Home | History | Annotate | Line # | Download | only in kern
vfs_vnode.c revision 1.124
      1 /*	$NetBSD: vfs_vnode.c,v 1.124 2020/06/11 22:21:05 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997-2011, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     67  */
     68 
     69 /*
     70  * The vnode cache subsystem.
     71  *
     72  * Life-cycle
     73  *
     74  *	Normally, there are two points where new vnodes are created:
     75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
     76  *	starts in one of the following ways:
     77  *
     78  *	- Allocation, via vcache_get(9) or vcache_new(9).
     79  *	- Reclamation of inactive vnode, via vcache_vget(9).
     80  *
     81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
     82  *	was another, traditional way.  Currently, only the draining thread
     83  *	recycles the vnodes.  This behaviour might be revisited.
     84  *
     85  *	The life-cycle ends when the last reference is dropped, usually
     86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
     87  *	the file system that vnode is inactive.  Via this call, file system
     88  *	indicates whether vnode can be recycled (usually, it checks its own
     89  *	references, e.g. count of links, whether the file was removed).
     90  *
     91  *	Depending on indication, vnode can be put into a free list (cache),
     92  *	or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to
     93  *	disassociate underlying file system from the vnode, and finally
     94  *	destroyed.
     95  *
     96  * Vnode state
     97  *
     98  *	Vnode is always in one of six states:
     99  *	- MARKER	This is a marker vnode to help list traversal.  It
    100  *			will never change its state.
    101  *	- LOADING	Vnode is associating underlying file system and not
    102  *			yet ready to use.
    103  *	- LOADED	Vnode has associated underlying file system and is
    104  *			ready to use.
    105  *	- BLOCKED	Vnode is active but cannot get new references.
    106  *	- RECLAIMING	Vnode is disassociating from the underlying file
    107  *			system.
    108  *	- RECLAIMED	Vnode has disassociated from underlying file system
    109  *			and is dead.
    110  *
    111  *	Valid state changes are:
    112  *	LOADING -> LOADED
    113  *			Vnode has been initialised in vcache_get() or
    114  *			vcache_new() and is ready to use.
    115  *	BLOCKED -> RECLAIMING
    116  *			Vnode starts disassociation from underlying file
    117  *			system in vcache_reclaim().
    118  *	RECLAIMING -> RECLAIMED
    119  *			Vnode finished disassociation from underlying file
    120  *			system in vcache_reclaim().
    121  *	LOADED -> BLOCKED
    122  *			Either vcache_rekey*() is changing the vnode key or
    123  *			vrelel() is about to call VOP_INACTIVE().
    124  *	BLOCKED -> LOADED
    125  *			The block condition is over.
    126  *	LOADING -> RECLAIMED
    127  *			Either vcache_get() or vcache_new() failed to
    128  *			associate the underlying file system or vcache_rekey*()
    129  *			drops a vnode used as placeholder.
    130  *
    131  *	Of these states LOADING, BLOCKED and RECLAIMING are intermediate
    132  *	and it is possible to wait for state change.
    133  *
    134  *	State is protected with v_interlock with one exception:
    135  *	to change from LOADING both v_interlock and vcache_lock must be held
    136  *	so it is possible to check "state == LOADING" without holding
    137  *	v_interlock.  See vcache_get() for details.
    138  *
    139  * Reference counting
    140  *
    141  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
    142  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
    143  *	as vput(9), routines.  Common points holding references are e.g.
    144  *	file openings, current working directory, mount points, etc.
    145  *
    146  *	v_usecount is adjusted with atomic operations, however to change
    147  *	from a non-zero value to zero the interlock must also be held.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.124 2020/06/11 22:21:05 ad Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_pax.h"
    155 #endif
    156 
    157 #include <sys/param.h>
    158 #include <sys/kernel.h>
    159 
    160 #include <sys/atomic.h>
    161 #include <sys/buf.h>
    162 #include <sys/conf.h>
    163 #include <sys/device.h>
    164 #include <sys/hash.h>
    165 #include <sys/kauth.h>
    166 #include <sys/kmem.h>
    167 #include <sys/kthread.h>
    168 #include <sys/module.h>
    169 #include <sys/mount.h>
    170 #include <sys/namei.h>
    171 #include <sys/pax.h>
    172 #include <sys/syscallargs.h>
    173 #include <sys/sysctl.h>
    174 #include <sys/systm.h>
    175 #include <sys/vnode_impl.h>
    176 #include <sys/wapbl.h>
    177 #include <sys/fstrans.h>
    178 
    179 #include <uvm/uvm.h>
    180 #include <uvm/uvm_readahead.h>
    181 #include <uvm/uvm_stat.h>
    182 
    183 /* Flags to vrelel. */
    184 #define	VRELEL_ASYNC	0x0001	/* Always defer to vrele thread. */
    185 
    186 #define	LRU_VRELE	0
    187 #define	LRU_FREE	1
    188 #define	LRU_HOLD	2
    189 #define	LRU_COUNT	3
    190 
    191 /*
    192  * There are three lru lists: one holds vnodes waiting for async release,
    193  * one is for vnodes which have no buffer/page references and one for those
    194  * which do (i.e.  v_holdcnt is non-zero).  We put the lists into a single,
    195  * private cache line as vnodes migrate between them while under the same
    196  * lock (vdrain_lock).
    197  */
    198 u_int			numvnodes		__cacheline_aligned;
    199 static vnodelst_t	lru_list[LRU_COUNT]	__cacheline_aligned;
    200 static kmutex_t		vdrain_lock		__cacheline_aligned;
    201 static kcondvar_t	vdrain_cv;
    202 static int		vdrain_gen;
    203 static kcondvar_t	vdrain_gen_cv;
    204 static bool		vdrain_retry;
    205 static lwp_t *		vdrain_lwp;
    206 SLIST_HEAD(hashhead, vnode_impl);
    207 static kmutex_t		vcache_lock		__cacheline_aligned;
    208 static kcondvar_t	vcache_cv;
    209 static u_int		vcache_hashsize;
    210 static u_long		vcache_hashmask;
    211 static struct hashhead	*vcache_hashtab;
    212 static pool_cache_t	vcache_pool;
    213 static void		lru_requeue(vnode_t *, vnodelst_t *);
    214 static vnodelst_t *	lru_which(vnode_t *);
    215 static vnode_impl_t *	vcache_alloc(void);
    216 static void		vcache_dealloc(vnode_impl_t *);
    217 static void		vcache_free(vnode_impl_t *);
    218 static void		vcache_init(void);
    219 static void		vcache_reinit(void);
    220 static void		vcache_reclaim(vnode_t *);
    221 static void		vrelel(vnode_t *, int, int);
    222 static void		vdrain_thread(void *);
    223 static void		vnpanic(vnode_t *, const char *, ...)
    224     __printflike(2, 3);
    225 
    226 /* Routines having to do with the management of the vnode table. */
    227 extern struct mount	*dead_rootmount;
    228 extern int		(**dead_vnodeop_p)(void *);
    229 extern int		(**spec_vnodeop_p)(void *);
    230 extern struct vfsops	dead_vfsops;
    231 
    232 /*
    233  * The high bit of v_usecount is a gate for vcache_tryvget().  It's set
    234  * only when the vnode state is LOADED.
    235  */
    236 #define	VUSECOUNT_MASK	0x7fffffff
    237 #define	VUSECOUNT_GATE	0x80000000
    238 
    239 /*
    240  * Return the current usecount of a vnode.
    241  */
    242 inline int
    243 vrefcnt(struct vnode *vp)
    244 {
    245 
    246 	return atomic_load_relaxed(&vp->v_usecount) & VUSECOUNT_MASK;
    247 }
    248 
    249 /* Vnode state operations and diagnostics. */
    250 
    251 #if defined(DIAGNOSTIC)
    252 
    253 #define VSTATE_VALID(state) \
    254 	((state) != VS_ACTIVE && (state) != VS_MARKER)
    255 #define VSTATE_GET(vp) \
    256 	vstate_assert_get((vp), __func__, __LINE__)
    257 #define VSTATE_CHANGE(vp, from, to) \
    258 	vstate_assert_change((vp), (from), (to), __func__, __LINE__)
    259 #define VSTATE_WAIT_STABLE(vp) \
    260 	vstate_assert_wait_stable((vp), __func__, __LINE__)
    261 
    262 void
    263 _vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
    264     bool has_lock)
    265 {
    266 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    267 	int refcnt = vrefcnt(vp);
    268 
    269 	if (!has_lock) {
    270 		/*
    271 		 * Prevent predictive loads from the CPU, but check the state
    272 		 * without loooking first.
