Home | History | Annotate | Line # | Download | only in kern
vfs_vnode.c revision 1.13
      1 /*	$NetBSD: vfs_vnode.c,v 1.13 2011/10/03 10:30:13 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     67  */
     68 
     69 /*
     70  * The vnode cache subsystem.
     71  *
     72  * Life-cycle
     73  *
     74  *	Normally, there are two points where new vnodes are created:
     75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
     76  *	starts in one of the following ways:
     77  *
     78  *	- Allocation, via getnewvnode(9) and/or vnalloc(9).
     79  *	- Reclamation of inactive vnode, via vget(9).
     80  *
     81  *	The life-cycle ends when the last reference is dropped, usually
     82  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
     83  *	the file system that vnode is inactive.  Via this call, file system
     84  *	indicates whether vnode should be recycled (usually, count of links
     85  *	is checked i.e. whether file was removed).
     86  *
     87  *	Depending on indication, vnode can be put into a free list (cache),
     88  *	or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
     89  *	underlying file system from the vnode, and finally destroyed.
     90  *
     91  * Reference counting
     92  *
     93  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
     94  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
     95  *	as vput(9), routines.  Common points holding references are e.g.
     96  *	file openings, current working directory, mount points, etc.
     97  *
     98  * Note on v_usecount and its locking
     99  *
    100  *	At nearly all points it is known that v_usecount could be zero,
    101  *	the vnode_t::v_interlock will be held.  To change v_usecount away
    102  *	from zero, the interlock must be held.  To change from a non-zero
    103  *	value to zero, again the interlock must be held.
    104  *
    105  *	There is a flag bit, VC_XLOCK, embedded in v_usecount.  To raise
    106  *	v_usecount, if the VC_XLOCK bit is set in it, the interlock must
    107  *	be held.  To modify the VC_XLOCK bit, the interlock must be held.
    108  *	We always keep the usecount (v_usecount & VC_MASK) non-zero while
    109  *	the VC_XLOCK bit is set.
    110  *
    111  *	Unless the VC_XLOCK bit is set, changing the usecount from a non-zero
    112  *	value to a non-zero value can safely be done using atomic operations,
    113  *	without the interlock held.
    114  *
    115  *	Even if the VC_XLOCK bit is set, decreasing the usecount to a non-zero
    116  *	value can be done using atomic operations, without the interlock held.
    117  *
    118  *	Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
    119  *	mntvnode_lock is still held.
    120  */
    121 
    122 #include <sys/cdefs.h>
    123 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.13 2011/10/03 10:30:13 hannken Exp $");
    124 
    125 #include <sys/param.h>
    126 #include <sys/kernel.h>
    127 
    128 #include <sys/atomic.h>
    129 #include <sys/buf.h>
    130 #include <sys/conf.h>
    131 #include <sys/device.h>
    132 #include <sys/kauth.h>
    133 #include <sys/kmem.h>
    134 #include <sys/kthread.h>
    135 #include <sys/module.h>
    136 #include <sys/mount.h>
    137 #include <sys/namei.h>
    138 #include <sys/syscallargs.h>
    139 #include <sys/sysctl.h>
    140 #include <sys/systm.h>
    141 #include <sys/vnode.h>
    142 #include <sys/wapbl.h>
    143 
    144 #include <uvm/uvm.h>
    145 #include <uvm/uvm_readahead.h>
    146 
    147 u_int			numvnodes		__cacheline_aligned;
    148 
    149 static pool_cache_t	vnode_cache		__read_mostly;
    150 static kmutex_t		vnode_free_list_lock	__cacheline_aligned;
    151 
    152 static vnodelst_t	vnode_free_list		__cacheline_aligned;
    153 static vnodelst_t	vnode_hold_list		__cacheline_aligned;
    154 static vnodelst_t	vrele_list		__cacheline_aligned;
    155 
    156 static kmutex_t		vrele_lock		__cacheline_aligned;
    157 static kcondvar_t	vrele_cv		__cacheline_aligned;
    158 static lwp_t *		vrele_lwp		__cacheline_aligned;
    159 static int		vrele_pending		__cacheline_aligned;
    160 static int		vrele_gen		__cacheline_aligned;
    161 static kcondvar_t	vdrain_cv		__cacheline_aligned;
    162 
    163 static int		cleanvnode(void);
    164 static void		vdrain_thread(void *);
    165 static void		vrele_thread(void *);
    166 static void		vnpanic(vnode_t *, const char *, ...)
    167     __attribute__((__format__(__printf__, 2, 3)));
    168 
    169 /* Routines having to do with the management of the vnode table. */
    170 extern int		(**dead_vnodeop_p)(void *);
    171 
    172 void
    173 vfs_vnode_sysinit(void)
    174 {
    175 	int error;
    176 
    177 	vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
    178 	    NULL, IPL_NONE, NULL, NULL, NULL);
    179 	KASSERT(vnode_cache != NULL);
    180 
    181 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
    182 	TAILQ_INIT(&vnode_free_list);
    183 	TAILQ_INIT(&vnode_hold_list);
    184 	TAILQ_INIT(&vrele_list);
    185 
    186 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
    187 	cv_init(&vdrain_cv, "vdrain");
    188 	cv_init(&vrele_cv, "vrele");
    189 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
    190 	    NULL, NULL, "vdrain");
    191 	KASSERT(error == 0);
    192 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
    193 	    NULL, &vrele_lwp, "vrele");
    194 	KASSERT(error == 0);
    195 }
    196 
    197 /*
    198  * Allocate a new, uninitialized vnode.  If 'mp' is non-NULL, this is a
    199  * marker vnode.
