a non-zero value can
153 * safely be done using atomic operations, without the interlock held.
154 */
155
156 #include <sys/cdefs.h>
157 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.105.2.9 2020/02/29 20:21:03 ad Exp $");
158
159 #ifdef _KERNEL_OPT
160 #include "opt_pax.h"
161 #endif
162
163 #include <sys/param.h>
164 #include <sys/kernel.h>
165
166 #include <sys/atomic.h>
167 #include <sys/buf.h>
168 #include <sys/conf.h>
169 #include <sys/device.h>
170 #include <sys/hash.h>
171 #include <sys/kauth.h>
172 #include <sys/kmem.h>
173 #include <sys/kthread.h>
174 #include <sys/module.h>
175 #include <sys/mount.h>
176 #include <sys/namei.h>
177 #include <sys/pax.h>
178 #include <sys/syscallargs.h>
179 #include <sys/sysctl.h>
180 #include <sys/systm.h>
181 #include <sys/vnode_impl.h>
182 #include <sys/wapbl.h>
183 #include <sys/fstrans.h>
184
185 #include <uvm/uvm.h>
186 #include <uvm/uvm_readahead.h>
187 #include <uvm/uvm_stat.h>
188
189 /* Flags to vrelel. */
190 #define VRELEL_ASYNC 0x0001 /* Always defer to vrele thread. */
191
192 #define LRU_VRELE 0
193 #define LRU_FREE 1
194 #define LRU_HOLD 2
195 #define LRU_COUNT 3
196
197 /*
198 * There are three lru lists: one holds vnodes waiting for async release,
199 * one is for vnodes which have no buffer/page references and one for those
200 * which do (i.e. v_holdcnt is non-zero). We put the lists into a single,
201 * private cache line as vnodes migrate between them while under the same
202 * lock (vdrain_lock).
203 */
204 u_int numvnodes __cacheline_aligned;
205 static vnodelst_t lru_list[LRU_COUNT] __cacheline_aligned;
206 static kmutex_t vdrain_lock __cacheline_aligned;
207 static kcondvar_t vdrain_cv;
208 static int vdrain_gen;
209 static kcondvar_t vdrain_gen_cv;
210 static bool vdrain_retry;
211 static lwp_t * vdrain_lwp;
212 SLIST_HEAD(hashhead, vnode_impl);
213 static kmutex_t vcache_lock __cacheline_aligned;
214 static kcondvar_t vcache_cv;
215 static u_int vcache_hashsize;
216 static u_long vcache_hashmask;
217 static struct hashhead *vcache_hashtab;
218 static pool_cache_t vcache_pool;
219 static void lru_requeue(vnode_t *, vnodelst_t *);
220 static vnodelst_t * lru_which(vnode_t *);
221 static vnode_impl_t * vcache_alloc(void);
222 static void vcache_dealloc(vnode_impl_t *);
223 static void vcache_free(vnode_impl_t *);
224 static void vcache_init(void);
225 static void vcache_reinit(void);
226 static void vcache_reclaim(vnode_t *);
227 static void vrelel(vnode_t *, int, int);
228 static void vdrain_thread(void *);
229 static void vnpanic(vnode_t *, const char *, ...)
230 __printflike(2, 3);
231
232 /* Routines having to do with the management of the vnode table. */
233 extern struct mount *dead_rootmount;
234 extern int (**dead_vnodeop_p)(void *);
235 extern int (**spec_vnodeop_p)(void *);
236 extern struct vfsops dead_vfsops;
237
238 /* Vnode state operations and diagnostics. */
239
240 #if defined(DIAGNOSTIC)
241
242 #define VSTATE_VALID(state) \
243 ((state) != VS_ACTIVE && (state) != VS_MARKER)
244 #define VSTATE_GET(vp) \
245 vstate_assert_get((vp), __func__, __LINE__)
246 #define VSTATE_CHANGE(vp, from, to) \
247 vstate_assert_change((vp), (from), (to), __func__, __LINE__)
248 #define VSTATE_WAIT_STABLE(vp) \
249 vstate_assert_wait_stable((vp), __func__, __LINE__)
250
251 void
252 _vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
253 bool has_lock)
254 {
255 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
256
257 if (!has_lock) {
258 /*
259 * Prevent predictive loads from the CPU, but check the state
260 * without loooking first.
261 */
262 membar_enter();
263 if (state == VS_ACTIVE && vp->v_usecount > 0 &&
264 (vip->vi_state == VS_LOADED || vip->vi_state == VS_BLOCKED))
265 return;
266 if (vip->vi_state == state)
267 return;
268 mutex_enter((vp)->v_interlock);
269 }
270
271 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
272
273 if ((state == VS_ACTIVE && vp->v_usecount > 0 &&
274 (vip->vi_state == VS_LOADED || vip->vi_state == VS_BLOCKED)) ||
275 vip->vi_state == state) {
276 if (!has_lock)
277 mutex_exit((vp)->v_interlock);
278 return;
279 }
280 vnpanic(vp, "state is %s, usecount %d, expected %s at %s:%d",
281 vstate_name(vip->vi_state), vp->v_usecount,
282 vstate_name(state), func, line);
283 }
284
285 static enum vnode_state
286 vstate_assert_get(vnode_t *vp, const char *func, int line)
287 {
288 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
289
290 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
291 if (! VSTATE_VALID(vip->vi_state))
292 vnpanic(vp, "state is %s at %s:%d",
293 vstate_name(vip->vi_state), func, line);
294
295 return vip->vi_state;
296 }
297
298 static void
299 vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
300 {
301 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
302
303 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
304 if (! VSTATE_VALID(vip->vi_state))
305 vnpanic(vp, "state is %s at %s:%d",
306 vstate_name(vip->vi_state), func, line);
307
308 while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
309 cv_wait(&vp->v_cv, vp->v_interlock);
310
311 if (! VSTATE_VALID(vip->vi_state))
312 vnpanic(vp, "state is %s at %s:%d",
313 vstate_name(vip->vi_state), func, line);
314 }
315
316 static void
317 vstate_assert_change(vnode_t *vp, enum vnode_state from, enum vnode_state to,
318 const char *func, int line)
319 {
320 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
321
322 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
323 if (from == VS_LOADING)
324 KASSERTMSG(mutex_owned(&vcache_lock), "at %s:%d", func, line);
325
326 if (! VSTATE_VALID(from))
327 vnpanic(vp, "from is %s at %s:%d",
328 vstate_name(from), func, line);
329 if (! VSTATE_VALID(to))
330 vnpanic(vp, "to is %s at %s:%d",
331 vstate_name(to), func, line);
332 if (vip->vi_state != from)
333 vnpanic(vp, "from is %s, expected %s at %s:%d\n",
334 vstate_name(vip->vi_state), vstate_name(from), func, line);
335 if ((from == VS_BLOCKED || to == VS_BLOCKED) && vp->v_usecount != 1)
336 vnpanic(vp, "%s to %s with usecount %d at %s:%d",
337 vstate_name(from), vstate_name(to), vp->v_usecount,
338 func, line);
339
340 vip->vi_state = to;
341 if (from == VS_LOADING)
342 cv_broadcast(&vcache_cv);
343 if (to == VS_LOADED || to == VS_RECLAIMED)
344 cv_broadcast(&vp->v_cv);
345 }
346
347 #else /* defined(DIAGNOSTIC) */
348
349 #define VSTATE_GET(vp) \
350 (VNODE_TO_VIMPL((vp))->vi_state)
351 #define VSTATE_CHANGE(vp, from, to) \
352 vstate_change((vp), (from), (to))
353 #define VSTATE_WAIT_STABLE(vp) \
354 vstate_wait_stable((vp))
355 void
356 _vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
357 bool has_lock)
358 {
359
360 }
361
362 static void
363 vstate_wait_stable(vnode_t *vp)
364 {
365 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
366
367 while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
368 cv_wait(&vp->v_cv, vp->v_interlock);
369 }
370
371 static void
372 vstate_change(vnode_t *vp, enum vnode_state from, enum vnode_state to)
373 {
374 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
375
376 vip->vi_state = to;
377 if (from == VS_LOADING)
378 cv_broadcast(&vcache_cv);
379 if (to == VS_LOADED || to == VS_RECLAIMED)
380 cv_broadcast(&vp->v_cv);
381 }
382
383 #endif /* defined(DIAGNOSTIC) */
384
385 void
386 vfs_vnode_sysinit(void)
387 {
388 int error __diagused, i;
389
390 dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
391 KASSERT(dead_rootmount != NULL);
392 dead_rootmount->mnt_iflag |= IMNT_MPSAFE;
393
394 mutex_init(&vdrain_lock, MUTEX_DEFAULT, IPL_NONE);
395 for (i = 0; i < LRU_COUNT; i++) {
396 TAILQ_INIT(&lru_list[i]);
397 }
398 vcache_init();
399
400 cv_init(&vdrain_cv, "vdrain");
401 cv_init(&vdrain_gen_cv, "vdrainwt");
402 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
403 NULL, &vdrain_lwp, "vdrain");
404 KASSERTMSG((error == 0), "kthread_create(vdrain) failed: %d", error);
405 }
406
407 /*
408 * Allocate a new marker vnode.
