Home | History | Annotate | Line # | Download | only in kern
vfs_vnode.c revision 1.37.2.1.2.1
      1 /*	$NetBSD: vfs_vnode.c,v 1.37.2.1.2.1 2016/01/26 23:44:11 snj Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     67  */
     68 
     69 /*
     70  * The vnode cache subsystem.
     71  *
     72  * Life-cycle
     73  *
     74  *	Normally, there are two points where new vnodes are created:
     75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
     76  *	starts in one of the following ways:
     77  *
     78  *	- Allocation, via getnewvnode(9) and/or vnalloc(9).
     79  *	- Reclamation of inactive vnode, via vget(9).
     80  *
     81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
     82  *	was another, traditional way.  Currently, only the draining thread
     83  *	recycles the vnodes.  This behaviour might be revisited.
     84  *
     85  *	The life-cycle ends when the last reference is dropped, usually
     86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
     87  *	the file system that vnode is inactive.  Via this call, file system
     88  *	indicates whether vnode can be recycled (usually, it checks its own
     89  *	references, e.g. count of links, whether the file was removed).
     90  *
     91  *	Depending on indication, vnode can be put into a free list (cache),
     92  *	or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
     93  *	underlying file system from the vnode, and finally destroyed.
     94  *
     95  * Reference counting
     96  *
     97  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
     98  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
     99  *	as vput(9), routines.  Common points holding references are e.g.
    100  *	file openings, current working directory, mount points, etc.
    101  *
    102  * Note on v_usecount and its locking
    103  *
    104  *	At nearly all points it is known that v_usecount could be zero,
    105  *	the vnode_t::v_interlock will be held.  To change v_usecount away
    106  *	from zero, the interlock must be held.  To change from a non-zero
    107  *	value to zero, again the interlock must be held.
    108  *
    109  *	Changing the usecount from a non-zero value to a non-zero value can
    110  *	safely be done using atomic operations, without the interlock held.
    111  *
    112  *	Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
    113  *	mntvnode_lock is still held.
    114  *
    115  *	See PR 41374.
    116  */
    117 
    118 #include <sys/cdefs.h>
    119 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.37.2.1.2.1 2016/01/26 23:44:11 snj Exp $");
    120 
    121 #define _VFS_VNODE_PRIVATE
    122 
    123 #include <sys/param.h>
    124 #include <sys/kernel.h>
    125 
    126 #include <sys/atomic.h>
    127 #include <sys/buf.h>
    128 #include <sys/conf.h>
    129 #include <sys/device.h>
    130 #include <sys/hash.h>
    131 #include <sys/kauth.h>
    132 #include <sys/kmem.h>
    133 #include <sys/kthread.h>
    134 #include <sys/module.h>
    135 #include <sys/mount.h>
    136 #include <sys/namei.h>
    137 #include <sys/syscallargs.h>
    138 #include <sys/sysctl.h>
    139 #include <sys/systm.h>
    140 #include <sys/vnode.h>
    141 #include <sys/wapbl.h>
    142 #include <sys/fstrans.h>
    143 
    144 #include <uvm/uvm.h>
    145 #include <uvm/uvm_readahead.h>
    146 
    147 /* Flags to vrelel. */
    148 #define	VRELEL_ASYNC_RELE	0x0001	/* Always defer to vrele thread. */
    149 #define	VRELEL_CHANGING_SET	0x0002	/* VI_CHANGING set by caller. */
    150 
    151 struct vcache_key {
    152 	struct mount *vk_mount;
    153 	const void *vk_key;
    154 	size_t vk_key_len;
    155 };
    156 struct vcache_node {
    157 	SLIST_ENTRY(vcache_node) vn_hash;
    158 	struct vnode *vn_vnode;
    159 	struct vcache_key vn_key;
    160 };
    161 
    162 u_int			numvnodes		__cacheline_aligned;
    163 
    164 static pool_cache_t	vnode_cache		__read_mostly;
    165 static struct mount	*dead_mount;
    166 
    167 /*
    168  * There are two free lists: one is for vnodes which have no buffer/page
    169  * references and one for those which do (i.e. v_holdcnt is non-zero).
    170  * Vnode recycling mechanism first attempts to look into the former list.
    171  */
    172 static kmutex_t		vnode_free_list_lock	__cacheline_aligned;
    173 static vnodelst_t	vnode_free_list		__cacheline_aligned;
    174 static vnodelst_t	vnode_hold_list		__cacheline_aligned;
    175 static kcondvar_t	vdrain_cv		__cacheline_aligned;
    176 
    177 static vnodelst_t	vrele_list		__cacheline_aligned;
    178 static kmutex_t		vrele_lock		__cacheline_aligned;
    179 static kcondvar_t	vrele_cv		__cacheline_aligned;
    180 static lwp_t *		vrele_lwp		__cacheline_aligned;
    181 static int		vrele_pending		__cacheline_aligned;
    182 static int		vrele_gen		__cacheline_aligned;
    183 
    184 static struct {
    185 	kmutex_t	lock;
    186 	u_long		hashmask;
    187 	SLIST_HEAD(hashhead, vcache_node)	*hashtab;
    188 	pool_cache_t	pool;
    189 }			vcache			__cacheline_aligned;
    190 
    191 static int		cleanvnode(void);
    192 static void		vcache_init(void);
    193 static void		vcache_reinit(void);
    194 static void		vclean(vnode_t *);
    195 static void		vrelel(vnode_t *, int);
    196 static void		vdrain_thread(void *);
    197 static void		vrele_thread(void *);
    198 static void		vnpanic(vnode_t *, const char *, ...)
    199     __printflike(2, 3);
    200 static void		vwait(vnode_t *, int);
    201 
    202 /* Routines having to do with the management of the vnode table. */
    203 extern int		(**dead_vnodeop_p)(void *);
    204 extern struct vfsops	dead_vfsops;
    205 
    206 void
    207 vfs_vnode_sysinit(void)
    208 {
    209 	int error __diagused;
    210 
    211 	vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
    212 	    NULL, IPL_NONE, NULL, NULL, NULL);
    213 	KASSERT(vnode_cache != NULL);
    214 
    215 	dead_mount = vfs_mountalloc(&dead_vfsops, NULL);
    216 	KASSERT(dead_mount != NULL);
    217 	dead_mount->mnt_iflag = IMNT_MPSAFE;
    218 
    219 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
    220 	TAILQ_INIT(&vnode_free_list);
    221 	TAILQ_INIT(&vnode_hold_list);
    222 	TAILQ_INIT(&vrele_list);
    223 
    224 	vcache_init();
    225 
    226 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
    227 	cv_init(&vdrain_cv, "vdrain");
    228 	cv_init(&vrele_cv, "vrele");
    229 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
    230 	    NULL, NULL, "vdrain");
    231 	KASSERT(error == 0);
    232 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
    233 	    NULL, &vrele_lwp, "vrele");
    234 	KASSERT(error == 0);
    235 }
    236 
    237 /*
    238  * Allocate a new, uninitialized vnode.  If 'mp' is non-NULL, this is a
    239  * marker vnode.