    200  */
    201 vnode_t *
    202 vnalloc(struct mount *mp)
    203 {
    204 	vnode_t *vp;
    205 
    206 	vp = pool_cache_get(vnode_cache, PR_WAITOK);
    207 	KASSERT(vp != NULL);
    208 
    209 	memset(vp, 0, sizeof(*vp));
    210 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
    211 	cv_init(&vp->v_cv, "vnode");
    212 	/*
    213 	 * Done by memset() above.
    214 	 *	LIST_INIT(&vp->v_nclist);
    215 	 *	LIST_INIT(&vp->v_dnclist);
    216 	 */
    217 
    218 	if (mp != NULL) {
    219 		vp->v_mount = mp;
    220 		vp->v_type = VBAD;
    221 		vp->v_iflag = VI_MARKER;
    222 	} else {
    223 		rw_init(&vp->v_lock);
    224 	}
    225 
    226 	return vp;
    227 }
    228 
    229 /*
    230  * Free an unused, unreferenced vnode.
    231  */
    232 void
    233 vnfree(vnode_t *vp)
    234 {
    235 
    236 	KASSERT(vp->v_usecount == 0);
    237 
    238 	if ((vp->v_iflag & VI_MARKER) == 0) {
    239 		rw_destroy(&vp->v_lock);
    240 		mutex_enter(&vnode_free_list_lock);
    241 		numvnodes--;
    242 		mutex_exit(&vnode_free_list_lock);
    243 	}
    244 
    245 	/*
    246 	 * Note: the vnode interlock will either be freed, of reference
    247 	 * dropped (if VI_LOCKSHARE was in use).
    248 	 */
    249 	uvm_obj_destroy(&vp->v_uobj, true);
    250 	cv_destroy(&vp->v_cv);
    251 	pool_cache_put(vnode_cache, vp);
    252 }
    253 
    254 /*
    255  * cleanvnode: grab a vnode from freelist, clean and free it.
    256  *
    257  * => Releases vnode_free_list_lock.
    258  */
    259 static int
    260 cleanvnode(void)
    261 {
    262 	vnode_t *vp;
    263 	vnodelst_t *listhd;
    264 
    265 	KASSERT(mutex_owned(&vnode_free_list_lock));
    266 retry:
    267 	listhd = &vnode_free_list;
    268 try_nextlist:
    269 	TAILQ_FOREACH(vp, listhd, v_freelist) {
    270 		/*
    271 		 * It's safe to test v_usecount and v_iflag
    272 		 * without holding the interlock here, since
    273 		 * these vnodes should never appear on the
    274 		 * lists.
    275 		 */
    276 		KASSERT(vp->v_usecount == 0);
    277 		KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    278 		KASSERT(vp->v_freelisthd == listhd);
    279 
    280 		if (!mutex_tryenter(vp->v_interlock))
    281 			continue;
    282 		if ((vp->v_iflag & VI_XLOCK) == 0)
    283 			break;
    284 		mutex_exit(vp->v_interlock);
    285 	}
    286 
    287 	if (vp == NULL) {
    288 		if (listhd == &vnode_free_list) {
    289 			listhd = &vnode_hold_list;
    290 			goto try_nextlist;
    291 		}
    292 		mutex_exit(&vnode_free_list_lock);
    293 		return EBUSY;
    294 	}
    295 
    296 	/* Remove it from the freelist. */
    297 	TAILQ_REMOVE(listhd, vp, v_freelist);
    298 	vp->v_freelisthd = NULL;
    299 	mutex_exit(&vnode_free_list_lock);
    300 
    301 	KASSERT(vp->v_usecount == 0);
    302 
    303 	/*
    304 	 * The vnode is still associated with a file system, so we must
    305 	 * clean it out before freeing it.  We need to add a reference
    306 	 * before doing this.  If the vnode gains another reference while
    307 	 * being cleaned out then we lose - retry.
    308 	 */
    309 	atomic_add_int(&vp->v_usecount, 1 + VC_XLOCK);
    310 	vclean(vp, DOCLOSE);
    311 	KASSERT(vp->v_usecount >= 1 + VC_XLOCK);
    312 	atomic_add_int(&vp->v_usecount, -VC_XLOCK);
    313 	if (vp->v_usecount > 1) {
    314 		/*
    315 		 * Don't return to freelist - the holder of the last
    316 		 * reference will destroy it.