409 */
410 vnode_t *
411 vnalloc_marker(struct mount *mp)
412 {
413 vnode_impl_t *vip;
414 vnode_t *vp;
415
416 vip = pool_cache_get(vcache_pool, PR_WAITOK);
417 memset(vip, 0, sizeof(*vip));
418 vp = VIMPL_TO_VNODE(vip);
419 uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
420 vp->v_mount = mp;
421 vp->v_type = VBAD;
422 vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
423 vip->vi_state = VS_MARKER;
424
425 return vp;
426 }
427
428 /*
429 * Free a marker vnode.
430 */
431 void
432 vnfree_marker(vnode_t *vp)
433 {
434 vnode_impl_t *vip;
435
436 vip = VNODE_TO_VIMPL(vp);
437 KASSERT(vip->vi_state == VS_MARKER);
438 mutex_obj_free(vp->v_interlock);
439 uvm_obj_destroy(&vp->v_uobj, true);
440 pool_cache_put(vcache_pool, vip);
441 }
442
443 /*
444 * Test a vnode for being a marker vnode.
445 */
446 bool
447 vnis_marker(vnode_t *vp)
448 {
449
450 return (VNODE_TO_VIMPL(vp)->vi_state == VS_MARKER);
451 }
452
453 /*
454 * Return the lru list this node should be on.
455 */
456 static vnodelst_t *
457 lru_which(vnode_t *vp)
458 {
459
460 KASSERT(mutex_owned(vp->v_interlock));
461
462 if (vp->v_holdcnt > 0)
463 return &lru_list[LRU_HOLD];
464 else
465 return &lru_list[LRU_FREE];
466 }
467
468 /*
469 * Put vnode to end of given list.
470 * Both the current and the new list may be NULL, used on vnode alloc/free.
471 * Adjust numvnodes and signal vdrain thread if there is work.
472 */
473 static void
474 lru_requeue(vnode_t *vp, vnodelst_t *listhd)
475 {
476 vnode_impl_t *vip;
477 int d;
478
479 /*
480 * If the vnode is on the correct list, and was put there recently,
481 * then leave it be, thus avoiding huge cache and lock contention.
482 */
483 vip = VNODE_TO_VIMPL(vp);
484 if (listhd == vip->vi_lrulisthd &&
485 (hardclock_ticks - vip->vi_lrulisttm) < hz) {
486 return;
487 }
488
489 mutex_enter(&vdrain_lock);
490 d = 0;
491 if (vip->vi_lrulisthd != NULL)
492 TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
493 else
494 d++;
495 vip->vi_lrulisthd = listhd;
496 vip->vi_lrulisttm = hardclock_ticks;
497 if (vip->vi_lrulisthd != NULL)
498 TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
499 else
500 d--;
501 if (d != 0) {
502 /*
503 * Looks strange? This is not a bug. Don't store
504 * numvnodes unless there is a change - avoid false
505 * sharing on MP.
506 */
507 numvnodes += d;
508 }
509 if (numvnodes > desiredvnodes || listhd == &lru_list[LRU_VRELE])
510 cv_broadcast(&vdrain_cv);
511 mutex_exit(&vdrain_lock);
512 }
513
514 /*
515 * Release deferred vrele vnodes for this mount.
516 * Called with file system suspended.
517 */
518 void
519 vrele_flush(struct mount *mp)
520 {
521 vnode_impl_t *vip, *marker;
522 vnode_t *vp;
523
524 KASSERT(fstrans_is_owner(mp));
525
526 marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
527
528 mutex_enter(&vdrain_lock);
529 TAILQ_INSERT_HEAD(&lru_list[LRU_VRELE], marker, vi_lrulist);
530
531 while ((vip = TAILQ_NEXT(marker, vi_lrulist))) {
532 TAILQ_REMOVE(&lru_list[LRU_VRELE], marker, vi_lrulist);
533 TAILQ_INSERT_AFTER(&lru_list[LRU_VRELE], vip, marker,
534 vi_lrulist);
535 vp = VIMPL_TO_VNODE(vip);
536 if (vnis_marker(vp))
537 continue;
538
539 KASSERT(vip->vi_lrulisthd == &lru_list[LRU_VRELE]);
540 TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
541 vip->vi_lrulisthd = &lru_list[LRU_HOLD];
542 vip->vi_lrulisttm = hardclock_ticks;
543 TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
544 mutex_exit(&vdrain_lock);
545
546 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
547 mutex_enter(vp->v_interlock);
548 vrelel(vp, 0, LK_EXCLUSIVE);
549
550 mutex_enter(&vdrain_lock);
551 }
552
553 TAILQ_REMOVE(&lru_list[LRU_VRELE], marker, vi_lrulist);
554 mutex_exit(&vdrain_lock);
555
556 vnfree_marker(VIMPL_TO_VNODE(marker));
557 }
558
559 /*
560 * Reclaim a cached vnode. Used from vdrain_thread only.
561 */
562 static __inline void
563 vdrain_remove(vnode_t *vp)
564 {
565 struct mount *mp;
566
567 KASSERT(mutex_owned(&vdrain_lock));
568
569 /* Probe usecount (unlocked). */
570 if (vp->v_usecount > 0)
571 return;
572 /* Try v_interlock -- we lock the wrong direction! */
573 if (!mutex_tryenter(vp->v_interlock))
574 return;
575 /* Probe usecount and state. */
576 if (vp->v_usecount > 0 || VSTATE_GET(vp) != VS_LOADED) {
577 mutex_exit(vp->v_interlock);
578 return;
579 }
580 mp = vp->v_mount;
581 if (fstrans_start_nowait(mp) != 0) {
582 mutex_exit(vp->v_interlock);
583 return;
584 }
585 vdrain_retry = true;
586 mutex_exit(&vdrain_lock);
587
588 if (vcache_vget(vp) == 0) {
589 if (!vrecycle(vp)) {
590 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
591 mutex_enter(vp->v_interlock);
592 vrelel(vp, 0, LK_EXCLUSIVE);
593 }
594 }
595 fstrans_done(mp);
596
597 mutex_enter(&vdrain_lock);
598 }
599
600 /*
601 * Release a cached vnode. Used from vdrain_thread only.
