Home | History | Annotate | Line # | Download | only in kern
vfs_vnode.c revision 1.19.2.1
      1 /*	$NetBSD: vfs_vnode.c,v 1.19.2.1 2014/05/18 17:46:08 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     67  */
     68 
     69 /*
     70  * The vnode cache subsystem.
     71  *
     72  * Life-cycle
     73  *
     74  *	Normally, there are two points where new vnodes are created:
     75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
     76  *	starts in one of the following ways:
     77  *
     78  *	- Allocation, via getnewvnode(9) and/or vnalloc(9).
     79  *	- Reclamation of inactive vnode, via vget(9).
     80  *
     81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
     82  *	was another, traditional way.  Currently, only the draining thread
     83  *	recycles the vnodes.  This behaviour might be revisited.
     84  *
     85  *	The life-cycle ends when the last reference is dropped, usually
     86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
     87  *	the file system that vnode is inactive.  Via this call, file system
     88  *	indicates whether vnode can be recycled (usually, it checks its own
     89  *	references, e.g. count of links, whether the file was removed).
     90  *
     91  *	Depending on indication, vnode can be put into a free list (cache),
     92  *	or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
     93  *	underlying file system from the vnode, and finally destroyed.
     94  *
     95  * Reference counting
     96  *
     97  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
     98  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
     99  *	as vput(9), routines.  Common points holding references are e.g.
    100  *	file openings, current working directory, mount points, etc.
    101  *
    102  * Note on v_usecount and its locking
    103  *
    104  *	At nearly all points it is known that v_usecount could be zero,
    105  *	the vnode_t::v_interlock will be held.  To change v_usecount away
    106  *	from zero, the interlock must be held.  To change from a non-zero
    107  *	value to zero, again the interlock must be held.
    108  *
    109  *	Changing the usecount from a non-zero value to a non-zero value can
    110  *	safely be done using atomic operations, without the interlock held.
    111  *
    112  *	Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
    113  *	mntvnode_lock is still held.
    114  *
    115  *	See PR 41374.
    116  */
    117 
    118 #include <sys/cdefs.h>
    119 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.19.2.1 2014/05/18 17:46:08 rmind Exp $");
    120 
    121 #define _VFS_VNODE_PRIVATE
    122 
    123 #include <sys/param.h>
    124 #include <sys/kernel.h>
    125 
    126 #include <sys/atomic.h>
    127 #include <sys/buf.h>
    128 #include <sys/conf.h>
    129 #include <sys/device.h>
    130 #include <sys/hash.h>
    131 #include <sys/kauth.h>
    132 #include <sys/kmem.h>
    133 #include <sys/kthread.h>
    134 #include <sys/module.h>
    135 #include <sys/mount.h>
    136 #include <sys/namei.h>
    137 #include <sys/syscallargs.h>
    138 #include <sys/sysctl.h>
    139 #include <sys/systm.h>
    140 #include <sys/vnode.h>
    141 #include <sys/wapbl.h>
    142 #include <sys/fstrans.h>
    143 
    144 #include <uvm/uvm.h>
    145 #include <uvm/uvm_readahead.h>
    146 
    147 /* Flags to vrelel. */
    148 #define	VRELEL_ASYNC_RELE	0x0001	/* Always defer to vrele thread. */
    149 #define	VRELEL_CHANGING_SET	0x0002	/* VI_CHANGING set by caller. */
    150 
    151 struct vcache_key {
    152 	struct mount *vk_mount;
    153 	const void *vk_key;
    154 	size_t vk_key_len;
    155 };
    156 struct vcache_node {
    157 	SLIST_ENTRY(vcache_node) vn_hash;
    158 	struct vnode *vn_vnode;
    159 	struct vcache_key vn_key;
    160 };
    161 
    162 u_int			numvnodes		__cacheline_aligned;
    163 
    164 static pool_cache_t	vnode_cache		__read_mostly;
    165 static struct mount	*dead_mount;
    166 
    167 /*
    168  * There are two free lists: one is for vnodes which have no buffer/page
    169  * references and one for those which do (i.e. v_holdcnt is non-zero).
    170  * Vnode recycling mechanism first attempts to look into the former list.
    171  */
    172 static kmutex_t		vnode_free_list_lock	__cacheline_aligned;
    173 static vnodelst_t	vnode_free_list		__cacheline_aligned;
    174 static vnodelst_t	vnode_hold_list		__cacheline_aligned;
    175 static kcondvar_t	vdrain_cv		__cacheline_aligned;
    176 
    177 static vnodelst_t	vrele_list		__cacheline_aligned;
    178 static kmutex_t		vrele_lock		__cacheline_aligned;
    179 static kcondvar_t	vrele_cv		__cacheline_aligned;
    180 static lwp_t *		vrele_lwp		__cacheline_aligned;
    181 static int		vrele_pending		__cacheline_aligned;
    182 static int		vrele_gen		__cacheline_aligned;
    183 
    184 static struct {
    185 	kmutex_t	lock;
    186 	u_long		hashmask;
    187 	SLIST_HEAD(hashhead, vcache_node)	*hashtab;
    188 	pool_cache_t	pool;
    189 }			vcache			__cacheline_aligned;
    190 
    191 static int		cleanvnode(void);
    192 static void		vcache_init(void);
    193 static void		vcache_reinit(void);
    194 static void		vclean(vnode_t *);
    195 static void		vrelel(vnode_t *, int);
    196 static void		vdrain_thread(void *);
    197 static void		vrele_thread(void *);
    198 static void		vnpanic(vnode_t *, const char *, ...)