    317 		 */
    318 		vrelel(vp, 0); /* releases vp->v_interlock */
    319 		mutex_enter(&vnode_free_list_lock);
    320 		goto retry;
    321 	}
    322 
    323 	KASSERT((vp->v_iflag & VI_CLEAN) == VI_CLEAN);
    324 	mutex_exit(vp->v_interlock);
    325 	if (vp->v_type == VBLK || vp->v_type == VCHR) {
    326 		spec_node_destroy(vp);
    327 	}
    328 	vp->v_type = VNON;
    329 
    330 	KASSERT(vp->v_data == NULL);
    331 	KASSERT(vp->v_uobj.uo_npages == 0);
    332 	KASSERT(TAILQ_EMPTY(&vp->v_uobj.memq));
    333 	KASSERT(vp->v_numoutput == 0);
    334 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
    335 
    336 	vrele(vp);
    337 
    338 	return 0;
    339 }
    340 
    341 /*
    342  * getnewvnode: return a fresh vnode.
    343  *
    344  * => Returns referenced vnode, moved into the mount queue.
    345  * => Shares the interlock specified by 'slock', if it is not NULL.
    346  */
    347 int
    348 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
    349     kmutex_t *slock, vnode_t **vpp)
    350 {
    351 	struct uvm_object *uobj;
    352 	vnode_t *vp;
    353 	int error = 0;
    354 
    355 try_again:
    356 	if (mp != NULL) {
    357 		/*
    358 		 * Mark filesystem busy while we are creating a vnode.
    359 		 * If unmount is in progress, this will fail.
    360 		 */
    361 		error = vfs_busy(mp, NULL);
    362 		if (error)
    363 			return error;
    364 	}
    365 
    366 	vp = NULL;
    367 
    368 	/* Allocate a new vnode. */
    369 	mutex_enter(&vnode_free_list_lock);
    370 	numvnodes++;
    371 	if (numvnodes > desiredvnodes + desiredvnodes / 10)
    372 		cv_signal(&vdrain_cv);
    373 	mutex_exit(&vnode_free_list_lock);
    374 	if ((vp = vnalloc(NULL)) == NULL) {
    375 		mutex_enter(&vnode_free_list_lock);
    376 		numvnodes--;
    377 		mutex_exit(&vnode_free_list_lock);
    378 		if (mp != NULL) {
    379 			vfs_unbusy(mp, false, NULL);
    380 		}
    381 		printf("WARNING: unable to allocate new vnode, retrying...\n");
    382 		kpause("newvn", false, hz, NULL);
    383 		goto try_again;
    384 	}
    385 
    386 	vp->v_usecount = 1;
    387 
    388 	KASSERT(vp->v_freelisthd == NULL);
    389 	KASSERT(LIST_EMPTY(&vp->v_nclist));
    390 	KASSERT(LIST_EMPTY(&vp->v_dnclist));
    391 
    392 	/* Initialize vnode. */
    393 	vp->v_type = VNON;
    394 	vp->v_tag = tag;
    395 	vp->v_op = vops;
    396 	vp->v_data = NULL;
    397 
    398 	uobj = &vp->v_uobj;
    399 	KASSERT(uobj->pgops == &uvm_vnodeops);
    400 	KASSERT(uobj->uo_npages == 0);
    401 	KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
    402 	vp->v_size = vp->v_writesize = VSIZENOTSET;
    403 
    404 	/* Share the vnode_t::v_interlock, if requested. */
    405 	if (slock) {
    406 		/* Set the interlock and mark that it is shared. */
    407 		KASSERT(vp->v_mount == NULL);
    408 		mutex_obj_hold(slock);
    409 		uvm_obj_setlock(&vp->v_uobj, slock);
    410 		KASSERT(vp->v_interlock == slock);
    411 		vp->v_iflag |= VI_LOCKSHARE;
    412 	}
    413 
    414 	/* Finally, move vnode into the mount queue. */
    415 	vfs_insmntque(vp, mp);
    416 
    417 	if (mp != NULL) {
    418 		if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
    419 			vp->v_vflag |= VV_MPSAFE;
    420 		vfs_unbusy(mp, true, NULL);
    421 	}
    422 
    423 	*vpp = vp;
    424 	return 0;
    425 }
    426 
    427 /*
    428  * This is really just the reverse of getnewvnode(). Needed for
    429  * VFS_VGET functions who may need to push back a vnode in case
    430  * of a locking race.
    431  */
    432 void
    433 ungetnewvnode(vnode_t *vp)
    434 {
    435 
    436 	KASSERT(vp->v_usecount == 1);
    437 	KASSERT(vp->v_data == NULL);
    438 	KASSERT(vp->v_freelisthd == NULL);
    439 
    440 	mutex_enter(vp->v_interlock);
    441 	vp->v_iflag |= VI_CLEAN;
    442 	vrelel(vp, 0);
    443 }
    444 
    445 /*
    446  * Helper thread to keep the number of vnodes below desiredvnodes.
    447  */
    448 static void
    449 vdrain_thread(void *cookie)
    450 {
    451 	int error;
    452 
    453 	mutex_enter(&vnode_free_list_lock);
    454 
    455 	for (;;) {
    456 		cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
    457 		while (numvnodes > desiredvnodes) {
    458 			error = cleanvnode();
    459 			if (error)
    460 				kpause("vndsbusy", false, hz, NULL);
    461 			mutex_enter(&vnode_free_list_lock);
    462 			if (error)
    463 				break;
    464 		}
    465 	}
    466 }
    467 
    468 /*
    469  * Remove a vnode from its freelist.
