Home | History | Annotate | Line # | Download | only in kern
vfs_vnode.c revision 1.153
      1 /*	$NetBSD: vfs_vnode.c,v 1.153 2023/11/27 16:13:59 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997-2011, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     67  */
     68 
     69 /*
     70  * The vnode cache subsystem.
     71  *
     72  * Life-cycle
     73  *
     74  *	Normally, there are two points where new vnodes are created:
     75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
     76  *	starts in one of the following ways:
     77  *
     78  *	- Allocation, via vcache_get(9) or vcache_new(9).
     79  *	- Reclamation of inactive vnode, via vcache_vget(9).
     80  *
     81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
     82  *	was another, traditional way.  Currently, only the draining thread
     83  *	recycles the vnodes.  This behaviour might be revisited.
     84  *
     85  *	The life-cycle ends when the last reference is dropped, usually
     86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
     87  *	the file system that vnode is inactive.  Via this call, file system
     88  *	indicates whether vnode can be recycled (usually, it checks its own
     89  *	references, e.g. count of links, whether the file was removed).
     90  *
     91  *	Depending on indication, vnode can be put into a free list (cache),
     92  *	or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to
     93  *	disassociate underlying file system from the vnode, and finally
     94  *	destroyed.
     95  *
     96  * Vnode state
     97  *
     98  *	Vnode is always in one of six states:
     99  *	- MARKER	This is a marker vnode to help list traversal.  It
    100  *			will never change its state.
    101  *	- LOADING	Vnode is associating underlying file system and not
    102  *			yet ready to use.
    103  *	- LOADED	Vnode has associated underlying file system and is
    104  *			ready to use.
    105  *	- BLOCKED	Vnode is active but cannot get new references.
    106  *	- RECLAIMING	Vnode is disassociating from the underlying file
    107  *			system.
    108  *	- RECLAIMED	Vnode has disassociated from underlying file system
    109  *			and is dead.
    110  *
    111  *	Valid state changes are:
    112  *	LOADING -> LOADED
    113  *			Vnode has been initialised in vcache_get() or
    114  *			vcache_new() and is ready to use.
    115  *	BLOCKED -> RECLAIMING
    116  *			Vnode starts disassociation from underlying file
    117  *			system in vcache_reclaim().
    118  *	RECLAIMING -> RECLAIMED
    119  *			Vnode finished disassociation from underlying file
    120  *			system in vcache_reclaim().
    121  *	LOADED -> BLOCKED
    122  *			Either vcache_rekey*() is changing the vnode key or
    123  *			vrelel() is about to call VOP_INACTIVE().
    124  *	BLOCKED -> LOADED
    125  *			The block condition is over.
    126  *	LOADING -> RECLAIMED
    127  *			Either vcache_get() or vcache_new() failed to
    128  *			associate the underlying file system or vcache_rekey*()
    129  *			drops a vnode used as placeholder.
    130  *
    131  *	Of these states LOADING, BLOCKED and RECLAIMING are intermediate
    132  *	and it is possible to wait for state change.
    133  *
    134  *	State is protected with v_interlock with one exception:
    135  *	to change from LOADING both v_interlock and vcache_lock must be held
    136  *	so it is possible to check "state == LOADING" without holding
    137  *	v_interlock.  See vcache_get() for details.
    138  *
    139  * Reference counting
    140  *
    141  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
    142  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
    143  *	as vput(9), routines.  Common points holding references are e.g.
    144  *	file openings, current working directory, mount points, etc.
    145  *
    146  *	v_usecount is adjusted with atomic operations, however to change
    147  *	from a non-zero value to zero the interlock must also be held.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.153 2023/11/27 16:13:59 hannken Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_pax.h"
    155 #endif
    156 
    157 #include <sys/param.h>
    158 #include <sys/kernel.h>
    159 
    160 #include <sys/atomic.h>
    161 #include <sys/buf.h>
    162 #include <sys/conf.h>
    163 #include <sys/device.h>
    164 #include <sys/hash.h>
    165 #include <sys/kauth.h>
    166 #include <sys/kmem.h>
    167 #include <sys/module.h>
    168 #include <sys/mount.h>
    169 #include <sys/namei.h>
    170 #include <sys/pax.h>
    171 #include <sys/syscallargs.h>
    172 #include <sys/sysctl.h>
    173 #include <sys/systm.h>
    174 #include <sys/threadpool.h>
    175 #include <sys/vnode_impl.h>
    176 #include <sys/wapbl.h>
    177 #include <sys/fstrans.h>
    178 
    179 #include <miscfs/deadfs/deadfs.h>
    180 #include <miscfs/specfs/specdev.h>
    181 
    182 #include <uvm/uvm.h>
    183 #include <uvm/uvm_readahead.h>
    184 #include <uvm/uvm_stat.h>
    185 
    186 /* Flags to vrelel. */
    187 #define	VRELEL_ASYNC	0x0001	/* Always defer to vrele thread. */
    188 
    189 #define	LRU_VRELE	0
    190 #define	LRU_FREE	1
    191 #define	LRU_HOLD	2
    192 #define	LRU_COUNT	3
    193 
    194 /*
    195  * There are three lru lists: one holds vnodes waiting for async release,
    196  * one is for vnodes which have no buffer/page references and one for those
    197  * which do (i.e.  v_holdcnt is non-zero).  We put the lists into a single,
    198  * private cache line as vnodes migrate between them while under the same
    199  * lock (vdrain_lock).
    200  */
    201 
    202 typedef struct {
    203 	vnode_impl_t *li_marker;
    204 } lru_iter_t;
    205 
    206 u_int			numvnodes		__cacheline_aligned;
    207 static vnodelst_t	lru_list[LRU_COUNT]	__cacheline_aligned;
    208 static struct threadpool *threadpool;
    209 static struct threadpool_job vdrain_job;
    210 static struct threadpool_job vrele_job;
    211 static kmutex_t		vdrain_lock		__cacheline_aligned;
    212 SLIST_HEAD(hashhead, vnode_impl);
    213 static kmutex_t		vcache_lock		__cacheline_aligned;
    214 static kcondvar_t	vcache_cv;
    215 static u_int		vcache_hashsize;
    216 static u_long		vcache_hashmask;
    217 static struct hashhead	*vcache_hashtab;
    218 static pool_cache_t	vcache_pool;
    219 static void		lru_requeue(vnode_t *, vnodelst_t *);
    220 static vnodelst_t *	lru_which(vnode_t *);
    221 static vnode_impl_t *	lru_iter_first(int, lru_iter_t *);
    222 static vnode_impl_t *	lru_iter_next(lru_iter_t *);
    223 static void		lru_iter_release(lru_iter_t *);
    224 static vnode_impl_t *	vcache_alloc(void);
    225 static void		vcache_dealloc(vnode_impl_t *);
    226 static void		vcache_free(vnode_impl_t *);
    227 static void		vcache_init(void);
    228 static void		vcache_reinit(void);
    229 static void		vcache_reclaim(vnode_t *);
    230 static void		vrele_deferred(vnode_impl_t *);
    231 static void		vrelel(vnode_t *, int, int);
    232 static void		vnpanic(vnode_t *, const char *, ...)
    233     __printflike(2, 3);
    234 static bool		vdrain_one(u_int);
    235 static void		vdrain_task(struct threadpool_job *);
    236 static void		vrele_task(struct threadpool_job *);
    237 
    238 /* Routines having to do with the management of the vnode table. */
    239 
    240 /*
    241  * The high bit of v_usecount is a gate for vcache_tryvget().  It's set
    242  * only when the vnode state is LOADED.
    243  * The next bit of v_usecount is a flag for vrelel().  It's set
    244  * from vcache_vget() and vcache_tryvget() whenever the operation succeeds.
    245  */
    246 #define	VUSECOUNT_MASK	0x3fffffff
    247 #define	VUSECOUNT_GATE	0x80000000
    248 #define	VUSECOUNT_VGET	0x40000000
    249 
    250 /*
    251  * Return the current usecount of a vnode.