    199     __printflike(2, 3);
    200 static void		vwait(vnode_t *, int);
    201 
    202 /* Routines having to do with the management of the vnode table. */
    203 extern int		(**dead_vnodeop_p)(void *);
    204 extern struct vfsops	dead_vfsops;
    205 
    206 void
    207 vfs_vnode_sysinit(void)
    208 {
    209 	int error __diagused;
    210 
    211 	vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
    212 	    NULL, IPL_NONE, NULL, NULL, NULL);
    213 	KASSERT(vnode_cache != NULL);
    214 
    215 	dead_mount = vfs_mountalloc(&dead_vfsops, NULL);
    216 	KASSERT(dead_mount != NULL);
    217 	dead_mount->mnt_iflag = IMNT_MPSAFE;
    218 
    219 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
    220 	TAILQ_INIT(&vnode_free_list);
    221 	TAILQ_INIT(&vnode_hold_list);
    222 	TAILQ_INIT(&vrele_list);
    223 
    224 	vcache_init();
    225 
    226 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
    227 	cv_init(&vdrain_cv, "vdrain");
    228 	cv_init(&vrele_cv, "vrele");
    229 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
    230 	    NULL, NULL, "vdrain");
    231 	KASSERT(error == 0);
    232 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
    233 	    NULL, &vrele_lwp, "vrele");
    234 	KASSERT(error == 0);
    235 }
    236 
    237 /*
    238  * Allocate a new, uninitialized vnode.  If 'mp' is non-NULL, this is a
    239  * marker vnode.
    240  */
    241 vnode_t *
    242 vnalloc(struct mount *mp)
    243 {
    244 	vnode_t *vp;
    245 
    246 	vp = pool_cache_get(vnode_cache, PR_WAITOK);
    247 	KASSERT(vp != NULL);
    248 
    249 	memset(vp, 0, sizeof(*vp));
    250 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
    251 	cv_init(&vp->v_cv, "vnode");
    252 	/*
    253 	 * Done by memset() above.
    254 	 *	LIST_INIT(&vp->v_nclist);
    255 	 *	LIST_INIT(&vp->v_dnclist);
    256 	 */
    257 
    258 	if (mp != NULL) {
    259 		vp->v_mount = mp;
    260 		vp->v_type = VBAD;
    261 		vp->v_iflag = VI_MARKER;
    262 		return vp;
    263 	}
    264 
    265 	mutex_enter(&vnode_free_list_lock);
    266 	numvnodes++;
    267 	if (numvnodes > desiredvnodes + desiredvnodes / 10)
    268 		cv_signal(&vdrain_cv);
    269 	mutex_exit(&vnode_free_list_lock);
    270 
    271 	rw_init(&vp->v_lock);
    272 	vp->v_usecount = 1;
    273 	vp->v_type = VNON;
    274 	vp->v_size = vp->v_writesize = VSIZENOTSET;
    275 
    276 	return vp;
    277 }
    278 
    279 /*
    280  * Free an unused, unreferenced vnode.
    281  */
    282 void
    283 vnfree(vnode_t *vp)
    284 {
    285 
    286 	KASSERT(vp->v_usecount == 0);
    287 
    288 	if ((vp->v_iflag & VI_MARKER) == 0) {
    289 		rw_destroy(&vp->v_lock);
    290 		mutex_enter(&vnode_free_list_lock);
    291 		numvnodes--;
    292 		mutex_exit(&vnode_free_list_lock);
    293 	}
    294 
    295 	/*
    296 	 * Note: the vnode interlock will either be freed, of reference
    297 	 * dropped (if VI_LOCKSHARE was in use).
    298 	 */
    299 	uvm_obj_destroy(&vp->v_uobj, true);
    300 	cv_destroy(&vp->v_cv);
    301 	pool_cache_put(vnode_cache, vp);
    302 }
    303 
    304 /*
    305  * cleanvnode: grab a vnode from freelist, clean and free it.
    306  *
    307  * => Releases vnode_free_list_lock.
    308  */
    309 static int
    310 cleanvnode(void)
    311 {
    312 	vnode_t *vp;
    313 	vnodelst_t *listhd;
    314 	struct mount *mp;
    315 
    316 	KASSERT(mutex_owned(&vnode_free_list_lock));
    317 
    318 	listhd = &vnode_free_list;
    319 try_nextlist:
    320 	TAILQ_FOREACH(vp, listhd, v_freelist) {
    321 		/*
    322 		 * It's safe to test v_usecount and v_iflag
    323 		 * without holding the interlock here, since
    324 		 * these vnodes should never appear on the
    325 		 * lists.
    326 		 */
    327 		KASSERT(vp->v_usecount == 0);
    328 		KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    329 		KASSERT(vp->v_freelisthd == listhd);
    330 
    331 		if (!mutex_tryenter(vp->v_interlock))
    332 			continue;
    333 		if ((vp->v_iflag & VI_XLOCK) != 0) {
    334 			mutex_exit(vp->v_interlock);
    335 			continue;
    336 		}
    337 		mp = vp->v_mount;
    338 		if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
    339 			mutex_exit(vp->v_interlock);
    340 			continue;
    341 		}
    342 		break;
    343 	}
    344 
    345 	if (vp == NULL) {
    346 		if (listhd == &vnode_free_list) {
    347 			listhd = &vnode_hold_list;
    348 			goto try_nextlist;
    349 		}
    350 		mutex_exit(&vnode_free_list_lock);
    351 		return EBUSY;
    352 	}
    353 
    354 	/* Remove it from the freelist. */
    355 	TAILQ_REMOVE(listhd, vp, v_freelist);
    356 	vp->v_freelisthd = NULL;
    357 	mutex_exit(&vnode_free_list_lock);
    358 
    359 	KASSERT(vp->v_usecount == 0);
    360 
    361 	/*
    362 	 * The vnode is still associated with a file system, so we must
    363 	 * clean it out before freeing it.  We need to add a reference
    364 	 * before doing this.
    365 	 */
    366 	vp->v_usecount = 1;
    367 	KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    368 	vp->v_iflag |= VI_CHANGING;
    369 	vclean(vp);
    370 	vrelel(vp, VRELEL_CHANGING_SET);
    371 	fstrans_done(mp);
    372 
    373 	return 0;
    374 }
    375 
    376 /*
    377  * getnewvnode: return a fresh vnode.
    378  *
    379  * => Returns referenced vnode, moved into the mount queue.
    380  * => Shares the interlock specified by 'slock', if it is not NULL.