    273 		 */
    274 		membar_enter();
    275 		if (state == VS_ACTIVE && refcnt > 0 &&
    276 		    (vip->vi_state == VS_LOADED || vip->vi_state == VS_BLOCKED))
    277 			return;
    278 		if (vip->vi_state == state)
    279 			return;
    280 		mutex_enter((vp)->v_interlock);
    281 	}
    282 
    283 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    284 
    285 	if ((state == VS_ACTIVE && refcnt > 0 &&
    286 	    (vip->vi_state == VS_LOADED || vip->vi_state == VS_BLOCKED)) ||
    287 	    vip->vi_state == state) {
    288 		if (!has_lock)
    289 			mutex_exit((vp)->v_interlock);
    290 		return;
    291 	}
    292 	vnpanic(vp, "state is %s, usecount %d, expected %s at %s:%d",
    293 	    vstate_name(vip->vi_state), refcnt,
    294 	    vstate_name(state), func, line);
    295 }
    296 
    297 static enum vnode_state
    298 vstate_assert_get(vnode_t *vp, const char *func, int line)
    299 {
    300 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    301 
    302 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    303 	if (! VSTATE_VALID(vip->vi_state))
    304 		vnpanic(vp, "state is %s at %s:%d",
    305 		    vstate_name(vip->vi_state), func, line);
    306 
    307 	return vip->vi_state;
    308 }
    309 
    310 static void
    311 vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
    312 {
    313 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    314 
    315 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    316 	if (! VSTATE_VALID(vip->vi_state))
    317 		vnpanic(vp, "state is %s at %s:%d",
    318 		    vstate_name(vip->vi_state), func, line);
    319 
    320 	while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
    321 		cv_wait(&vp->v_cv, vp->v_interlock);
    322 
    323 	if (! VSTATE_VALID(vip->vi_state))
    324 		vnpanic(vp, "state is %s at %s:%d",
    325 		    vstate_name(vip->vi_state), func, line);
    326 }
    327 
    328 static void
    329 vstate_assert_change(vnode_t *vp, enum vnode_state from, enum vnode_state to,
    330     const char *func, int line)
    331 {
    332 	bool gated = (atomic_load_relaxed(&vp->v_usecount) & VUSECOUNT_GATE);
    333 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    334 
    335 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    336 	if (from == VS_LOADING)
    337 		KASSERTMSG(mutex_owned(&vcache_lock), "at %s:%d", func, line);
    338 
    339 	if (! VSTATE_VALID(from))
    340 		vnpanic(vp, "from is %s at %s:%d",
    341 		    vstate_name(from), func, line);
    342 	if (! VSTATE_VALID(to))
    343 		vnpanic(vp, "to is %s at %s:%d",
    344 		    vstate_name(to), func, line);
    345 	if (vip->vi_state != from)
    346 		vnpanic(vp, "from is %s, expected %s at %s:%d\n",
    347 		    vstate_name(vip->vi_state), vstate_name(from), func, line);
    348 	if ((from == VS_LOADED) != gated)
    349 		vnpanic(vp, "state is %s, gate %d does not match at %s:%d\n",
    350 		    vstate_name(vip->vi_state), gated, func, line);
    351 
    352 	/* Open/close the gate for vcache_tryvget(). */
    353 	if (to == VS_LOADED)
    354 		atomic_or_uint(&vp->v_usecount, VUSECOUNT_GATE);
    355 	else
    356 		atomic_and_uint(&vp->v_usecount, ~VUSECOUNT_GATE);
    357 
    358 	vip->vi_state = to;
    359 	if (from == VS_LOADING)
    360 		cv_broadcast(&vcache_cv);
    361 	if (to == VS_LOADED || to == VS_RECLAIMED)
    362 		cv_broadcast(&vp->v_cv);
    363 }
    364 
    365 #else /* defined(DIAGNOSTIC) */
    366 
    367 #define VSTATE_GET(vp) \
    368 	(VNODE_TO_VIMPL((vp))->vi_state)
    369 #define VSTATE_CHANGE(vp, from, to) \
    370 	vstate_change((vp), (from), (to))
    371 #define VSTATE_WAIT_STABLE(vp) \
    372 	vstate_wait_stable((vp))
    373 void
    374 _vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
    375     bool has_lock)
    376 {
    377 
    378 }
    379 
    380 static void
    381 vstate_wait_stable(vnode_t *vp)
    382 {
    383 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    384 
    385 	while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
    386 		cv_wait(&vp->v_cv, vp->v_interlock);
    387 }
    388 
    389 static void
    390 vstate_change(vnode_t *vp, enum vnode_state from, enum vnode_state to)
    391 {
    392 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    393 
    394 	/* Open/close the gate for vcache_tryvget(). */
    395 	if (to == VS_LOADED)
    396 		atomic_or_uint(&vp->v_usecount, VUSECOUNT_GATE);
    397 	else
    398 		atomic_and_uint(&vp->v_usecount, ~VUSECOUNT_GATE);
    399 
    400 	vip->vi_state = to;
    401 	if (from == VS_LOADING)
    402 		cv_broadcast(&vcache_cv);
    403 	if (to == VS_LOADED || to == VS_RECLAIMED)
    404 		cv_broadcast(&vp->v_cv);
    405 }
    406 
    407 #endif /* defined(DIAGNOSTIC) */
    408 
    409 void
    410 vfs_vnode_sysinit(void)
    411 {
    412 	int error __diagused, i;
    413 
    414 	dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
    415 	KASSERT(dead_rootmount != NULL);
    416 	dead_rootmount->mnt_iflag |= IMNT_MPSAFE;
    417 
    418 	mutex_init(&vdrain_lock, MUTEX_DEFAULT, IPL_NONE);
    419 	for (i = 0; i < LRU_COUNT; i++) {
    420 		TAILQ_INIT(&lru_list[i]);
    421 	}
    422 	vcache_init();
    423 
    424 	cv_init(&vdrain_cv, "vdrain");
    425 	cv_init(&vdrain_gen_cv, "vdrainwt");
    426 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
    427 	    NULL, &vdrain_lwp, "vdrain");
    428 	KASSERTMSG((error == 0), "kthread_create(vdrain) failed: %d", error);
    429 }
    430 
    431 /*
    432  * Allocate a new marker vnode.
    433  */
    434 vnode_t *
    435 vnalloc_marker(struct mount *mp)
    436 {
    437 	vnode_impl_t *vip;
    438 	vnode_t *vp;
    439 
    440 	vip = pool_cache_get(vcache_pool, PR_WAITOK);
    441 	memset(vip, 0, sizeof(*vip));
    442 	vp = VIMPL_TO_VNODE(vip);
    443 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
    444 	vp->v_mount = mp;
    445 	vp->v_type = VBAD;
    446 	vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    447 	vip->vi_state = VS_MARKER;
    448 
    449 	return vp;
    450 }
    451 
    452 /*
    453  * Free a marker vnode.
    454  */
    455 void
    456 vnfree_marker(vnode_t *vp)
    457 {
    458 	vnode_impl_t *vip;
    459 
    460 	vip = VNODE_TO_VIMPL(vp);
    461 	KASSERT(vip->vi_state == VS_MARKER);
    462 	mutex_obj_free(vp->v_interlock);
    463 	uvm_obj_destroy(&vp->v_uobj, true);
    464 	pool_cache_put(vcache_pool, vip);
    465 }
    466 
    467 /*
    468  * Test a vnode for being a marker vnode.
    469  */
    470 bool
    471 vnis_marker(vnode_t *vp)
    472 {
    473 
    474 	return (VNODE_TO_VIMPL(vp)->vi_state == VS_MARKER);
    475 }
    476 
    477 /*
    478  * Return the lru list this node should be on.
    479  */
    480 static vnodelst_t *
    481 lru_which(vnode_t *vp)
    482 {
    483 
    484 	KASSERT(mutex_owned(vp->v_interlock));
    485 
    486 	if (vp->v_holdcnt > 0)
    487 		return &lru_list[LRU_HOLD];
    488 	else
    489 		return &lru_list[LRU_FREE];
    490 }
    491 
    492 /*
    493  * Put vnode to end of given list.
    494  * Both the current and the new list may be NULL, used on vnode alloc/free.
    495  * Adjust numvnodes and signal vdrain thread if there is work.
    496  */
    497 static void
    498 lru_requeue(vnode_t *vp, vnodelst_t *listhd)
    499 {
    500 	vnode_impl_t *vip;
    501 	int d;
    502 
    503 	/*
    504 	 * If the vnode is on the correct list, and was put there recently,
    505 	 * then leave it be, thus avoiding huge cache and lock contention.
    506 	 */
    507 	vip = VNODE_TO_VIMPL(vp);
    508 	if (listhd == vip->vi_lrulisthd &&
    509 	    (getticks() - vip->vi_lrulisttm) < hz) {
    510 	    	return;
    511 	}
    512 
    513 	mutex_enter(&vdrain_lock);
    514 	d = 0;
    515 	if (vip->vi_lrulisthd != NULL)
    516 		TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
    517 	else
    518 		d++;
    519 	vip->vi_lrulisthd = listhd;
    520 	vip->vi_lrulisttm = getticks();
    521 	if (vip->vi_lrulisthd != NULL)
    522 		TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
    523 	else
    524 		d--;
    525 	if (d != 0) {
    526 		/*
    527 		 * Looks strange?  This is not a bug.  Don't store
    528 		 * numvnodes unless there is a change - avoid false
    529 		 * sharing on MP.
    530 		 */
    531 		numvnodes += d;
    532 	}
    533 	if ((d > 0 && numvnodes > desiredvnodes) ||
    534 	    listhd == &lru_list[LRU_VRELE])
    535 		cv_signal(&vdrain_cv);
    536 	mutex_exit(&vdrain_lock);
    537 }
    538 
    539 /*
    540  * Release deferred vrele vnodes for this mount.