    252  */
    253 inline int
    254 vrefcnt(struct vnode *vp)
    255 {
    256 
    257 	return atomic_load_relaxed(&vp->v_usecount) & VUSECOUNT_MASK;
    258 }
    259 
    260 /* Vnode state operations and diagnostics. */
    261 
    262 #if defined(DIAGNOSTIC)
    263 
    264 #define VSTATE_VALID(state) \
    265 	((state) != VS_ACTIVE && (state) != VS_MARKER)
    266 #define VSTATE_GET(vp) \
    267 	vstate_assert_get((vp), __func__, __LINE__)
    268 #define VSTATE_CHANGE(vp, from, to) \
    269 	vstate_assert_change((vp), (from), (to), __func__, __LINE__)
    270 #define VSTATE_WAIT_STABLE(vp) \
    271 	vstate_assert_wait_stable((vp), __func__, __LINE__)
    272 
    273 void
    274 _vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
    275     bool has_lock)
    276 {
    277 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    278 	int refcnt = vrefcnt(vp);
    279 
    280 	if (!has_lock) {
    281 		enum vnode_state vstate = atomic_load_relaxed(&vip->vi_state);
    282 
    283 		if (state == VS_ACTIVE && refcnt > 0 &&
    284 		    (vstate == VS_LOADED || vstate == VS_BLOCKED))
    285 			return;
    286 		if (vstate == state)
    287 			return;
    288 		mutex_enter((vp)->v_interlock);
    289 	}
    290 
    291 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    292 
    293 	if ((state == VS_ACTIVE && refcnt > 0 &&
    294 	    (vip->vi_state == VS_LOADED || vip->vi_state == VS_BLOCKED)) ||
    295 	    vip->vi_state == state) {
    296 		if (!has_lock)
    297 			mutex_exit((vp)->v_interlock);
    298 		return;
    299 	}
    300 	vnpanic(vp, "state is %s, usecount %d, expected %s at %s:%d",
    301 	    vstate_name(vip->vi_state), refcnt,
    302 	    vstate_name(state), func, line);
    303 }
    304 
    305 static enum vnode_state
    306 vstate_assert_get(vnode_t *vp, const char *func, int line)
    307 {
    308 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    309 
    310 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    311 	if (! VSTATE_VALID(vip->vi_state))
    312 		vnpanic(vp, "state is %s at %s:%d",
    313 		    vstate_name(vip->vi_state), func, line);
    314 
    315 	return vip->vi_state;
    316 }
    317 
    318 static void
    319 vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
    320 {
    321 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    322 
    323 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    324 	if (! VSTATE_VALID(vip->vi_state))
    325 		vnpanic(vp, "state is %s at %s:%d",
    326 		    vstate_name(vip->vi_state), func, line);
    327 
    328 	while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
    329 		cv_wait(&vp->v_cv, vp->v_interlock);
    330 
    331 	if (! VSTATE_VALID(vip->vi_state))
    332 		vnpanic(vp, "state is %s at %s:%d",
    333 		    vstate_name(vip->vi_state), func, line);
    334 }
    335 
    336 static void
    337 vstate_assert_change(vnode_t *vp, enum vnode_state from, enum vnode_state to,
    338     const char *func, int line)
    339 {
    340 	bool gated = (atomic_load_relaxed(&vp->v_usecount) & VUSECOUNT_GATE);
    341 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    342 
    343 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    344 	if (from == VS_LOADING)
    345 		KASSERTMSG(mutex_owned(&vcache_lock), "at %s:%d", func, line);
    346 
    347 	if (! VSTATE_VALID(from))
    348 		vnpanic(vp, "from is %s at %s:%d",
    349 		    vstate_name(from), func, line);
    350 	if (! VSTATE_VALID(to))
    351 		vnpanic(vp, "to is %s at %s:%d",
    352 		    vstate_name(to), func, line);
    353 	if (vip->vi_state != from)
    354 		vnpanic(vp, "from is %s, expected %s at %s:%d\n",
    355 		    vstate_name(vip->vi_state), vstate_name(from), func, line);
    356 	if ((from == VS_LOADED) != gated)
    357 		vnpanic(vp, "state is %s, gate %d does not match at %s:%d\n",
    358 		    vstate_name(vip->vi_state), gated, func, line);
    359 
    360 	/* Open/close the gate for vcache_tryvget(). */
    361 	if (to == VS_LOADED) {
    362 		membar_release();
    363 		atomic_or_uint(&vp->v_usecount, VUSECOUNT_GATE);
    364 	} else {
    365 		atomic_and_uint(&vp->v_usecount, ~VUSECOUNT_GATE);
    366 	}
    367 
    368 	atomic_store_relaxed(&vip->vi_state, to);
    369 	if (from == VS_LOADING)
    370 		cv_broadcast(&vcache_cv);
    371 	if (to == VS_LOADED || to == VS_RECLAIMED)
    372 		cv_broadcast(&vp->v_cv);
    373 }
    374 
    375 #else /* defined(DIAGNOSTIC) */
    376 
    377 #define VSTATE_GET(vp) \
    378 	(VNODE_TO_VIMPL((vp))->vi_state)
    379 #define VSTATE_CHANGE(vp, from, to) \
    380 	vstate_change((vp), (from), (to))
    381 #define VSTATE_WAIT_STABLE(vp) \
    382 	vstate_wait_stable((vp))
    383 void
    384 _vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
    385     bool has_lock)
    386 {
    387 
    388 }
    389 
    390 static void
    391 vstate_wait_stable(vnode_t *vp)
    392 {
    393 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    394 
    395 	while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
    396 		cv_wait(&vp->v_cv, vp->v_interlock);
    397 }
    398 
    399 static void
    400 vstate_change(vnode_t *vp, enum vnode_state from, enum vnode_state to)
    401 {
    402 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
    403 
    404 	/* Open/close the gate for vcache_tryvget(). */
    405 	if (to == VS_LOADED) {
    406 		membar_release();
    407 		atomic_or_uint(&vp->v_usecount, VUSECOUNT_GATE);
    408 	} else {
    409 		atomic_and_uint(&vp->v_usecount, ~VUSECOUNT_GATE);
    410 	}
    411 
    412 	atomic_store_relaxed(&vip->vi_state, to);
    413 	if (from == VS_LOADING)
    414 		cv_broadcast(&vcache_cv);
    415 	if (to == VS_LOADED || to == VS_RECLAIMED)
    416 		cv_broadcast(&vp->v_cv);
    417 }
    418 
    419 #endif /* defined(DIAGNOSTIC) */
    420 
    421 void
    422 vfs_vnode_sysinit(void)
    423 {
    424 	int error __diagused, i;
    425 
    426 	dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
    427 	KASSERT(dead_rootmount != NULL);
    428 	dead_rootmount->mnt_iflag |= IMNT_MPSAFE;
    429 
    430 	mutex_init(&vdrain_lock, MUTEX_DEFAULT, IPL_NONE);
    431 	for (i = 0; i < LRU_COUNT; i++) {
    432 		TAILQ_INIT(&lru_list[i]);
    433 	}
    434 	vcache_init();
    435 
    436 	error = threadpool_get(&threadpool, PRI_NONE);
    437 	KASSERTMSG((error == 0), "threadpool_get failed: %d", error);
    438 	threadpool_job_init(&vdrain_job, vdrain_task, &vdrain_lock, "vdrain");
    439 	threadpool_job_init(&vrele_job, vrele_task, &vdrain_lock, "vrele");
    440 }
    441 
    442 /*
    443  * Allocate a new marker vnode.
    444  */
    445 vnode_t *
    446 vnalloc_marker(struct mount *mp)
    447 {
    448 	vnode_impl_t *vip;
    449 	vnode_t *vp;
    450 
    451 	vip = pool_cache_get(vcache_pool, PR_WAITOK);
    452 	memset(vip, 0, sizeof(*vip));
    453 	vp = VIMPL_TO_VNODE(vip);
    454 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
    455 	vp->v_mount = mp;
    456 	vp->v_type = VBAD;
    457 	vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    458 	klist_init(&vip->vi_klist.vk_klist);
    459 	vp->v_klist = &vip->vi_klist;
    460 	vip->vi_state = VS_MARKER;
    461 
    462 	return vp;
    463 }
    464 
    465 /*
    466  * Free a marker vnode.
    467  */
    468 void
    469 vnfree_marker(vnode_t *vp)
    470 {
    471 	vnode_impl_t *vip;
    472 
    473 	vip = VNODE_TO_VIMPL(vp);
    474 	KASSERT(vip->vi_state == VS_MARKER);
    475 	mutex_obj_free(vp->v_interlock);
    476 	uvm_obj_destroy(&vp->v_uobj, true);
    477 	klist_fini(&vip->vi_klist.vk_klist);
    478 	pool_cache_put(vcache_pool, vip);
    479 }
    480 
    481 /*
    482  * Test a vnode for being a marker vnode.
    483  */
    484 bool
    485 vnis_marker(vnode_t *vp)
    486 {
    487 
    488 	return (VNODE_TO_VIMPL(vp)->vi_state == VS_MARKER);
    489 }
    490 
    491 /*
    492  * Return the lru list this node should be on.
    493  */
    494 static vnodelst_t *
    495 lru_which(vnode_t *vp)
    496 {
    497 
    498 	KASSERT(mutex_owned(vp->v_interlock));
    499 
    500 	if (vp->v_holdcnt > 0)
    501 		return &lru_list[LRU_HOLD];
    502 	else
    503 		return &lru_list[LRU_FREE];
    504 }
    505 
    506 /*
    507  * Put vnode to end of given list.
    508  * Both the current and the new list may be NULL, used on vnode alloc/free.
    509  * Adjust numvnodes and signal vdrain thread if there is work.
    510  */
    511 static void
    512 lru_requeue(vnode_t *vp, vnodelst_t *listhd)
    513 {
    514 	vnode_impl_t *vip;
    515 	int d;
    516 
    517 	/*
    518 	 * If the vnode is on the correct list, and was put there recently,
    519 	 * then leave it be, thus avoiding huge cache and lock contention.
    520 	 */
    521 	vip = VNODE_TO_VIMPL(vp);
    522 	if (listhd == vip->vi_lrulisthd &&
    523 	    (getticks() - vip->vi_lrulisttm) < hz) {
    524 	    	return;
    525 	}
    526 
    527 	mutex_enter(&vdrain_lock);
    528 	d = 0;
    529 	if (vip->vi_lrulisthd != NULL)
    530 		TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
    531 	else
    532 		d++;
    533 	vip->vi_lrulisthd = listhd;
    534 	vip->vi_lrulisttm = getticks();
    535 	if (vip->vi_lrulisthd != NULL)
    536 		TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
    537 	else
    538 		d--;
    539 	if (d != 0) {
    540 		/*
    541 		 * Looks strange?  This is not a bug.  Don't store
    542 		 * numvnodes unless there is a change - avoid false
    543 		 * sharing on MP.
    544 		 */
    545 		numvnodes += d;
    546 	}
    547 	if (listhd == &lru_list[LRU_VRELE])
    548 		threadpool_schedule_job(threadpool, &vrele_job);
    549 	if (d > 0 && numvnodes > desiredvnodes)
    550 		threadpool_schedule_job(threadpool, &vdrain_job);
    551 	if (d > 0 && numvnodes > desiredvnodes + desiredvnodes / 16)
    552 		kpause("vnfull", false, MAX(1, mstohz(10)), &vdrain_lock);
    553 	mutex_exit(&vdrain_lock);
    554 }
    555 
    556 /*
    557  * LRU list iterator.
    558  * Caller holds vdrain_lock.