    381  */
    382 int
    383 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
    384     kmutex_t *slock, vnode_t **vpp)
    385 {
    386 	struct uvm_object *uobj __diagused;
    387 	vnode_t *vp;
    388 	int error = 0;
    389 
    390 	if (mp != NULL) {
    391 		/*
    392 		 * Mark filesystem busy while we are creating a vnode.
    393 		 * If unmount is in progress, this will fail.
    394 		 */
    395 		error = vfs_busy(mp, NULL);
    396 		if (error)
    397 			return error;
    398 	}
    399 
    400 	vp = NULL;
    401 
    402 	/* Allocate a new vnode. */
    403 	vp = vnalloc(NULL);
    404 
    405 	KASSERT(vp->v_freelisthd == NULL);
    406 	KASSERT(LIST_EMPTY(&vp->v_nclist));
    407 	KASSERT(LIST_EMPTY(&vp->v_dnclist));
    408 	KASSERT(vp->v_data == NULL);
    409 
    410 	/* Initialize vnode. */
    411 	vp->v_tag = tag;
    412 	vp->v_op = vops;
    413 
    414 	uobj = &vp->v_uobj;
    415 	KASSERT(uobj->pgops == &uvm_vnodeops);
    416 	KASSERT(uobj->uo_npages == 0);
    417 	KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
    418 
    419 	/* Share the vnode_t::v_interlock, if requested. */
    420 	if (slock) {
    421 		/* Set the interlock and mark that it is shared. */
    422 		KASSERT(vp->v_mount == NULL);
    423 		mutex_obj_hold(slock);
    424 		uvm_obj_setlock(&vp->v_uobj, slock);
    425 		KASSERT(vp->v_interlock == slock);
    426 		vp->v_iflag |= VI_LOCKSHARE;
    427 	}
    428 
    429 	/* Finally, move vnode into the mount queue. */
    430 	vfs_insmntque(vp, mp);
    431 
    432 	if (mp != NULL) {
    433 		if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
    434 			vp->v_vflag |= VV_MPSAFE;
    435 		vfs_unbusy(mp, true, NULL);
    436 	}
    437 
    438 	*vpp = vp;
    439 	return 0;
    440 }
    441 
    442 /*
    443  * This is really just the reverse of getnewvnode(). Needed for
    444  * VFS_VGET functions who may need to push back a vnode in case
    445  * of a locking race.
    446  */
    447 void
    448 ungetnewvnode(vnode_t *vp)
    449 {
    450 
    451 	KASSERT(vp->v_usecount == 1);
    452 	KASSERT(vp->v_data == NULL);
    453 	KASSERT(vp->v_freelisthd == NULL);
    454 
    455 	mutex_enter(vp->v_interlock);
    456 	vp->v_iflag |= VI_CLEAN;
    457 	vrelel(vp, 0);
    458 }
    459 
    460 /*
    461  * Helper thread to keep the number of vnodes below desiredvnodes.
    462  */
    463 static void
    464 vdrain_thread(void *cookie)
    465 {
    466 	int error;
    467 
    468 	mutex_enter(&vnode_free_list_lock);
    469 
    470 	for (;;) {
    471 		cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
    472 		while (numvnodes > desiredvnodes) {
    473 			error = cleanvnode();
    474 			if (error)
    475 				kpause("vndsbusy", false, hz, NULL);
    476 			mutex_enter(&vnode_free_list_lock);
    477 			if (error)
    478 				break;
    479 		}
    480 	}
    481 }
    482 
    483 /*
    484  * Remove a vnode from its freelist.
    485  */
    486 void
    487 vremfree(vnode_t *vp)
    488 {
    489 
    490 	KASSERT(mutex_owned(vp->v_interlock));
    491 	KASSERT(vp->v_usecount == 0);
    492 
    493 	/*
    494 	 * Note that the reference count must not change until
    495 	 * the vnode is removed.
    496 	 */
    497 	mutex_enter(&vnode_free_list_lock);
    498 	if (vp->v_holdcnt > 0) {
    499 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    500 	} else {
    501 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    502 	}
    503 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    504 	vp->v_freelisthd = NULL;
    505 	mutex_exit(&vnode_free_list_lock);
    506 }
    507 
    508 /*
    509  * vget: get a particular vnode from the free list, increment its reference
    510  * count and lock it.
    511  *
    512  * => Should be called with v_interlock held.
    513  *
    514  * If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean().
    515  * In that case, we cannot grab the vnode, so the process is awakened when
    516  * the transition is completed, and an error returned to indicate that the
    517  * vnode is no longer usable.
    518  */
    519 int
    520 vget(vnode_t *vp, int flags)
    521 {
    522 	int error = 0;
    523 
    524 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    525 	KASSERT(mutex_owned(vp->v_interlock));
    526 	KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
    527 
    528 	/*
    529 	 * Before adding a reference, we must remove the vnode
    530 	 * from its freelist.
    531 	 */
    532 	if (vp->v_usecount == 0) {
    533 		vremfree(vp);
    534 		vp->v_usecount = 1;
    535 	} else {
    536 		atomic_inc_uint(&vp->v_usecount);
    537 	}
    538 
    539 	/*
    540 	 * If the vnode is in the process of changing state we wait
    541 	 * for the change to complete and take care not to return
    542 	 * a clean vnode.
    543 	 */
    544 	if ((vp->v_iflag & VI_CHANGING) != 0) {
    545 		if ((flags & LK_NOWAIT) != 0) {
    546 			vrelel(vp, 0);
    547 			return EBUSY;
    548 		}
    549 		vwait(vp, VI_CHANGING);
    550 		if ((vp->v_iflag & VI_CLEAN) != 0) {
    551 			vrelel(vp, 0);
    552 			return ENOENT;
    553 		}
    554 	}
    555 
    556 	/*
    557 	 * Ok, we got it in good shape.  Just locking left.
    558 	 */
    559 	KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    560 	mutex_exit(vp->v_interlock);
    561 	if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
    562 		error = vn_lock(vp, flags);
    563 		if (error != 0) {
    564 			vrele(vp);
    565 		}
    566 	}
    567 	return error;
    568 }
    569 
    570 /*
    571  * vput: unlock and release the reference.