602 */
603 static __inline void
604 vdrain_vrele(vnode_t *vp)
605 {
606 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
607 struct mount *mp;
608
609 KASSERT(mutex_owned(&vdrain_lock));
610
611 mp = vp->v_mount;
612 if (fstrans_start_nowait(mp) != 0)
613 return;
614
615 /*
616 * First remove the vnode from the vrele list.
617 * Put it on the last lru list, the last vrele()
618 * will put it back onto the right list before
619 * its v_usecount reaches zero.
620 */
621 KASSERT(vip->vi_lrulisthd == &lru_list[LRU_VRELE]);
622 TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
623 vip->vi_lrulisthd = &lru_list[LRU_HOLD];
624 vip->vi_lrulisttm = hardclock_ticks;
625 TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
626
627 vdrain_retry = true;
628 mutex_exit(&vdrain_lock);
629
630 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
631 mutex_enter(vp->v_interlock);
632 vrelel(vp, 0, LK_EXCLUSIVE);
633 fstrans_done(mp);
634
635 mutex_enter(&vdrain_lock);
636 }
637
638 /*
639 * Helper thread to keep the number of vnodes below desiredvnodes
640 * and release vnodes from asynchronous vrele.
641 */
642 static void
643 vdrain_thread(void *cookie)
644 {
645 int i;
646 u_int target;
647 vnode_impl_t *vip, *marker;
648
649 marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
650
651 mutex_enter(&vdrain_lock);
652
653 for (;;) {
654 vdrain_retry = false;
655 target = desiredvnodes - desiredvnodes/10;
656
657 for (i = 0; i < LRU_COUNT; i++) {
658 TAILQ_INSERT_HEAD(&lru_list[i], marker, vi_lrulist);
659 while ((vip = TAILQ_NEXT(marker, vi_lrulist))) {
660 TAILQ_REMOVE(&lru_list[i], marker, vi_lrulist);
661 TAILQ_INSERT_AFTER(&lru_list[i], vip, marker,
662 vi_lrulist);
663 if (vnis_marker(VIMPL_TO_VNODE(vip)))
664 continue;
665 if (i == LRU_VRELE)
666 vdrain_vrele(VIMPL_TO_VNODE(vip));
667 else if (numvnodes < target)
668 break;
669 else
670 vdrain_remove(VIMPL_TO_VNODE(vip));
671 }
672 TAILQ_REMOVE(&lru_list[i], marker, vi_lrulist);
673 }
674
675 if (vdrain_retry) {
676 mutex_exit(&vdrain_lock);
677 yield();
678 mutex_enter(&vdrain_lock);
679 } else {
680 vdrain_gen++;
681 cv_broadcast(&vdrain_gen_cv);
682 cv_wait(&vdrain_cv, &vdrain_lock);
683 }
684 }
685 }
686
687 /*
688 * Try to drop reference on a vnode. Abort if we are releasing the
689 * last reference. Note: this _must_ succeed if not the last reference.
690 */
691 static bool
692 vtryrele(vnode_t *vp)
693 {
694 u_int use, next;
695
696 for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
697 if (__predict_false(use == 1)) {
698 return false;
699 }
700 KASSERT(use > 1);
701 next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
702 if (__predict_true(next == use)) {
703 return true;
704 }
705 }
706 }
707
708 /*
709 * vput: unlock and release the reference.
710 */
711 void
712 vput(vnode_t *vp)
713 {
714 int lktype;
715
716 /*
717 * Do an unlocked check of v_usecount. If it looks like we're not
718 * about to drop the last reference, then unlock the vnode and try
719 * to drop the reference. If it ends up being the last reference
720 * after all, vrelel() can fix it all up. Most of the time this
721 * will all go to plan.
722 */
723 if (atomic_load_relaxed(&vp->v_usecount) > 1) {
724 VOP_UNLOCK(vp);
725 if (vtryrele(vp)) {
726 return;
727 }
728 lktype = LK_NONE;
729 } else if ((vp->v_vflag & VV_LOCKSWORK) == 0) {
730 lktype = LK_EXCLUSIVE;
731 } else {
732 lktype = VOP_ISLOCKED(vp);
733 KASSERT(lktype != LK_NONE);
734 }
735 mutex_enter(vp->v_interlock);
736 vrelel(vp, 0, lktype);
737 }
738
739 /*
740 * Vnode release. If reference count drops to zero, call inactive
741 * routine and either return to freelist or free to the pool.
742 */
743 static void
744 vrelel(vnode_t *vp, int flags, int lktype)
745 {
746 const bool async = ((flags & VRELEL_ASYNC) != 0);
747 bool recycle, defer;
748 int error;
749
750 KASSERT(mutex_owned(vp->v_interlock));
751
752 if (__predict_false(vp->v_op == dead_vnodeop_p &&
753 VSTATE_GET(vp) != VS_RECLAIMED)) {
754 vnpanic(vp, "dead but not clean");
755 }
756
757 /*
758 * If not the last reference, just drop the reference count and
759 * unlock. VOP_UNLOCK() is called here without a vnode reference
760 * held, but is ok as the hold of v_interlock will stop the vnode
761 * from disappearing.
762 */
763 if (vtryrele(vp)) {
764 if (lktype != LK_NONE) {
765 VOP_UNLOCK(vp);
766 }
767 mutex_exit(vp->v_interlock);
768 return;
769 }
770 if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
771 vnpanic(vp, "%s: bad ref count", __func__);
772 }
773
774 #ifdef DIAGNOSTIC
775 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
776 vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
777 vprint("vrelel: missing VOP_CLOSE()", vp);
778 }
779 #endif
780
781 /*
782 * First try to get the vnode locked for VOP_INACTIVE().
783 * Defer vnode release to vdrain_thread if caller requests
784 * it explicitly, is the pagedaemon or the lock failed.
785 */
786 defer = false;
787 if ((curlwp == uvm.pagedaemon_lwp) || async) {
788 defer = true;
789 } else if (lktype == LK_SHARED) {
790 /* Excellent chance of getting, if the last ref. */
791 error = vn_lock(vp, LK_UPGRADE | LK_RETRY |
792 LK_NOWAIT);
793 if (error != 0) {
794 defer = true;
795 } else {
796 lktype = LK_EXCLUSIVE;
797 }
798 } else if (lktype == LK_NONE) {
799 /* Excellent chance of getting, if the last ref. */
800 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY |
801 LK_NOWAIT);
802 if (error != 0) {
803 defer = true;
804 } else {
805 lktype = LK_EXCLUSIVE;
806 }
807 }
808 KASSERT(mutex_owned(vp->v_interlock));
809 if (defer) {
810 /*
811 * Defer reclaim to the kthread; it's not safe to
812 * clean it here. We donate it our last reference.
813 */
814 if (lktype != LK_NONE) {
815 VOP_UNLOCK(vp);
816 }
817 lru_requeue(vp, &lru_list[LRU_VRELE]);
818 mutex_exit(vp->v_interlock);
819 return;
820 }
821 KASSERT(lktype == LK_EXCLUSIVE);
822
823 /*
824 * If not clean, deactivate the vnode, but preserve
825 * our reference across the call to VOP_INACTIVE().
826 */
827 if (VSTATE_GET(vp) == VS_RECLAIMED) {
828 VOP_UNLOCK(vp);
829 } else {
830 /*
831 * If VOP_INACTIVE() indicates that the described file has
832 * been deleted, then recycle the vnode. Note that
833 * VOP_INACTIVE() will not drop the vnode lock.