    559  */
    560 static vnode_impl_t *
    561 lru_iter_first(int idx, lru_iter_t *iterp)
    562 {
    563 	vnode_impl_t *marker;
    564 
    565 	KASSERT(mutex_owned(&vdrain_lock));
    566 
    567 	mutex_exit(&vdrain_lock);
    568 	marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
    569 	mutex_enter(&vdrain_lock);
    570 	marker->vi_lrulisthd = &lru_list[idx];
    571 	iterp->li_marker = marker;
    572 
    573 	TAILQ_INSERT_HEAD(marker->vi_lrulisthd, marker, vi_lrulist);
    574 
    575 	return lru_iter_next(iterp);
    576 }
    577 
    578 static vnode_impl_t *
    579 lru_iter_next(lru_iter_t *iter)
    580 {
    581 	vnode_impl_t *vip, *marker;
    582 	vnodelst_t *listhd;
    583 
    584 	KASSERT(mutex_owned(&vdrain_lock));
    585 
    586 	marker = iter->li_marker;
    587 	listhd = marker->vi_lrulisthd;
    588 
    589 	while ((vip = TAILQ_NEXT(marker, vi_lrulist))) {
    590 		TAILQ_REMOVE(listhd, marker, vi_lrulist);
    591 		TAILQ_INSERT_AFTER(listhd, vip, marker, vi_lrulist);
    592 		if (!vnis_marker(VIMPL_TO_VNODE(vip)))
    593 			break;
    594 	}
    595 
    596 	return vip;
    597 }
    598 
    599 static void
    600 lru_iter_release(lru_iter_t *iter)
    601 {
    602 	vnode_impl_t *marker;
    603 
    604 	KASSERT(mutex_owned(&vdrain_lock));
    605 
    606 	marker = iter->li_marker;
    607 	TAILQ_REMOVE(marker->vi_lrulisthd, marker, vi_lrulist);
    608 
    609 	mutex_exit(&vdrain_lock);
    610 	vnfree_marker(VIMPL_TO_VNODE(marker));
    611 	mutex_enter(&vdrain_lock);
    612 }
    613 
    614 /*
    615  * Release deferred vrele vnodes for this mount.
    616  * Called with file system suspended.
    617  */
    618 void
    619 vrele_flush(struct mount *mp)
    620 {
    621 	lru_iter_t iter;
    622 	vnode_impl_t *vip;
    623 
    624 	KASSERT(fstrans_is_owner(mp));
    625 
    626 	mutex_enter(&vdrain_lock);
    627 	for (vip = lru_iter_first(LRU_VRELE, &iter); vip != NULL;
    628 	    vip = lru_iter_next(&iter)) {
    629 		if (VIMPL_TO_VNODE(vip)->v_mount != mp)
    630 			continue;
    631 		vrele_deferred(vip);
    632 	}
    633 	lru_iter_release(&iter);
    634 	mutex_exit(&vdrain_lock);
    635 }
    636 
    637 /*
    638  * One pass through the LRU lists to keep the number of allocated
    639  * vnodes below target.  Returns true if target met.
    640  */
    641 static bool
    642 vdrain_one(u_int target)
    643 {
    644 	int ix, lists[] = { LRU_FREE, LRU_HOLD };
    645 	lru_iter_t iter;
    646 	vnode_impl_t *vip;
    647 	vnode_t *vp;
    648 	struct mount *mp;
    649 
    650 	KASSERT(mutex_owned(&vdrain_lock));
    651 
    652 	for (ix = 0; ix < __arraycount(lists); ix++) {
    653 		for (vip = lru_iter_first(lists[ix], &iter); vip != NULL;
    654 		    vip = lru_iter_next(&iter)) {
    655 			if (numvnodes < target) {
    656 				lru_iter_release(&iter);
    657 				return true;
    658 			}
    659 
    660 			vp = VIMPL_TO_VNODE(vip);
    661 
    662 			/* Probe usecount (unlocked). */
    663 			if (vrefcnt(vp) > 0)
    664 				continue;
    665 			/* Try v_interlock -- we lock the wrong direction! */
    666 			if (!mutex_tryenter(vp->v_interlock))
    667 				continue;
    668 			/* Probe usecount and state. */
    669 			if (vrefcnt(vp) > 0 || VSTATE_GET(vp) != VS_LOADED) {
    670 				mutex_exit(vp->v_interlock);
    671 				continue;
    672 			}
    673 			mutex_exit(&vdrain_lock);
    674 
    675 			mp = vp->v_mount;
    676 			if (fstrans_start_nowait(mp) != 0) {
    677 				mutex_exit(vp->v_interlock);
    678 				mutex_enter(&vdrain_lock);
    679 				continue;
    680 			}
    681 
    682 			if (vcache_vget(vp) == 0) {
    683 				if (!vrecycle(vp)) {
    684 					vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    685 					mutex_enter(vp->v_interlock);
    686 					vrelel(vp, 0, LK_EXCLUSIVE);
    687 				}
    688 			}
    689 			fstrans_done(mp);
    690 
    691 			mutex_enter(&vdrain_lock);
    692 		}
    693 		lru_iter_release(&iter);
    694 	}
    695 
    696 	return false;
    697 }
    698 
    699 /*
    700  * threadpool task to keep the number of vnodes below desiredvnodes.
    701  */
    702 static void
    703 vdrain_task(struct threadpool_job *job)
    704 {
    705 	u_int target;
    706 
    707 	target = desiredvnodes - desiredvnodes / 16;
    708 
    709 	mutex_enter(&vdrain_lock);
    710 
    711 	while (!vdrain_one(target))
    712 		kpause("vdrain", false, 1, &vdrain_lock);
    713 
    714 	threadpool_job_done(job);
    715 	mutex_exit(&vdrain_lock);
    716 }
    717 
    718 /*
    719  * threadpool task to process asynchronous vrele.
    720  */
    721 static void
    722 vrele_task(struct threadpool_job *job)
    723 {
    724 	int skipped;
    725 	lru_iter_t iter;
    726 	vnode_impl_t *vip;
    727 	struct mount *mp;
    728 
    729 	mutex_enter(&vdrain_lock);
    730 	while ((vip = lru_iter_first(LRU_VRELE, &iter)) != NULL) {
    731 		for (skipped = 0; vip != NULL; vip = lru_iter_next(&iter)) {
    732 			mp = VIMPL_TO_VNODE(vip)->v_mount;
    733 			if (fstrans_start_nowait(mp) == 0) {
    734 				vrele_deferred(vip);
    735 				fstrans_done(mp);
    736 			} else {
    737 				skipped++;
    738 			}
    739 		}
    740 
    741 		lru_iter_release(&iter);
    742 		if (skipped)
    743 			kpause("vrele", false, MAX(1, mstohz(10)), &vdrain_lock);
    744 	}
    745 
    746 	threadpool_job_done(job);
    747 	lru_iter_release(&iter);
    748 	mutex_exit(&vdrain_lock);
    749 }
    750 
    751 /*
    752  * Try to drop reference on a vnode.  Abort if we are releasing the
    753  * last reference.  Note: this _must_ succeed if not the last reference.
    754  */
    755 static bool
    756 vtryrele(vnode_t *vp)
    757 {
    758 	u_int use, next;
    759 
    760 	membar_release();
    761 	for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
    762 		if (__predict_false((use & VUSECOUNT_MASK) == 1)) {
    763 			return false;
    764 		}
    765 		KASSERT((use & VUSECOUNT_MASK) > 1);
    766 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
    767 		if (__predict_true(next == use)) {
    768 			return true;
    769 		}
    770 	}
    771 }
    772 
    773 /*
    774  * vput: unlock and release the reference.
    775  */
    776 void
    777 vput(vnode_t *vp)
    778 {
    779 	int lktype;
    780 
    781 	/*
    782 	 * Do an unlocked check of the usecount.  If it looks like we're not
    783 	 * about to drop the last reference, then unlock the vnode and try
    784 	 * to drop the reference.  If it ends up being the last reference
    785 	 * after all, vrelel() can fix it all up.  Most of the time this
    786 	 * will all go to plan.
    787 	 */
    788 	if (vrefcnt(vp) > 1) {
    789 		VOP_UNLOCK(vp);
    790 		if (vtryrele(vp)) {
    791 			return;
    792 		}
    793 		lktype = LK_NONE;
    794 	} else {
    795 		lktype = VOP_ISLOCKED(vp);
    796 		KASSERT(lktype != LK_NONE);
    797 	}
    798 	mutex_enter(vp->v_interlock);
    799 	vrelel(vp, 0, lktype);
    800 }
    801 
    802 /*
    803  * Release a vnode from the deferred list.
    804  */
    805 static void
    806 vrele_deferred(vnode_impl_t *vip)
    807 {
    808 	vnode_t *vp;
    809 
    810 	KASSERT(mutex_owned(&vdrain_lock));
    811 	KASSERT(vip->vi_lrulisthd == &lru_list[LRU_VRELE]);
    812 
    813 	vp = VIMPL_TO_VNODE(vip);
    814 
    815 	/*
    816 	 * First remove the vnode from the vrele list.
    817 	 * Put it on the last lru list, the last vrele()
    818 	 * will put it back onto the right list before
    819 	 * its usecount reaches zero.
    820 	 */
    821 	TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
    822 	vip->vi_lrulisthd = &lru_list[LRU_HOLD];
    823 	vip->vi_lrulisttm = getticks();
    824 	TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
    825 
    826 	mutex_exit(&vdrain_lock);
    827 
    828 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    829 	mutex_enter(vp->v_interlock);
    830 	vrelel(vp, 0, LK_EXCLUSIVE);
    831 
    832 	mutex_enter(&vdrain_lock);
    833 }
    834 
    835 /*
    836  * Vnode release.  If reference count drops to zero, call inactive
    837  * routine and either return to freelist or free to the pool.
    838  */
    839 static void
    840 vrelel(vnode_t *vp, int flags, int lktype)
    841 {
    842 	const bool async = ((flags & VRELEL_ASYNC) != 0);
    843 	bool recycle, defer, objlock_held;
    844 	u_int use, next;
    845 	int error;
    846 
    847 	objlock_held = false;
    848 
    849 retry:
    850 	KASSERT(mutex_owned(vp->v_interlock));
    851 
    852 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
    853 	    VSTATE_GET(vp) != VS_RECLAIMED)) {
    854 		vnpanic(vp, "dead but not clean");
    855 	}
    856 
    857 	/*
    858 	 * If not the last reference, just unlock and drop the reference count.
    859 	 *
    860 	 * Otherwise make sure we pass a point in time where we hold the
    861 	 * last reference with VGET flag unset.