    470  */
    471 void
    472 vremfree(vnode_t *vp)
    473 {
    474 
    475 	KASSERT(mutex_owned(vp->v_interlock));
    476 	KASSERT(vp->v_usecount == 0);
    477 
    478 	/*
    479 	 * Note that the reference count must not change until
    480 	 * the vnode is removed.
    481 	 */
    482 	mutex_enter(&vnode_free_list_lock);
    483 	if (vp->v_holdcnt > 0) {
    484 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    485 	} else {
    486 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    487 	}
    488 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    489 	vp->v_freelisthd = NULL;
    490 	mutex_exit(&vnode_free_list_lock);
    491 }
    492 
    493 /*
    494  * Try to gain a reference to a vnode, without acquiring its interlock.
    495  * The caller must hold a lock that will prevent the vnode from being
    496  * recycled or freed.
    497  */
    498 bool
    499 vtryget(vnode_t *vp)
    500 {
    501 	u_int use, next;
    502 
    503 	/*
    504 	 * If the vnode is being freed, don't make life any harder
    505 	 * for vclean() by adding another reference without waiting.
    506 	 * This is not strictly necessary, but we'll do it anyway.
    507 	 */
    508 	if (__predict_false((vp->v_iflag & VI_XLOCK) != 0)) {
    509 		return false;
    510 	}
    511 	for (use = vp->v_usecount;; use = next) {
    512 		if (use == 0 || __predict_false((use & VC_XLOCK) != 0)) {
    513 			/* Need interlock held if first reference. */
    514 			return false;
    515 		}
    516 		next = atomic_cas_uint(&vp->v_usecount, use, use + 1);
    517 		if (__predict_true(next == use)) {
    518 			return true;
    519 		}
    520 	}
    521 }
    522 
    523 /*
    524  * vget: get a particular vnode from the free list, increment its reference
    525  * count and lock it.
    526  *
    527  * => Should be called with v_interlock held.
    528  *
    529  * If VI_XLOCK is set, the vnode is being eliminated in vgone()/vclean().
    530  * In that case, we cannot grab the vnode, so the process is awakened when
    531  * the transition is completed, and an error returned to indicate that the
    532  * vnode is no longer usable (e.g. changed to a new file system type).
    533  */
    534 int
    535 vget(vnode_t *vp, int flags)
    536 {
    537 	int error = 0;
    538 
    539 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    540 	KASSERT(mutex_owned(vp->v_interlock));
    541 	KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
    542 
    543 	/*
    544 	 * Before adding a reference, we must remove the vnode
    545 	 * from its freelist.
    546 	 */
    547 	if (vp->v_usecount == 0) {
    548 		vremfree(vp);
    549 		vp->v_usecount = 1;
    550 	} else {
    551 		atomic_inc_uint(&vp->v_usecount);
    552 	}
    553 
    554 	/*
    555 	 * If the vnode is in the process of being cleaned out for
    556 	 * another use, we wait for the cleaning to finish and then
    557 	 * return failure.  Cleaning is determined by checking if
    558 	 * the VI_XLOCK flag is set.
    559 	 */
    560 	if ((vp->v_iflag & VI_XLOCK) != 0) {
    561 		if ((flags & LK_NOWAIT) != 0) {
    562 			vrelel(vp, 0);
    563 			return EBUSY;
    564 		}
    565 		vwait(vp, VI_XLOCK);
    566 		vrelel(vp, 0);
    567 		return ENOENT;
    568 	}
    569 
    570 	/*
    571 	 * Ok, we got it in good shape.  Just locking left.
    572 	 */
    573 	KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    574 	mutex_exit(vp->v_interlock);
    575 	if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
    576 		error = vn_lock(vp, flags);
    577 		if (error != 0) {
    578 			vrele(vp);
    579 		}
    580 	}
    581 	return error;
    582 }
    583 
    584 /*
    585  * vput: unlock and release the reference.
    586  */
    587 void
    588 vput(vnode_t *vp)
    589 {
    590 
    591 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    592 
    593 	VOP_UNLOCK(vp);
    594 	vrele(vp);
    595 }
    596 
    597 /*
    598  * Try to drop reference on a vnode.  Abort if we are releasing the
    599  * last reference.  Note: this _must_ succeed if not the last reference.
    600  */
    601 static inline bool
    602 vtryrele(vnode_t *vp)
    603 {
    604 	u_int use, next;
    605 
    606 	for (use = vp->v_usecount;; use = next) {
    607 		if (use == 1) {
    608 			return false;
    609 		}
    610 		KASSERT((use & VC_MASK) > 1);
    611 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
    612 		if (__predict_true(next == use)) {
    613 			return true;
    614 		}
    615 	}
    616 }
    617 
    618 /*
    619  * Vnode release.  If reference count drops to zero, call inactive
    620  * routine and either return to freelist or free to the pool.