    572  */
    573 void
    574 vput(vnode_t *vp)
    575 {
    576 
    577 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    578 
    579 	VOP_UNLOCK(vp);
    580 	vrele(vp);
    581 }
    582 
    583 /*
    584  * Try to drop reference on a vnode.  Abort if we are releasing the
    585  * last reference.  Note: this _must_ succeed if not the last reference.
    586  */
    587 static inline bool
    588 vtryrele(vnode_t *vp)
    589 {
    590 	u_int use, next;
    591 
    592 	for (use = vp->v_usecount;; use = next) {
    593 		if (use == 1) {
    594 			return false;
    595 		}
    596 		KASSERT(use > 1);
    597 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
    598 		if (__predict_true(next == use)) {
    599 			return true;
    600 		}
    601 	}
    602 }
    603 
    604 /*
    605  * Vnode release.  If reference count drops to zero, call inactive
    606  * routine and either return to freelist or free to the pool.
    607  */
    608 static void
    609 vrelel(vnode_t *vp, int flags)
    610 {
    611 	bool recycle, defer;
    612 	int error;
    613 
    614 	KASSERT(mutex_owned(vp->v_interlock));
    615 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    616 	KASSERT(vp->v_freelisthd == NULL);
    617 
    618 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
    619 	    (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
    620 		vnpanic(vp, "dead but not clean");
    621 	}
    622 
    623 	/*
    624 	 * If not the last reference, just drop the reference count
    625 	 * and unlock.
    626 	 */
    627 	if (vtryrele(vp)) {
    628 		if ((flags & VRELEL_CHANGING_SET) != 0) {
    629 			KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    630 			vp->v_iflag &= ~VI_CHANGING;
    631 			cv_broadcast(&vp->v_cv);
    632 		}
    633 		mutex_exit(vp->v_interlock);
    634 		return;
    635 	}
    636 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
    637 		vnpanic(vp, "%s: bad ref count", __func__);
    638 	}
    639 
    640 	KASSERT((vp->v_iflag & VI_XLOCK) == 0);
    641 
    642 #ifdef DIAGNOSTIC
    643 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
    644 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
    645 		vprint("vrelel: missing VOP_CLOSE()", vp);
    646 	}
    647 #endif
    648 
    649 	/*
    650 	 * If not clean, deactivate the vnode, but preserve
    651 	 * our reference across the call to VOP_INACTIVE().
    652 	 */
    653 	if ((vp->v_iflag & VI_CLEAN) == 0) {
    654 		recycle = false;
    655 
    656 		/*
    657 		 * XXX This ugly block can be largely eliminated if
    658 		 * locking is pushed down into the file systems.
    659 		 *
    660 		 * Defer vnode release to vrele_thread if caller
    661 		 * requests it explicitly or is the pagedaemon.
    662 		 */
    663 		if ((curlwp == uvm.pagedaemon_lwp) ||
    664 		    (flags & VRELEL_ASYNC_RELE) != 0) {
    665 			defer = true;
    666 		} else if (curlwp == vrele_lwp) {
    667 			/*
    668 			 * We have to try harder.
    669 			 */
    670 			mutex_exit(vp->v_interlock);
    671 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    672 			KASSERT(error == 0);
    673 			mutex_enter(vp->v_interlock);
    674 			defer = false;
    675 		} else {
    676 			/* If we can't acquire the lock, then defer. */
    677 			mutex_exit(vp->v_interlock);
    678 			error = vn_lock(vp,
    679 			    LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
    680 			defer = (error != 0);
    681 			mutex_enter(vp->v_interlock);
    682 		}
    683 
    684 		KASSERT(mutex_owned(vp->v_interlock));
    685 		KASSERT(! (curlwp == vrele_lwp && defer));
    686 
    687 		if (defer) {
    688 			/*
    689 			 * Defer reclaim to the kthread; it's not safe to
    690 			 * clean it here.  We donate it our last reference.
    691 			 */
    692 			if ((flags & VRELEL_CHANGING_SET) != 0) {
    693 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    694 				vp->v_iflag &= ~VI_CHANGING;
    695 				cv_broadcast(&vp->v_cv);
    696 			}
    697 			mutex_enter(&vrele_lock);
    698 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
    699 			if (++vrele_pending > (desiredvnodes >> 8))
    700 				cv_signal(&vrele_cv);
    701 			mutex_exit(&vrele_lock);
    702 			mutex_exit(vp->v_interlock);
    703 			return;
    704 		}
    705 
    706 		/*
    707 		 * If the node got another reference while we
    708 		 * released the interlock, don't try to inactivate it yet.
    709 		 */
    710 		if (__predict_false(vtryrele(vp))) {
    711 			VOP_UNLOCK(vp);
    712 			if ((flags & VRELEL_CHANGING_SET) != 0) {
    713 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    714 				vp->v_iflag &= ~VI_CHANGING;
    715 				cv_broadcast(&vp->v_cv);
    716 			}
    717 			mutex_exit(vp->v_interlock);
    718 			return;
    719 		}
    720 
    721 		if ((flags & VRELEL_CHANGING_SET) == 0) {
    722 			KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    723 			vp->v_iflag |= VI_CHANGING;
    724 		}
    725 		mutex_exit(vp->v_interlock);
    726 
    727 		/*
    728 		 * The vnode can gain another reference while being
    729 		 * deactivated.  If VOP_INACTIVE() indicates that
    730 		 * the described file has been deleted, then recycle
    731 		 * the vnode irrespective of additional references.
    732 		 * Another thread may be waiting to re-use the on-disk
    733 		 * inode.
    734 		 *
    735 		 * Note that VOP_INACTIVE() will drop the vnode lock.