    862 	 */
    863 	for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
    864 		if (__predict_false((use & VUSECOUNT_MASK) > 1)) {
    865 			if (objlock_held) {
    866 				objlock_held = false;
    867 				rw_exit(vp->v_uobj.vmobjlock);
    868 			}
    869 			if (lktype != LK_NONE) {
    870 				mutex_exit(vp->v_interlock);
    871 				lktype = LK_NONE;
    872 				VOP_UNLOCK(vp);
    873 				mutex_enter(vp->v_interlock);
    874 			}
    875 			if (vtryrele(vp)) {
    876 				mutex_exit(vp->v_interlock);
    877 				return;
    878 			}
    879 			next = atomic_load_relaxed(&vp->v_usecount);
    880 			continue;
    881 		}
    882 		KASSERT((use & VUSECOUNT_MASK) == 1);
    883 		next = use & ~VUSECOUNT_VGET;
    884 		if (next != use) {
    885 			next = atomic_cas_uint(&vp->v_usecount, use, next);
    886 		}
    887 		if (__predict_true(next == use)) {
    888 			break;
    889 		}
    890 	}
    891 	membar_acquire();
    892 	if (vrefcnt(vp) <= 0 || vp->v_writecount != 0) {
    893 		vnpanic(vp, "%s: bad ref count", __func__);
    894 	}
    895 
    896 #ifdef DIAGNOSTIC
    897 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
    898 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
    899 		vprint("vrelel: missing VOP_CLOSE()", vp);
    900 	}
    901 #endif
    902 
    903 	/*
    904 	 * If already clean there is no need to lock, defer or
    905 	 * deactivate this node.
    906 	 */
    907 	if (VSTATE_GET(vp) == VS_RECLAIMED) {
    908 		if (objlock_held) {
    909 			objlock_held = false;
    910 			rw_exit(vp->v_uobj.vmobjlock);
    911 		}
    912 		if (lktype != LK_NONE) {
    913 			mutex_exit(vp->v_interlock);
    914 			lktype = LK_NONE;
    915 			VOP_UNLOCK(vp);
    916 			mutex_enter(vp->v_interlock);
    917 		}
    918 		goto out;
    919 	}
    920 
    921 	/*
    922 	 * First try to get the vnode locked for VOP_INACTIVE().
    923 	 * Defer vnode release to vrele task if caller requests
    924 	 * it explicitly, is the pagedaemon or the lock failed.
    925 	 */
    926 	defer = false;
    927 	if ((curlwp == uvm.pagedaemon_lwp) || async) {
    928 		defer = true;
    929 	} else if (lktype == LK_SHARED) {
    930 		/* Excellent chance of getting, if the last ref. */
    931 		error = vn_lock(vp, LK_UPGRADE | LK_RETRY | LK_NOWAIT);
    932 		if (error != 0) {
    933 			defer = true;
    934 		} else {
    935 			lktype = LK_EXCLUSIVE;
    936 		}
    937 	} else if (lktype == LK_NONE) {
    938 		/* Excellent chance of getting, if the last ref. */
    939 		error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
    940 		if (error != 0) {
    941 			defer = true;
    942 		} else {
    943 			lktype = LK_EXCLUSIVE;
    944 		}
    945 	}
    946 	KASSERT(mutex_owned(vp->v_interlock));
    947 	if (defer) {
    948 		/*
    949 		 * Defer reclaim to the vrele task; it's not safe to
    950 		 * clean it here.  We donate it our last reference.
    951 		 */
    952 		if (lktype != LK_NONE) {
    953 			mutex_exit(vp->v_interlock);
    954 			VOP_UNLOCK(vp);
    955 			mutex_enter(vp->v_interlock);
    956 		}
    957 		lru_requeue(vp, &lru_list[LRU_VRELE]);
    958 		mutex_exit(vp->v_interlock);
    959 		return;
    960 	}
    961 	KASSERT(lktype == LK_EXCLUSIVE);
    962 
    963 	/* If the node gained another reference, retry. */
    964 	use = atomic_load_relaxed(&vp->v_usecount);
    965 	if ((use & VUSECOUNT_VGET) != 0) {
    966 		goto retry;
    967 	}
    968 	KASSERT((use & VUSECOUNT_MASK) == 1);
    969 
    970 	if ((vp->v_iflag & (VI_TEXT|VI_EXECMAP|VI_WRMAP)) != 0 ||
    971 	    (vp->v_vflag & VV_MAPPED) != 0) {
    972 		/* Take care of space accounting. */
    973 		if (!objlock_held) {
    974 			objlock_held = true;
    975 			if (!rw_tryenter(vp->v_uobj.vmobjlock, RW_WRITER)) {
    976 				mutex_exit(vp->v_interlock);
    977 				rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
    978 				mutex_enter(vp->v_interlock);
    979 				goto retry;
    980 			}
    981 		}
    982 		if ((vp->v_iflag & VI_EXECMAP) != 0) {
    983 			cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
    984 		}
    985 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
    986 		vp->v_vflag &= ~VV_MAPPED;
    987 	}
    988 	if (objlock_held) {
    989 		objlock_held = false;
    990 		rw_exit(vp->v_uobj.vmobjlock);
    991 	}
    992 
    993 	/*
    994 	 * Deactivate the vnode, but preserve our reference across
    995 	 * the call to VOP_INACTIVE().
    996 	 *
    997 	 * If VOP_INACTIVE() indicates that the file has been
    998 	 * deleted, then recycle the vnode.
    999 	 *
   1000 	 * Note that VOP_INACTIVE() will not drop the vnode lock.
   1001 	 */
   1002 	mutex_exit(vp->v_interlock);
   1003 	recycle = false;
   1004 	VOP_INACTIVE(vp, &recycle);
   1005 	if (!recycle) {
   1006 		lktype = LK_NONE;
   1007 		VOP_UNLOCK(vp);
   1008 	}
   1009 	mutex_enter(vp->v_interlock);
   1010 
   1011 	/*
   1012 	 * Block new references then check again to see if a
   1013 	 * new reference was acquired in the meantime.  If
   1014 	 * it was, restore the vnode state and try again.
   1015 	 */
   1016 	if (recycle) {
   1017 		VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
   1018 		use = atomic_load_relaxed(&vp->v_usecount);
   1019 		if ((use & VUSECOUNT_VGET) != 0) {
   1020 			VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
   1021 			goto retry;
   1022 		}
   1023 		KASSERT((use & VUSECOUNT_MASK) == 1);
   1024 	}
   1025 
   1026 	/*
   1027 	 * Recycle the vnode if the file is now unused (unlinked).
   1028 	 */
   1029 	if (recycle) {
   1030 		VSTATE_ASSERT(vp, VS_BLOCKED);
   1031 		KASSERT(lktype == LK_EXCLUSIVE);
   1032 		/* vcache_reclaim drops the lock. */
   1033 		lktype = LK_NONE;
   1034 		vcache_reclaim(vp);
   1035 	}
   1036 	KASSERT(vrefcnt(vp) > 0);
   1037 	KASSERT(lktype == LK_NONE);
   1038 
   1039 out:
   1040 	for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
   1041 		if (__predict_false((use & VUSECOUNT_VGET) != 0 &&
   1042 		    (use & VUSECOUNT_MASK) == 1)) {
   1043 			/* Gained and released another reference, retry. */
   1044 			goto retry;
   1045 		}
   1046 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
   1047 		if (__predict_true(next == use)) {
   1048 			if (__predict_false((use & VUSECOUNT_MASK) != 1)) {
   1049 				/* Gained another reference. */
   1050 				mutex_exit(vp->v_interlock);
   1051 				return;
   1052 			}
   1053 			break;
   1054 		}
   1055 	}
   1056 	membar_acquire();
   1057 
   1058 	if (VSTATE_GET(vp) == VS_RECLAIMED && vp->v_holdcnt == 0) {
   1059 		/*
   1060 		 * It's clean so destroy it.  It isn't referenced
   1061 		 * anywhere since it has been reclaimed.
   1062 		 */
   1063 		vcache_free(VNODE_TO_VIMPL(vp));
   1064 	} else {
   1065 		/*
   1066 		 * Otherwise, put it back onto the freelist.  It
   1067 		 * can't be destroyed while still associated with
   1068 		 * a file system.
   1069 		 */
   1070 		lru_requeue(vp, lru_which(vp));
   1071 		mutex_exit(vp->v_interlock);
   1072 	}
   1073 }
   1074 
   1075 void
   1076 vrele(vnode_t *vp)
   1077 {
   1078 
   1079 	if (vtryrele(vp)) {
   1080 		return;
   1081 	}
   1082 	mutex_enter(vp->v_interlock);
   1083 	vrelel(vp, 0, LK_NONE);
   1084 }
   1085 
   1086 /*
   1087  * Asynchronous vnode release, vnode is released in different context.
   1088  */
   1089 void
   1090 vrele_async(vnode_t *vp)
   1091 {
   1092 
   1093 	if (vtryrele(vp)) {
   1094 		return;
   1095 	}
   1096 	mutex_enter(vp->v_interlock);
   1097 	vrelel(vp, VRELEL_ASYNC, LK_NONE);
   1098 }
   1099 
   1100 /*
   1101  * Vnode reference, where a reference is already held by some other
   1102  * object (for example, a file structure).
   1103  *
   1104  * NB: lockless code sequences may rely on this not blocking.
   1105  */
   1106 void
   1107 vref(vnode_t *vp)
   1108 {
   1109 
   1110 	KASSERT(vrefcnt(vp) > 0);
   1111 
   1112 	atomic_inc_uint(&vp->v_usecount);
   1113 }
   1114 
   1115 /*
   1116  * Page or buffer structure gets a reference.
   1117  * Called with v_interlock held.
   1118  */
   1119 void
   1120 vholdl(vnode_t *vp)
   1121 {
   1122 
   1123 	KASSERT(mutex_owned(vp->v_interlock));
   1124 
   1125 	if (vp->v_holdcnt++ == 0 && vrefcnt(vp) == 0)
   1126 		lru_requeue(vp, lru_which(vp));
   1127 }
   1128 
   1129 /*
   1130  * Page or buffer structure gets a reference.
   1131  */
   1132 void
   1133 vhold(vnode_t *vp)
   1134 {
   1135 
   1136 	mutex_enter(vp->v_interlock);
   1137 	vholdl(vp);
   1138 	mutex_exit(vp->v_interlock);
   1139 }
   1140 
   1141 /*
   1142  * Page or buffer structure frees a reference.
   1143  * Called with v_interlock held.