834 *
835 * If the file has been deleted, this is a lingering
836 * reference and there is no need to worry about new
837 * references looking to do real work with the vnode (as it
838 * will have been purged from directories, caches, etc).
839 */
840 recycle = false;
841 mutex_exit(vp->v_interlock);
842 VOP_INACTIVE(vp, &recycle);
843 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
844 mutex_enter(vp->v_interlock);
845 if (!recycle) {
846 VOP_UNLOCK(vp);
847 if (vtryrele(vp)) {
848 mutex_exit(vp->v_interlock);
849 rw_exit(vp->v_uobj.vmobjlock);
850 return;
851 }
852 }
853
854 /* Take care of space accounting. */
855 if ((vp->v_iflag & VI_EXECMAP) != 0 &&
856 vp->v_uobj.uo_npages != 0) {
857 cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
858 cpu_count(CPU_COUNT_FILEPAGES, vp->v_uobj.uo_npages);
859 }
860 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
861 vp->v_vflag &= ~VV_MAPPED;
862 rw_exit(vp->v_uobj.vmobjlock);
863
864 /*
865 * Recycle the vnode if the file is now unused (unlinked),
866 * otherwise just free it.
867 */
868 if (recycle) {
869 VSTATE_ASSERT(vp, VS_LOADED);
870 /* vcache_reclaim drops the lock. */
871 vcache_reclaim(vp);
872 }
873 KASSERT(vp->v_usecount > 0);
874 }
875
876 if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
877 /* Gained another reference while being reclaimed. */
878 mutex_exit(vp->v_interlock);
879 return;
880 }
881
882 if (VSTATE_GET(vp) == VS_RECLAIMED && vp->v_holdcnt == 0) {
883 /*
884 * It's clean so destroy it. It isn't referenced
885 * anywhere since it has been reclaimed.
886 */
887 vcache_free(VNODE_TO_VIMPL(vp));
888 } else {
889 /*
890 * Otherwise, put it back onto the freelist. It
891 * can't be destroyed while still associated with
892 * a file system.
893 */
894 lru_requeue(vp, lru_which(vp));
895 mutex_exit(vp->v_interlock);
896 }
897 }
898
899 void
900 vrele(vnode_t *vp)
901 {
902
903 if (vtryrele(vp)) {
904 return;
905 }
906 mutex_enter(vp->v_interlock);
907 vrelel(vp, 0, LK_NONE);
908 }
909
910 /*
911 * Asynchronous vnode release, vnode is released in different context.
912 */
913 void
914 vrele_async(vnode_t *vp)
915 {
916
917 if (vtryrele(vp)) {
918 return;
919 }
920 mutex_enter(vp->v_interlock);
921 vrelel(vp, VRELEL_ASYNC, LK_NONE);
922 }
923
924 /*
925 * Vnode reference, where a reference is already held by some other
926 * object (for example, a file structure).
927 *
928 * NB: we have lockless code sequences that rely on this not blocking.
929 */
930 void
931 vref(vnode_t *vp)
932 {
933
934 KASSERT(atomic_load_relaxed(&vp->v_usecount) != 0);
935
936 atomic_inc_uint(&vp->v_usecount);
937 }
938
939 /*
940 * Page or buffer structure gets a reference.
941 * Called with v_interlock held.
942 */
943 void
944 vholdl(vnode_t *vp)
945 {
946
947 KASSERT(mutex_owned(vp->v_interlock));
948
949 if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0)
950 lru_requeue(vp, lru_which(vp));
951 }
952
953 /*
954 * Page or buffer structure gets a reference.
955 */
956 void
957 vhold(vnode_t *vp)
958 {
959
960 mutex_enter(vp->v_interlock);
961 vholdl(vp);
962 mutex_exit(vp->v_interlock);
963 }
964
965 /*
966 * Page or buffer structure frees a reference.
967 * Called with v_interlock held.
968 */
969 void
970 holdrelel(vnode_t *vp)
971 {
972
973 KASSERT(mutex_owned(vp->v_interlock));
974
975 if (vp->v_holdcnt <= 0) {
976 vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
977 }
978
979 vp->v_holdcnt--;
980 if (vp->v_holdcnt == 0 && vp->v_usecount == 0)
981 lru_requeue(vp, lru_which(vp));
982 }
983
984 /*
985 * Page or buffer structure frees a reference.
986 */
987 void
988 holdrele(vnode_t *vp)
989 {
990
991 mutex_enter(vp->v_interlock);
992 holdrelel(vp);
993 mutex_exit(vp->v_interlock);
994 }
995
996 /*
997 * Recycle an unused vnode if caller holds the last reference.
998 */
999 bool
1000 vrecycle(vnode_t *vp)
1001 {
1002 int error __diagused;
1003
1004 mutex_enter(vp->v_interlock);
1005
1006 /* Make sure we hold the last reference. */
1007 VSTATE_WAIT_STABLE(vp);
1008 if (vp->v_usecount != 1) {
1009 mutex_exit(vp->v_interlock);
1010 return false;
1011 }
1012
1013 /* If the vnode is already clean we're done. */
1014 if (VSTATE_GET(vp) != VS_LOADED) {
1015 VSTATE_ASSERT(vp, VS_RECLAIMED);
1016 vrelel(vp, 0, LK_NONE);
1017 return true;
1018 }
1019
1020 /* Prevent further references until the vnode is locked. */
1021 VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
1022 mutex_exit(vp->v_interlock);
1023
1024 /*
1025 * On a leaf file system this lock will always succeed as we hold
1026 * the last reference and prevent further references.
1027 * On layered file systems waiting for the lock would open a can of
1028 * deadlocks as the lower vnodes may have other active references.
1029 */
1030 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
1031
1032 mutex_enter(vp->v_interlock);
1033 VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
1034
1035 if (error) {
1036 mutex_exit(vp->v_interlock);
1037 return false;
1038 }
1039
1040 KASSERT(vp->v_usecount == 1);
1041 vcache_reclaim(vp);
1042 vrelel(vp, 0, LK_NONE);
1043
1044 return true;
1045 }
1046
1047 /*
1048 * Helper for vrevoke() to propagate suspension from lastmp
1049 * to thismp. Both args may be NULL.
1050 * Returns the currently suspended file system or NULL.
1051 */
1052 static struct mount *
1053 vrevoke_suspend_next(struct mount *lastmp, struct mount *thismp)
1054 {
1055 int error;
1056
1057 if (lastmp == thismp)
1058 return thismp;
1059
1060 if (lastmp != NULL)
1061 vfs_resume(lastmp);
1062
1063 if (thismp == NULL)
1064 return NULL;
1065
1066 do {
1067 error = vfs_suspend(thismp, 0);
1068 } while (error == EINTR || error == ERESTART);
1069
1070 if (error == 0)
1071 return thismp;
1072
1073 KASSERT(error == EOPNOTSUPP);
1074 return NULL;
1075 }
1076
1077 /*
1078 * Eliminate all activity associated with the requested vnode
1079 * and with all vnodes aliased to the requested vnode.