    240  */
    241 vnode_t *
    242 vnalloc(struct mount *mp)
    243 {
    244 	vnode_t *vp;
    245 
    246 	vp = pool_cache_get(vnode_cache, PR_WAITOK);
    247 	KASSERT(vp != NULL);
    248 
    249 	memset(vp, 0, sizeof(*vp));
    250 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
    251 	cv_init(&vp->v_cv, "vnode");
    252 	/*
    253 	 * Done by memset() above.
    254 	 *	LIST_INIT(&vp->v_nclist);
    255 	 *	LIST_INIT(&vp->v_dnclist);
    256 	 */
    257 
    258 	if (mp != NULL) {
    259 		vp->v_mount = mp;
    260 		vp->v_type = VBAD;
    261 		vp->v_iflag = VI_MARKER;
    262 		return vp;
    263 	}
    264 
    265 	mutex_enter(&vnode_free_list_lock);
    266 	numvnodes++;
    267 	if (numvnodes > desiredvnodes + desiredvnodes / 10)
    268 		cv_signal(&vdrain_cv);
    269 	mutex_exit(&vnode_free_list_lock);
    270 
    271 	rw_init(&vp->v_lock);
    272 	vp->v_usecount = 1;
    273 	vp->v_type = VNON;
    274 	vp->v_size = vp->v_writesize = VSIZENOTSET;
    275 
    276 	return vp;
    277 }
    278 
    279 /*
    280  * Free an unused, unreferenced vnode.
    281  */
    282 void
    283 vnfree(vnode_t *vp)
    284 {
    285 
    286 	KASSERT(vp->v_usecount == 0);
    287 
    288 	if ((vp->v_iflag & VI_MARKER) == 0) {
    289 		rw_destroy(&vp->v_lock);
    290 		mutex_enter(&vnode_free_list_lock);
    291 		numvnodes--;
    292 		mutex_exit(&vnode_free_list_lock);
    293 	}
    294 
    295 	/*
    296 	 * Note: the vnode interlock will either be freed, of reference
    297 	 * dropped (if VI_LOCKSHARE was in use).
    298 	 */
    299 	uvm_obj_destroy(&vp->v_uobj, true);
    300 	cv_destroy(&vp->v_cv);
    301 	pool_cache_put(vnode_cache, vp);
    302 }
    303 
    304 /*
    305  * cleanvnode: grab a vnode from freelist, clean and free it.
    306  *
    307  * => Releases vnode_free_list_lock.
    308  */
    309 static int
    310 cleanvnode(void)
    311 {
    312 	vnode_t *vp;
    313 	vnodelst_t *listhd;
    314 	struct mount *mp;
    315 
    316 	KASSERT(mutex_owned(&vnode_free_list_lock));
    317 
    318 	listhd = &vnode_free_list;
    319 try_nextlist:
    320 	TAILQ_FOREACH(vp, listhd, v_freelist) {
    321 		/*
    322 		 * It's safe to test v_usecount and v_iflag
    323 		 * without holding the interlock here, since
    324 		 * these vnodes should never appear on the
    325 		 * lists.
    326 		 */
    327 		KASSERT(vp->v_usecount == 0);
    328 		KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    329 		KASSERT(vp->v_freelisthd == listhd);
    330 
    331 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
    332 			continue;
    333 		if (!mutex_tryenter(vp->v_interlock)) {
    334 			VOP_UNLOCK(vp);
    335 			continue;
    336 		}
    337 		KASSERT((vp->v_iflag & VI_XLOCK) == 0);
    338 		mp = vp->v_mount;
    339 		if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
    340 			mutex_exit(vp->v_interlock);
    341 			VOP_UNLOCK(vp);
    342 			continue;
    343 		}
    344 		break;
    345 	}
    346 
    347 	if (vp == NULL) {
    348 		if (listhd == &vnode_free_list) {
    349 			listhd = &vnode_hold_list;
    350 			goto try_nextlist;
    351 		}
    352 		mutex_exit(&vnode_free_list_lock);
    353 		return EBUSY;
    354 	}
    355 
    356 	/* Remove it from the freelist. */
    357 	TAILQ_REMOVE(listhd, vp, v_freelist);
    358 	vp->v_freelisthd = NULL;
    359 	mutex_exit(&vnode_free_list_lock);
    360 
    361 	KASSERT(vp->v_usecount == 0);
    362 
    363 	/*
    364 	 * The vnode is still associated with a file system, so we must
    365 	 * clean it out before freeing it.  We need to add a reference
    366 	 * before doing this.
    367 	 */
    368 	vp->v_usecount = 1;
    369 	KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    370 	vp->v_iflag |= VI_CHANGING;
    371 	vclean(vp);
    372 	vrelel(vp, VRELEL_CHANGING_SET);
    373 	fstrans_done(mp);
    374 
    375 	return 0;
    376 }
    377 
    378 /*
    379  * getnewvnode: return a fresh vnode.
    380  *
    381  * => Returns referenced vnode, moved into the mount queue.
    382  * => Shares the interlock specified by 'slock', if it is not NULL.
    383  */
    384 int
    385 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
    386     kmutex_t *slock, vnode_t **vpp)
    387 {
    388 	struct uvm_object *uobj __diagused;
    389 	vnode_t *vp;
    390 	int error = 0;
    391 
    392 	if (mp != NULL) {
    393 		/*
    394 		 * Mark filesystem busy while we are creating a vnode.
    395 		 * If unmount is in progress, this will fail.