   1144  */
   1145 void
   1146 holdrelel(vnode_t *vp)
   1147 {
   1148 
   1149 	KASSERT(mutex_owned(vp->v_interlock));
   1150 
   1151 	if (vp->v_holdcnt <= 0) {
   1152 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
   1153 	}
   1154 
   1155 	vp->v_holdcnt--;
   1156 	if (vp->v_holdcnt == 0 && vrefcnt(vp) == 0)
   1157 		lru_requeue(vp, lru_which(vp));
   1158 }
   1159 
   1160 /*
   1161  * Page or buffer structure frees a reference.
   1162  */
   1163 void
   1164 holdrele(vnode_t *vp)
   1165 {
   1166 
   1167 	mutex_enter(vp->v_interlock);
   1168 	holdrelel(vp);
   1169 	mutex_exit(vp->v_interlock);
   1170 }
   1171 
   1172 /*
   1173  * Recycle an unused vnode if caller holds the last reference.
   1174  */
   1175 bool
   1176 vrecycle(vnode_t *vp)
   1177 {
   1178 	int error __diagused;
   1179 
   1180 	mutex_enter(vp->v_interlock);
   1181 
   1182 	/* If the vnode is already clean we're done. */
   1183 	VSTATE_WAIT_STABLE(vp);
   1184 	if (VSTATE_GET(vp) != VS_LOADED) {
   1185 		VSTATE_ASSERT(vp, VS_RECLAIMED);
   1186 		vrelel(vp, 0, LK_NONE);
   1187 		return true;
   1188 	}
   1189 
   1190 	/* Prevent further references until the vnode is locked. */
   1191 	VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
   1192 
   1193 	/* Make sure we hold the last reference. */
   1194 	if (vrefcnt(vp) != 1) {
   1195 		VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
   1196 		mutex_exit(vp->v_interlock);
   1197 		return false;
   1198 	}
   1199 
   1200 	mutex_exit(vp->v_interlock);
   1201 
   1202 	/*
   1203 	 * On a leaf file system this lock will always succeed as we hold
   1204 	 * the last reference and prevent further references.
   1205 	 * On layered file systems waiting for the lock would open a can of
   1206 	 * deadlocks as the lower vnodes may have other active references.
   1207 	 */
   1208 	error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
   1209 
   1210 	mutex_enter(vp->v_interlock);
   1211 	if (error) {
   1212 		VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
   1213 		mutex_exit(vp->v_interlock);
   1214 		return false;
   1215 	}
   1216 
   1217 	KASSERT(vrefcnt(vp) == 1);
   1218 	vcache_reclaim(vp);
   1219 	vrelel(vp, 0, LK_NONE);
   1220 
   1221 	return true;
   1222 }
   1223 
   1224 /*
   1225  * Helper for vrevoke() to propagate suspension from lastmp
   1226  * to thismp.  Both args may be NULL.
   1227  * Returns the currently suspended file system or NULL.
   1228  */
   1229 static struct mount *
   1230 vrevoke_suspend_next(struct mount *lastmp, struct mount *thismp)
   1231 {
   1232 	int error;
   1233 
   1234 	if (lastmp == thismp)
   1235 		return thismp;
   1236 
   1237 	if (lastmp != NULL)
   1238 		vfs_resume(lastmp);
   1239 
   1240 	if (thismp == NULL)
   1241 		return NULL;
   1242 
   1243 	do {
   1244 		error = vfs_suspend(thismp, 0);
   1245 	} while (error == EINTR || error == ERESTART);
   1246 
   1247 	if (error == 0)
   1248 		return thismp;
   1249 
   1250 	KASSERT(error == EOPNOTSUPP || error == ENOENT);
   1251 	return NULL;
   1252 }
   1253 
   1254 /*
   1255  * Eliminate all activity associated with the requested vnode
   1256  * and with all vnodes aliased to the requested vnode.
   1257  */
   1258 void
   1259 vrevoke(vnode_t *vp)
   1260 {
   1261 	struct mount *mp;
   1262 	vnode_t *vq;
   1263 	enum vtype type;
   1264 	dev_t dev;
   1265 
   1266 	KASSERT(vrefcnt(vp) > 0);
   1267 
   1268 	mp = vrevoke_suspend_next(NULL, vp->v_mount);
   1269 
   1270 	mutex_enter(vp->v_interlock);
   1271 	VSTATE_WAIT_STABLE(vp);
   1272 	if (VSTATE_GET(vp) == VS_RECLAIMED) {
   1273 		mutex_exit(vp->v_interlock);
   1274 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
   1275 		atomic_inc_uint(&vp->v_usecount);
   1276 		mutex_exit(vp->v_interlock);
   1277 		vgone(vp);
   1278 	} else {
   1279 		dev = vp->v_rdev;
   1280 		type = vp->v_type;
   1281 		mutex_exit(vp->v_interlock);
   1282 
   1283 		while (spec_node_lookup_by_dev(type, dev, VDEAD_NOWAIT, &vq)
   1284 		    == 0) {
   1285 			mp = vrevoke_suspend_next(mp, vq->v_mount);
   1286 			vgone(vq);
   1287 		}
   1288 	}
   1289 	vrevoke_suspend_next(mp, NULL);
   1290 }
   1291 
   1292 /*
   1293  * Eliminate all activity associated with a vnode in preparation for
   1294  * reuse.  Drops a reference from the vnode.
   1295  */
   1296 void
   1297 vgone(vnode_t *vp)
   1298 {
   1299 	int lktype;
   1300 
   1301 	KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
   1302 
   1303 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
   1304 	lktype = LK_EXCLUSIVE;
   1305 	mutex_enter(vp->v_interlock);
   1306 	VSTATE_WAIT_STABLE(vp);
   1307 	if (VSTATE_GET(vp) == VS_LOADED) {
   1308 		VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
   1309 		vcache_reclaim(vp);
   1310 		lktype = LK_NONE;
   1311 	}
   1312 	VSTATE_ASSERT(vp, VS_RECLAIMED);
   1313 	vrelel(vp, 0, lktype);
   1314 }
   1315 
   1316 static inline uint32_t
   1317 vcache_hash(const struct vcache_key *key)
   1318 {
   1319 	uint32_t hash = HASH32_BUF_INIT;
   1320 
   1321 	KASSERT(key->vk_key_len > 0);
   1322 
   1323 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
   1324 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
   1325 	return hash;
   1326 }
   1327 
   1328 static int
   1329 vcache_stats(struct hashstat_sysctl *hs, bool fill)
   1330 {
   1331 	vnode_impl_t *vip;
   1332 	uint64_t chain;
   1333 
   1334 	strlcpy(hs->hash_name, "vcache", sizeof(hs->hash_name));
   1335 	strlcpy(hs->hash_desc, "vnode cache hash", sizeof(hs->hash_desc));
   1336 	if (!fill)
   1337 		return 0;
   1338 
   1339 	hs->hash_size = vcache_hashmask + 1;
   1340 
   1341 	for (size_t i = 0; i < hs->hash_size; i++) {
   1342 		chain = 0;
   1343 		mutex_enter(&vcache_lock);
   1344 		SLIST_FOREACH(vip, &vcache_hashtab[i], vi_hash) {
   1345 			chain++;
   1346 		}
   1347 		mutex_exit(&vcache_lock);
   1348 		if (chain > 0) {
   1349 			hs->hash_used++;
   1350 			hs->hash_items += chain;
   1351 			if (chain > hs->hash_maxchain)
   1352 				hs->hash_maxchain = chain;
   1353 		}
   1354 		preempt_point();
   1355 	}
   1356 
   1357 	return 0;
   1358 }
   1359 
   1360 static void
   1361 vcache_init(void)
   1362 {
   1363 
   1364 	vcache_pool = pool_cache_init(sizeof(vnode_impl_t), coherency_unit,
   1365 	    0, 0, "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
   1366 	KASSERT(vcache_pool != NULL);
   1367 	mutex_init(&vcache_lock, MUTEX_DEFAULT, IPL_NONE);
   1368 	cv_init(&vcache_cv, "vcache");
   1369 	vcache_hashsize = desiredvnodes;
   1370 	vcache_hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
   1371 	    &vcache_hashmask);
   1372 	hashstat_register("vcache", vcache_stats);
   1373 }
   1374 
   1375 static void
   1376 vcache_reinit(void)
   1377 {
   1378 	int i;
   1379 	uint32_t hash;
   1380 	u_long oldmask, newmask;
   1381 	struct hashhead *oldtab, *newtab;
   1382 	vnode_impl_t *vip;
   1383 
   1384 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
   1385 	mutex_enter(&vcache_lock);
   1386 	oldtab = vcache_hashtab;
   1387 	oldmask = vcache_hashmask;
   1388 	vcache_hashsize = desiredvnodes;
   1389 	vcache_hashtab = newtab;
   1390 	vcache_hashmask = newmask;
   1391 	for (i = 0; i <= oldmask; i++) {
   1392 		while ((vip = SLIST_FIRST(&oldtab[i])) != NULL) {
   1393 			SLIST_REMOVE(&oldtab[i], vip, vnode_impl, vi_hash);
   1394 			hash = vcache_hash(&vip->vi_key);
   1395 			SLIST_INSERT_HEAD(&newtab[hash & vcache_hashmask],
   1396 			    vip, vi_hash);
   1397 		}
   1398 	}
   1399 	mutex_exit(&vcache_lock);
   1400 	hashdone(oldtab, HASH_SLIST, oldmask);
   1401 }
   1402 
   1403 static inline vnode_impl_t *
   1404 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
   1405 {
   1406 	struct hashhead *hashp;
   1407 	vnode_impl_t *vip;
   1408 
   1409 	KASSERT(mutex_owned(&vcache_lock));
   1410 
   1411 	hashp = &vcache_hashtab[hash & vcache_hashmask];
   1412 	SLIST_FOREACH(vip, hashp, vi_hash) {
   1413 		if (key->vk_mount != vip->vi_key.vk_mount)
   1414 			continue;
   1415 		if (key->vk_key_len != vip->vi_key.vk_key_len)
   1416 			continue;
   1417 		if (memcmp(key->vk_key, vip->vi_key.vk_key, key->vk_key_len))
   1418 			continue;
   1419 		return vip;
   1420 	}
   1421 	return NULL;
   1422 }
   1423 
   1424 /*
   1425  * Allocate a new, uninitialized vcache node.