    541  * Called with file system suspended.
    542  */
    543 void
    544 vrele_flush(struct mount *mp)
    545 {
    546 	vnode_impl_t *vip, *marker;
    547 	vnode_t *vp;
    548 	int when = 0;
    549 
    550 	KASSERT(fstrans_is_owner(mp));
    551 
    552 	marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
    553 
    554 	mutex_enter(&vdrain_lock);
    555 	TAILQ_INSERT_HEAD(&lru_list[LRU_VRELE], marker, vi_lrulist);
    556 
    557 	while ((vip = TAILQ_NEXT(marker, vi_lrulist))) {
    558 		TAILQ_REMOVE(&lru_list[LRU_VRELE], marker, vi_lrulist);
    559 		TAILQ_INSERT_AFTER(&lru_list[LRU_VRELE], vip, marker,
    560 		    vi_lrulist);
    561 		vp = VIMPL_TO_VNODE(vip);
    562 		if (vnis_marker(vp))
    563 			continue;
    564 
    565 		KASSERT(vip->vi_lrulisthd == &lru_list[LRU_VRELE]);
    566 		TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
    567 		vip->vi_lrulisthd = &lru_list[LRU_HOLD];
    568 		vip->vi_lrulisttm = getticks();
    569 		TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
    570 		mutex_exit(&vdrain_lock);
    571 
    572 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    573 		mutex_enter(vp->v_interlock);
    574 		vrelel(vp, 0, LK_EXCLUSIVE);
    575 
    576 		if (getticks() > when) {
    577 			yield();
    578 			when = getticks() + hz / 10;
    579 		}
    580 
    581 		mutex_enter(&vdrain_lock);
    582 	}
    583 
    584 	TAILQ_REMOVE(&lru_list[LRU_VRELE], marker, vi_lrulist);
    585 	mutex_exit(&vdrain_lock);
    586 
    587 	vnfree_marker(VIMPL_TO_VNODE(marker));
    588 }
    589 
    590 /*
    591  * Reclaim a cached vnode.  Used from vdrain_thread only.
    592  */
    593 static __inline void
    594 vdrain_remove(vnode_t *vp)
    595 {
    596 	struct mount *mp;
    597 
    598 	KASSERT(mutex_owned(&vdrain_lock));
    599 
    600 	/* Probe usecount (unlocked). */
    601 	if (vrefcnt(vp) > 0)
    602 		return;
    603 	/* Try v_interlock -- we lock the wrong direction! */
    604 	if (!mutex_tryenter(vp->v_interlock))
    605 		return;
    606 	/* Probe usecount and state. */
    607 	if (vrefcnt(vp) > 0 || VSTATE_GET(vp) != VS_LOADED) {
    608 		mutex_exit(vp->v_interlock);
    609 		return;
    610 	}
    611 	mp = vp->v_mount;
    612 	if (fstrans_start_nowait(mp) != 0) {
    613 		mutex_exit(vp->v_interlock);
    614 		return;
    615 	}
    616 	vdrain_retry = true;
    617 	mutex_exit(&vdrain_lock);
    618 
    619 	if (vcache_vget(vp) == 0) {
    620 		if (!vrecycle(vp)) {
    621 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    622 			mutex_enter(vp->v_interlock);
    623 			vrelel(vp, 0, LK_EXCLUSIVE);
    624 		}
    625 	}
    626 	fstrans_done(mp);
    627 
    628 	mutex_enter(&vdrain_lock);
    629 }
    630 
    631 /*
    632  * Release a cached vnode.  Used from vdrain_thread only.
    633  */
    634 static __inline void
    635 vdrain_vrele(vnode_t *vp)
    636 {
    637 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    638 	struct mount *mp;
    639 
    640 	KASSERT(mutex_owned(&vdrain_lock));
    641 
    642 	mp = vp->v_mount;
    643 	if (fstrans_start_nowait(mp) != 0)
    644 		return;
    645 
    646 	/*
    647 	 * First remove the vnode from the vrele list.
    648 	 * Put it on the last lru list, the last vrele()
    649 	 * will put it back onto the right list before
    650 	 * its usecount reaches zero.
    651 	 */
    652 	KASSERT(vip->vi_lrulisthd == &lru_list[LRU_VRELE]);
    653 	TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
    654 	vip->vi_lrulisthd = &lru_list[LRU_HOLD];
    655 	vip->vi_lrulisttm = getticks();
    656 	TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
    657 
    658 	vdrain_retry = true;
    659 	mutex_exit(&vdrain_lock);
    660 
    661 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    662 	mutex_enter(vp->v_interlock);
    663 	vrelel(vp, 0, LK_EXCLUSIVE);
    664 	fstrans_done(mp);
    665 
    666 	mutex_enter(&vdrain_lock);
    667 }
    668 
    669 /*
    670  * Helper thread to keep the number of vnodes below desiredvnodes
    671  * and release vnodes from asynchronous vrele.
    672  */
    673 static void
    674 vdrain_thread(void *cookie)
    675 {
    676 	int i;
    677 	u_int target;
    678 	vnode_impl_t *vip, *marker;
    679 
    680 	marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
    681 
    682 	mutex_enter(&vdrain_lock);
    683 
    684 	for (;;) {
    685 		vdrain_retry = false;
    686 		target = desiredvnodes - desiredvnodes/10;
    687 
    688 		for (i = 0; i < LRU_COUNT; i++) {
    689 			TAILQ_INSERT_HEAD(&lru_list[i], marker, vi_lrulist);
    690 			while ((vip = TAILQ_NEXT(marker, vi_lrulist))) {
    691 				TAILQ_REMOVE(&lru_list[i], marker, vi_lrulist);
    692 				TAILQ_INSERT_AFTER(&lru_list[i], vip, marker,
    693 				    vi_lrulist);
    694 				if (vnis_marker(VIMPL_TO_VNODE(vip)))
    695 					continue;
    696 				if (i == LRU_VRELE)
    697 					vdrain_vrele(VIMPL_TO_VNODE(vip));
    698 				else if (numvnodes < target)
    699 					break;
    700 				else
    701 					vdrain_remove(VIMPL_TO_VNODE(vip));
    702 			}
    703 			TAILQ_REMOVE(&lru_list[i], marker, vi_lrulist);
    704 		}
    705 
    706 		if (vdrain_retry) {
    707 			kpause("vdrainrt", false, 1, &vdrain_lock);
    708 		} else {
    709 			vdrain_gen++;
    710 			cv_broadcast(&vdrain_gen_cv);
    711 			cv_wait(&vdrain_cv, &vdrain_lock);
    712 		}
    713 	}
    714 }
    715 
    716 /*
    717  * Try to drop reference on a vnode.  Abort if we are releasing the
    718  * last reference.  Note: this _must_ succeed if not the last reference.
    719  */
    720 static bool
    721 vtryrele(vnode_t *vp)
    722 {
    723 	u_int use, next;
    724 
    725 	for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
    726 		if (__predict_false((use & VUSECOUNT_MASK) == 1)) {
    727 			return false;
    728 		}
    729 		KASSERT((use & VUSECOUNT_MASK) > 1);
    730 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
    731 		if (__predict_true(next == use)) {
    732 			return true;
    733 		}
    734 	}
    735 }
    736 
    737 /*
    738  * vput: unlock and release the reference.
    739  */
    740 void
    741 vput(vnode_t *vp)
    742 {
    743 	int lktype;
    744 
    745 	/*
    746 	 * Do an unlocked check of the usecount.  If it looks like we're not
    747 	 * about to drop the last reference, then unlock the vnode and try
    748 	 * to drop the reference.  If it ends up being the last reference
    749 	 * after all, vrelel() can fix it all up.  Most of the time this
    750 	 * will all go to plan.
    751 	 */
    752 	if (vrefcnt(vp) > 1) {
    753 		VOP_UNLOCK(vp);
    754 		if (vtryrele(vp)) {
    755 			return;
    756 		}
    757 		lktype = LK_NONE;
    758 	} else if ((vp->v_vflag & VV_LOCKSWORK) == 0) {
    759 		lktype = LK_EXCLUSIVE;
    760 	} else {
    761 		lktype = VOP_ISLOCKED(vp);
    762 		KASSERT(lktype != LK_NONE);
    763 	}
    764 	mutex_enter(vp->v_interlock);
    765 	vrelel(vp, 0, lktype);
    766 }
    767 
    768 /*
    769  * Vnode release.  If reference count drops to zero, call inactive
    770  * routine and either return to freelist or free to the pool.
    771  */
    772 static void
    773 vrelel(vnode_t *vp, int flags, int lktype)
    774 {
    775 	const bool async = ((flags & VRELEL_ASYNC) != 0);
    776 	bool recycle, defer;
    777 	int error;
    778 
    779 	KASSERT(mutex_owned(vp->v_interlock));
    780 
    781 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
    782 	    VSTATE_GET(vp) != VS_RECLAIMED)) {
    783 		vnpanic(vp, "dead but not clean");
    784 	}
    785 
    786 	/*
    787 	 * If not the last reference, just drop the reference count and
    788 	 * unlock.  VOP_UNLOCK() is called here without a vnode reference
    789 	 * held, but is ok as the hold of v_interlock will stop the vnode
    790 	 * from disappearing.