    621  */
    622 void
    623 vrelel(vnode_t *vp, int flags)
    624 {
    625 	bool recycle, defer;
    626 	int error;
    627 
    628 	KASSERT(mutex_owned(vp->v_interlock));
    629 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    630 	KASSERT(vp->v_freelisthd == NULL);
    631 
    632 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
    633 	    (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
    634 		vnpanic(vp, "dead but not clean");
    635 	}
    636 
    637 	/*
    638 	 * If not the last reference, just drop the reference count
    639 	 * and unlock.
    640 	 */
    641 	if (vtryrele(vp)) {
    642 		vp->v_iflag |= VI_INACTREDO;
    643 		mutex_exit(vp->v_interlock);
    644 		return;
    645 	}
    646 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
    647 		vnpanic(vp, "%s: bad ref count", __func__);
    648 	}
    649 
    650 	KASSERT((vp->v_iflag & VI_XLOCK) == 0);
    651 
    652 	/*
    653 	 * If not clean, deactivate the vnode, but preserve
    654 	 * our reference across the call to VOP_INACTIVE().
    655 	 */
    656 retry:
    657 	if ((vp->v_iflag & VI_CLEAN) == 0) {
    658 		recycle = false;
    659 		vp->v_iflag |= VI_INACTNOW;
    660 
    661 		/*
    662 		 * XXX This ugly block can be largely eliminated if
    663 		 * locking is pushed down into the file systems.
    664 		 *
    665 		 * Defer vnode release to vrele_thread if caller
    666 		 * requests it explicitly.
    667 		 */
    668 		if ((curlwp == uvm.pagedaemon_lwp) ||
    669 		    (flags & VRELEL_ASYNC_RELE) != 0) {
    670 			/* The pagedaemon can't wait around; defer. */
    671 			defer = true;
    672 		} else if (curlwp == vrele_lwp) {
    673 			/* We have to try harder. */
    674 			vp->v_iflag &= ~VI_INACTREDO;
    675 			mutex_exit(vp->v_interlock);
    676 			error = vn_lock(vp, LK_EXCLUSIVE);
    677 			if (error != 0) {
    678 				/* XXX */
    679 				vnpanic(vp, "%s: unable to lock %p",
    680 				    __func__, vp);
    681 			}
    682 			defer = false;
    683 		} else if ((vp->v_iflag & VI_LAYER) != 0) {
    684 			/*
    685 			 * Acquiring the stack's lock in vclean() even
    686 			 * for an honest vput/vrele is dangerous because
    687 			 * our caller may hold other vnode locks; defer.
    688 			 */
    689 			defer = true;
    690 		} else {
    691 			/* If we can't acquire the lock, then defer. */
    692 			vp->v_iflag &= ~VI_INACTREDO;
    693 			mutex_exit(vp->v_interlock);
    694 			error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
    695 			if (error != 0) {
    696 				defer = true;
    697 				mutex_enter(vp->v_interlock);
    698 			} else {
    699 				defer = false;
    700 			}
    701 		}
    702 
    703 		if (defer) {
    704 			/*
    705 			 * Defer reclaim to the kthread; it's not safe to
    706 			 * clean it here.  We donate it our last reference.
    707 			 */
    708 			KASSERT(mutex_owned(vp->v_interlock));
    709 			KASSERT((vp->v_iflag & VI_INACTPEND) == 0);
    710 			vp->v_iflag &= ~VI_INACTNOW;
    711 			vp->v_iflag |= VI_INACTPEND;
    712 			mutex_enter(&vrele_lock);
    713 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
    714 			if (++vrele_pending > (desiredvnodes >> 8))
    715 				cv_signal(&vrele_cv);
    716 			mutex_exit(&vrele_lock);
    717 			mutex_exit(vp->v_interlock);
    718 			return;
    719 		}
    720 
    721 #ifdef DIAGNOSTIC
    722 		if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
    723 		    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
    724 			vprint("vrelel: missing VOP_CLOSE()", vp);
    725 		}
    726 #endif
    727 
    728 		/*
    729 		 * The vnode can gain another reference while being
    730 		 * deactivated.  If VOP_INACTIVE() indicates that
    731 		 * the described file has been deleted, then recycle
    732 		 * the vnode irrespective of additional references.
    733 		 * Another thread may be waiting to re-use the on-disk
    734 		 * inode.
    735 		 *
    736 		 * Note that VOP_INACTIVE() will drop the vnode lock.
    737 		 */
    738 		VOP_INACTIVE(vp, &recycle);
    739 		mutex_enter(vp->v_interlock);
    740 		vp->v_iflag &= ~VI_INACTNOW;
    741 		if (!recycle) {
    742 			if (vtryrele(vp)) {
    743 				mutex_exit(vp->v_interlock);
    744 				return;
    745 			}
    746 
    747 			/*
    748 			 * If we grew another reference while
    749 			 * VOP_INACTIVE() was underway, retry.