    396 		 */
    397 		error = vfs_busy(mp, NULL);
    398 		if (error)
    399 			return error;
    400 	}
    401 
    402 	vp = NULL;
    403 
    404 	/* Allocate a new vnode. */
    405 	vp = vnalloc(NULL);
    406 
    407 	KASSERT(vp->v_freelisthd == NULL);
    408 	KASSERT(LIST_EMPTY(&vp->v_nclist));
    409 	KASSERT(LIST_EMPTY(&vp->v_dnclist));
    410 	KASSERT(vp->v_data == NULL);
    411 
    412 	/* Initialize vnode. */
    413 	vp->v_tag = tag;
    414 	vp->v_op = vops;
    415 
    416 	uobj = &vp->v_uobj;
    417 	KASSERT(uobj->pgops == &uvm_vnodeops);
    418 	KASSERT(uobj->uo_npages == 0);
    419 	KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
    420 
    421 	/* Share the vnode_t::v_interlock, if requested. */
    422 	if (slock) {
    423 		/* Set the interlock and mark that it is shared. */
    424 		KASSERT(vp->v_mount == NULL);
    425 		mutex_obj_hold(slock);
    426 		uvm_obj_setlock(&vp->v_uobj, slock);
    427 		KASSERT(vp->v_interlock == slock);
    428 		vp->v_iflag |= VI_LOCKSHARE;
    429 	}
    430 
    431 	/* Finally, move vnode into the mount queue. */
    432 	vfs_insmntque(vp, mp);
    433 
    434 	if (mp != NULL) {
    435 		if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
    436 			vp->v_vflag |= VV_MPSAFE;
    437 		vfs_unbusy(mp, true, NULL);
    438 	}
    439 
    440 	*vpp = vp;
    441 	return 0;
    442 }
    443 
    444 /*
    445  * This is really just the reverse of getnewvnode(). Needed for
    446  * VFS_VGET functions who may need to push back a vnode in case
    447  * of a locking race.
    448  */
    449 void
    450 ungetnewvnode(vnode_t *vp)
    451 {
    452 
    453 	KASSERT(vp->v_usecount == 1);
    454 	KASSERT(vp->v_data == NULL);
    455 	KASSERT(vp->v_freelisthd == NULL);
    456 
    457 	mutex_enter(vp->v_interlock);
    458 	vp->v_iflag |= VI_CLEAN;
    459 	vrelel(vp, 0);
    460 }
    461 
    462 /*
    463  * Helper thread to keep the number of vnodes below desiredvnodes.
    464  */
    465 static void
    466 vdrain_thread(void *cookie)
    467 {
    468 	int error;
    469 
    470 	mutex_enter(&vnode_free_list_lock);
    471 
    472 	for (;;) {
    473 		cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
    474 		while (numvnodes > desiredvnodes) {
    475 			error = cleanvnode();
    476 			if (error)
    477 				kpause("vndsbusy", false, hz, NULL);
    478 			mutex_enter(&vnode_free_list_lock);
    479 			if (error)
    480 				break;
    481 		}
    482 	}
    483 }
    484 
    485 /*
    486  * Remove a vnode from its freelist.
    487  */
    488 void
    489 vremfree(vnode_t *vp)
    490 {
    491 
    492 	KASSERT(mutex_owned(vp->v_interlock));
    493 	KASSERT(vp->v_usecount == 0);
    494 
    495 	/*
    496 	 * Note that the reference count must not change until
    497 	 * the vnode is removed.
    498 	 */
    499 	mutex_enter(&vnode_free_list_lock);
    500 	if (vp->v_holdcnt > 0) {
    501 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    502 	} else {
    503 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    504 	}
    505 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    506 	vp->v_freelisthd = NULL;
    507 	mutex_exit(&vnode_free_list_lock);
    508 }
    509 
    510 /*
    511  * vget: get a particular vnode from the free list, increment its reference
    512  * count and lock it.
    513  *
    514  * => Should be called with v_interlock held.
    515  *
    516  * If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean().
    517  * In that case, we cannot grab the vnode, so the process is awakened when
    518  * the transition is completed, and an error returned to indicate that the
    519  * vnode is no longer usable.
    520  */
    521 int
    522 vget(vnode_t *vp, int flags)
    523 {
    524 	int error = 0;
    525 
    526 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    527 	KASSERT(mutex_owned(vp->v_interlock));
    528 	KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
    529 
    530 	/*
    531 	 * Before adding a reference, we must remove the vnode
    532 	 * from its freelist.
    533 	 */
    534 	if (vp->v_usecount == 0) {
    535 		vremfree(vp);
    536 		vp->v_usecount = 1;
    537 	} else {
    538 		atomic_inc_uint(&vp->v_usecount);
    539 	}
    540 
    541 	/*
    542 	 * If the vnode is in the process of changing state we wait
    543 	 * for the change to complete and take care not to return
    544 	 * a clean vnode.
    545 	 */
    546 	if ((vp->v_iflag & VI_CHANGING) != 0) {
    547 		if ((flags & LK_NOWAIT) != 0) {
    548 			vrelel(vp, 0);
    549 			return EBUSY;
    550 		}
    551 		vwait(vp, VI_CHANGING);
    552 		if ((vp->v_iflag & VI_CLEAN) != 0) {
    553 			vrelel(vp, 0);
    554 			return ENOENT;
    555 		}
    556 	}
    557 
    558 	/*
    559 	 * Ok, we got it in good shape.  Just locking left.
    560 	 */
    561 	KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    562 	mutex_exit(vp->v_interlock);
    563 	if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
    564 		error = vn_lock(vp, flags);
    565 		if (error != 0) {
    566 			vrele(vp);
    567 		}
    568 	}
    569 	return error;
    570 }
    571 
    572 /*
    573  * vput: unlock and release the reference.
    574  */
    575 void
    576 vput(vnode_t *vp)
    577 {
    578 
    579 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    580 
    581 	VOP_UNLOCK(vp);
    582 	vrele(vp);
    583 }
    584 
    585 /*
    586  * Try to drop reference on a vnode.  Abort if we are releasing the
    587  * last reference.  Note: this _must_ succeed if not the last reference.
    588  */
    589 static inline bool
    590 vtryrele(vnode_t *vp)
    591 {
    592 	u_int use, next;
    593 
    594 	for (use = vp->v_usecount;; use = next) {
    595 		if (use == 1) {
    596 			return false;
    597 		}
    598 		KASSERT(use > 1);
    599 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
    600 		if (__predict_true(next == use)) {
    601 			return true;
    602 		}
    603 	}
    604 }
    605 
    606 /*
    607  * Vnode release.  If reference count drops to zero, call inactive
    608  * routine and either return to freelist or free to the pool.
    609  */
    610 static void
    611 vrelel(vnode_t *vp, int flags)
    612 {
    613 	bool recycle, defer;
    614 	int error;
    615 
    616 	KASSERT(mutex_owned(vp->v_interlock));
    617 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    618 	KASSERT(vp->v_freelisthd == NULL);
    619 
    620 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
    621 	    (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
    622 		vnpanic(vp, "dead but not clean");
    623 	}
    624 
    625 	/*
    626 	 * If not the last reference, just drop the reference count
    627 	 * and unlock.