   1426  */
   1427 static vnode_impl_t *
   1428 vcache_alloc(void)
   1429 {
   1430 	vnode_impl_t *vip;
   1431 	vnode_t *vp;
   1432 
   1433 	vip = pool_cache_get(vcache_pool, PR_WAITOK);
   1434 	vp = VIMPL_TO_VNODE(vip);
   1435 	memset(vip, 0, sizeof(*vip));
   1436 
   1437 	rw_init(&vip->vi_lock);
   1438 	vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   1439 
   1440 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
   1441 	klist_init(&vip->vi_klist.vk_klist);
   1442 	vp->v_klist = &vip->vi_klist;
   1443 	cv_init(&vp->v_cv, "vnode");
   1444 	cache_vnode_init(vp);
   1445 
   1446 	vp->v_usecount = 1;
   1447 	vp->v_type = VNON;
   1448 	vp->v_size = vp->v_writesize = VSIZENOTSET;
   1449 
   1450 	vip->vi_state = VS_LOADING;
   1451 
   1452 	lru_requeue(vp, &lru_list[LRU_FREE]);
   1453 
   1454 	return vip;
   1455 }
   1456 
   1457 /*
   1458  * Deallocate a vcache node in state VS_LOADING.
   1459  *
   1460  * vcache_lock held on entry and released on return.
   1461  */
   1462 static void
   1463 vcache_dealloc(vnode_impl_t *vip)
   1464 {
   1465 	vnode_t *vp;
   1466 
   1467 	KASSERT(mutex_owned(&vcache_lock));
   1468 
   1469 	vp = VIMPL_TO_VNODE(vip);
   1470 	vfs_ref(dead_rootmount);
   1471 	vfs_insmntque(vp, dead_rootmount);
   1472 	mutex_enter(vp->v_interlock);
   1473 	vp->v_op = dead_vnodeop_p;
   1474 	VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
   1475 	mutex_exit(&vcache_lock);
   1476 	vrelel(vp, 0, LK_NONE);
   1477 }
   1478 
   1479 /*
   1480  * Free an unused, unreferenced vcache node.
   1481  * v_interlock locked on entry.
   1482  */
   1483 static void
   1484 vcache_free(vnode_impl_t *vip)
   1485 {
   1486 	vnode_t *vp;
   1487 
   1488 	vp = VIMPL_TO_VNODE(vip);
   1489 	KASSERT(mutex_owned(vp->v_interlock));
   1490 
   1491 	KASSERT(vrefcnt(vp) == 0);
   1492 	KASSERT(vp->v_holdcnt == 0);
   1493 	KASSERT(vp->v_writecount == 0);
   1494 	lru_requeue(vp, NULL);
   1495 	mutex_exit(vp->v_interlock);
   1496 
   1497 	vfs_insmntque(vp, NULL);
   1498 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1499 		spec_node_destroy(vp);
   1500 
   1501 	mutex_obj_free(vp->v_interlock);
   1502 	rw_destroy(&vip->vi_lock);
   1503 	uvm_obj_destroy(&vp->v_uobj, true);
   1504 	KASSERT(vp->v_klist == &vip->vi_klist);
   1505 	klist_fini(&vip->vi_klist.vk_klist);
   1506 	cv_destroy(&vp->v_cv);
   1507 	cache_vnode_fini(vp);
   1508 	pool_cache_put(vcache_pool, vip);
   1509 }
   1510 
   1511 /*
   1512  * Try to get an initial reference on this cached vnode.
   1513  * Returns zero on success or EBUSY if the vnode state is not LOADED.
   1514  *
   1515  * NB: lockless code sequences may rely on this not blocking.
   1516  */
   1517 int
   1518 vcache_tryvget(vnode_t *vp)
   1519 {
   1520 	u_int use, next;
   1521 
   1522 	for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
   1523 		if (__predict_false((use & VUSECOUNT_GATE) == 0)) {
   1524 			return EBUSY;
   1525 		}
   1526 		next = atomic_cas_uint(&vp->v_usecount,
   1527 		    use, (use + 1) | VUSECOUNT_VGET);
   1528 		if (__predict_true(next == use)) {
   1529 			membar_acquire();
   1530 			return 0;
   1531 		}
   1532 	}
   1533 }
   1534 
   1535 /*
   1536  * Try to get an initial reference on this cached vnode.
   1537  * Returns zero on success and  ENOENT if the vnode has been reclaimed.
   1538  * Will wait for the vnode state to be stable.
   1539  *
   1540  * v_interlock locked on entry and unlocked on exit.
   1541  */
   1542 int
   1543 vcache_vget(vnode_t *vp)
   1544 {
   1545 	int error;
   1546 
   1547 	KASSERT(mutex_owned(vp->v_interlock));
   1548 
   1549 	/* Increment hold count to prevent vnode from disappearing. */
   1550 	vp->v_holdcnt++;
   1551 	VSTATE_WAIT_STABLE(vp);
   1552 	vp->v_holdcnt--;
   1553 
   1554 	/* If this was the last reference to a reclaimed vnode free it now. */
   1555 	if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED)) {
   1556 		if (vp->v_holdcnt == 0 && vrefcnt(vp) == 0)
   1557 			vcache_free(VNODE_TO_VIMPL(vp));
   1558 		else
   1559 			mutex_exit(vp->v_interlock);
   1560 		return ENOENT;
   1561 	}
   1562 	VSTATE_ASSERT(vp, VS_LOADED);
   1563 	error = vcache_tryvget(vp);
   1564 	KASSERT(error == 0);
   1565 	mutex_exit(vp->v_interlock);
   1566 
   1567 	return 0;
   1568 }
   1569 
   1570 /*
   1571  * Get a vnode / fs node pair by key and return it referenced through vpp.
   1572  */
   1573 int
   1574 vcache_get(struct mount *mp, const void *key, size_t key_len,
   1575     struct vnode **vpp)
   1576 {
   1577 	int error;
   1578 	uint32_t hash;
   1579 	const void *new_key;
   1580 	struct vnode *vp;
   1581 	struct vcache_key vcache_key;
   1582 	vnode_impl_t *vip, *new_vip;
   1583 
   1584 	new_key = NULL;
   1585 	*vpp = NULL;
   1586 
   1587 	vcache_key.vk_mount = mp;
   1588 	vcache_key.vk_key = key;
   1589 	vcache_key.vk_key_len = key_len;
   1590 	hash = vcache_hash(&vcache_key);
   1591 
   1592 again:
   1593 	mutex_enter(&vcache_lock);
   1594 	vip = vcache_hash_lookup(&vcache_key, hash);
   1595 
   1596 	/* If found, take a reference or retry. */
   1597 	if (__predict_true(vip != NULL)) {
   1598 		/*
   1599 		 * If the vnode is loading we cannot take the v_interlock
   1600 		 * here as it might change during load (see uvm_obj_setlock()).
   1601 		 * As changing state from VS_LOADING requires both vcache_lock
   1602 		 * and v_interlock it is safe to test with vcache_lock held.
   1603 		 *
   1604 		 * Wait for vnodes changing state from VS_LOADING and retry.
   1605 		 */
   1606 		if (__predict_false(vip->vi_state == VS_LOADING)) {
   1607 			cv_wait(&vcache_cv, &vcache_lock);
   1608 			mutex_exit(&vcache_lock);
   1609 			goto again;
   1610 		}
   1611 		vp = VIMPL_TO_VNODE(vip);
   1612 		mutex_enter(vp->v_interlock);
   1613 		mutex_exit(&vcache_lock);
   1614 		error = vcache_vget(vp);
   1615 		if (error == ENOENT)
   1616 			goto again;
   1617 		if (error == 0)
   1618 			*vpp = vp;
   1619 		KASSERT((error != 0) == (*vpp == NULL));
   1620 		return error;
   1621 	}
   1622 	mutex_exit(&vcache_lock);
   1623 
   1624 	/* Allocate and initialize a new vcache / vnode pair. */
   1625 	error = vfs_busy(mp);
   1626 	if (error)
   1627 		return error;
   1628 	new_vip = vcache_alloc();
   1629 	new_vip->vi_key = vcache_key;
   1630 	vp = VIMPL_TO_VNODE(new_vip);
   1631 	mutex_enter(&vcache_lock);
   1632 	vip = vcache_hash_lookup(&vcache_key, hash);
   1633 	if (vip == NULL) {
   1634 		SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
   1635 		    new_vip, vi_hash);
   1636 		vip = new_vip;
   1637 	}
   1638 
   1639 	/* If another thread beat us inserting this node, retry. */
   1640 	if (vip != new_vip) {
   1641 		vcache_dealloc(new_vip);
   1642 		vfs_unbusy(mp);
   1643 		goto again;
   1644 	}
   1645 	mutex_exit(&vcache_lock);
   1646 
   1647 	/* Load the fs node.  Exclusive as new_node is VS_LOADING. */
   1648 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
   1649 	if (error) {
   1650 		mutex_enter(&vcache_lock);
   1651 		SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
   1652 		    new_vip, vnode_impl, vi_hash);
   1653 		vcache_dealloc(new_vip);
   1654 		vfs_unbusy(mp);
   1655 		KASSERT(*vpp == NULL);
   1656 		return error;
   1657 	}
   1658 	KASSERT(new_key != NULL);
   1659 	KASSERT(memcmp(key, new_key, key_len) == 0);
   1660 	KASSERT(vp->v_op != NULL);
   1661 	vfs_insmntque(vp, mp);
   1662 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1663 		vp->v_vflag |= VV_MPSAFE;
   1664 	vfs_ref(mp);
   1665 	vfs_unbusy(mp);
   1666 
   1667 	/* Finished loading, finalize node. */
   1668 	mutex_enter(&vcache_lock);
   1669 	new_vip->vi_key.vk_key = new_key;
   1670 	mutex_enter(vp->v_interlock);
   1671 	VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
   1672 	mutex_exit(vp->v_interlock);
   1673 	mutex_exit(&vcache_lock);
   1674 	*vpp = vp;
   1675 	return 0;
   1676 }
   1677 
   1678 /*
   1679  * Create a new vnode / fs node pair and return it referenced through vpp.