1080 */
1081 void
1082 vrevoke(vnode_t *vp)
1083 {
1084 struct mount *mp;
1085 vnode_t *vq;
1086 enum vtype type;
1087 dev_t dev;
1088
1089 KASSERT(vp->v_usecount > 0);
1090
1091 mp = vrevoke_suspend_next(NULL, vp->v_mount);
1092
1093 mutex_enter(vp->v_interlock);
1094 VSTATE_WAIT_STABLE(vp);
1095 if (VSTATE_GET(vp) == VS_RECLAIMED) {
1096 mutex_exit(vp->v_interlock);
1097 } else if (vp->v_type != VBLK && vp->v_type != VCHR) {
1098 atomic_inc_uint(&vp->v_usecount);
1099 mutex_exit(vp->v_interlock);
1100 vgone(vp);
1101 } else {
1102 dev = vp->v_rdev;
1103 type = vp->v_type;
1104 mutex_exit(vp->v_interlock);
1105
1106 while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
1107 mp = vrevoke_suspend_next(mp, vq->v_mount);
1108 vgone(vq);
1109 }
1110 }
1111 vrevoke_suspend_next(mp, NULL);
1112 }
1113
1114 /*
1115 * Eliminate all activity associated with a vnode in preparation for
1116 * reuse. Drops a reference from the vnode.
1117 */
1118 void
1119 vgone(vnode_t *vp)
1120 {
1121 int lktype;
1122
1123 KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
1124
1125 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
1126 lktype = LK_EXCLUSIVE;
1127 mutex_enter(vp->v_interlock);
1128 VSTATE_WAIT_STABLE(vp);
1129 if (VSTATE_GET(vp) == VS_LOADED) {
1130 vcache_reclaim(vp);
1131 lktype = LK_NONE;
1132 }
1133 VSTATE_ASSERT(vp, VS_RECLAIMED);
1134 vrelel(vp, 0, lktype);
1135 }
1136
1137 static inline uint32_t
1138 vcache_hash(const struct vcache_key *key)
1139 {
1140 uint32_t hash = HASH32_BUF_INIT;
1141
1142 KASSERT(key->vk_key_len > 0);
1143
1144 hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
1145 hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
1146 return hash;
1147 }
1148
1149 static void
1150 vcache_init(void)
1151 {
1152
1153 vcache_pool = pool_cache_init(sizeof(vnode_impl_t), coherency_unit,
1154 0, 0, "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
1155 KASSERT(vcache_pool != NULL);
1156 mutex_init(&vcache_lock, MUTEX_DEFAULT, IPL_NONE);
1157 cv_init(&vcache_cv, "vcache");
1158 vcache_hashsize = desiredvnodes;
1159 vcache_hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
1160 &vcache_hashmask);
1161 }
1162
1163 static void
1164 vcache_reinit(void)
1165 {
1166 int i;
1167 uint32_t hash;
1168 u_long oldmask, newmask;
1169 struct hashhead *oldtab, *newtab;
1170 vnode_impl_t *vip;
1171
1172 newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
1173 mutex_enter(&vcache_lock);
1174 oldtab = vcache_hashtab;
1175 oldmask = vcache_hashmask;
1176 vcache_hashsize = desiredvnodes;
1177 vcache_hashtab = newtab;
1178 vcache_hashmask = newmask;
1179 for (i = 0; i <= oldmask; i++) {
1180 while ((vip = SLIST_FIRST(&oldtab[i])) != NULL) {
1181 SLIST_REMOVE(&oldtab[i], vip, vnode_impl, vi_hash);
1182 hash = vcache_hash(&vip->vi_key);
1183 SLIST_INSERT_HEAD(&newtab[hash & vcache_hashmask],
1184 vip, vi_hash);
1185 }
1186 }
1187 mutex_exit(&vcache_lock);
1188 hashdone(oldtab, HASH_SLIST, oldmask);
1189 }
1190
1191 static inline vnode_impl_t *
1192 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
1193 {
1194 struct hashhead *hashp;
1195 vnode_impl_t *vip;
1196
1197 KASSERT(mutex_owned(&vcache_lock));
1198
1199 hashp = &vcache_hashtab[hash & vcache_hashmask];
1200 SLIST_FOREACH(vip, hashp, vi_hash) {
1201 if (key->vk_mount != vip->vi_key.vk_mount)
1202 continue;
1203 if (key->vk_key_len != vip->vi_key.vk_key_len)
1204 continue;
1205 if (memcmp(key->vk_key, vip->vi_key.vk_key, key->vk_key_len))
1206 continue;
1207 return vip;
1208 }
1209 return NULL;
1210 }
1211
1212 /*
1213 * Allocate a new, uninitialized vcache node.
1214 */
1215 static vnode_impl_t *
1216 vcache_alloc(void)
1217 {
1218 vnode_impl_t *vip;
1219 vnode_t *vp;
1220
1221 vip = pool_cache_get(vcache_pool, PR_WAITOK);
1222 vp = VIMPL_TO_VNODE(vip);
1223 memset(vip, 0, sizeof(*vip));
1224
1225 rw_init(&vip->vi_lock);
1226 vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
1227
1228 uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
1229 cv_init(&vp->v_cv, "vnode");
1230 cache_vnode_init(vp);
1231
1232 vp->v_usecount = 1;
1233 vp->v_type = VNON;
1234 vp->v_size = vp->v_writesize = VSIZENOTSET;
1235
1236 vip->vi_state = VS_LOADING;
1237
1238 lru_requeue(vp, &lru_list[LRU_FREE]);
1239
1240 return vip;
1241 }
1242
1243 /*
1244 * Deallocate a vcache node in state VS_LOADING.
1245 *
1246 * vcache_lock held on entry and released on return.
1247 */
1248 static void
1249 vcache_dealloc(vnode_impl_t *vip)
1250 {
1251 vnode_t *vp;
1252
1253 KASSERT(mutex_owned(&vcache_lock));
1254
1255 vp = VIMPL_TO_VNODE(vip);
1256 vfs_ref(dead_rootmount);
1257 vfs_insmntque(vp, dead_rootmount);
1258 mutex_enter(vp->v_interlock);
1259 vp->v_op = dead_vnodeop_p;
1260 VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
1261 mutex_exit(&vcache_lock);
1262 vrelel(vp, 0, LK_NONE);
1263 }
1264
1265 /*
1266 * Free an unused, unreferenced vcache node.
1267 * v_interlock locked on entry.
1268 */
1269 static void
1270 vcache_free(vnode_impl_t *vip)
1271 {
1272 vnode_t *vp;
1273
1274 vp = VIMPL_TO_VNODE(vip);
1275 KASSERT(mutex_owned(vp->v_interlock));
1276
1277 KASSERT(vp->v_usecount == 0);
1278 KASSERT(vp->v_holdcnt == 0);
1279 KASSERT(vp->v_writecount == 0);
1280 lru_requeue(vp, NULL);
1281 mutex_exit(vp->v_interlock);
1282
1283 vfs_insmntque(vp, NULL);
1284 if (vp->v_type == VBLK || vp->v_type == VCHR)
1285 spec_node_destroy(vp);
1286
1287 mutex_obj_free(vp->v_interlock);
1288 rw_destroy(&vip->vi_lock);
1289 uvm_obj_destroy(&vp->v_uobj, true);
1290 cv_destroy(&vp->v_cv);
1291 cache_vnode_fini(vp);
1292 pool_cache_put(vcache_pool, vip);
1293 }
1294
1295 /*
1296 * Try to get an initial reference on this cached vnode.
1297 * Returns zero on success, ENOENT if the vnode has been reclaimed and
1298 * EBUSY if the vnode state is unstable.
1299 *
1300 * v_interlock locked on entry and unlocked on exit.
1301 */
1302 int
1303 vcache_tryvget(vnode_t *vp)
1304 {
1305 int error = 0;
1306
1307 KASSERT(mutex_owned(vp->v_interlock));
1308
1309 if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED))
1310 error = ENOENT;
1311 else if (__predict_false(VSTATE_GET(vp) != VS_LOADED))
1312 error = EBUSY;
1313 else if (vp->v_usecount == 0)
1314 vp->v_usecount = 1;
1315 else
1316 atomic_inc_uint(&vp->v_usecount);
1317
1318 mutex_exit(vp->v_interlock);
1319
1320 return error;
1321 }
1322
1323 /*
1324 * Try to get an initial reference on this cached vnode.