    736 		 */
    737 		VOP_INACTIVE(vp, &recycle);
    738 		mutex_enter(vp->v_interlock);
    739 		if (!recycle) {
    740 			if (vtryrele(vp)) {
    741 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    742 				vp->v_iflag &= ~VI_CHANGING;
    743 				cv_broadcast(&vp->v_cv);
    744 				mutex_exit(vp->v_interlock);
    745 				return;
    746 			}
    747 		}
    748 
    749 		/* Take care of space accounting. */
    750 		if (vp->v_iflag & VI_EXECMAP) {
    751 			atomic_add_int(&uvmexp.execpages,
    752 			    -vp->v_uobj.uo_npages);
    753 			atomic_add_int(&uvmexp.filepages,
    754 			    vp->v_uobj.uo_npages);
    755 		}
    756 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
    757 		vp->v_vflag &= ~VV_MAPPED;
    758 
    759 		/*
    760 		 * Recycle the vnode if the file is now unused (unlinked),
    761 		 * otherwise just free it.
    762 		 */
    763 		if (recycle) {
    764 			vclean(vp);
    765 		}
    766 		KASSERT(vp->v_usecount > 0);
    767 	} else { /* vnode was already clean */
    768 		if ((flags & VRELEL_CHANGING_SET) == 0) {
    769 			KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    770 			vp->v_iflag |= VI_CHANGING;
    771 		}
    772 	}
    773 
    774 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
    775 		/* Gained another reference while being reclaimed. */
    776 		KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    777 		vp->v_iflag &= ~VI_CHANGING;
    778 		cv_broadcast(&vp->v_cv);
    779 		mutex_exit(vp->v_interlock);
    780 		return;
    781 	}
    782 
    783 	if ((vp->v_iflag & VI_CLEAN) != 0) {
    784 		/*
    785 		 * It's clean so destroy it.  It isn't referenced
    786 		 * anywhere since it has been reclaimed.
    787 		 */
    788 		KASSERT(vp->v_holdcnt == 0);
    789 		KASSERT(vp->v_writecount == 0);
    790 		mutex_exit(vp->v_interlock);
    791 		vfs_insmntque(vp, NULL);
    792 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
    793 			spec_node_destroy(vp);
    794 		}
    795 		vnfree(vp);
    796 	} else {
    797 		/*
    798 		 * Otherwise, put it back onto the freelist.  It
    799 		 * can't be destroyed while still associated with
    800 		 * a file system.
    801 		 */
    802 		mutex_enter(&vnode_free_list_lock);
    803 		if (vp->v_holdcnt > 0) {
    804 			vp->v_freelisthd = &vnode_hold_list;
    805 		} else {
    806 			vp->v_freelisthd = &vnode_free_list;
    807 		}
    808 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    809 		mutex_exit(&vnode_free_list_lock);
    810 		KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    811 		vp->v_iflag &= ~VI_CHANGING;
    812 		cv_broadcast(&vp->v_cv);
    813 		mutex_exit(vp->v_interlock);
    814 	}
    815 }
    816 
    817 void
    818 vrele(vnode_t *vp)
    819 {
    820 
    821 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    822 
    823 	if (vtryrele(vp)) {
    824 		return;
    825 	}
    826 	mutex_enter(vp->v_interlock);
    827 	vrelel(vp, 0);
    828 }
    829 
    830 /*
    831  * Asynchronous vnode release, vnode is released in different context.
    832  */
    833 void
    834 vrele_async(vnode_t *vp)
    835 {
    836 
    837 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    838 
    839 	if (vtryrele(vp)) {
    840 		return;
    841 	}
    842 	mutex_enter(vp->v_interlock);
    843 	vrelel(vp, VRELEL_ASYNC_RELE);
    844 }
    845 
    846 static void
    847 vrele_thread(void *cookie)
    848 {
    849 	vnodelst_t skip_list;
    850 	vnode_t *vp;
    851 	struct mount *mp;
    852 
    853 	TAILQ_INIT(&skip_list);
    854 
    855 	mutex_enter(&vrele_lock);
    856 	for (;;) {
    857 		while (TAILQ_EMPTY(&vrele_list)) {
    858 			vrele_gen++;
    859 			cv_broadcast(&vrele_cv);
    860 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
    861 			TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
    862 		}
    863 		vp = TAILQ_FIRST(&vrele_list);
    864 		mp = vp->v_mount;
    865 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
    866 		if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
    867 			TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
    868 			continue;
    869 		}
    870 		vrele_pending--;
    871 		mutex_exit(&vrele_lock);
    872 
    873 		/*
    874 		 * If not the last reference, then ignore the vnode
    875 		 * and look for more work.
    876 		 */
    877 		mutex_enter(vp->v_interlock);
    878 		vrelel(vp, 0);
    879 		fstrans_done(mp);
    880 		mutex_enter(&vrele_lock);
    881 	}
    882 }
    883 
    884 void
    885 vrele_flush(void)
    886 {
    887 	int gen;
    888 
    889 	mutex_enter(&vrele_lock);
    890 	gen = vrele_gen;
    891 	while (vrele_pending && gen == vrele_gen) {
    892 		cv_broadcast(&vrele_cv);
    893 		cv_wait(&vrele_cv, &vrele_lock);
    894 	}
    895 	mutex_exit(&vrele_lock);
    896 }
    897 
    898 /*
    899  * Vnode reference, where a reference is already held by some other
    900  * object (for example, a file structure).
    901  */
    902 void
    903 vref(vnode_t *vp)
    904 {
    905 
    906 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    907 	KASSERT(vp->v_usecount != 0);
    908 
    909 	atomic_inc_uint(&vp->v_usecount);
    910 }
    911 
    912 /*
    913  * Page or buffer structure gets a reference.
    914  * Called with v_interlock held.
    915  */
    916 void
    917 vholdl(vnode_t *vp)
    918 {
    919 
    920 	KASSERT(mutex_owned(vp->v_interlock));
    921 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    922 
    923 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
    924 		mutex_enter(&vnode_free_list_lock);
    925 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    926 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    927 		vp->v_freelisthd = &vnode_hold_list;
    928 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    929 		mutex_exit(&vnode_free_list_lock);
    930 	}
    931 }
    932 
    933 /*
    934  * Page or buffer structure frees a reference.
    935  * Called with v_interlock held.