   1680  */
   1681 int
   1682 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
   1683     kauth_cred_t cred, void *extra, struct vnode **vpp)
   1684 {
   1685 	int error;
   1686 	uint32_t hash;
   1687 	struct vnode *vp, *ovp;
   1688 	vnode_impl_t *vip, *ovip;
   1689 
   1690 	*vpp = NULL;
   1691 
   1692 	/* Allocate and initialize a new vcache / vnode pair. */
   1693 	error = vfs_busy(mp);
   1694 	if (error)
   1695 		return error;
   1696 	vip = vcache_alloc();
   1697 	vip->vi_key.vk_mount = mp;
   1698 	vp = VIMPL_TO_VNODE(vip);
   1699 
   1700 	/* Create and load the fs node. */
   1701 	error = VFS_NEWVNODE(mp, dvp, vp, vap, cred, extra,
   1702 	    &vip->vi_key.vk_key_len, &vip->vi_key.vk_key);
   1703 	if (error) {
   1704 		mutex_enter(&vcache_lock);
   1705 		vcache_dealloc(vip);
   1706 		vfs_unbusy(mp);
   1707 		KASSERT(*vpp == NULL);
   1708 		return error;
   1709 	}
   1710 	KASSERT(vp->v_op != NULL);
   1711 	KASSERT((vip->vi_key.vk_key_len == 0) == (mp == dead_rootmount));
   1712 	if (vip->vi_key.vk_key_len > 0) {
   1713 		KASSERT(vip->vi_key.vk_key != NULL);
   1714 		hash = vcache_hash(&vip->vi_key);
   1715 
   1716 		/*
   1717 		 * Wait for previous instance to be reclaimed,
   1718 		 * then insert new node.
   1719 		 */
   1720 		mutex_enter(&vcache_lock);
   1721 		while ((ovip = vcache_hash_lookup(&vip->vi_key, hash))) {
   1722 			ovp = VIMPL_TO_VNODE(ovip);
   1723 			mutex_enter(ovp->v_interlock);
   1724 			mutex_exit(&vcache_lock);
   1725 			error = vcache_vget(ovp);
   1726 			KASSERT(error == ENOENT);
   1727 			mutex_enter(&vcache_lock);
   1728 		}
   1729 		SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
   1730 		    vip, vi_hash);
   1731 		mutex_exit(&vcache_lock);
   1732 	}
   1733 	vfs_insmntque(vp, mp);
   1734 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1735 		vp->v_vflag |= VV_MPSAFE;
   1736 	vfs_ref(mp);
   1737 	vfs_unbusy(mp);
   1738 
   1739 	/* Finished loading, finalize node. */
   1740 	mutex_enter(&vcache_lock);
   1741 	mutex_enter(vp->v_interlock);
   1742 	VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
   1743 	mutex_exit(&vcache_lock);
   1744 	mutex_exit(vp->v_interlock);
   1745 	*vpp = vp;
   1746 	return 0;
   1747 }
   1748 
   1749 /*
   1750  * Prepare key change: update old cache nodes key and lock new cache node.
   1751  * Return an error if the new node already exists.
   1752  */
   1753 int
   1754 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
   1755     const void *old_key, size_t old_key_len,
   1756     const void *new_key, size_t new_key_len)
   1757 {
   1758 	uint32_t old_hash, new_hash;
   1759 	struct vcache_key old_vcache_key, new_vcache_key;
   1760 	vnode_impl_t *vip, *new_vip;
   1761 
   1762 	old_vcache_key.vk_mount = mp;
   1763 	old_vcache_key.vk_key = old_key;
   1764 	old_vcache_key.vk_key_len = old_key_len;
   1765 	old_hash = vcache_hash(&old_vcache_key);
   1766 
   1767 	new_vcache_key.vk_mount = mp;
   1768 	new_vcache_key.vk_key = new_key;
   1769 	new_vcache_key.vk_key_len = new_key_len;
   1770 	new_hash = vcache_hash(&new_vcache_key);
   1771 
   1772 	new_vip = vcache_alloc();
   1773 	new_vip->vi_key = new_vcache_key;
   1774 
   1775 	/* Insert locked new node used as placeholder. */
   1776 	mutex_enter(&vcache_lock);
   1777 	vip = vcache_hash_lookup(&new_vcache_key, new_hash);
   1778 	if (vip != NULL) {
   1779 		vcache_dealloc(new_vip);
   1780 		return EEXIST;
   1781 	}
   1782 	SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
   1783 	    new_vip, vi_hash);
   1784 
   1785 	/* Replace old nodes key with the temporary copy. */
   1786 	vip = vcache_hash_lookup(&old_vcache_key, old_hash);
   1787 	KASSERT(vip != NULL);
   1788 	KASSERT(VIMPL_TO_VNODE(vip) == vp);
   1789 	KASSERT(vip->vi_key.vk_key != old_vcache_key.vk_key);
   1790 	vip->vi_key = old_vcache_key;
   1791 	mutex_exit(&vcache_lock);
   1792 	return 0;
   1793 }
   1794 
   1795 /*
   1796  * Key change complete: update old node and remove placeholder.
   1797  */
   1798 void
   1799 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
   1800     const void *old_key, size_t old_key_len,
   1801     const void *new_key, size_t new_key_len)
   1802 {
   1803 	uint32_t old_hash, new_hash;
   1804 	struct vcache_key old_vcache_key, new_vcache_key;
   1805 	vnode_impl_t *vip, *new_vip;
   1806 	struct vnode *new_vp;
   1807 
   1808 	old_vcache_key.vk_mount = mp;
   1809 	old_vcache_key.vk_key = old_key;
   1810 	old_vcache_key.vk_key_len = old_key_len;
   1811 	old_hash = vcache_hash(&old_vcache_key);
   1812 
   1813 	new_vcache_key.vk_mount = mp;
   1814 	new_vcache_key.vk_key = new_key;
   1815 	new_vcache_key.vk_key_len = new_key_len;
   1816 	new_hash = vcache_hash(&new_vcache_key);
   1817 
   1818 	mutex_enter(&vcache_lock);
   1819 
   1820 	/* Lookup old and new node. */
   1821 	vip = vcache_hash_lookup(&old_vcache_key, old_hash);
   1822 	KASSERT(vip != NULL);
   1823 	KASSERT(VIMPL_TO_VNODE(vip) == vp);
   1824 
   1825 	new_vip = vcache_hash_lookup(&new_vcache_key, new_hash);
   1826 	KASSERT(new_vip != NULL);
   1827 	KASSERT(new_vip->vi_key.vk_key_len == new_key_len);
   1828 	new_vp = VIMPL_TO_VNODE(new_vip);
   1829 	mutex_enter(new_vp->v_interlock);
   1830 	VSTATE_ASSERT(VIMPL_TO_VNODE(new_vip), VS_LOADING);
   1831 	mutex_exit(new_vp->v_interlock);
   1832 
   1833 	/* Rekey old node and put it onto its new hashlist. */
   1834 	vip->vi_key = new_vcache_key;
   1835 	if (old_hash != new_hash) {
   1836 		SLIST_REMOVE(&vcache_hashtab[old_hash & vcache_hashmask],
   1837 		    vip, vnode_impl, vi_hash);
   1838 		SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
   1839 		    vip, vi_hash);
   1840 	}
   1841 
   1842 	/* Remove new node used as placeholder. */
   1843 	SLIST_REMOVE(&vcache_hashtab[new_hash & vcache_hashmask],
   1844 	    new_vip, vnode_impl, vi_hash);
   1845 	vcache_dealloc(new_vip);
   1846 }
   1847 
   1848 /*
   1849  * Disassociate the underlying file system from a vnode.
   1850  *
   1851  * Must be called with vnode locked and will return unlocked.
   1852  * Must be called with the interlock held, and will return with it held.
   1853  */
   1854 static void
   1855 vcache_reclaim(vnode_t *vp)
   1856 {
   1857 	lwp_t *l = curlwp;
   1858 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
   1859 	struct mount *mp = vp->v_mount;
   1860 	uint32_t hash;
   1861 	uint8_t temp_buf[64], *temp_key;
   1862 	size_t temp_key_len;
   1863 	bool recycle;
   1864 	int error;
   1865 
   1866 	KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   1867 	KASSERT(mutex_owned(vp->v_interlock));
   1868 	KASSERT(vrefcnt(vp) != 0);
   1869 
   1870 	temp_key_len = vip->vi_key.vk_key_len;
   1871 	/*
   1872 	 * Prevent the vnode from being recycled or brought into use
   1873 	 * while we clean it out.
   1874 	 */
   1875 	VSTATE_CHANGE(vp, VS_BLOCKED, VS_RECLAIMING);
   1876 
   1877 	/*
   1878 	 * Send NOTE_REVOKE now, before we call VOP_RECLAIM(),
   1879 	 * because VOP_RECLAIM() could cause vp->v_klist to
   1880 	 * become invalid.  Don't check for interest in NOTE_REVOKE
   1881 	 * here; it's always posted because it sets EV_EOF.
   1882 	 *
   1883 	 * Once it's been posted, reset vp->v_klist to point to
   1884 	 * our own local storage, in case we were sharing with
   1885 	 * someone else.
   1886 	 */
   1887 	KNOTE(&vp->v_klist->vk_klist, NOTE_REVOKE);
   1888 	vp->v_klist = &vip->vi_klist;
   1889 	mutex_exit(vp->v_interlock);
   1890 
   1891 	rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
   1892 	mutex_enter(vp->v_interlock);
   1893 	if ((vp->v_iflag & VI_EXECMAP) != 0) {
   1894 		cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
   1895 	}
   1896 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
   1897 	vp->v_iflag |= VI_DEADCHECK; /* for genfs_getpages() */
   1898 	mutex_exit(vp->v_interlock);
   1899 	rw_exit(vp->v_uobj.vmobjlock);
   1900 
   1901 	/*
   1902 	 * With vnode state set to reclaiming, purge name cache immediately
   1903 	 * to prevent new handles on vnode, and wait for existing threads
   1904 	 * trying to get a handle to notice VS_RECLAIMED status and abort.