1325 * Returns zero on success and ENOENT if the vnode has been reclaimed.
1326 * Will wait for the vnode state to be stable.
1327 *
1328 * v_interlock locked on entry and unlocked on exit.
1329 */
1330 int
1331 vcache_vget(vnode_t *vp)
1332 {
1333
1334 KASSERT(mutex_owned(vp->v_interlock));
1335
1336 /* Increment hold count to prevent vnode from disappearing. */
1337 vp->v_holdcnt++;
1338 VSTATE_WAIT_STABLE(vp);
1339 vp->v_holdcnt--;
1340
1341 /* If this was the last reference to a reclaimed vnode free it now. */
1342 if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED)) {
1343 if (vp->v_holdcnt == 0 && vp->v_usecount == 0)
1344 vcache_free(VNODE_TO_VIMPL(vp));
1345 else
1346 mutex_exit(vp->v_interlock);
1347 return ENOENT;
1348 }
1349 VSTATE_ASSERT(vp, VS_LOADED);
1350 if (vp->v_usecount == 0)
1351 vp->v_usecount = 1;
1352 else
1353 atomic_inc_uint(&vp->v_usecount);
1354 mutex_exit(vp->v_interlock);
1355
1356 return 0;
1357 }
1358
1359 /*
1360 * Get a vnode / fs node pair by key and return it referenced through vpp.
1361 */
1362 int
1363 vcache_get(struct mount *mp, const void *key, size_t key_len,
1364 struct vnode **vpp)
1365 {
1366 int error;
1367 uint32_t hash;
1368 const void *new_key;
1369 struct vnode *vp;
1370 struct vcache_key vcache_key;
1371 vnode_impl_t *vip, *new_vip;
1372
1373 new_key = NULL;
1374 *vpp = NULL;
1375
1376 vcache_key.vk_mount = mp;
1377 vcache_key.vk_key = key;
1378 vcache_key.vk_key_len = key_len;
1379 hash = vcache_hash(&vcache_key);
1380
1381 again:
1382 mutex_enter(&vcache_lock);
1383 vip = vcache_hash_lookup(&vcache_key, hash);
1384
1385 /* If found, take a reference or retry. */
1386 if (__predict_true(vip != NULL)) {
1387 /*
1388 * If the vnode is loading we cannot take the v_interlock
1389 * here as it might change during load (see uvm_obj_setlock()).
1390 * As changing state from VS_LOADING requires both vcache_lock
1391 * and v_interlock it is safe to test with vcache_lock held.
1392 *
1393 * Wait for vnodes changing state from VS_LOADING and retry.
1394 */
1395 if (__predict_false(vip->vi_state == VS_LOADING)) {
1396 cv_wait(&vcache_cv, &vcache_lock);
1397 mutex_exit(&vcache_lock);
1398 goto again;
1399 }
1400 vp = VIMPL_TO_VNODE(vip);
1401 mutex_enter(vp->v_interlock);
1402 mutex_exit(&vcache_lock);
1403 error = vcache_vget(vp);
1404 if (error == ENOENT)
1405 goto again;
1406 if (error == 0)
1407 *vpp = vp;
1408 KASSERT((error != 0) == (*vpp == NULL));
1409 return error;
1410 }
1411 mutex_exit(&vcache_lock);
1412
1413 /* Allocate and initialize a new vcache / vnode pair. */
1414 error = vfs_busy(mp);
1415 if (error)
1416 return error;
1417 new_vip = vcache_alloc();
1418 new_vip->vi_key = vcache_key;
1419 vp = VIMPL_TO_VNODE(new_vip);
1420 mutex_enter(&vcache_lock);
1421 vip = vcache_hash_lookup(&vcache_key, hash);
1422 if (vip == NULL) {
1423 SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
1424 new_vip, vi_hash);
1425 vip = new_vip;
1426 }
1427
1428 /* If another thread beat us inserting this node, retry. */
1429 if (vip != new_vip) {
1430 vcache_dealloc(new_vip);
1431 vfs_unbusy(mp);
1432 goto again;
1433 }
1434 mutex_exit(&vcache_lock);
1435
1436 /* Load the fs node. Exclusive as new_node is VS_LOADING. */
1437 error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
1438 if (error) {
1439 mutex_enter(&vcache_lock);
1440 SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
1441 new_vip, vnode_impl, vi_hash);
1442 vcache_dealloc(new_vip);
1443 vfs_unbusy(mp);
1444 KASSERT(*vpp == NULL);
1445 return error;
1446 }
1447 KASSERT(new_key != NULL);
1448 KASSERT(memcmp(key, new_key, key_len) == 0);
1449 KASSERT(vp->v_op != NULL);
1450 vfs_insmntque(vp, mp);
1451 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1452 vp->v_vflag |= VV_MPSAFE;
1453 vfs_ref(mp);
1454 vfs_unbusy(mp);
1455
1456 /* Finished loading, finalize node. */
1457 mutex_enter(&vcache_lock);
1458 new_vip->vi_key.vk_key = new_key;
1459 mutex_enter(vp->v_interlock);
1460 VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
1461 mutex_exit(vp->v_interlock);
1462 mutex_exit(&vcache_lock);
1463 *vpp = vp;
1464 return 0;
1465 }
1466
1467 /*
1468 * Create a new vnode / fs node pair and return it referenced through vpp.
1469 */
1470 int
1471 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
1472 kauth_cred_t cred, void *extra, struct vnode **vpp)
1473 {
1474 int error;
1475 uint32_t hash;
1476 struct vnode *vp, *ovp;
1477 vnode_impl_t *vip, *ovip;
1478
1479 *vpp = NULL;
1480
1481 /* Allocate and initialize a new vcache / vnode pair. */
1482 error = vfs_busy(mp);
1483 if (error)
1484 return error;
1485 vip = vcache_alloc();
1486 vip->vi_key.vk_mount = mp;
1487 vp = VIMPL_TO_VNODE(vip);
1488
1489 /* Create and load the fs node. */
1490 error = VFS_NEWVNODE(mp, dvp, vp, vap, cred, extra,
1491 &vip->vi_key.vk_key_len, &vip->vi_key.vk_key);
1492 if (error) {
1493 mutex_enter(&vcache_lock);
1494 vcache_dealloc(vip);
1495 vfs_unbusy(mp);
1496 KASSERT(*vpp == NULL);
1497 return error;
1498 }
1499 KASSERT(vp->v_op != NULL);
1500 KASSERT((vip->vi_key.vk_key_len == 0) == (mp == dead_rootmount));
1501 if (vip->vi_key.vk_key_len > 0) {
1502 KASSERT(vip->vi_key.vk_key != NULL);
1503 hash = vcache_hash(&vip->vi_key);
1504
1505 /*
1506 * Wait for previous instance to be reclaimed,
1507 * then insert new node.
1508 */
1509 mutex_enter(&vcache_lock);
1510 while ((ovip = vcache_hash_lookup(&vip->vi_key, hash))) {
1511 ovp = VIMPL_TO_VNODE(ovip);
1512 mutex_enter(ovp->v_interlock);
1513 mutex_exit(&vcache_lock);
1514 error = vcache_vget(ovp);
1515 KASSERT(error == ENOENT);
1516 mutex_enter(&vcache_lock);
1517 }
1518 SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
1519 vip, vi_hash);
1520 mutex_exit(&vcache_lock);
1521 }
1522 vfs_insmntque(vp, mp);
1523 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1524 vp->v_vflag |= VV_MPSAFE;
1525 vfs_ref(mp);
1526 vfs_unbusy(mp);
1527
1528 /* Finished loading, finalize node. */
1529 mutex_enter(&vcache_lock);
1530 mutex_enter(vp->v_interlock);
1531 VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
1532 mutex_exit(&vcache_lock);
1533 mutex_exit(vp->v_interlock);
1534 *vpp = vp;
1535 return 0;
1536 }
1537
1538 /*
1539 * Prepare key change: update old cache nodes key and lock new cache node.