    791 	 */
    792 	if (vtryrele(vp)) {
    793 		if (lktype != LK_NONE) {
    794 			VOP_UNLOCK(vp);
    795 		}
    796 		mutex_exit(vp->v_interlock);
    797 		return;
    798 	}
    799 	if (vrefcnt(vp) <= 0 || vp->v_writecount != 0) {
    800 		vnpanic(vp, "%s: bad ref count", __func__);
    801 	}
    802 
    803 #ifdef DIAGNOSTIC
    804 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
    805 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
    806 		vprint("vrelel: missing VOP_CLOSE()", vp);
    807 	}
    808 #endif
    809 
    810 	/*
    811 	 * First try to get the vnode locked for VOP_INACTIVE().
    812 	 * Defer vnode release to vdrain_thread if caller requests
    813 	 * it explicitly, is the pagedaemon or the lock failed.
    814 	 */
    815 	defer = false;
    816 	if ((curlwp == uvm.pagedaemon_lwp) || async) {
    817 		defer = true;
    818 	} else if (lktype == LK_SHARED) {
    819 		/* Excellent chance of getting, if the last ref. */
    820 		error = vn_lock(vp, LK_UPGRADE | LK_RETRY |
    821 		    LK_NOWAIT);
    822 		if (error != 0) {
    823 			defer = true;
    824 		} else {
    825 			lktype = LK_EXCLUSIVE;
    826 		}
    827 	} else if (lktype == LK_NONE) {
    828 		/* Excellent chance of getting, if the last ref. */
    829 		error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY |
    830 		    LK_NOWAIT);
    831 		if (error != 0) {
    832 			defer = true;
    833 		} else {
    834 			lktype = LK_EXCLUSIVE;
    835 		}
    836 	}
    837 	KASSERT(mutex_owned(vp->v_interlock));
    838 	if (defer) {
    839 		/*
    840 		 * Defer reclaim to the kthread; it's not safe to
    841 		 * clean it here.  We donate it our last reference.
    842 		 */
    843 		if (lktype != LK_NONE) {
    844 			VOP_UNLOCK(vp);
    845 		}
    846 		lru_requeue(vp, &lru_list[LRU_VRELE]);
    847 		mutex_exit(vp->v_interlock);
    848 		return;
    849 	}
    850 	KASSERT(lktype == LK_EXCLUSIVE);
    851 
    852 	/*
    853 	 * If not clean, deactivate the vnode, but preserve
    854 	 * our reference across the call to VOP_INACTIVE().
    855 	 */
    856 	if (VSTATE_GET(vp) == VS_RECLAIMED) {
    857 		VOP_UNLOCK(vp);
    858 	} else {
    859 		/*
    860 		 * If VOP_INACTIVE() indicates that the file has been
    861 		 * deleted, then recycle the vnode.
    862 		 *
    863 		 * Note that VOP_INACTIVE() will not drop the vnode lock.
    864 		 */
    865 		mutex_exit(vp->v_interlock);
    866 		recycle = false;
    867 		VOP_INACTIVE(vp, &recycle);
    868 		rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
    869 		mutex_enter(vp->v_interlock);
    870 
    871 		for (;;) {
    872 			/*
    873 			 * If no longer the last reference, try to shed it.
    874 			 * On success, drop the interlock last thereby
    875 			 * preventing the vnode being freed behind us.
    876 			 */
    877 			if (vtryrele(vp)) {
    878 				VOP_UNLOCK(vp);
    879 				rw_exit(vp->v_uobj.vmobjlock);
    880 				mutex_exit(vp->v_interlock);
    881 				return;
    882 			}
    883 			/*
    884 			 * Block new references then check again to see if a
    885 			 * new reference was acquired in the meantime.  If
    886 			 * it was, restore the vnode state and try again.
    887 			 */
    888 			if (recycle) {
    889 				VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
    890 				if (vrefcnt(vp) != 1) {
    891 					VSTATE_CHANGE(vp, VS_BLOCKED,
    892 					    VS_LOADED);
    893 					continue;
    894 				}
    895 			}
    896 			break;
    897  		}
    898 
    899 		/* Take care of space accounting. */
    900 		if ((vp->v_iflag & VI_EXECMAP) != 0 &&
    901 		    vp->v_uobj.uo_npages != 0) {
    902 			cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
    903 		}
    904 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
    905 		vp->v_vflag &= ~VV_MAPPED;
    906 		rw_exit(vp->v_uobj.vmobjlock);
    907 
    908 		/*
    909 		 * Recycle the vnode if the file is now unused (unlinked),
    910 		 * otherwise just free it.
    911 		 */
    912 		if (recycle) {
    913 			VSTATE_ASSERT(vp, VS_BLOCKED);
    914 			/* vcache_reclaim drops the lock. */
    915 			vcache_reclaim(vp);
    916 		} else {
    917 			VOP_UNLOCK(vp);
    918 		}
    919 		KASSERT(vrefcnt(vp) > 0);
    920 	}
    921 
    922 	if ((atomic_dec_uint_nv(&vp->v_usecount) & VUSECOUNT_MASK) != 0) {
    923 		/* Gained another reference while being reclaimed. */
    924 		mutex_exit(vp->v_interlock);
    925 		return;
    926 	}
    927 
    928 	if (VSTATE_GET(vp) == VS_RECLAIMED && vp->v_holdcnt == 0) {
    929 		/*
    930 		 * It's clean so destroy it.  It isn't referenced
    931 		 * anywhere since it has been reclaimed.
    932 		 */
    933 		vcache_free(VNODE_TO_VIMPL(vp));
    934 	} else {
    935 		/*
    936 		 * Otherwise, put it back onto the freelist.  It
    937 		 * can't be destroyed while still associated with
    938 		 * a file system.
    939 		 */
    940 		lru_requeue(vp, lru_which(vp));
    941 		mutex_exit(vp->v_interlock);
    942 	}
    943 }
    944 
    945 void
    946 vrele(vnode_t *vp)
    947 {
    948 
    949 	if (vtryrele(vp)) {
    950 		return;
    951 	}
    952 	mutex_enter(vp->v_interlock);
    953 	vrelel(vp, 0, LK_NONE);
    954 }
    955 
    956 /*
    957  * Asynchronous vnode release, vnode is released in different context.
    958  */
    959 void
    960 vrele_async(vnode_t *vp)
    961 {
    962 
    963 	if (vtryrele(vp)) {
    964 		return;
    965 	}
    966 	mutex_enter(vp->v_interlock);
    967 	vrelel(vp, VRELEL_ASYNC, LK_NONE);
    968 }
    969 
    970 /*
    971  * Vnode reference, where a reference is already held by some other
    972  * object (for example, a file structure).
    973  *
    974  * NB: lockless code sequences may rely on this not blocking.
    975  */
    976 void
    977 vref(vnode_t *vp)
    978 {
    979 
    980 	KASSERT(vrefcnt(vp) > 0);
    981 
    982 	atomic_inc_uint(&vp->v_usecount);
    983 }
    984 
    985 /*
    986  * Page or buffer structure gets a reference.
    987  * Called with v_interlock held.
    988  */
    989 void
    990 vholdl(vnode_t *vp)
    991 {
    992 
    993 	KASSERT(mutex_owned(vp->v_interlock));
    994 
    995 	if (vp->v_holdcnt++ == 0 && vrefcnt(vp) == 0)
    996 		lru_requeue(vp, lru_which(vp));
    997 }
    998 
    999 /*
   1000  * Page or buffer structure gets a reference.
   1001  */
   1002 void
   1003 vhold(vnode_t *vp)
   1004 {
   1005 
   1006 	mutex_enter(vp->v_interlock);
   1007 	vholdl(vp);
   1008 	mutex_exit(vp->v_interlock);
   1009 }
   1010 
   1011 /*
   1012  * Page or buffer structure frees a reference.
   1013  * Called with v_interlock held.
   1014  */
   1015 void
   1016 holdrelel(vnode_t *vp)
   1017 {
   1018 
   1019 	KASSERT(mutex_owned(vp->v_interlock));
   1020 
   1021 	if (vp->v_holdcnt <= 0) {
   1022 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
   1023 	}
   1024 
   1025 	vp->v_holdcnt--;
   1026 	if (vp->v_holdcnt == 0 && vrefcnt(vp) == 0)
   1027 		lru_requeue(vp, lru_which(vp));
   1028 }
   1029 
   1030 /*
   1031  * Page or buffer structure frees a reference.
   1032  */
   1033 void
   1034 holdrele(vnode_t *vp)
   1035 {
   1036 
   1037 	mutex_enter(vp->v_interlock);
   1038 	holdrelel(vp);
   1039 	mutex_exit(vp->v_interlock);
   1040 }
   1041 
   1042 /*
   1043  * Recycle an unused vnode if caller holds the last reference.