    750 			 */
    751 			if ((vp->v_iflag & VI_INACTREDO) != 0) {
    752 				goto retry;
    753 			}
    754 		}
    755 
    756 		/* Take care of space accounting. */
    757 		if (vp->v_iflag & VI_EXECMAP) {
    758 			atomic_add_int(&uvmexp.execpages,
    759 			    -vp->v_uobj.uo_npages);
    760 			atomic_add_int(&uvmexp.filepages,
    761 			    vp->v_uobj.uo_npages);
    762 		}
    763 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
    764 		vp->v_vflag &= ~VV_MAPPED;
    765 
    766 		/*
    767 		 * Recycle the vnode if the file is now unused (unlinked),
    768 		 * otherwise just free it.
    769 		 */
    770 		if (recycle) {
    771 			vclean(vp, DOCLOSE);
    772 		}
    773 		KASSERT(vp->v_usecount > 0);
    774 	}
    775 
    776 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
    777 		/* Gained another reference while being reclaimed. */
    778 		mutex_exit(vp->v_interlock);
    779 		return;
    780 	}
    781 
    782 	if ((vp->v_iflag & VI_CLEAN) != 0) {
    783 		/*
    784 		 * It's clean so destroy it.  It isn't referenced
    785 		 * anywhere since it has been reclaimed.
    786 		 */
    787 		KASSERT(vp->v_holdcnt == 0);
    788 		KASSERT(vp->v_writecount == 0);
    789 		mutex_exit(vp->v_interlock);
    790 		vfs_insmntque(vp, NULL);
    791 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
    792 			spec_node_destroy(vp);
    793 		}
    794 		vnfree(vp);
    795 	} else {
    796 		/*
    797 		 * Otherwise, put it back onto the freelist.  It
    798 		 * can't be destroyed while still associated with
    799 		 * a file system.
    800 		 */
    801 		mutex_enter(&vnode_free_list_lock);
    802 		if (vp->v_holdcnt > 0) {
    803 			vp->v_freelisthd = &vnode_hold_list;
    804 		} else {
    805 			vp->v_freelisthd = &vnode_free_list;
    806 		}
    807 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    808 		mutex_exit(&vnode_free_list_lock);
    809 		mutex_exit(vp->v_interlock);
    810 	}
    811 }
    812 
    813 void
    814 vrele(vnode_t *vp)
    815 {
    816 
    817 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    818 
    819 	if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
    820 		return;
    821 	}
    822 	mutex_enter(vp->v_interlock);
    823 	vrelel(vp, 0);
    824 }
    825 
    826 /*
    827  * Asynchronous vnode release, vnode is released in different context.
    828  */
    829 void
    830 vrele_async(vnode_t *vp)
    831 {
    832 
    833 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    834 
    835 	if ((vp->v_iflag & VI_INACTNOW) == 0 && vtryrele(vp)) {
    836 		return;
    837 	}
    838 	mutex_enter(vp->v_interlock);
    839 	vrelel(vp, VRELEL_ASYNC_RELE);
    840 }
    841 
    842 static void
    843 vrele_thread(void *cookie)
    844 {
    845 	vnode_t *vp;
    846 
    847 	for (;;) {
    848 		mutex_enter(&vrele_lock);
    849 		while (TAILQ_EMPTY(&vrele_list)) {
    850 			vrele_gen++;
    851 			cv_broadcast(&vrele_cv);
    852 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
    853 		}
    854 		vp = TAILQ_FIRST(&vrele_list);
    855 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
    856 		vrele_pending--;
    857 		mutex_exit(&vrele_lock);
    858 
    859 		/*
    860 		 * If not the last reference, then ignore the vnode
    861 		 * and look for more work.
    862 		 */
    863 		mutex_enter(vp->v_interlock);
    864 		KASSERT((vp->v_iflag & VI_INACTPEND) != 0);
    865 		vp->v_iflag &= ~VI_INACTPEND;
    866 		vrelel(vp, 0);
    867 	}
    868 }
    869 
    870 void
    871 vrele_flush(void)
    872 {
    873 	int gen;
    874 
    875 	mutex_enter(&vrele_lock);
    876 	gen = vrele_gen;
    877 	while (vrele_pending && gen == vrele_gen) {
    878 		cv_broadcast(&vrele_cv);
    879 		cv_wait(&vrele_cv, &vrele_lock);
    880 	}
    881 	mutex_exit(&vrele_lock);
    882 }
    883 
    884 /*
    885  * Vnode reference, where a reference is already held by some other
    886  * object (for example, a file structure).
    887  */
    888 void
    889 vref(vnode_t *vp)
    890 {
    891 
    892 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    893 	KASSERT(vp->v_usecount != 0);
    894 
    895 	atomic_inc_uint(&vp->v_usecount);
    896 }
    897 
    898 /*
    899  * Page or buffer structure gets a reference.
    900  * Called with v_interlock held.
    901  */
    902 void
    903 vholdl(vnode_t *vp)
    904 {
    905 
    906 	KASSERT(mutex_owned(vp->v_interlock));
    907 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    908 
    909 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
    910 		mutex_enter(&vnode_free_list_lock);
    911 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    912 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    913 		vp->v_freelisthd = &vnode_hold_list;
    914 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    915 		mutex_exit(&vnode_free_list_lock);
    916 	}
    917 }
    918 
    919 /*
    920  * Page or buffer structure frees a reference.