1540 * Return an error if the new node already exists.
1541 */
1542 int
1543 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
1544 const void *old_key, size_t old_key_len,
1545 const void *new_key, size_t new_key_len)
1546 {
1547 uint32_t old_hash, new_hash;
1548 struct vcache_key old_vcache_key, new_vcache_key;
1549 vnode_impl_t *vip, *new_vip;
1550
1551 old_vcache_key.vk_mount = mp;
1552 old_vcache_key.vk_key = old_key;
1553 old_vcache_key.vk_key_len = old_key_len;
1554 old_hash = vcache_hash(&old_vcache_key);
1555
1556 new_vcache_key.vk_mount = mp;
1557 new_vcache_key.vk_key = new_key;
1558 new_vcache_key.vk_key_len = new_key_len;
1559 new_hash = vcache_hash(&new_vcache_key);
1560
1561 new_vip = vcache_alloc();
1562 new_vip->vi_key = new_vcache_key;
1563
1564 /* Insert locked new node used as placeholder. */
1565 mutex_enter(&vcache_lock);
1566 vip = vcache_hash_lookup(&new_vcache_key, new_hash);
1567 if (vip != NULL) {
1568 vcache_dealloc(new_vip);
1569 return EEXIST;
1570 }
1571 SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
1572 new_vip, vi_hash);
1573
1574 /* Replace old nodes key with the temporary copy. */
1575 vip = vcache_hash_lookup(&old_vcache_key, old_hash);
1576 KASSERT(vip != NULL);
1577 KASSERT(VIMPL_TO_VNODE(vip) == vp);
1578 KASSERT(vip->vi_key.vk_key != old_vcache_key.vk_key);
1579 vip->vi_key = old_vcache_key;
1580 mutex_exit(&vcache_lock);
1581 return 0;
1582 }
1583
1584 /*
1585 * Key change complete: update old node and remove placeholder.
1586 */
1587 void
1588 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
1589 const void *old_key, size_t old_key_len,
1590 const void *new_key, size_t new_key_len)
1591 {
1592 uint32_t old_hash, new_hash;
1593 struct vcache_key old_vcache_key, new_vcache_key;
1594 vnode_impl_t *vip, *new_vip;
1595 struct vnode *new_vp;
1596
1597 old_vcache_key.vk_mount = mp;
1598 old_vcache_key.vk_key = old_key;
1599 old_vcache_key.vk_key_len = old_key_len;
1600 old_hash = vcache_hash(&old_vcache_key);
1601
1602 new_vcache_key.vk_mount = mp;
1603 new_vcache_key.vk_key = new_key;
1604 new_vcache_key.vk_key_len = new_key_len;
1605 new_hash = vcache_hash(&new_vcache_key);
1606
1607 mutex_enter(&vcache_lock);
1608
1609 /* Lookup old and new node. */
1610 vip = vcache_hash_lookup(&old_vcache_key, old_hash);
1611 KASSERT(vip != NULL);
1612 KASSERT(VIMPL_TO_VNODE(vip) == vp);
1613
1614 new_vip = vcache_hash_lookup(&new_vcache_key, new_hash);
1615 KASSERT(new_vip != NULL);
1616 KASSERT(new_vip->vi_key.vk_key_len == new_key_len);
1617 new_vp = VIMPL_TO_VNODE(new_vip);
1618 mutex_enter(new_vp->v_interlock);
1619 VSTATE_ASSERT(VIMPL_TO_VNODE(new_vip), VS_LOADING);
1620 mutex_exit(new_vp->v_interlock);
1621
1622 /* Rekey old node and put it onto its new hashlist. */
1623 vip->vi_key = new_vcache_key;
1624 if (old_hash != new_hash) {
1625 SLIST_REMOVE(&vcache_hashtab[old_hash & vcache_hashmask],
1626 vip, vnode_impl, vi_hash);
1627 SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
1628 vip, vi_hash);
1629 }
1630
1631 /* Remove new node used as placeholder. */
1632 SLIST_REMOVE(&vcache_hashtab[new_hash & vcache_hashmask],
1633 new_vip, vnode_impl, vi_hash);
1634 vcache_dealloc(new_vip);
1635 }
1636
1637 /*
1638 * Disassociate the underlying file system from a vnode.
1639 *
1640 * Must be called with vnode locked and will return unlocked.
1641 * Must be called with the interlock held, and will return with it held.
1642 */
1643 static void
1644 vcache_reclaim(vnode_t *vp)
1645 {
1646 lwp_t *l = curlwp;
1647 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
1648 struct mount *mp = vp->v_mount;
1649 uint32_t hash;
1650 uint8_t temp_buf[64], *temp_key;
1651 size_t temp_key_len;
1652 bool recycle, active;
1653 int error;
1654
1655 KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
1656 VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
1657 KASSERT(mutex_owned(vp->v_interlock));
1658 KASSERT(vp->v_usecount != 0);
1659
1660 active = (vp->v_usecount > 1);
1661 temp_key_len = vip->vi_key.vk_key_len;
1662 /*
1663 * Prevent the vnode from being recycled or brought into use
1664 * while we clean it out.
1665 */
1666 VSTATE_CHANGE(vp, VS_LOADED, VS_RECLAIMING);
1667 mutex_exit(vp->v_interlock);
1668
1669 rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
1670 mutex_enter(vp->v_interlock);
1671 if ((vp->v_iflag & VI_EXECMAP) != 0 && vp->v_uobj.uo_npages != 0) {
1672 cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
1673 cpu_count(CPU_COUNT_FILEPAGES, vp->v_uobj.uo_npages);
1674 }
1675 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1676 mutex_exit(vp->v_interlock);
1677 rw_exit(vp->v_uobj.vmobjlock);
1678
1679 /*
1680 * With vnode state set to reclaiming, purge name cache immediately
1681 * to prevent new handles on vnode, and wait for existing threads
1682 * trying to get a handle to notice VS_RECLAIMED status and abort.
1683 */
1684 cache_purge(vp);
1685
1686 /* Replace the vnode key with a temporary copy. */
1687 if (vip->vi_key.vk_key_len > sizeof(temp_buf)) {
1688 temp_key = kmem_alloc(temp_key_len, KM_SLEEP);
1689 } else {
1690 temp_key = temp_buf;
1691 }
1692 if (vip->vi_key.vk_key_len > 0) {
1693 mutex_enter(&vcache_lock);
1694 memcpy(temp_key, vip->vi_key.vk_key, temp_key_len);
1695 vip->vi_key.vk_key = temp_key;
1696 mutex_exit(&vcache_lock);
1697 }
1698
1699 fstrans_start(mp);
1700
1701 /*
1702 * Clean out any cached data associated with the vnode.
1703 * If purging an active vnode, it must be closed and
1704 * deactivated before being reclaimed.
1705 */
1706 error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1707 if (error != 0) {
1708 if (wapbl_vphaswapbl(vp))
1709 WAPBL_DISCARD(wapbl_vptomp(vp));
1710 error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1711 }
1712 KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
1713 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1714 if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1715 spec_node_revoke(vp);
1716 }
1717
1718 /*
1719 * Disassociate the underlying file system from the vnode.