    628 	 */
    629 	if (vtryrele(vp)) {
    630 		if ((flags & VRELEL_CHANGING_SET) != 0) {
    631 			KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    632 			vp->v_iflag &= ~VI_CHANGING;
    633 			cv_broadcast(&vp->v_cv);
    634 		}
    635 		mutex_exit(vp->v_interlock);
    636 		return;
    637 	}
    638 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
    639 		vnpanic(vp, "%s: bad ref count", __func__);
    640 	}
    641 
    642 	KASSERT((vp->v_iflag & VI_XLOCK) == 0);
    643 
    644 #ifdef DIAGNOSTIC
    645 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
    646 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
    647 		vprint("vrelel: missing VOP_CLOSE()", vp);
    648 	}
    649 #endif
    650 
    651 	/*
    652 	 * If not clean, deactivate the vnode, but preserve
    653 	 * our reference across the call to VOP_INACTIVE().
    654 	 */
    655 	if ((vp->v_iflag & VI_CLEAN) == 0) {
    656 		recycle = false;
    657 
    658 		/*
    659 		 * XXX This ugly block can be largely eliminated if
    660 		 * locking is pushed down into the file systems.
    661 		 *
    662 		 * Defer vnode release to vrele_thread if caller
    663 		 * requests it explicitly or is the pagedaemon.
    664 		 */
    665 		if ((curlwp == uvm.pagedaemon_lwp) ||
    666 		    (flags & VRELEL_ASYNC_RELE) != 0) {
    667 			defer = true;
    668 		} else if (curlwp == vrele_lwp) {
    669 			/*
    670 			 * We have to try harder.
    671 			 */
    672 			mutex_exit(vp->v_interlock);
    673 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    674 			KASSERT(error == 0);
    675 			mutex_enter(vp->v_interlock);
    676 			defer = false;
    677 		} else {
    678 			/* If we can't acquire the lock, then defer. */
    679 			mutex_exit(vp->v_interlock);
    680 			error = vn_lock(vp,
    681 			    LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
    682 			defer = (error != 0);
    683 			mutex_enter(vp->v_interlock);
    684 		}
    685 
    686 		KASSERT(mutex_owned(vp->v_interlock));
    687 		KASSERT(! (curlwp == vrele_lwp && defer));
    688 
    689 		if (defer) {
    690 			/*
    691 			 * Defer reclaim to the kthread; it's not safe to
    692 			 * clean it here.  We donate it our last reference.
    693 			 */
    694 			if ((flags & VRELEL_CHANGING_SET) != 0) {
    695 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    696 				vp->v_iflag &= ~VI_CHANGING;
    697 				cv_broadcast(&vp->v_cv);
    698 			}
    699 			mutex_enter(&vrele_lock);
    700 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
    701 			if (++vrele_pending > (desiredvnodes >> 8))
    702 				cv_signal(&vrele_cv);
    703 			mutex_exit(&vrele_lock);
    704 			mutex_exit(vp->v_interlock);
    705 			return;
    706 		}
    707 
    708 		/*
    709 		 * If the node got another reference while we
    710 		 * released the interlock, don't try to inactivate it yet.
    711 		 */
    712 		if (__predict_false(vtryrele(vp))) {
    713 			VOP_UNLOCK(vp);
    714 			if ((flags & VRELEL_CHANGING_SET) != 0) {
    715 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    716 				vp->v_iflag &= ~VI_CHANGING;
    717 				cv_broadcast(&vp->v_cv);
    718 			}
    719 			mutex_exit(vp->v_interlock);
    720 			return;
    721 		}
    722 
    723 		if ((flags & VRELEL_CHANGING_SET) == 0) {
    724 			KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    725 			vp->v_iflag |= VI_CHANGING;
    726 		}
    727 		mutex_exit(vp->v_interlock);
    728 
    729 		/*
    730 		 * The vnode can gain another reference while being
    731 		 * deactivated.  If VOP_INACTIVE() indicates that
    732 		 * the described file has been deleted, then recycle
    733 		 * the vnode irrespective of additional references.
    734 		 * Another thread may be waiting to re-use the on-disk
    735 		 * inode.
    736 		 *
    737 		 * Note that VOP_INACTIVE() will drop the vnode lock.
    738 		 */
    739 		VOP_INACTIVE(vp, &recycle);
    740 		if (recycle) {
    741 			/* vclean() below will drop the lock. */
    742 			if (vn_lock(vp, LK_EXCLUSIVE) != 0)
    743 				recycle = false;
    744 		}
    745 		mutex_enter(vp->v_interlock);
    746 		if (!recycle) {
    747 			if (vtryrele(vp)) {
    748 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    749 				vp->v_iflag &= ~VI_CHANGING;
    750 				cv_broadcast(&vp->v_cv);
    751 				mutex_exit(vp->v_interlock);
    752 				return;
    753 			}
    754 		}
    755 
    756 		/* Take care of space accounting. */
    757 		if (vp->v_iflag & VI_EXECMAP) {
    758 			atomic_add_int(&uvmexp.execpages,
    759 			    -vp->v_uobj.uo_npages);
    760 			atomic_add_int(&uvmexp.filepages,
    761 			    vp->v_uobj.uo_npages);
    762 		}
    763 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
    764 		vp->v_vflag &= ~VV_MAPPED;
    765 
    766 		/*
    767 		 * Recycle the vnode if the file is now unused (unlinked),
    768 		 * otherwise just free it.
    769 		 */
    770 		if (recycle) {
    771 			vclean(vp);
    772 		}
    773 		KASSERT(vp->v_usecount > 0);
    774 	} else { /* vnode was already clean */
    775 		if ((flags & VRELEL_CHANGING_SET) == 0) {
    776 			KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    777 			vp->v_iflag |= VI_CHANGING;
    778 		}
    779 	}
    780 
    781 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
    782 		/* Gained another reference while being reclaimed. */
    783 		KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    784 		vp->v_iflag &= ~VI_CHANGING;
    785 		cv_broadcast(&vp->v_cv);
    786 		mutex_exit(vp->v_interlock);
    787 		return;
    788 	}
    789 
    790 	if ((vp->v_iflag & VI_CLEAN) != 0) {
    791 		/*
    792 		 * It's clean so destroy it.  It isn't referenced
    793 		 * anywhere since it has been reclaimed.
    794 		 */
    795 		KASSERT(vp->v_holdcnt == 0);
    796 		KASSERT(vp->v_writecount == 0);
    797 		mutex_exit(vp->v_interlock);
    798 		vfs_insmntque(vp, NULL);
    799 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
    800 			spec_node_destroy(vp);
    801 		}
    802 		vnfree(vp);
    803 	} else {
    804 		/*
    805 		 * Otherwise, put it back onto the freelist.  It
    806 		 * can't be destroyed while still associated with
    807 		 * a file system.