    936  */
    937 void
    938 holdrelel(vnode_t *vp)
    939 {
    940 
    941 	KASSERT(mutex_owned(vp->v_interlock));
    942 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    943 
    944 	if (vp->v_holdcnt <= 0) {
    945 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
    946 	}
    947 
    948 	vp->v_holdcnt--;
    949 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
    950 		mutex_enter(&vnode_free_list_lock);
    951 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    952 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    953 		vp->v_freelisthd = &vnode_free_list;
    954 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    955 		mutex_exit(&vnode_free_list_lock);
    956 	}
    957 }
    958 
    959 /*
    960  * Disassociate the underlying file system from a vnode.
    961  *
    962  * Must be called with the interlock held, and will return with it held.
    963  */
    964 static void
    965 vclean(vnode_t *vp)
    966 {
    967 	lwp_t *l = curlwp;
    968 	bool recycle, active, doclose;
    969 	int error;
    970 
    971 	KASSERT(mutex_owned(vp->v_interlock));
    972 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    973 	KASSERT(vp->v_usecount != 0);
    974 
    975 	/* If already clean, nothing to do. */
    976 	if ((vp->v_iflag & VI_CLEAN) != 0) {
    977 		return;
    978 	}
    979 
    980 	active = (vp->v_usecount > 1);
    981 	doclose = ! (active && vp->v_type == VBLK &&
    982 	    spec_node_getmountedfs(vp) != NULL);
    983 	mutex_exit(vp->v_interlock);
    984 
    985 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    986 
    987 	/*
    988 	 * Prevent the vnode from being recycled or brought into use
    989 	 * while we clean it out.
    990 	 */
    991 	mutex_enter(vp->v_interlock);
    992 	KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0);
    993 	vp->v_iflag |= VI_XLOCK;
    994 	if (vp->v_iflag & VI_EXECMAP) {
    995 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
    996 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
    997 	}
    998 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
    999 	mutex_exit(vp->v_interlock);
   1000 
   1001 	/*
   1002 	 * Clean out any cached data associated with the vnode.
   1003 	 * If purging an active vnode, it must be closed and
   1004 	 * deactivated before being reclaimed. Note that the
   1005 	 * VOP_INACTIVE will unlock the vnode.
   1006 	 */
   1007 	if (doclose) {
   1008 		error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
   1009 		if (error != 0) {
   1010 			if (wapbl_vphaswapbl(vp))
   1011 				WAPBL_DISCARD(wapbl_vptomp(vp));
   1012 			error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
   1013 		}
   1014 		KASSERT(error == 0);
   1015 		KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1016 		if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
   1017 			 spec_node_revoke(vp);
   1018 		}
   1019 	}
   1020 	if (active) {
   1021 		VOP_INACTIVE(vp, &recycle);
   1022 	} else {
   1023 		/*
   1024 		 * Any other processes trying to obtain this lock must first
   1025 		 * wait for VI_XLOCK to clear, then call the new lock operation.
   1026 		 */
   1027 		VOP_UNLOCK(vp);
   1028 	}
   1029 
   1030 	/* Disassociate the underlying file system from the vnode. */
   1031 	if (VOP_RECLAIM(vp)) {
   1032 		vnpanic(vp, "%s: cannot reclaim", __func__);
   1033 	}
   1034 
   1035 	KASSERT(vp->v_data == NULL);
   1036 	KASSERT(vp->v_uobj.uo_npages == 0);
   1037 
   1038 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
   1039 		uvm_ra_freectx(vp->v_ractx);
   1040 		vp->v_ractx = NULL;
   1041 	}
   1042 
   1043 	/* Purge name cache. */
   1044 	cache_purge(vp);
   1045 
   1046 	/* Move to dead mount. */
   1047 	vp->v_vflag &= ~VV_ROOT;
   1048 	atomic_inc_uint(&dead_mount->mnt_refcnt);
   1049 	vfs_insmntque(vp, dead_mount);
   1050 
   1051 	/* Done with purge, notify sleepers of the grim news. */
   1052 	mutex_enter(vp->v_interlock);
   1053 	if (doclose) {
   1054 		vp->v_op = dead_vnodeop_p;
   1055 		vp->v_vflag |= VV_LOCKSWORK;
   1056 		vp->v_iflag |= VI_CLEAN;
   1057 	} else {
   1058 		vp->v_op = spec_vnodeop_p;
   1059 		vp->v_vflag &= ~VV_LOCKSWORK;
   1060 	}
   1061 	vp->v_tag = VT_NON;
   1062 	KNOTE(&vp->v_klist, NOTE_REVOKE);
   1063 	vp->v_iflag &= ~VI_XLOCK;
   1064 	cv_broadcast(&vp->v_cv);
   1065 
   1066 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1067 }
   1068 
   1069 /*
   1070  * Recycle an unused vnode if caller holds the last reference.
   1071  */
   1072 bool
   1073 vrecycle(vnode_t *vp)
   1074 {
   1075 
   1076 	mutex_enter(vp->v_interlock);
   1077 
   1078 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
   1079 
   1080 	if (vp->v_usecount != 1) {
   1081 		mutex_exit(vp->v_interlock);
   1082 		return false;
   1083 	}
   1084 	if ((vp->v_iflag & VI_CHANGING) != 0)
   1085 		vwait(vp, VI_CHANGING);
   1086 	if (vp->v_usecount != 1) {
   1087 		mutex_exit(vp->v_interlock);
   1088 		return false;
   1089 	} else if ((vp->v_iflag & VI_CLEAN) != 0) {
   1090 		mutex_exit(vp->v_interlock);
   1091 		return true;
   1092 	}
   1093 	vp->v_iflag |= VI_CHANGING;
   1094 	vclean(vp);
   1095 	vrelel(vp, VRELEL_CHANGING_SET);
   1096 	return true;
   1097 }
   1098 
   1099 /*
   1100  * Eliminate all activity associated with the requested vnode
   1101  * and with all vnodes aliased to the requested vnode.