1720 * VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
1721 * the vnode, and may destroy the vnode so that VOP_UNLOCK
1722 * would no longer function.
1723 */
1724 VOP_INACTIVE(vp, &recycle);
1725 KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
1726 VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
1727 if (VOP_RECLAIM(vp)) {
1728 vnpanic(vp, "%s: cannot reclaim", __func__);
1729 }
1730
1731 KASSERT(vp->v_data == NULL);
1732 KASSERT((vp->v_iflag & VI_PAGES) == 0);
1733
1734 if (vp->v_type == VREG && vp->v_ractx != NULL) {
1735 uvm_ra_freectx(vp->v_ractx);
1736 vp->v_ractx = NULL;
1737 }
1738
1739 if (vip->vi_key.vk_key_len > 0) {
1740 /* Remove from vnode cache. */
1741 hash = vcache_hash(&vip->vi_key);
1742 mutex_enter(&vcache_lock);
1743 KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
1744 SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
1745 vip, vnode_impl, vi_hash);
1746 mutex_exit(&vcache_lock);
1747 }
1748 if (temp_key != temp_buf)
1749 kmem_free(temp_key, temp_key_len);
1750
1751 /* Done with purge, notify sleepers of the grim news. */
1752 mutex_enter(vp->v_interlock);
1753 vp->v_op = dead_vnodeop_p;
1754 vp->v_vflag |= VV_LOCKSWORK;
1755 VSTATE_CHANGE(vp, VS_RECLAIMING, VS_RECLAIMED);
1756 vp->v_tag = VT_NON;
1757 KNOTE(&vp->v_klist, NOTE_REVOKE);
1758 mutex_exit(vp->v_interlock);
1759
1760 /*
1761 * Move to dead mount. Must be after changing the operations
1762 * vector as vnode operations enter the mount before using the
1763 * operations vector. See sys/kern/vnode_if.c.
1764 */
1765 vp->v_vflag &= ~VV_ROOT;
1766 vfs_ref(dead_rootmount);
1767 vfs_insmntque(vp, dead_rootmount);
1768
1769 #ifdef PAX_SEGVGUARD
1770 pax_segvguard_cleanup(vp);
1771 #endif /* PAX_SEGVGUARD */
1772
1773 mutex_enter(vp->v_interlock);
1774 fstrans_done(mp);
1775 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1776 }
1777
1778 /*
1779 * Disassociate the underlying file system from an open device vnode
1780 * and make it anonymous.
1781 *
1782 * Vnode unlocked on entry, drops a reference to the vnode.
1783 */
1784 void
1785 vcache_make_anon(vnode_t *vp)
1786 {
1787 vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
1788 uint32_t hash;
1789 bool recycle;
1790
1791 KASSERT(vp->v_type == VBLK || vp->v_type == VCHR);
1792 KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
1793 VSTATE_ASSERT_UNLOCKED(vp, VS_ACTIVE);
1794
1795 /* Remove from vnode cache. */
1796 hash = vcache_hash(&vip->vi_key);
1797 mutex_enter(&vcache_lock);
1798 KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
1799 SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
1800 vip, vnode_impl, vi_hash);
1801 vip->vi_key.vk_mount = dead_rootmount;
1802 vip->vi_key.vk_key_len = 0;
1803 vip->vi_key.vk_key = NULL;
1804 mutex_exit(&vcache_lock);
1805
1806 /*
1807 * Disassociate the underlying file system from the vnode.
1808 * VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
1809 * the vnode, and may destroy the vnode so that VOP_UNLOCK
1810 * would no longer function.
1811 */
1812 if (vn_lock(vp, LK_EXCLUSIVE)) {
1813 vnpanic(vp, "%s: cannot lock", __func__);
1814 }
1815 VOP_INACTIVE(vp, &recycle);
1816 KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
1817 VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
1818 if (VOP_RECLAIM(vp)) {
1819 vnpanic(vp, "%s: cannot reclaim", __func__);
1820 }
1821
1822 /* Purge name cache. */
1823 cache_purge(vp);
1824
1825 /* Done with purge, change operations vector. */
1826 mutex_enter(vp->v_interlock);
1827 vp->v_op = spec_vnodeop_p;
1828 vp->v_vflag |= VV_MPSAFE;
1829 vp->v_vflag &= ~VV_LOCKSWORK;
1830 mutex_exit(vp->v_interlock);
1831
1832 /*
1833 * Move to dead mount. Must be after changing the operations
1834 * vector as vnode operations enter the mount before using the
1835 * operations vector. See sys/kern/vnode_if.c.
1836 */
1837 vfs_ref(dead_rootmount);
1838 vfs_insmntque(vp, dead_rootmount);
1839
1840 vrele(vp);
1841 }
1842
1843 /*
1844 * Update outstanding I/O count and do wakeup if requested.
1845 */
1846 void
1847 vwakeup(struct buf *bp)
1848 {
1849 vnode_t *vp;
1850
1851 if ((vp = bp->b_vp) == NULL)
1852 return;
1853
1854 KASSERT(bp->b_objlock == vp->v_interlock);
1855 KASSERT(mutex_owned(bp->b_objlock));
1856
1857 if (--vp->v_numoutput < 0)
1858 vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1859 if (vp->v_numoutput == 0)
1860 cv_broadcast(&vp->v_cv);
1861 }
1862
1863 /*
1864 * Test a vnode for being or becoming dead. Returns one of:
1865 * EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
1866 * ENOENT: vnode is dead.
1867 * 0: otherwise.
1868 *
1869 * Whenever this function returns a non-zero value all future
1870 * calls will also return a non-zero value.
1871 */
1872 int
1873 vdead_check(struct vnode *vp, int flags)
1874 {
1875
1876 KASSERT(mutex_owned(vp->v_interlock));
1877
1878 if (! ISSET(flags, VDEAD_NOWAIT))
1879 VSTATE_WAIT_STABLE(vp);
1880
1881 if (VSTATE_GET(vp) == VS_RECLAIMING) {
1882 KASSERT(ISSET(flags, VDEAD_NOWAIT));
1883 return EBUSY;
1884 } else if (VSTATE_GET(vp) == VS_RECLAIMED) {
1885 return ENOENT;
1886 }
1887
1888 return 0;
1889 }
1890
1891 int
1892 vfs_drainvnodes(void)
1893 {
1894 int i, gen;
1895
1896 mutex_enter(&vdrain_lock);
1897 for (i = 0; i < 2; i++) {
1898 gen = vdrain_gen;
1899 while (gen == vdrain_gen) {
1900 cv_broadcast(&vdrain_cv);
1901 cv_wait(&vdrain_gen_cv, &vdrain_lock);
1902 }
1903 }
1904 mutex_exit(&vdrain_lock);
1905
1906 if (numvnodes >= desiredvnodes)
1907 return EBUSY;
1908
1909 if (vcache_hashsize != desiredvnodes)
1910 vcache_reinit();
1911
1912 return 0;
1913 }
1914
1915 void
1916 vnpanic(vnode_t *vp, const char *fmt, ...)
1917 {
1918 va_list ap;
1919
1920 #ifdef DIAGNOSTIC
1921 vprint(NULL, vp);
1922 #endif
1923 va_start(ap, fmt);
1924 vpanic(fmt, ap);
1925 va_end(ap);
1926 }
1927
1928 void
1929 vshareilock(vnode_t *tvp, vnode_t *fvp)
1930 {
1931 kmutex_t *oldlock;
1932
1933 oldlock = tvp->v_interlock;
1934 mutex_obj_hold(fvp->v_interlock);
1935 tvp->v_interlock = fvp->v_interlock;
1936 mutex_obj_free(oldlock);
1937 }
1938