   1044  */
   1045 bool
   1046 vrecycle(vnode_t *vp)
   1047 {
   1048 	int error __diagused;
   1049 
   1050 	mutex_enter(vp->v_interlock);
   1051 
   1052 	/* If the vnode is already clean we're done. */
   1053 	VSTATE_WAIT_STABLE(vp);
   1054 	if (VSTATE_GET(vp) != VS_LOADED) {
   1055 		VSTATE_ASSERT(vp, VS_RECLAIMED);
   1056 		vrelel(vp, 0, LK_NONE);
   1057 		return true;
   1058 	}
   1059 
   1060 	/* Prevent further references until the vnode is locked. */
   1061 	VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
   1062 
   1063 	/* Make sure we hold the last reference. */
   1064 	if (vrefcnt(vp) != 1) {
   1065 		VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
   1066 		mutex_exit(vp->v_interlock);
   1067 		return false;
   1068 	}
   1069 
   1070 	mutex_exit(vp->v_interlock);
   1071 
   1072 	/*
   1073 	 * On a leaf file system this lock will always succeed as we hold
   1074 	 * the last reference and prevent further references.
   1075 	 * On layered file systems waiting for the lock would open a can of
   1076 	 * deadlocks as the lower vnodes may have other active references.
   1077 	 */
   1078 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
   1079 
   1080 	mutex_enter(vp->v_interlock);
   1081 	if (error) {
   1082 		VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
   1083 		mutex_exit(vp->v_interlock);
   1084 		return false;
   1085 	}
   1086 
   1087 	KASSERT(vrefcnt(vp) == 1);
   1088 	vcache_reclaim(vp);
   1089 	vrelel(vp, 0, LK_NONE);
   1090 
   1091 	return true;
   1092 }
   1093 
   1094 /*
   1095  * Helper for vrevoke() to propagate suspension from lastmp
   1096  * to thismp.  Both args may be NULL.
   1097  * Returns the currently suspended file system or NULL.
   1098  */
   1099 static struct mount *
   1100 vrevoke_suspend_next(struct mount *lastmp, struct mount *thismp)
   1101 {
   1102 	int error;
   1103 
   1104 	if (lastmp == thismp)
   1105 		return thismp;
   1106 
   1107 	if (lastmp != NULL)
   1108 		vfs_resume(lastmp);
   1109 
   1110 	if (thismp == NULL)
   1111 		return NULL;
   1112 
   1113 	do {
   1114 		error = vfs_suspend(thismp, 0);
   1115 	} while (error == EINTR || error == ERESTART);
   1116 
   1117 	if (error == 0)
   1118 		return thismp;
   1119 
   1120 	KASSERT(error == EOPNOTSUPP);
   1121 	return NULL;
   1122 }
   1123 
   1124 /*
   1125  * Eliminate all activity associated with the requested vnode
   1126  * and with all vnodes aliased to the requested vnode.
   1127  */
   1128 void
   1129 vrevoke(vnode_t *vp)
   1130 {
   1131 	struct mount *mp;
   1132 	vnode_t *vq;
   1133 	enum vtype type;
   1134 	dev_t dev;
   1135 
   1136 	KASSERT(vrefcnt(vp) > 0);
   1137 
   1138 	mp = vrevoke_suspend_next(NULL, vp->v_mount);
   1139 
   1140 	mutex_enter(vp->v_interlock);
   1141 	VSTATE_WAIT_STABLE(vp);
   1142 	if (VSTATE_GET(vp) == VS_RECLAIMED) {
   1143 		mutex_exit(vp->v_interlock);
   1144 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
   1145 		atomic_inc_uint(&vp->v_usecount);
   1146 		mutex_exit(vp->v_interlock);
   1147 		vgone(vp);
   1148 	} else {
   1149 		dev = vp->v_rdev;
   1150 		type = vp->v_type;
   1151 		mutex_exit(vp->v_interlock);
   1152 
   1153 		while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
   1154 			mp = vrevoke_suspend_next(mp, vq->v_mount);
   1155 			vgone(vq);
   1156 		}
   1157 	}
   1158 	vrevoke_suspend_next(mp, NULL);
   1159 }
   1160 
   1161 /*
   1162  * Eliminate all activity associated with a vnode in preparation for
   1163  * reuse.  Drops a reference from the vnode.
   1164  */
   1165 void
   1166 vgone(vnode_t *vp)
   1167 {
   1168 	int lktype;
   1169 
   1170 	KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
   1171 
   1172 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1173 	lktype = LK_EXCLUSIVE;
   1174 	mutex_enter(vp->v_interlock);
   1175 	VSTATE_WAIT_STABLE(vp);
   1176 	if (VSTATE_GET(vp) == VS_LOADED) {
   1177 		VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
   1178 		vcache_reclaim(vp);
   1179 		lktype = LK_NONE;
   1180 	}
   1181 	VSTATE_ASSERT(vp, VS_RECLAIMED);
   1182 	vrelel(vp, 0, lktype);
   1183 }
   1184 
   1185 static inline uint32_t
   1186 vcache_hash(const struct vcache_key *key)
   1187 {
   1188 	uint32_t hash = HASH32_BUF_INIT;
   1189 
   1190 	KASSERT(key->vk_key_len > 0);
   1191 
   1192 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
   1193 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
   1194 	return hash;
   1195 }
   1196 
   1197 static void
   1198 vcache_init(void)
   1199 {
   1200 
   1201 	vcache_pool = pool_cache_init(sizeof(vnode_impl_t), coherency_unit,
   1202 	    0, 0, "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
   1203 	KASSERT(vcache_pool != NULL);
   1204 	mutex_init(&vcache_lock, MUTEX_DEFAULT, IPL_NONE);
   1205 	cv_init(&vcache_cv, "vcache");
   1206 	vcache_hashsize = desiredvnodes;
   1207 	vcache_hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
   1208 	    &vcache_hashmask);
   1209 }
   1210 
   1211 static void
   1212 vcache_reinit(void)
   1213 {
   1214 	int i;
   1215 	uint32_t hash;
   1216 	u_long oldmask, newmask;
   1217 	struct hashhead *oldtab, *newtab;
   1218 	vnode_impl_t *vip;
   1219 
   1220 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
   1221 	mutex_enter(&vcache_lock);
   1222 	oldtab = vcache_hashtab;
   1223 	oldmask = vcache_hashmask;
   1224 	vcache_hashsize = desiredvnodes;
   1225 	vcache_hashtab = newtab;
   1226 	vcache_hashmask = newmask;
   1227 	for (i = 0; i <= oldmask; i++) {
   1228 		while ((vip = SLIST_FIRST(&oldtab[i])) != NULL) {
   1229 			SLIST_REMOVE(&oldtab[i], vip, vnode_impl, vi_hash);
   1230 			hash = vcache_hash(&vip->vi_key);
   1231 			SLIST_INSERT_HEAD(&newtab[hash & vcache_hashmask],
   1232 			    vip, vi_hash);
   1233 		}
   1234 	}
   1235 	mutex_exit(&vcache_lock);
   1236 	hashdone(oldtab, HASH_SLIST, oldmask);
   1237 }
   1238 
   1239 static inline vnode_impl_t *
   1240 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
   1241 {
   1242 	struct hashhead *hashp;
   1243 	vnode_impl_t *vip;
   1244 
   1245 	KASSERT(mutex_owned(&vcache_lock));
   1246 
   1247 	hashp = &vcache_hashtab[hash & vcache_hashmask];
   1248 	SLIST_FOREACH(vip, hashp, vi_hash) {
   1249 		if (key->vk_mount != vip->vi_key.vk_mount)
   1250 			continue;
   1251 		if (key->vk_key_len != vip->vi_key.vk_key_len)
   1252 			continue;
   1253 		if (memcmp(key->vk_key, vip->vi_key.vk_key, key->vk_key_len))
   1254 			continue;
   1255 		return vip;
   1256 	}
   1257 	return NULL;
   1258 }
   1259 
   1260 /*
   1261  * Allocate a new, uninitialized vcache node.
   1262  */
   1263 static vnode_impl_t *
   1264 vcache_alloc(void)
   1265 {
   1266 	vnode_impl_t *vip;
   1267 	vnode_t *vp;
   1268 
   1269 	vip = pool_cache_get(vcache_pool, PR_WAITOK);
   1270 	vp = VIMPL_TO_VNODE(vip);
   1271 	memset(vip, 0, sizeof(*vip));
   1272 
   1273 	rw_init(&vip->vi_lock);
   1274 	vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   1275 
   1276 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
   1277 	cv_init(&vp->v_cv, "vnode");
   1278 	cache_vnode_init(vp);
   1279 
   1280 	vp->v_usecount = 1;
   1281 	vp->v_type = VNON;
   1282 	vp->v_size = vp->v_writesize = VSIZENOTSET;
   1283 
   1284 	vip->vi_state = VS_LOADING;
   1285 
   1286 	lru_requeue(vp, &lru_list[LRU_FREE]);
   1287 
   1288 	return vip;
   1289 }
   1290 
   1291 /*
   1292  * Deallocate a vcache node in state VS_LOADING.
   1293  *
   1294  * vcache_lock held on entry and released on return.
   1295  */
   1296 static void
   1297 vcache_dealloc(vnode_impl_t *vip)
   1298 {
   1299 	vnode_t *vp;
   1300 
   1301 	KASSERT(mutex_owned(&vcache_lock));
   1302 
   1303 	vp = VIMPL_TO_VNODE(vip);
   1304 	vfs_ref(dead_rootmount);
   1305 	vfs_insmntque(vp, dead_rootmount);
   1306 	mutex_enter(vp->v_interlock);
   1307 	vp->v_op = dead_vnodeop_p;
   1308 	VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
   1309 	mutex_exit(&vcache_lock);
   1310 	vrelel(vp, 0, LK_NONE);
   1311 }
   1312 
   1313 /*
   1314  * Free an unused, unreferenced vcache node.