    808 		 */
    809 		mutex_enter(&vnode_free_list_lock);
    810 		if (vp->v_holdcnt > 0) {
    811 			vp->v_freelisthd = &vnode_hold_list;
    812 		} else {
    813 			vp->v_freelisthd = &vnode_free_list;
    814 		}
    815 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    816 		mutex_exit(&vnode_free_list_lock);
    817 		KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    818 		vp->v_iflag &= ~VI_CHANGING;
    819 		cv_broadcast(&vp->v_cv);
    820 		mutex_exit(vp->v_interlock);
    821 	}
    822 }
    823 
    824 void
    825 vrele(vnode_t *vp)
    826 {
    827 
    828 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    829 
    830 	if (vtryrele(vp)) {
    831 		return;
    832 	}
    833 	mutex_enter(vp->v_interlock);
    834 	vrelel(vp, 0);
    835 }
    836 
    837 /*
    838  * Asynchronous vnode release, vnode is released in different context.
    839  */
    840 void
    841 vrele_async(vnode_t *vp)
    842 {
    843 
    844 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    845 
    846 	if (vtryrele(vp)) {
    847 		return;
    848 	}
    849 	mutex_enter(vp->v_interlock);
    850 	vrelel(vp, VRELEL_ASYNC_RELE);
    851 }
    852 
    853 static void
    854 vrele_thread(void *cookie)
    855 {
    856 	vnodelst_t skip_list;
    857 	vnode_t *vp;
    858 	struct mount *mp;
    859 
    860 	TAILQ_INIT(&skip_list);
    861 
    862 	mutex_enter(&vrele_lock);
    863 	for (;;) {
    864 		while (TAILQ_EMPTY(&vrele_list)) {
    865 			vrele_gen++;
    866 			cv_broadcast(&vrele_cv);
    867 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
    868 			TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
    869 		}
    870 		vp = TAILQ_FIRST(&vrele_list);
    871 		mp = vp->v_mount;
    872 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
    873 		if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
    874 			TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
    875 			continue;
    876 		}
    877 		vrele_pending--;
    878 		mutex_exit(&vrele_lock);
    879 
    880 		/*
    881 		 * If not the last reference, then ignore the vnode
    882 		 * and look for more work.
    883 		 */
    884 		mutex_enter(vp->v_interlock);
    885 		vrelel(vp, 0);
    886 		fstrans_done(mp);
    887 		mutex_enter(&vrele_lock);
    888 	}
    889 }
    890 
    891 void
    892 vrele_flush(void)
    893 {
    894 	int gen;
    895 
    896 	mutex_enter(&vrele_lock);
    897 	gen = vrele_gen;
    898 	while (vrele_pending && gen == vrele_gen) {
    899 		cv_broadcast(&vrele_cv);
    900 		cv_wait(&vrele_cv, &vrele_lock);
    901 	}
    902 	mutex_exit(&vrele_lock);
    903 }
    904 
    905 /*
    906  * Vnode reference, where a reference is already held by some other
    907  * object (for example, a file structure).
    908  */
    909 void
    910 vref(vnode_t *vp)
    911 {
    912 
    913 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    914 	KASSERT(vp->v_usecount != 0);
    915 
    916 	atomic_inc_uint(&vp->v_usecount);
    917 }
    918 
    919 /*
    920  * Page or buffer structure gets a reference.
    921  * Called with v_interlock held.
    922  */
    923 void
    924 vholdl(vnode_t *vp)
    925 {
    926 
    927 	KASSERT(mutex_owned(vp->v_interlock));
    928 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    929 
    930 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
    931 		mutex_enter(&vnode_free_list_lock);
    932 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    933 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    934 		vp->v_freelisthd = &vnode_hold_list;
    935 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    936 		mutex_exit(&vnode_free_list_lock);
    937 	}
    938 }
    939 
    940 /*
    941  * Page or buffer structure frees a reference.
    942  * Called with v_interlock held.
    943  */
    944 void
    945 holdrelel(vnode_t *vp)
    946 {
    947 
    948 	KASSERT(mutex_owned(vp->v_interlock));
    949 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    950 
    951 	if (vp->v_holdcnt <= 0) {
    952 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
    953 	}
    954 
    955 	vp->v_holdcnt--;
    956 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
    957 		mutex_enter(&vnode_free_list_lock);
    958 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    959 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    960 		vp->v_freelisthd = &vnode_free_list;
    961 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    962 		mutex_exit(&vnode_free_list_lock);
    963 	}
    964 }
    965 
    966 /*
    967  * Disassociate the underlying file system from a vnode.
    968  *
    969  * Must be called with vnode locked and will return unlocked.
    970  * Must be called with the interlock held, and will return with it held.
    971  */
    972 static void
    973 vclean(vnode_t *vp)
    974 {
    975 	lwp_t *l = curlwp;
    976 	bool recycle, active, doclose;
    977 	int error;
    978 
    979 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
    980 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
    981 	KASSERT(mutex_owned(vp->v_interlock));
    982 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    983 	KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0);
    984 	KASSERT(vp->v_usecount != 0);
    985 
    986 	active = (vp->v_usecount > 1);
    987 	doclose = ! (active && vp->v_type == VBLK &&
    988 	    spec_node_getmountedfs(vp) != NULL);
    989 
    990 	/*
    991 	 * Prevent the vnode from being recycled or brought into use
    992 	 * while we clean it out.
    993 	 */
    994 	vp->v_iflag |= VI_XLOCK;
    995 	if (vp->v_iflag & VI_EXECMAP) {
    996 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
    997 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
    998 	}
    999 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
   1000 	mutex_exit(vp->v_interlock);
   1001 
   1002 	/*
   1003 	 * Clean out any cached data associated with the vnode.
   1004 	 * If purging an active vnode, it must be closed and
   1005 	 * deactivated before being reclaimed. Note that the
   1006 	 * VOP_INACTIVE will unlock the vnode.
   1007 	 */
   1008 	if (doclose) {
   1009 		error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
   1010 		if (error != 0) {
   1011 			if (wapbl_vphaswapbl(vp))
   1012 				WAPBL_DISCARD(wapbl_vptomp(vp));
   1013 			error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
   1014 		}
   1015 		KASSERT(error == 0);
   1016 		KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1017 		if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
   1018 			 spec_node_revoke(vp);
   1019 		}
   1020 	}
   1021 	if (active) {
   1022 		VOP_INACTIVE(vp, &recycle);
   1023 	} else {
   1024 		/*
   1025 		 * Any other processes trying to obtain this lock must first
   1026 		 * wait for VI_XLOCK to clear, then call the new lock operation.