    921  * Called with v_interlock held.
    922  */
    923 void
    924 holdrelel(vnode_t *vp)
    925 {
    926 
    927 	KASSERT(mutex_owned(vp->v_interlock));
    928 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    929 
    930 	if (vp->v_holdcnt <= 0) {
    931 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
    932 	}
    933 
    934 	vp->v_holdcnt--;
    935 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
    936 		mutex_enter(&vnode_free_list_lock);
    937 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    938 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    939 		vp->v_freelisthd = &vnode_free_list;
    940 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    941 		mutex_exit(&vnode_free_list_lock);
    942 	}
    943 }
    944 
    945 /*
    946  * Disassociate the underlying file system from a vnode.
    947  *
    948  * Must be called with the interlock held, and will return with it held.
    949  */
    950 void
    951 vclean(vnode_t *vp, int flags)
    952 {
    953 	lwp_t *l = curlwp;
    954 	bool recycle, active;
    955 	int error;
    956 
    957 	KASSERT(mutex_owned(vp->v_interlock));
    958 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    959 	KASSERT(vp->v_usecount != 0);
    960 
    961 	/* If cleaning is already in progress wait until done and return. */
    962 	if (vp->v_iflag & VI_XLOCK) {
    963 		vwait(vp, VI_XLOCK);
    964 		return;
    965 	}
    966 
    967 	/* If already clean, nothing to do. */
    968 	if ((vp->v_iflag & VI_CLEAN) != 0) {
    969 		return;
    970 	}
    971 
    972 	/*
    973 	 * Prevent the vnode from being recycled or brought into use
    974 	 * while we clean it out.
    975 	 */
    976 	vp->v_iflag |= VI_XLOCK;
    977 	if (vp->v_iflag & VI_EXECMAP) {
    978 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
    979 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
    980 	}
    981 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
    982 	active = (vp->v_usecount & VC_MASK) > 1;
    983 
    984 	/* XXXAD should not lock vnode under layer */
    985 	mutex_exit(vp->v_interlock);
    986 	VOP_LOCK(vp, LK_EXCLUSIVE);
    987 
    988 	/*
    989 	 * Clean out any cached data associated with the vnode.
    990 	 * If purging an active vnode, it must be closed and
    991 	 * deactivated before being reclaimed. Note that the
    992 	 * VOP_INACTIVE will unlock the vnode.
    993 	 */
    994 	if (flags & DOCLOSE) {
    995 		error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
    996 		if (error != 0) {
    997 			/* XXX, fix vn_start_write's grab of mp and use that. */
    998 
    999 			if (wapbl_vphaswapbl(vp))
   1000 				WAPBL_DISCARD(wapbl_vptomp(vp));
   1001 			error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
   1002 		}
   1003 		KASSERT(error == 0);
   1004 		KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1005 		if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
   1006 			 spec_node_revoke(vp);
   1007 		}
   1008 	}
   1009 	if (active) {
   1010 		VOP_INACTIVE(vp, &recycle);
   1011 	} else {
   1012 		/*
   1013 		 * Any other processes trying to obtain this lock must first
   1014 		 * wait for VI_XLOCK to clear, then call the new lock operation.
   1015 		 */
   1016 		VOP_UNLOCK(vp);
   1017 	}
   1018 
   1019 	/* Disassociate the underlying file system from the vnode. */
   1020 	if (VOP_RECLAIM(vp)) {
   1021 		vnpanic(vp, "%s: cannot reclaim", __func__);
   1022 	}
   1023 
   1024 	KASSERT(vp->v_data == NULL);
   1025 	KASSERT(vp->v_uobj.uo_npages == 0);
   1026 
   1027 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
   1028 		uvm_ra_freectx(vp->v_ractx);
   1029 		vp->v_ractx = NULL;
   1030 	}
   1031 
   1032 	/* Purge name cache. */
   1033 	cache_purge(vp);
   1034 
   1035 	/* Done with purge, notify sleepers of the grim news. */
   1036 	mutex_enter(vp->v_interlock);
   1037 	vp->v_op = dead_vnodeop_p;
   1038 	vp->v_tag = VT_NON;
   1039 	KNOTE(&vp->v_klist, NOTE_REVOKE);
   1040 	vp->v_iflag &= ~VI_XLOCK;
   1041 	vp->v_vflag &= ~VV_LOCKSWORK;
   1042 	if ((flags & DOCLOSE) != 0) {
   1043 		vp->v_iflag |= VI_CLEAN;
   1044 	}
   1045 	cv_broadcast(&vp->v_cv);
   1046 
   1047 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1048 }
   1049 
   1050 /*
   1051  * Recycle an unused vnode to the front of the free list.
   1052  * Release the passed interlock if the vnode will be recycled.