   1315  * v_interlock locked on entry.
   1316  */
   1317 static void
   1318 vcache_free(vnode_impl_t *vip)
   1319 {
   1320 	vnode_t *vp;
   1321 
   1322 	vp = VIMPL_TO_VNODE(vip);
   1323 	KASSERT(mutex_owned(vp->v_interlock));
   1324 
   1325 	KASSERT(vrefcnt(vp) == 0);
   1326 	KASSERT(vp->v_holdcnt == 0);
   1327 	KASSERT(vp->v_writecount == 0);
   1328 	lru_requeue(vp, NULL);
   1329 	mutex_exit(vp->v_interlock);
   1330 
   1331 	vfs_insmntque(vp, NULL);
   1332 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1333 		spec_node_destroy(vp);
   1334 
   1335 	mutex_obj_free(vp->v_interlock);
   1336 	rw_destroy(&vip->vi_lock);
   1337 	uvm_obj_destroy(&vp->v_uobj, true);
   1338 	cv_destroy(&vp->v_cv);
   1339 	cache_vnode_fini(vp);
   1340 	pool_cache_put(vcache_pool, vip);
   1341 }
   1342 
   1343 /*
   1344  * Try to get an initial reference on this cached vnode.
   1345  * Returns zero on success or EBUSY if the vnode state is not LOADED.
   1346  *
   1347  * NB: lockless code sequences may rely on this not blocking.
   1348  */
   1349 int
   1350 vcache_tryvget(vnode_t *vp)
   1351 {
   1352 	u_int use, next;
   1353 
   1354 	for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
   1355 		if (__predict_false((use & VUSECOUNT_GATE) == 0)) {
   1356 			return EBUSY;
   1357 		}
   1358 		next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
   1359 		if (__predict_true(next == use)) {
   1360 			return 0;
   1361 		}
   1362 	}
   1363 }
   1364 
   1365 /*
   1366  * Try to get an initial reference on this cached vnode.
   1367  * Returns zero on success and  ENOENT if the vnode has been reclaimed.
   1368  * Will wait for the vnode state to be stable.
   1369  *
   1370  * v_interlock locked on entry and unlocked on exit.
   1371  */
   1372 int
   1373 vcache_vget(vnode_t *vp)
   1374 {
   1375 
   1376 	KASSERT(mutex_owned(vp->v_interlock));
   1377 
   1378 	/* Increment hold count to prevent vnode from disappearing. */
   1379 	vp->v_holdcnt++;
   1380 	VSTATE_WAIT_STABLE(vp);
   1381 	vp->v_holdcnt--;
   1382 
   1383 	/* If this was the last reference to a reclaimed vnode free it now. */
   1384 	if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED)) {
   1385 		if (vp->v_holdcnt == 0 && vrefcnt(vp) == 0)
   1386 			vcache_free(VNODE_TO_VIMPL(vp));
   1387 		else
   1388 			mutex_exit(vp->v_interlock);
   1389 		return ENOENT;
   1390 	}
   1391 	VSTATE_ASSERT(vp, VS_LOADED);
   1392 	atomic_inc_uint(&vp->v_usecount);
   1393 	mutex_exit(vp->v_interlock);
   1394 
   1395 	return 0;
   1396 }
   1397 
   1398 /*
   1399  * Get a vnode / fs node pair by key and return it referenced through vpp.
   1400  */
   1401 int
   1402 vcache_get(struct mount *mp, const void *key, size_t key_len,
   1403     struct vnode **vpp)
   1404 {
   1405 	int error;
   1406 	uint32_t hash;
   1407 	const void *new_key;
   1408 	struct vnode *vp;
   1409 	struct vcache_key vcache_key;
   1410 	vnode_impl_t *vip, *new_vip;
   1411 
   1412 	new_key = NULL;
   1413 	*vpp = NULL;
   1414 
   1415 	vcache_key.vk_mount = mp;
   1416 	vcache_key.vk_key = key;
   1417 	vcache_key.vk_key_len = key_len;
   1418 	hash = vcache_hash(&vcache_key);
   1419 
   1420 again:
   1421 	mutex_enter(&vcache_lock);
   1422 	vip = vcache_hash_lookup(&vcache_key, hash);
   1423 
   1424 	/* If found, take a reference or retry. */
   1425 	if (__predict_true(vip != NULL)) {
   1426 		/*
   1427 		 * If the vnode is loading we cannot take the v_interlock
   1428 		 * here as it might change during load (see uvm_obj_setlock()).
   1429 		 * As changing state from VS_LOADING requires both vcache_lock
   1430 		 * and v_interlock it is safe to test with vcache_lock held.
   1431 		 *
   1432 		 * Wait for vnodes changing state from VS_LOADING and retry.
   1433 		 */
   1434 		if (__predict_false(vip->vi_state == VS_LOADING)) {
   1435 			cv_wait(&vcache_cv, &vcache_lock);
   1436 			mutex_exit(&vcache_lock);
   1437 			goto again;
   1438 		}
   1439 		vp = VIMPL_TO_VNODE(vip);
   1440 		mutex_enter(vp->v_interlock);
   1441 		mutex_exit(&vcache_lock);
   1442 		error = vcache_vget(vp);
   1443 		if (error == ENOENT)
   1444 			goto again;
   1445 		if (error == 0)
   1446 			*vpp = vp;
   1447 		KASSERT((error != 0) == (*vpp == NULL));
   1448 		return error;
   1449 	}
   1450 	mutex_exit(&vcache_lock);
   1451 
   1452 	/* Allocate and initialize a new vcache / vnode pair. */
   1453 	error = vfs_busy(mp);
   1454 	if (error)
   1455 		return error;
   1456 	new_vip = vcache_alloc();
   1457 	new_vip->vi_key = vcache_key;
   1458 	vp = VIMPL_TO_VNODE(new_vip);
   1459 	mutex_enter(&vcache_lock);
   1460 	vip = vcache_hash_lookup(&vcache_key, hash);
   1461 	if (vip == NULL) {
   1462 		SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
   1463 		    new_vip, vi_hash);
   1464 		vip = new_vip;
   1465 	}
   1466 
   1467 	/* If another thread beat us inserting this node, retry. */
   1468 	if (vip != new_vip) {
   1469 		vcache_dealloc(new_vip);
   1470 		vfs_unbusy(mp);
   1471 		goto again;
   1472 	}
   1473 	mutex_exit(&vcache_lock);
   1474 
   1475 	/* Load the fs node.  Exclusive as new_node is VS_LOADING. */
   1476 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
   1477 	if (error) {
   1478 		mutex_enter(&vcache_lock);
   1479 		SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
   1480 		    new_vip, vnode_impl, vi_hash);
   1481 		vcache_dealloc(new_vip);
   1482 		vfs_unbusy(mp);
   1483 		KASSERT(*vpp == NULL);
   1484 		return error;
   1485 	}
   1486 	KASSERT(new_key != NULL);
   1487 	KASSERT(memcmp(key, new_key, key_len) == 0);
   1488 	KASSERT(vp->v_op != NULL);
   1489 	vfs_insmntque(vp, mp);
   1490 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1491 		vp->v_vflag |= VV_MPSAFE;
   1492 	vfs_ref(mp);
   1493 	vfs_unbusy(mp);
   1494 
   1495 	/* Finished loading, finalize node. */
   1496 	mutex_enter(&vcache_lock);
   1497 	new_vip->vi_key.vk_key = new_key;
   1498 	mutex_enter(vp->v_interlock);
   1499 	VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
   1500 	mutex_exit(vp->v_interlock);
   1501 	mutex_exit(&vcache_lock);
   1502 	*vpp = vp;
   1503 	return 0;
   1504 }
   1505 
   1506 /*
   1507  * Create a new vnode / fs node pair and return it referenced through vpp.
   1508  */
   1509 int
   1510 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
   1511     kauth_cred_t cred, void *extra, struct vnode **vpp)
   1512 {
   1513 	int error;
   1514 	uint32_t hash;
   1515 	struct vnode *vp, *ovp;
   1516 	vnode_impl_t *vip, *ovip;
   1517 
   1518 	*vpp = NULL;
   1519 
   1520 	/* Allocate and initialize a new vcache / vnode pair. */
   1521 	error = vfs_busy(mp);
   1522 	if (error)
   1523 		return error;
   1524 	vip = vcache_alloc();
   1525 	vip->vi_key.vk_mount = mp;
   1526 	vp = VIMPL_TO_VNODE(vip);
   1527 
   1528 	/* Create and load the fs node. */
   1529 	error = VFS_NEWVNODE(mp, dvp, vp, vap, cred, extra,
   1530 	    &vip->vi_key.vk_key_len, &vip->vi_key.vk_key);
   1531 	if (error) {
   1532 		mutex_enter(&vcache_lock);
   1533 		vcache_dealloc(vip);
   1534 		vfs_unbusy(mp);
   1535 		KASSERT(*vpp == NULL);
   1536 		return error;
   1537 	}
   1538 	KASSERT(vp->v_op != NULL);
   1539 	KASSERT((vip->vi_key.vk_key_len == 0) == (mp == dead_rootmount));
   1540 	if (vip->vi_key.vk_key_len > 0) {
   1541 		KASSERT(vip->vi_key.vk_key != NULL);
   1542 		hash = vcache_hash(&vip->vi_key);
   1543 
   1544 		/*
   1545 		 * Wait for previous instance to be reclaimed,
   1546 		 * then insert new node.