   1027 		 */
   1028 		VOP_UNLOCK(vp);
   1029 	}
   1030 
   1031 	/* Disassociate the underlying file system from the vnode. */
   1032 	if (VOP_RECLAIM(vp)) {
   1033 		vnpanic(vp, "%s: cannot reclaim", __func__);
   1034 	}
   1035 
   1036 	KASSERT(vp->v_data == NULL);
   1037 	KASSERT(vp->v_uobj.uo_npages == 0);
   1038 
   1039 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
   1040 		uvm_ra_freectx(vp->v_ractx);
   1041 		vp->v_ractx = NULL;
   1042 	}
   1043 
   1044 	/* Purge name cache. */
   1045 	cache_purge(vp);
   1046 
   1047 	/* Move to dead mount. */
   1048 	vp->v_vflag &= ~VV_ROOT;
   1049 	atomic_inc_uint(&dead_mount->mnt_refcnt);
   1050 	vfs_insmntque(vp, dead_mount);
   1051 
   1052 	/* Done with purge, notify sleepers of the grim news. */
   1053 	mutex_enter(vp->v_interlock);
   1054 	if (doclose) {
   1055 		vp->v_op = dead_vnodeop_p;
   1056 		vp->v_vflag |= VV_LOCKSWORK;
   1057 		vp->v_iflag |= VI_CLEAN;
   1058 	} else {
   1059 		vp->v_op = spec_vnodeop_p;
   1060 		vp->v_vflag &= ~VV_LOCKSWORK;
   1061 	}
   1062 	vp->v_tag = VT_NON;
   1063 	KNOTE(&vp->v_klist, NOTE_REVOKE);
   1064 	vp->v_iflag &= ~VI_XLOCK;
   1065 	cv_broadcast(&vp->v_cv);
   1066 
   1067 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1068 }
   1069 
   1070 /*
   1071  * Recycle an unused vnode if caller holds the last reference.
   1072  */
   1073 bool
   1074 vrecycle(vnode_t *vp)
   1075 {
   1076 
   1077 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
   1078 		return false;
   1079 
   1080 	mutex_enter(vp->v_interlock);
   1081 
   1082 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
   1083 
   1084 	if (vp->v_usecount != 1) {
   1085 		mutex_exit(vp->v_interlock);
   1086 		VOP_UNLOCK(vp);
   1087 		return false;
   1088 	}
   1089 	if ((vp->v_iflag & VI_CHANGING) != 0)
   1090 		vwait(vp, VI_CHANGING);
   1091 	if (vp->v_usecount != 1) {
   1092 		mutex_exit(vp->v_interlock);
   1093 		VOP_UNLOCK(vp);
   1094 		return false;
   1095 	}
   1096 	KASSERT((vp->v_iflag & VI_CLEAN) == 0);
   1097 	vp->v_iflag |= VI_CHANGING;
   1098 	vclean(vp);
   1099 	vrelel(vp, VRELEL_CHANGING_SET);
   1100 	return true;
   1101 }
   1102 
   1103 /*
   1104  * Eliminate all activity associated with the requested vnode
   1105  * and with all vnodes aliased to the requested vnode.
   1106  */
   1107 void
   1108 vrevoke(vnode_t *vp)
   1109 {
   1110 	vnode_t *vq;
   1111 	enum vtype type;
   1112 	dev_t dev;
   1113 
   1114 	KASSERT(vp->v_usecount > 0);
   1115 
   1116 	mutex_enter(vp->v_interlock);
   1117 	if ((vp->v_iflag & VI_CLEAN) != 0) {
   1118 		mutex_exit(vp->v_interlock);
   1119 		return;
   1120 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
   1121 		atomic_inc_uint(&vp->v_usecount);
   1122 		mutex_exit(vp->v_interlock);
   1123 		vgone(vp);
   1124 		return;
   1125 	} else {
   1126 		dev = vp->v_rdev;
   1127 		type = vp->v_type;
   1128 		mutex_exit(vp->v_interlock);
   1129 	}
   1130 
   1131 	while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
   1132 		vgone(vq);
   1133 	}
   1134 }
   1135 
   1136 /*
   1137  * Eliminate all activity associated with a vnode in preparation for
   1138  * reuse.  Drops a reference from the vnode.
   1139  */
   1140 void
   1141 vgone(vnode_t *vp)
   1142 {
   1143 
   1144 	if (vn_lock(vp, LK_EXCLUSIVE) != 0) {
   1145 		KASSERT((vp->v_iflag & VI_CLEAN) != 0);
   1146 		vrele(vp);
   1147 	}
   1148 
   1149 	mutex_enter(vp->v_interlock);
   1150 	if ((vp->v_iflag & VI_CHANGING) != 0)
   1151 		vwait(vp, VI_CHANGING);
   1152 	vp->v_iflag |= VI_CHANGING;
   1153 	vclean(vp);
   1154 	vrelel(vp, VRELEL_CHANGING_SET);
   1155 }
   1156 
   1157 static inline uint32_t
   1158 vcache_hash(const struct vcache_key *key)
   1159 {
   1160 	uint32_t hash = HASH32_BUF_INIT;
   1161 
   1162 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
   1163 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
   1164 	return hash;
   1165 }
   1166 
   1167 static void
   1168 vcache_init(void)
   1169 {
   1170 
   1171 	vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
   1172 	    "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
   1173 	KASSERT(vcache.pool != NULL);
   1174 	mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
   1175 	vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
   1176 	    &vcache.hashmask);
   1177 }
   1178 
   1179 static void
   1180 vcache_reinit(void)
   1181 {
   1182 	int i;
   1183 	uint32_t hash;
   1184 	u_long oldmask, newmask;
   1185 	struct hashhead *oldtab, *newtab;
   1186 	struct vcache_node *node;
   1187 
   1188 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
   1189 	mutex_enter(&vcache.lock);
   1190 	oldtab = vcache.hashtab;
   1191 	oldmask = vcache.hashmask;
   1192 	vcache.hashtab = newtab;
   1193 	vcache.hashmask = newmask;
   1194 	for (i = 0; i <= oldmask; i++) {
   1195 		while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
   1196 			SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
   1197 			hash = vcache_hash(&node->vn_key);
   1198 			SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
   1199 			    node, vn_hash);
   1200 		}
   1201 	}
   1202 	mutex_exit(&vcache.lock);
   1203 	hashdone(oldtab, HASH_SLIST, oldmask);
   1204 }
   1205 
   1206 static inline struct vcache_node *
   1207 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
   1208 {
   1209 	struct hashhead *hashp;
   1210 	struct vcache_node *node;
   1211 
   1212 	KASSERT(mutex_owned(&vcache.lock));
   1213 
   1214 	hashp = &vcache.hashtab[hash & vcache.hashmask];
   1215 	SLIST_FOREACH(node, hashp, vn_hash) {
   1216 		if (key->vk_mount != node->vn_key.vk_mount)
   1217 			continue;
   1218 		if (key->vk_key_len != node->vn_key.vk_key_len)
   1219 			continue;
   1220 		if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
   1221 			continue;
   1222 		return node;
   1223 	}
   1224 	return NULL;
   1225 }
   1226 
   1227 /*
   1228  * Get a vnode / fs node pair by key and return it referenced through vpp.