   1102  */
   1103 void
   1104 vrevoke(vnode_t *vp)
   1105 {
   1106 	vnode_t *vq;
   1107 	enum vtype type;
   1108 	dev_t dev;
   1109 
   1110 	KASSERT(vp->v_usecount > 0);
   1111 
   1112 	mutex_enter(vp->v_interlock);
   1113 	if ((vp->v_iflag & VI_CLEAN) != 0) {
   1114 		mutex_exit(vp->v_interlock);
   1115 		return;
   1116 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
   1117 		atomic_inc_uint(&vp->v_usecount);
   1118 		mutex_exit(vp->v_interlock);
   1119 		vgone(vp);
   1120 		return;
   1121 	} else {
   1122 		dev = vp->v_rdev;
   1123 		type = vp->v_type;
   1124 		mutex_exit(vp->v_interlock);
   1125 	}
   1126 
   1127 	while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
   1128 		vgone(vq);
   1129 	}
   1130 }
   1131 
   1132 /*
   1133  * Eliminate all activity associated with a vnode in preparation for
   1134  * reuse.  Drops a reference from the vnode.
   1135  */
   1136 void
   1137 vgone(vnode_t *vp)
   1138 {
   1139 
   1140 	mutex_enter(vp->v_interlock);
   1141 	if ((vp->v_iflag & VI_CHANGING) != 0)
   1142 		vwait(vp, VI_CHANGING);
   1143 	vp->v_iflag |= VI_CHANGING;
   1144 	vclean(vp);
   1145 	vrelel(vp, VRELEL_CHANGING_SET);
   1146 }
   1147 
   1148 static inline uint32_t
   1149 vcache_hash(const struct vcache_key *key)
   1150 {
   1151 	uint32_t hash = HASH32_BUF_INIT;
   1152 
   1153 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
   1154 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
   1155 	return hash;
   1156 }
   1157 
   1158 static void
   1159 vcache_init(void)
   1160 {
   1161 
   1162 	vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
   1163 	    "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
   1164 	KASSERT(vcache.pool != NULL);
   1165 	mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
   1166 	vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
   1167 	    &vcache.hashmask);
   1168 }
   1169 
   1170 static void
   1171 vcache_reinit(void)
   1172 {
   1173 	int i;
   1174 	uint32_t hash;
   1175 	u_long oldmask, newmask;
   1176 	struct hashhead *oldtab, *newtab;
   1177 	struct vcache_node *node;
   1178 
   1179 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
   1180 	mutex_enter(&vcache.lock);
   1181 	oldtab = vcache.hashtab;
   1182 	oldmask = vcache.hashmask;
   1183 	vcache.hashtab = newtab;
   1184 	vcache.hashmask = newmask;
   1185 	for (i = 0; i <= oldmask; i++) {
   1186 		while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
   1187 			SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
   1188 			hash = vcache_hash(&node->vn_key);
   1189 			SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
   1190 			    node, vn_hash);
   1191 		}
   1192 	}
   1193 	mutex_exit(&vcache.lock);
   1194 	hashdone(oldtab, HASH_SLIST, oldmask);
   1195 }
   1196 
   1197 static inline struct vcache_node *
   1198 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
   1199 {
   1200 	struct hashhead *hashp;
   1201 	struct vcache_node *node;
   1202 
   1203 	KASSERT(mutex_owned(&vcache.lock));
   1204 
   1205 	hashp = &vcache.hashtab[hash & vcache.hashmask];
   1206 	SLIST_FOREACH(node, hashp, vn_hash) {
   1207 		if (key->vk_mount != node->vn_key.vk_mount)
   1208 			continue;
   1209 		if (key->vk_key_len != node->vn_key.vk_key_len)
   1210 			continue;
   1211 		if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
   1212 			continue;
   1213 		return node;
   1214 	}
   1215 	return NULL;
   1216 }
   1217 
   1218 /*
   1219  * Get a vnode / fs node pair by key and return it referenced through vpp.
   1220  */
   1221 int
   1222 vcache_get(struct mount *mp, const void *key, size_t key_len,
   1223     struct vnode **vpp)
   1224 {
   1225 	int error;
   1226 	uint32_t hash;
   1227 	const void *new_key;
   1228 	struct vnode *vp;
   1229 	struct vcache_key vcache_key;
   1230 	struct vcache_node *node, *new_node;
   1231 
   1232 	new_key = NULL;
   1233 	*vpp = NULL;
   1234 
   1235 	vcache_key.vk_mount = mp;
   1236 	vcache_key.vk_key = key;
   1237 	vcache_key.vk_key_len = key_len;
   1238 	hash = vcache_hash(&vcache_key);
   1239 
   1240 again:
   1241 	mutex_enter(&vcache.lock);
   1242 	node = vcache_hash_lookup(&vcache_key, hash);
   1243 
   1244 	/* If found, take a reference or retry. */
   1245 	if (__predict_true(node != NULL && node->vn_vnode != NULL)) {
   1246 		vp = node->vn_vnode;
   1247 		mutex_enter(vp->v_interlock);
   1248 		mutex_exit(&vcache.lock);
   1249 		error = vget(vp, 0);
   1250 		if (error == ENOENT)
   1251 			goto again;
   1252 		if (error == 0)
   1253 			*vpp = vp;
   1254 		KASSERT((error != 0) == (*vpp == NULL));
   1255 		return error;
   1256 	}
   1257 
   1258 	/* If another thread loads this node, wait and retry. */
   1259 	if (node != NULL) {
   1260 		KASSERT(node->vn_vnode == NULL);
   1261 		mutex_exit(&vcache.lock);
   1262 		kpause("vcache", false, mstohz(20), NULL);
   1263 		goto again;
   1264 	}
   1265 	mutex_exit(&vcache.lock);
   1266 
   1267 	/* Allocate and initialize a new vcache / vnode pair. */
   1268 	error = vfs_busy(mp, NULL);
   1269 	if (error)