   1547 		 */
   1548 		mutex_enter(&vcache_lock);
   1549 		while ((ovip = vcache_hash_lookup(&vip->vi_key, hash))) {
   1550 			ovp = VIMPL_TO_VNODE(ovip);
   1551 			mutex_enter(ovp->v_interlock);
   1552 			mutex_exit(&vcache_lock);
   1553 			error = vcache_vget(ovp);
   1554 			KASSERT(error == ENOENT);
   1555 			mutex_enter(&vcache_lock);
   1556 		}
   1557 		SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
   1558 		    vip, vi_hash);
   1559 		mutex_exit(&vcache_lock);
   1560 	}
   1561 	vfs_insmntque(vp, mp);
   1562 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1563 		vp->v_vflag |= VV_MPSAFE;
   1564 	vfs_ref(mp);
   1565 	vfs_unbusy(mp);
   1566 
   1567 	/* Finished loading, finalize node. */
   1568 	mutex_enter(&vcache_lock);
   1569 	mutex_enter(vp->v_interlock);
   1570 	VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
   1571 	mutex_exit(&vcache_lock);
   1572 	mutex_exit(vp->v_interlock);
   1573 	*vpp = vp;
   1574 	return 0;
   1575 }
   1576 
   1577 /*
   1578  * Prepare key change: update old cache nodes key and lock new cache node.
   1579  * Return an error if the new node already exists.
   1580  */
   1581 int
   1582 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
   1583     const void *old_key, size_t old_key_len,
   1584     const void *new_key, size_t new_key_len)
   1585 {
   1586 	uint32_t old_hash, new_hash;
   1587 	struct vcache_key old_vcache_key, new_vcache_key;
   1588 	vnode_impl_t *vip, *new_vip;
   1589 
   1590 	old_vcache_key.vk_mount = mp;
   1591 	old_vcache_key.vk_key = old_key;
   1592 	old_vcache_key.vk_key_len = old_key_len;
   1593 	old_hash = vcache_hash(&old_vcache_key);
   1594 
   1595 	new_vcache_key.vk_mount = mp;
   1596 	new_vcache_key.vk_key = new_key;
   1597 	new_vcache_key.vk_key_len = new_key_len;
   1598 	new_hash = vcache_hash(&new_vcache_key);
   1599 
   1600 	new_vip = vcache_alloc();
   1601 	new_vip->vi_key = new_vcache_key;
   1602 
   1603 	/* Insert locked new node used as placeholder. */
   1604 	mutex_enter(&vcache_lock);
   1605 	vip = vcache_hash_lookup(&new_vcache_key, new_hash);
   1606 	if (vip != NULL) {
   1607 		vcache_dealloc(new_vip);
   1608 		return EEXIST;
   1609 	}
   1610 	SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
   1611 	    new_vip, vi_hash);
   1612 
   1613 	/* Replace old nodes key with the temporary copy. */
   1614 	vip = vcache_hash_lookup(&old_vcache_key, old_hash);
   1615 	KASSERT(vip != NULL);
   1616 	KASSERT(VIMPL_TO_VNODE(vip) == vp);
   1617 	KASSERT(vip->vi_key.vk_key != old_vcache_key.vk_key);
   1618 	vip->vi_key = old_vcache_key;
   1619 	mutex_exit(&vcache_lock);
   1620 	return 0;
   1621 }
   1622 
   1623 /*
   1624  * Key change complete: update old node and remove placeholder.
   1625  */
   1626 void
   1627 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
   1628     const void *old_key, size_t old_key_len,
   1629     const void *new_key, size_t new_key_len)
   1630 {
   1631 	uint32_t old_hash, new_hash;
   1632 	struct vcache_key old_vcache_key, new_vcache_key;
   1633 	vnode_impl_t *vip, *new_vip;
   1634 	struct vnode *new_vp;
   1635 
   1636 	old_vcache_key.vk_mount = mp;
   1637 	old_vcache_key.vk_key = old_key;
   1638 	old_vcache_key.vk_key_len = old_key_len;
   1639 	old_hash = vcache_hash(&old_vcache_key);
   1640 
   1641 	new_vcache_key.vk_mount = mp;
   1642 	new_vcache_key.vk_key = new_key;
   1643 	new_vcache_key.vk_key_len = new_key_len;
   1644 	new_hash = vcache_hash(&new_vcache_key);
   1645 
   1646 	mutex_enter(&vcache_lock);
   1647 
   1648 	/* Lookup old and new node. */
   1649 	vip = vcache_hash_lookup(&old_vcache_key, old_hash);
   1650 	KASSERT(vip != NULL);
   1651 	KASSERT(VIMPL_TO_VNODE(vip) == vp);
   1652 
   1653 	new_vip = vcache_hash_lookup(&new_vcache_key, new_hash);
   1654 	KASSERT(new_vip != NULL);
   1655 	KASSERT(new_vip->vi_key.vk_key_len == new_key_len);
   1656 	new_vp = VIMPL_TO_VNODE(new_vip);
   1657 	mutex_enter(new_vp->v_interlock);
   1658 	VSTATE_ASSERT(VIMPL_TO_VNODE(new_vip), VS_LOADING);
   1659 	mutex_exit(new_vp->v_interlock);
   1660 
   1661 	/* Rekey old node and put it onto its new hashlist. */
   1662 	vip->vi_key = new_vcache_key;
   1663 	if (old_hash != new_hash) {
   1664 		SLIST_REMOVE(&vcache_hashtab[old_hash & vcache_hashmask],
   1665 		    vip, vnode_impl, vi_hash);
   1666 		SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
   1667 		    vip, vi_hash);
   1668 	}
   1669 
   1670 	/* Remove new node used as placeholder. */
   1671 	SLIST_REMOVE(&vcache_hashtab[new_hash & vcache_hashmask],
   1672 	    new_vip, vnode_impl, vi_hash);
   1673 	vcache_dealloc(new_vip);
   1674 }
   1675 
   1676 /*
   1677  * Disassociate the underlying file system from a vnode.
   1678  *
   1679  * Must be called with vnode locked and will return unlocked.
   1680  * Must be called with the interlock held, and will return with it held.
   1681  */
   1682 static void
   1683 vcache_reclaim(vnode_t *vp)
   1684 {
   1685 	lwp_t *l = curlwp;
   1686 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
   1687 	struct mount *mp = vp->v_mount;
   1688 	uint32_t hash;
   1689 	uint8_t temp_buf[64], *temp_key;
   1690 	size_t temp_key_len;
   1691 	bool recycle, active;
   1692 	int error;
   1693 
   1694 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
   1695 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   1696 	KASSERT(mutex_owned(vp->v_interlock));
   1697 	KASSERT(vrefcnt(vp) != 0);
   1698 
   1699 	active = (vrefcnt(vp) > 1);
   1700 	temp_key_len = vip->vi_key.vk_key_len;
   1701 	/*
   1702 	 * Prevent the vnode from being recycled or brought into use
   1703 	 * while we clean it out.
   1704 	 */
   1705 	VSTATE_CHANGE(vp, VS_BLOCKED, VS_RECLAIMING);
   1706 	mutex_exit(vp->v_interlock);
   1707 
   1708 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
   1709 	mutex_enter(vp->v_interlock);
   1710 	if ((vp->v_iflag & VI_EXECMAP) != 0 && vp->v_uobj.uo_npages != 0) {
   1711 		cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
   1712 	}
   1713 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
   1714 	vp->v_iflag |= VI_DEADCHECK; /* for genfs_getpages() */
   1715 	mutex_exit(vp->v_interlock);
   1716 	rw_exit(vp->v_uobj.vmobjlock);
   1717 
   1718 	/*
   1719 	 * With vnode state set to reclaiming, purge name cache immediately
   1720 	 * to prevent new handles on vnode, and wait for existing threads
   1721 	 * trying to get a handle to notice VS_RECLAIMED status and abort.
   1722 	 */
   1723 	cache_purge(vp);
   1724 
   1725 	/* Replace the vnode key with a temporary copy. */
   1726 	if (vip->vi_key.vk_key_len > sizeof(temp_buf)) {
   1727 		temp_key = kmem_alloc(temp_key_len, KM_SLEEP);
   1728 	} else {
   1729 		temp_key = temp_buf;
   1730 	}
   1731 	if (vip->vi_key.vk_key_len > 0) {
   1732 		mutex_enter(&vcache_lock);
   1733 		memcpy(temp_key, vip->vi_key.vk_key, temp_key_len);
   1734 		vip->vi_key.vk_key = temp_key;
   1735 		mutex_exit(&vcache_lock);
   1736 	}
   1737 
   1738 	fstrans_start(mp);
   1739 
   1740 	/*
   1741 	 * Clean out any cached data associated with the vnode.