   1229  */
   1230 int
   1231 vcache_get(struct mount *mp, const void *key, size_t key_len,
   1232     struct vnode **vpp)
   1233 {
   1234 	int error;
   1235 	uint32_t hash;
   1236 	const void *new_key;
   1237 	struct vnode *vp;
   1238 	struct vcache_key vcache_key;
   1239 	struct vcache_node *node, *new_node;
   1240 
   1241 	new_key = NULL;
   1242 	*vpp = NULL;
   1243 
   1244 	vcache_key.vk_mount = mp;
   1245 	vcache_key.vk_key = key;
   1246 	vcache_key.vk_key_len = key_len;
   1247 	hash = vcache_hash(&vcache_key);
   1248 
   1249 again:
   1250 	mutex_enter(&vcache.lock);
   1251 	node = vcache_hash_lookup(&vcache_key, hash);
   1252 
   1253 	/* If found, take a reference or retry. */
   1254 	if (__predict_true(node != NULL && node->vn_vnode != NULL)) {
   1255 		vp = node->vn_vnode;
   1256 		mutex_enter(vp->v_interlock);
   1257 		mutex_exit(&vcache.lock);
   1258 		error = vget(vp, 0);
   1259 		if (error == ENOENT)
   1260 			goto again;
   1261 		if (error == 0)
   1262 			*vpp = vp;
   1263 		KASSERT((error != 0) == (*vpp == NULL));
   1264 		return error;
   1265 	}
   1266 
   1267 	/* If another thread loads this node, wait and retry. */
   1268 	if (node != NULL) {
   1269 		KASSERT(node->vn_vnode == NULL);
   1270 		mutex_exit(&vcache.lock);
   1271 		kpause("vcache", false, mstohz(20), NULL);
   1272 		goto again;
   1273 	}
   1274 	mutex_exit(&vcache.lock);
   1275 
   1276 	/* Allocate and initialize a new vcache / vnode pair. */
   1277 	error = vfs_busy(mp, NULL);
   1278 	if (error)
   1279 		return error;
   1280 	new_node = pool_cache_get(vcache.pool, PR_WAITOK);
   1281 	new_node->vn_vnode = NULL;
   1282 	new_node->vn_key = vcache_key;
   1283 	vp = vnalloc(NULL);
   1284 	mutex_enter(&vcache.lock);
   1285 	node = vcache_hash_lookup(&vcache_key, hash);
   1286 	if (node == NULL) {
   1287 		SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
   1288 		    new_node, vn_hash);
   1289 		node = new_node;
   1290 	}
   1291 	mutex_exit(&vcache.lock);
   1292 
   1293 	/* If another thread beat us inserting this node, retry. */
   1294 	if (node != new_node) {
   1295 		pool_cache_put(vcache.pool, new_node);
   1296 		KASSERT(vp->v_usecount == 1);
   1297 		vp->v_usecount = 0;
   1298 		vnfree(vp);
   1299 		vfs_unbusy(mp, false, NULL);
   1300 		goto again;
   1301 	}
   1302 
   1303 	/* Load the fs node.  Exclusive as new_node->vn_vnode is NULL. */
   1304 	vp->v_iflag |= VI_CHANGING;
   1305 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
   1306 	if (error) {
   1307 		mutex_enter(&vcache.lock);
   1308 		SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1309 		    new_node, vcache_node, vn_hash);
   1310 		mutex_exit(&vcache.lock);
   1311 		pool_cache_put(vcache.pool, new_node);
   1312 		KASSERT(vp->v_usecount == 1);
   1313 		vp->v_usecount = 0;
   1314 		vnfree(vp);
   1315 		vfs_unbusy(mp, false, NULL);
   1316 		KASSERT(*vpp == NULL);
   1317 		return error;
   1318 	}
   1319 	KASSERT(new_key != NULL);
   1320 	KASSERT(memcmp(key, new_key, key_len) == 0);
   1321 	KASSERT(vp->v_op != NULL);
   1322 	vfs_insmntque(vp, mp);
   1323 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1324 		vp->v_vflag |= VV_MPSAFE;
   1325 	vfs_unbusy(mp, true, NULL);
   1326 
   1327 	/* Finished loading, finalize node. */
   1328 	mutex_enter(&vcache.lock);
   1329 	new_node->vn_key.vk_key = new_key;
   1330 	new_node->vn_vnode = vp;
   1331 	mutex_exit(&vcache.lock);
   1332 	mutex_enter(vp->v_interlock);
   1333 	vp->v_iflag &= ~VI_CHANGING;
   1334 	cv_broadcast(&vp->v_cv);
   1335 	mutex_exit(vp->v_interlock);
   1336 	*vpp = vp;
   1337 	return 0;
   1338 }
   1339 
   1340 /*
   1341  * Prepare key change: lock old and new cache node.
   1342  * Return an error if the new node already exists.
   1343  */
   1344 int
   1345 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
   1346     const void *old_key, size_t old_key_len,
   1347     const void *new_key, size_t new_key_len)
   1348 {
   1349 	uint32_t old_hash, new_hash;
   1350 	struct vcache_key old_vcache_key, new_vcache_key;
   1351 	struct vcache_node *node, *new_node;
   1352 
   1353 	old_vcache_key.vk_mount = mp;
   1354 	old_vcache_key.vk_key = old_key;
   1355 	old_vcache_key.vk_key_len = old_key_len;
   1356 	old_hash = vcache_hash(&old_vcache_key);
   1357 
   1358 	new_vcache_key.vk_mount = mp;
   1359 	new_vcache_key.vk_key = new_key;
   1360 	new_vcache_key.vk_key_len = new_key_len;
   1361 	new_hash = vcache_hash(&new_vcache_key);
   1362 
   1363 	new_node = pool_cache_get(vcache.pool, PR_WAITOK);
   1364 	new_node->vn_vnode = NULL;
   1365 	new_node->vn_key = new_vcache_key;
   1366 
   1367 	mutex_enter(&vcache.lock);
   1368 	node = vcache_hash_lookup(&new_vcache_key, new_hash);
   1369 	if (node != NULL) {
   1370 		mutex_exit(&vcache.lock);
   1371 		pool_cache_put(vcache.pool, new_node);
   1372 		return EEXIST;
   1373 	}
   1374 	SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
   1375 	    new_node, vn_hash);
   1376 	node = vcache_hash_lookup(&old_vcache_key, old_hash);
   1377 	KASSERT(node != NULL);
   1378 	KASSERT(node->vn_vnode == vp);
   1379 	node->vn_vnode = NULL;
   1380 	node->vn_key = old_vcache_key;
   1381 	mutex_exit(&vcache.lock);
   1382 	return 0;
   1383 }
   1384 
   1385 /*
   1386  * Key change complete: remove old node and unlock new node.