   1905 	 */
   1906 	cache_purge(vp);
   1907 
   1908 	/* Replace the vnode key with a temporary copy. */
   1909 	if (vip->vi_key.vk_key_len > sizeof(temp_buf)) {
   1910 		temp_key = kmem_alloc(temp_key_len, KM_SLEEP);
   1911 	} else {
   1912 		temp_key = temp_buf;
   1913 	}
   1914 	if (vip->vi_key.vk_key_len > 0) {
   1915 		mutex_enter(&vcache_lock);
   1916 		memcpy(temp_key, vip->vi_key.vk_key, temp_key_len);
   1917 		vip->vi_key.vk_key = temp_key;
   1918 		mutex_exit(&vcache_lock);
   1919 	}
   1920 
   1921 	fstrans_start(mp);
   1922 
   1923 	/*
   1924 	 * Clean out any cached data associated with the vnode.
   1925 	 */
   1926 	error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
   1927 	if (error != 0) {
   1928 		if (wapbl_vphaswapbl(vp))
   1929 			WAPBL_DISCARD(wapbl_vptomp(vp));
   1930 		error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
   1931 	}
   1932 	KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
   1933 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1934 	if (vp->v_type == VBLK || vp->v_type == VCHR) {
   1935 		 spec_node_revoke(vp);
   1936 	}
   1937 
   1938 	/*
   1939 	 * Disassociate the underlying file system from the vnode.
   1940 	 * VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
   1941 	 * the vnode, and may destroy the vnode so that VOP_UNLOCK
   1942 	 * would no longer function.
   1943 	 */
   1944 	VOP_INACTIVE(vp, &recycle);
   1945 	KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   1946 	if (VOP_RECLAIM(vp)) {
   1947 		vnpanic(vp, "%s: cannot reclaim", __func__);
   1948 	}
   1949 
   1950 	KASSERT(vp->v_data == NULL);
   1951 	KASSERT((vp->v_iflag & VI_PAGES) == 0);
   1952 
   1953 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
   1954 		uvm_ra_freectx(vp->v_ractx);
   1955 		vp->v_ractx = NULL;
   1956 	}
   1957 
   1958 	if (vip->vi_key.vk_key_len > 0) {
   1959 	/* Remove from vnode cache. */
   1960 		hash = vcache_hash(&vip->vi_key);
   1961 		mutex_enter(&vcache_lock);
   1962 		KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
   1963 		SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
   1964 		    vip, vnode_impl, vi_hash);
   1965 		mutex_exit(&vcache_lock);
   1966 	}
   1967 	if (temp_key != temp_buf)
   1968 		kmem_free(temp_key, temp_key_len);
   1969 
   1970 	/* Done with purge, notify sleepers of the grim news. */
   1971 	mutex_enter(vp->v_interlock);
   1972 	vp->v_op = dead_vnodeop_p;
   1973 	VSTATE_CHANGE(vp, VS_RECLAIMING, VS_RECLAIMED);
   1974 	vp->v_tag = VT_NON;
   1975 	mutex_exit(vp->v_interlock);
   1976 
   1977 	/*
   1978 	 * Move to dead mount.  Must be after changing the operations
   1979 	 * vector as vnode operations enter the mount before using the
   1980 	 * operations vector.  See sys/kern/vnode_if.c.
   1981 	 */
   1982 	vp->v_vflag &= ~VV_ROOT;
   1983 	vfs_ref(dead_rootmount);
   1984 	vfs_insmntque(vp, dead_rootmount);
   1985 
   1986 #ifdef PAX_SEGVGUARD
   1987 	pax_segvguard_cleanup(vp);
   1988 #endif /* PAX_SEGVGUARD */
   1989 
   1990 	mutex_enter(vp->v_interlock);
   1991 	fstrans_done(mp);
   1992 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1993 }
   1994 
   1995 /*
   1996  * Disassociate the underlying file system from an open device vnode
   1997  * and make it anonymous.
   1998  *
   1999  * Vnode unlocked on entry, drops a reference to the vnode.
   2000  */
   2001 void
   2002 vcache_make_anon(vnode_t *vp)
   2003 {
   2004 	vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
   2005 	uint32_t hash;
   2006 	bool recycle;
   2007 
   2008 	KASSERT(vp->v_type == VBLK || vp->v_type == VCHR);
   2009 	KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
   2010 	VSTATE_ASSERT_UNLOCKED(vp, VS_ACTIVE);
   2011 
   2012 	/* Remove from vnode cache. */
   2013 	hash = vcache_hash(&vip->vi_key);
   2014 	mutex_enter(&vcache_lock);
   2015 	KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
   2016 	SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
   2017 	    vip, vnode_impl, vi_hash);
   2018 	vip->vi_key.vk_mount = dead_rootmount;
   2019 	vip->vi_key.vk_key_len = 0;
   2020 	vip->vi_key.vk_key = NULL;
   2021 	mutex_exit(&vcache_lock);
   2022 
   2023 	/*
   2024 	 * Disassociate the underlying file system from the vnode.
   2025 	 * VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
   2026 	 * the vnode, and may destroy the vnode so that VOP_UNLOCK
   2027 	 * would no longer function.
   2028 	 */
   2029 	if (vn_lock(vp, LK_EXCLUSIVE)) {
   2030 		vnpanic(vp, "%s: cannot lock", __func__);
   2031 	}
   2032 	VOP_INACTIVE(vp, &recycle);
   2033 	KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   2034 	if (VOP_RECLAIM(vp)) {
   2035 		vnpanic(vp, "%s: cannot reclaim", __func__);
   2036 	}
   2037 
   2038 	/* Purge name cache. */
   2039 	cache_purge(vp);
   2040 
   2041 	/* Done with purge, change operations vector. */
   2042 	mutex_enter(vp->v_interlock);
   2043 	vp->v_op = spec_vnodeop_p;
   2044 	vp->v_vflag |= VV_MPSAFE;
   2045 	mutex_exit(vp->v_interlock);
   2046 
   2047 	/*
   2048 	 * Move to dead mount.  Must be after changing the operations
   2049 	 * vector as vnode operations enter the mount before using the
   2050 	 * operations vector.  See sys/kern/vnode_if.c.
   2051 	 */
   2052 	vfs_ref(dead_rootmount);
   2053 	vfs_insmntque(vp, dead_rootmount);
   2054 
   2055 	vrele(vp);
   2056 }
   2057 
   2058 /*
   2059  * Update outstanding I/O count and do wakeup if requested.
   2060  */
   2061 void
   2062 vwakeup(struct buf *bp)
   2063 {
   2064 	vnode_t *vp;
   2065 
   2066 	if ((vp = bp->b_vp) == NULL)
   2067 		return;
   2068 
   2069 	KASSERT(bp->b_objlock == vp->v_interlock);
   2070 	KASSERT(mutex_owned(bp->b_objlock));
   2071 
   2072 	if (--vp->v_numoutput < 0)
   2073 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
   2074 	if (vp->v_numoutput == 0)
   2075 		cv_broadcast(&vp->v_cv);
   2076 }
   2077 
   2078 /*
   2079  * Test a vnode for being or becoming dead.  Returns one of:
   2080  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
   2081  * ENOENT: vnode is dead.
   2082  * 0:      otherwise.
   2083  *
   2084  * Whenever this function returns a non-zero value all future
   2085  * calls will also return a non-zero value.
   2086  */
   2087 int
   2088 vdead_check(struct vnode *vp, int flags)
   2089 {
   2090 
   2091 	KASSERT(mutex_owned(vp->v_interlock));
   2092 
   2093 	if (! ISSET(flags, VDEAD_NOWAIT))
   2094 		VSTATE_WAIT_STABLE(vp);
   2095 
   2096 	if (VSTATE_GET(vp) == VS_RECLAIMING) {
   2097 		KASSERT(ISSET(flags, VDEAD_NOWAIT));
   2098 		return EBUSY;
   2099 	} else if (VSTATE_GET(vp) == VS_RECLAIMED) {
   2100 		return ENOENT;
   2101 	}
   2102 
   2103 	return 0;
   2104 }
   2105 
   2106 int
   2107 vfs_drainvnodes(void)
   2108 {
   2109 
   2110 	mutex_enter(&vdrain_lock);
   2111 
   2112 	if (!vdrain_one(desiredvnodes)) {
   2113 		mutex_exit(&vdrain_lock);
   2114 		return EBUSY;
   2115 	}
   2116 
   2117 	mutex_exit(&vdrain_lock);
   2118 
   2119 	if (vcache_hashsize != desiredvnodes)
   2120 		vcache_reinit();
   2121 
   2122 	return 0;
   2123 }
   2124 
   2125 void
   2126 vnpanic(vnode_t *vp, const char *fmt, ...)
   2127 {
   2128 	va_list ap;
   2129 
   2130 #ifdef DIAGNOSTIC
   2131 	vprint(NULL, vp);
   2132 #endif
   2133 	va_start(ap, fmt);
   2134 	vpanic(fmt, ap);
   2135 	va_end(ap);
   2136 }
   2137 
   2138 void
   2139 vshareilock(vnode_t *tvp, vnode_t *fvp)
   2140 {
   2141 	kmutex_t *oldlock;
   2142 
   2143 	oldlock = tvp->v_interlock;
   2144 	mutex_obj_hold(fvp->v_interlock);
   2145 	tvp->v_interlock = fvp->v_interlock;
   2146 	mutex_obj_free(oldlock);
   2147 }
   2148 
   2149 void
   2150 vshareklist(vnode_t *tvp, vnode_t *fvp)
   2151 {
   2152 	/*
   2153 	 * If two vnodes share klist state, they must also share
   2154 	 * an interlock.
   2155 	 */
   2156 	KASSERT(tvp->v_interlock == fvp->v_interlock);
   2157 
   2158 	/*
   2159 	 * We make the following assumptions:
   2160 	 *
   2161 	 * ==> Some other synchronization is happening outside of
   2162 	 *     our view to make this safe.
   2163 	 *
   2164 	 * ==> That the "to" vnode will have the necessary references
   2165 	 *     on the "from" vnode so that the storage for the klist
   2166 	 *     won't be yanked out from beneath us (the vnode_impl).
   2167 	 *
   2168 	 * ==> If "from" is also sharing, we then assume that "from"
   2169 	 *     has the necessary references, and so on.
   2170 	 */
   2171 	tvp->v_klist = fvp->v_klist;
   2172 }
   2173