   1742 	 * If purging an active vnode, it must be closed and
   1743 	 * deactivated before being reclaimed.
   1744 	 */
   1745 	error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
   1746 	if (error != 0) {
   1747 		if (wapbl_vphaswapbl(vp))
   1748 			WAPBL_DISCARD(wapbl_vptomp(vp));
   1749 		error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
   1750 	}
   1751 	KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
   1752 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1753 	if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
   1754 		 spec_node_revoke(vp);
   1755 	}
   1756 
   1757 	/*
   1758 	 * Disassociate the underlying file system from the vnode.
   1759 	 * VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
   1760 	 * the vnode, and may destroy the vnode so that VOP_UNLOCK
   1761 	 * would no longer function.
   1762 	 */
   1763 	VOP_INACTIVE(vp, &recycle);
   1764 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
   1765 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   1766 	if (VOP_RECLAIM(vp)) {
   1767 		vnpanic(vp, "%s: cannot reclaim", __func__);
   1768 	}
   1769 
   1770 	KASSERT(vp->v_data == NULL);
   1771 	KASSERT((vp->v_iflag & VI_PAGES) == 0);
   1772 
   1773 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
   1774 		uvm_ra_freectx(vp->v_ractx);
   1775 		vp->v_ractx = NULL;
   1776 	}
   1777 
   1778 	if (vip->vi_key.vk_key_len > 0) {
   1779 	/* Remove from vnode cache. */
   1780 		hash = vcache_hash(&vip->vi_key);
   1781 		mutex_enter(&vcache_lock);
   1782 		KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
   1783 		SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
   1784 		    vip, vnode_impl, vi_hash);
   1785 		mutex_exit(&vcache_lock);
   1786 	}
   1787 	if (temp_key != temp_buf)
   1788 		kmem_free(temp_key, temp_key_len);
   1789 
   1790 	/* Done with purge, notify sleepers of the grim news. */
   1791 	mutex_enter(vp->v_interlock);
   1792 	vp->v_op = dead_vnodeop_p;
   1793 	vp->v_vflag |= VV_LOCKSWORK;
   1794 	VSTATE_CHANGE(vp, VS_RECLAIMING, VS_RECLAIMED);
   1795 	vp->v_tag = VT_NON;
   1796 	KNOTE(&vp->v_klist, NOTE_REVOKE);
   1797 	mutex_exit(vp->v_interlock);
   1798 
   1799 	/*
   1800 	 * Move to dead mount.  Must be after changing the operations
   1801 	 * vector as vnode operations enter the mount before using the
   1802 	 * operations vector.  See sys/kern/vnode_if.c.
   1803 	 */
   1804 	vp->v_vflag &= ~VV_ROOT;
   1805 	vfs_ref(dead_rootmount);
   1806 	vfs_insmntque(vp, dead_rootmount);
   1807 
   1808 #ifdef PAX_SEGVGUARD
   1809 	pax_segvguard_cleanup(vp);
   1810 #endif /* PAX_SEGVGUARD */
   1811 
   1812 	mutex_enter(vp->v_interlock);
   1813 	fstrans_done(mp);
   1814 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1815 }
   1816 
   1817 /*
   1818  * Disassociate the underlying file system from an open device vnode
   1819  * and make it anonymous.
   1820  *
   1821  * Vnode unlocked on entry, drops a reference to the vnode.
   1822  */
   1823 void
   1824 vcache_make_anon(vnode_t *vp)
   1825 {
   1826 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
   1827 	uint32_t hash;
   1828 	bool recycle;
   1829 
   1830 	KASSERT(vp->v_type == VBLK || vp->v_type == VCHR);
   1831 	KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
   1832 	VSTATE_ASSERT_UNLOCKED(vp, VS_ACTIVE);
   1833 
   1834 	/* Remove from vnode cache. */
   1835 	hash = vcache_hash(&vip->vi_key);
   1836 	mutex_enter(&vcache_lock);
   1837 	KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
   1838 	SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
   1839 	    vip, vnode_impl, vi_hash);
   1840 	vip->vi_key.vk_mount = dead_rootmount;
   1841 	vip->vi_key.vk_key_len = 0;
   1842 	vip->vi_key.vk_key = NULL;
   1843 	mutex_exit(&vcache_lock);
   1844 
   1845 	/*
   1846 	 * Disassociate the underlying file system from the vnode.
   1847 	 * VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
   1848 	 * the vnode, and may destroy the vnode so that VOP_UNLOCK
   1849 	 * would no longer function.
   1850 	 */
   1851 	if (vn_lock(vp, LK_EXCLUSIVE)) {
   1852 		vnpanic(vp, "%s: cannot lock", __func__);
   1853 	}
   1854 	VOP_INACTIVE(vp, &recycle);
   1855 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
   1856 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   1857 	if (VOP_RECLAIM(vp)) {
   1858 		vnpanic(vp, "%s: cannot reclaim", __func__);
   1859 	}
   1860 
   1861 	/* Purge name cache. */
   1862 	cache_purge(vp);
   1863 
   1864 	/* Done with purge, change operations vector. */
   1865 	mutex_enter(vp->v_interlock);
   1866 	vp->v_op = spec_vnodeop_p;
   1867 	vp->v_vflag |= VV_MPSAFE;
   1868 	vp->v_vflag &= ~VV_LOCKSWORK;
   1869 	mutex_exit(vp->v_interlock);
   1870 
   1871 	/*
   1872 	 * Move to dead mount.  Must be after changing the operations
   1873 	 * vector as vnode operations enter the mount before using the
   1874 	 * operations vector.  See sys/kern/vnode_if.c.
   1875 	 */
   1876 	vfs_ref(dead_rootmount);
   1877 	vfs_insmntque(vp, dead_rootmount);
   1878 
   1879 	vrele(vp);
   1880 }
   1881 
   1882 /*
   1883  * Update outstanding I/O count and do wakeup if requested.
   1884  */
   1885 void
   1886 vwakeup(struct buf *bp)
   1887 {
   1888 	vnode_t *vp;
   1889 
   1890 	if ((vp = bp->b_vp) == NULL)
   1891 		return;
   1892 
   1893 	KASSERT(bp->b_objlock == vp->v_interlock);
   1894 	KASSERT(mutex_owned(bp->b_objlock));
   1895 
   1896 	if (--vp->v_numoutput < 0)
   1897 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
   1898 	if (vp->v_numoutput == 0)
   1899 		cv_broadcast(&vp->v_cv);
   1900 }
   1901 
   1902 /*
   1903  * Test a vnode for being or becoming dead.  Returns one of:
   1904  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
   1905  * ENOENT: vnode is dead.
   1906  * 0:      otherwise.
   1907  *
   1908  * Whenever this function returns a non-zero value all future
   1909  * calls will also return a non-zero value.
   1910  */
   1911 int
   1912 vdead_check(struct vnode *vp, int flags)
   1913 {
   1914 
   1915 	KASSERT(mutex_owned(vp->v_interlock));
   1916 
   1917 	if (! ISSET(flags, VDEAD_NOWAIT))
   1918 		VSTATE_WAIT_STABLE(vp);
   1919 
   1920 	if (VSTATE_GET(vp) == VS_RECLAIMING) {
   1921 		KASSERT(ISSET(flags, VDEAD_NOWAIT));
   1922 		return EBUSY;
   1923 	} else if (VSTATE_GET(vp) == VS_RECLAIMED) {
   1924 		return ENOENT;
   1925 	}
   1926 
   1927 	return 0;
   1928 }
   1929 
   1930 int
   1931 vfs_drainvnodes(void)
   1932 {
   1933 	int i, gen;
   1934 
   1935 	mutex_enter(&vdrain_lock);
   1936 	for (i = 0; i < 2; i++) {
   1937 		gen = vdrain_gen;
   1938 		while (gen == vdrain_gen) {
   1939 			cv_broadcast(&vdrain_cv);
   1940 			cv_wait(&vdrain_gen_cv, &vdrain_lock);
   1941 		}
   1942 	}
   1943 	mutex_exit(&vdrain_lock);
   1944 
   1945 	if (numvnodes >= desiredvnodes)
   1946 		return EBUSY;
   1947 
   1948 	if (vcache_hashsize != desiredvnodes)
   1949 		vcache_reinit();
   1950 
   1951 	return 0;
   1952 }
   1953 
   1954 void
   1955 vnpanic(vnode_t *vp, const char *fmt, ...)
   1956 {
   1957 	va_list ap;
   1958 
   1959 #ifdef DIAGNOSTIC
   1960 	vprint(NULL, vp);
   1961 #endif
   1962 	va_start(ap, fmt);
   1963 	vpanic(fmt, ap);
   1964 	va_end(ap);
   1965 }
   1966 
   1967 void
   1968 vshareilock(vnode_t *tvp, vnode_t *fvp)
   1969 {
   1970 	kmutex_t *oldlock;
   1971 
   1972 	oldlock = tvp->v_interlock;
   1973 	mutex_obj_hold(fvp->v_interlock);
   1974 	tvp->v_interlock = fvp->v_interlock;
   1975 	mutex_obj_free(oldlock);
   1976 }
   1977