   1053  */
   1054 int
   1055 vrecycle(vnode_t *vp, kmutex_t *inter_lkp, struct lwp *l)
   1056 {
   1057 
   1058 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
   1059 
   1060 	mutex_enter(vp->v_interlock);
   1061 	if (vp->v_usecount != 0) {
   1062 		mutex_exit(vp->v_interlock);
   1063 		return 0;
   1064 	}
   1065 	if (inter_lkp) {
   1066 		mutex_exit(inter_lkp);
   1067 	}
   1068 	vremfree(vp);
   1069 	vp->v_usecount = 1;
   1070 	vclean(vp, DOCLOSE);
   1071 	vrelel(vp, 0);
   1072 	return 1;
   1073 }
   1074 
   1075 /*
   1076  * Eliminate all activity associated with the requested vnode
   1077  * and with all vnodes aliased to the requested vnode.
   1078  */
   1079 void
   1080 vrevoke(vnode_t *vp)
   1081 {
   1082 	vnode_t *vq, **vpp;
   1083 	enum vtype type;
   1084 	dev_t dev;
   1085 
   1086 	KASSERT(vp->v_usecount > 0);
   1087 
   1088 	mutex_enter(vp->v_interlock);
   1089 	if ((vp->v_iflag & VI_CLEAN) != 0) {
   1090 		mutex_exit(vp->v_interlock);
   1091 		return;
   1092 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
   1093 		atomic_inc_uint(&vp->v_usecount);
   1094 		vclean(vp, DOCLOSE);
   1095 		vrelel(vp, 0);
   1096 		return;
   1097 	} else {
   1098 		dev = vp->v_rdev;
   1099 		type = vp->v_type;
   1100 		mutex_exit(vp->v_interlock);
   1101 	}
   1102 
   1103 	vpp = &specfs_hash[SPECHASH(dev)];
   1104 	mutex_enter(&device_lock);
   1105 	for (vq = *vpp; vq != NULL;) {
   1106 		/* If clean or being cleaned, then ignore it. */
   1107 		mutex_enter(vq->v_interlock);
   1108 		if ((vq->v_iflag & (VI_CLEAN | VI_XLOCK)) != 0 ||
   1109 		    vq->v_type != type || vq->v_rdev != dev) {
   1110 			mutex_exit(vq->v_interlock);
   1111 			vq = vq->v_specnext;
   1112 			continue;
   1113 		}
   1114 		mutex_exit(&device_lock);
   1115 		if (vq->v_usecount == 0) {
   1116 			vremfree(vq);
   1117 			vq->v_usecount = 1;
   1118 		} else {
   1119 			atomic_inc_uint(&vq->v_usecount);
   1120 		}
   1121 		vclean(vq, DOCLOSE);
   1122 		vrelel(vq, 0);
   1123 		mutex_enter(&device_lock);
   1124 		vq = *vpp;
   1125 	}
   1126 	mutex_exit(&device_lock);
   1127 }
   1128 
   1129 /*
   1130  * Eliminate all activity associated with a vnode in preparation for
   1131  * reuse.  Drops a reference from the vnode.
   1132  */
   1133 void
   1134 vgone(vnode_t *vp)
   1135 {
   1136 
   1137 	mutex_enter(vp->v_interlock);
   1138 	vclean(vp, DOCLOSE);
   1139 	vrelel(vp, 0);
   1140 }
   1141 
   1142 /*
   1143  * Update outstanding I/O count and do wakeup if requested.
   1144  */
   1145 void
   1146 vwakeup(struct buf *bp)
   1147 {
   1148 	vnode_t *vp;
   1149 
   1150 	if ((vp = bp->b_vp) == NULL)
   1151 		return;
   1152 
   1153 	KASSERT(bp->b_objlock == vp->v_interlock);
   1154 	KASSERT(mutex_owned(bp->b_objlock));
   1155 
   1156 	if (--vp->v_numoutput < 0)
   1157 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
   1158 	if (vp->v_numoutput == 0)
   1159 		cv_broadcast(&vp->v_cv);
   1160 }
   1161 
   1162 /*
   1163  * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
   1164  * recycled.
   1165  */
   1166 void
   1167 vwait(vnode_t *vp, int flags)
   1168 {
   1169 
   1170 	KASSERT(mutex_owned(vp->v_interlock));
   1171 	KASSERT(vp->v_usecount != 0);
   1172 
   1173 	while ((vp->v_iflag & flags) != 0)
   1174 		cv_wait(&vp->v_cv, vp->v_interlock);
   1175 }
   1176 
   1177 int
   1178 vfs_drainvnodes(long target)
   1179 {
   1180 	int error;
   1181 
   1182 	mutex_enter(&vnode_free_list_lock);
   1183 
   1184 	while (numvnodes > target) {
   1185 		error = cleanvnode();
   1186 		if (error != 0)
   1187 			return error;
   1188 		mutex_enter(&vnode_free_list_lock);
   1189 	}
   1190 
   1191 	mutex_exit(&vnode_free_list_lock);
   1192 
   1193 	return 0;
   1194 }
   1195 
   1196 void
   1197 vnpanic(vnode_t *vp, const char *fmt, ...)
   1198 {
   1199 	va_list ap;
   1200 
   1201 #ifdef DIAGNOSTIC
   1202 	vprint(NULL, vp);
   1203 #endif
   1204 	va_start(ap, fmt);
   1205 	vpanic(fmt, ap);
   1206 	va_end(ap);
   1207 }
   1208