   1387  */
   1388 void
   1389 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
   1390     const void *old_key, size_t old_key_len,
   1391     const void *new_key, size_t new_key_len)
   1392 {
   1393 	uint32_t old_hash, new_hash;
   1394 	struct vcache_key old_vcache_key, new_vcache_key;
   1395 	struct vcache_node *node;
   1396 
   1397 	old_vcache_key.vk_mount = mp;
   1398 	old_vcache_key.vk_key = old_key;
   1399 	old_vcache_key.vk_key_len = old_key_len;
   1400 	old_hash = vcache_hash(&old_vcache_key);
   1401 
   1402 	new_vcache_key.vk_mount = mp;
   1403 	new_vcache_key.vk_key = new_key;
   1404 	new_vcache_key.vk_key_len = new_key_len;
   1405 	new_hash = vcache_hash(&new_vcache_key);
   1406 
   1407 	mutex_enter(&vcache.lock);
   1408 	node = vcache_hash_lookup(&new_vcache_key, new_hash);
   1409 	KASSERT(node != NULL && node->vn_vnode == NULL);
   1410 	KASSERT(node->vn_key.vk_key_len == new_key_len);
   1411 	node->vn_vnode = vp;
   1412 	node->vn_key = new_vcache_key;
   1413 	node = vcache_hash_lookup(&old_vcache_key, old_hash);
   1414 	KASSERT(node != NULL);
   1415 	KASSERT(node->vn_vnode == NULL);
   1416 	SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
   1417 	    node, vcache_node, vn_hash);
   1418 	mutex_exit(&vcache.lock);
   1419 	pool_cache_put(vcache.pool, node);
   1420 }
   1421 
   1422 /*
   1423  * Remove a vnode / fs node pair from the cache.
   1424  */
   1425 void
   1426 vcache_remove(struct mount *mp, const void *key, size_t key_len)
   1427 {
   1428 	uint32_t hash;
   1429 	struct vcache_key vcache_key;
   1430 	struct vcache_node *node;
   1431 
   1432 	vcache_key.vk_mount = mp;
   1433 	vcache_key.vk_key = key;
   1434 	vcache_key.vk_key_len = key_len;
   1435 	hash = vcache_hash(&vcache_key);
   1436 
   1437 	mutex_enter(&vcache.lock);
   1438 	node = vcache_hash_lookup(&vcache_key, hash);
   1439 	KASSERT(node != NULL);
   1440 	SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1441 	    node, vcache_node, vn_hash);
   1442 	mutex_exit(&vcache.lock);
   1443 	pool_cache_put(vcache.pool, node);
   1444 }
   1445 
   1446 /*
   1447  * Update outstanding I/O count and do wakeup if requested.
   1448  */
   1449 void
   1450 vwakeup(struct buf *bp)
   1451 {
   1452 	vnode_t *vp;
   1453 
   1454 	if ((vp = bp->b_vp) == NULL)
   1455 		return;
   1456 
   1457 	KASSERT(bp->b_objlock == vp->v_interlock);
   1458 	KASSERT(mutex_owned(bp->b_objlock));
   1459 
   1460 	if (--vp->v_numoutput < 0)
   1461 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
   1462 	if (vp->v_numoutput == 0)
   1463 		cv_broadcast(&vp->v_cv);
   1464 }
   1465 
   1466 /*
   1467  * Test a vnode for being or becoming dead.  Returns one of:
   1468  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
   1469  * ENOENT: vnode is dead.
   1470  * 0:      otherwise.
   1471  *
   1472  * Whenever this function returns a non-zero value all future
   1473  * calls will also return a non-zero value.
   1474  */
   1475 int
   1476 vdead_check(struct vnode *vp, int flags)
   1477 {
   1478 
   1479 	KASSERT(mutex_owned(vp->v_interlock));
   1480 	if (ISSET(vp->v_iflag, VI_XLOCK)) {
   1481 		if (ISSET(flags, VDEAD_NOWAIT))
   1482 			return EBUSY;
   1483 		vwait(vp, VI_XLOCK);
   1484 		KASSERT(ISSET(vp->v_iflag, VI_CLEAN));
   1485 	}
   1486 	if (ISSET(vp->v_iflag, VI_CLEAN))
   1487 		return ENOENT;
   1488 	return 0;
   1489 }
   1490 
   1491 /*
   1492  * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
   1493  * recycled.
   1494  */
   1495 static void
   1496 vwait(vnode_t *vp, int flags)
   1497 {
   1498 
   1499 	KASSERT(mutex_owned(vp->v_interlock));
   1500 	KASSERT(vp->v_usecount != 0);
   1501 
   1502 	while ((vp->v_iflag & flags) != 0)
   1503 		cv_wait(&vp->v_cv, vp->v_interlock);
   1504 }
   1505 
   1506 int
   1507 vfs_drainvnodes(long target)
   1508 {
   1509 	int error;
   1510 
   1511 	mutex_enter(&vnode_free_list_lock);
   1512 
   1513 	while (numvnodes > target) {
   1514 		error = cleanvnode();
   1515 		if (error != 0)
   1516 			return error;
   1517 		mutex_enter(&vnode_free_list_lock);
   1518 	}
   1519 
   1520 	mutex_exit(&vnode_free_list_lock);
   1521 
   1522 	vcache_reinit();
   1523 
   1524 	return 0;
   1525 }
   1526 
   1527 void
   1528 vnpanic(vnode_t *vp, const char *fmt, ...)
   1529 {
   1530 	va_list ap;
   1531 
   1532 #ifdef DIAGNOSTIC
   1533 	vprint(NULL, vp);
   1534 #endif
   1535 	va_start(ap, fmt);
   1536 	vpanic(fmt, ap);
   1537 	va_end(ap);
   1538 }
   1539