   1270 		return error;
   1271 	new_node = pool_cache_get(vcache.pool, PR_WAITOK);
   1272 	new_node->vn_vnode = NULL;
   1273 	new_node->vn_key = vcache_key;
   1274 	vp = vnalloc(NULL);
   1275 	mutex_enter(&vcache.lock);
   1276 	node = vcache_hash_lookup(&vcache_key, hash);
   1277 	if (node == NULL) {
   1278 		SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
   1279 		    new_node, vn_hash);
   1280 		node = new_node;
   1281 	}
   1282 	mutex_exit(&vcache.lock);
   1283 
   1284 	/* If another thread beat us inserting this node, retry. */
   1285 	if (node != new_node) {
   1286 		pool_cache_put(vcache.pool, new_node);
   1287 		KASSERT(vp->v_usecount == 1);
   1288 		vp->v_usecount = 0;
   1289 		vnfree(vp);
   1290 		vfs_unbusy(mp, false, NULL);
   1291 		goto again;
   1292 	}
   1293 
   1294 	/* Load the fs node.  Exclusive as new_node->vn_vnode is NULL. */
   1295 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
   1296 	if (error) {
   1297 		mutex_enter(&vcache.lock);
   1298 		SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1299 		    new_node, vcache_node, vn_hash);
   1300 		mutex_exit(&vcache.lock);
   1301 		pool_cache_put(vcache.pool, new_node);
   1302 		KASSERT(vp->v_usecount == 1);
   1303 		vp->v_usecount = 0;
   1304 		vnfree(vp);
   1305 		vfs_unbusy(mp, false, NULL);
   1306 		KASSERT(*vpp == NULL);
   1307 		return error;
   1308 	}
   1309 	KASSERT(new_key != NULL);
   1310 	KASSERT(memcmp(key, new_key, key_len) == 0);
   1311 	KASSERT(vp->v_op != NULL);
   1312 	vfs_insmntque(vp, mp);
   1313 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1314 		vp->v_vflag |= VV_MPSAFE;
   1315 	vfs_unbusy(mp, true, NULL);
   1316 
   1317 	/* Finished loading, finalize node. */
   1318 	mutex_enter(&vcache.lock);
   1319 	new_node->vn_key.vk_key = new_key;
   1320 	new_node->vn_vnode = vp;
   1321 	mutex_exit(&vcache.lock);
   1322 	*vpp = vp;
   1323 	return 0;
   1324 }
   1325 
   1326 /*
   1327  * Remove a vnode / fs node pair from the cache.
   1328  */
   1329 void
   1330 vcache_remove(struct mount *mp, const void *key, size_t key_len)
   1331 {
   1332 	uint32_t hash;
   1333 	struct vcache_key vcache_key;
   1334 	struct vcache_node *node;
   1335 
   1336 	vcache_key.vk_mount = mp;
   1337 	vcache_key.vk_key = key;
   1338 	vcache_key.vk_key_len = key_len;
   1339 	hash = vcache_hash(&vcache_key);
   1340 
   1341 	mutex_enter(&vcache.lock);
   1342 	node = vcache_hash_lookup(&vcache_key, hash);
   1343 	KASSERT(node != NULL);
   1344 	SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1345 	    node, vcache_node, vn_hash);
   1346 	mutex_exit(&vcache.lock);
   1347 	pool_cache_put(vcache.pool, node);
   1348 }
   1349 
   1350 /*
   1351  * Update outstanding I/O count and do wakeup if requested.
   1352  */
   1353 void
   1354 vwakeup(struct buf *bp)
   1355 {
   1356 	vnode_t *vp;
   1357 
   1358 	if ((vp = bp->b_vp) == NULL)
   1359 		return;
   1360 
   1361 	KASSERT(bp->b_objlock == vp->v_interlock);
   1362 	KASSERT(mutex_owned(bp->b_objlock));
   1363 
   1364 	if (--vp->v_numoutput < 0)
   1365 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
   1366 	if (vp->v_numoutput == 0)
   1367 		cv_broadcast(&vp->v_cv);
   1368 }
   1369 
   1370 /*
   1371  * Test a vnode for being or becoming dead.  Returns one of:
   1372  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
   1373  * ENOENT: vnode is dead.
   1374  * 0:      otherwise.
   1375  *
   1376  * Whenever this function returns a non-zero value all future
   1377  * calls will also return a non-zero value.
   1378  */
   1379 int
   1380 vdead_check(struct vnode *vp, int flags)
   1381 {
   1382 
   1383 	KASSERT(mutex_owned(vp->v_interlock));
   1384 	if (ISSET(vp->v_iflag, VI_XLOCK)) {
   1385 		if (ISSET(flags, VDEAD_NOWAIT))
   1386 			return EBUSY;
   1387 		vwait(vp, VI_XLOCK);
   1388 		KASSERT(ISSET(vp->v_iflag, VI_CLEAN));
   1389 	}
   1390 	if (ISSET(vp->v_iflag, VI_CLEAN))
   1391 		return ENOENT;
   1392 	return 0;
   1393 }
   1394 
   1395 /*
   1396  * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
   1397  * recycled.
   1398  */
   1399 static void
   1400 vwait(vnode_t *vp, int flags)
   1401 {
   1402 
   1403 	KASSERT(mutex_owned(vp->v_interlock));
   1404 	KASSERT(vp->v_usecount != 0);
   1405 
   1406 	while ((vp->v_iflag & flags) != 0)
   1407 		cv_wait(&vp->v_cv, vp->v_interlock);
   1408 }
   1409 
   1410 int
   1411 vfs_drainvnodes(long target)
   1412 {
   1413 	int error;
   1414 
   1415 	mutex_enter(&vnode_free_list_lock);
   1416 
   1417 	while (numvnodes > target) {
   1418 		error = cleanvnode();
   1419 		if (error != 0)
   1420 			return error;
   1421 		mutex_enter(&vnode_free_list_lock);
   1422 	}
   1423 
   1424 	mutex_exit(&vnode_free_list_lock);
   1425 
   1426 	vcache_reinit();
   1427 
   1428 	return 0;
   1429 }
   1430 
   1431 void
   1432 vnpanic(vnode_t *vp, const char *fmt, ...)
   1433 {
   1434 	va_list ap;
   1435 
   1436 #ifdef DIAGNOSTIC
   1437 	vprint(NULL, vp);
   1438 #endif
   1439 	va_start(ap, fmt);
   1440 	vpanic(fmt, ap);
   1441 	va_end(ap);
   1442 }
   1443