vfs_vnode.c revision 1.39.2.1 1 /* $NetBSD: vfs_vnode.c,v 1.39.2.1 2015/04/06 15:18:20 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
67 */
68
69 /*
70 * The vnode cache subsystem.
71 *
72 * Life-cycle
73 *
74 * Normally, there are two points where new vnodes are created:
75 * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
76 * starts in one of the following ways:
77 *
78 * - Allocation, via getnewvnode(9) and/or vnalloc(9).
79 * - Reclamation of inactive vnode, via vget(9).
80 *
81 * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82 * was another, traditional way. Currently, only the draining thread
83 * recycles the vnodes. This behaviour might be revisited.
84 *
85 * The life-cycle ends when the last reference is dropped, usually
86 * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
87 * the file system that vnode is inactive. Via this call, file system
88 * indicates whether vnode can be recycled (usually, it checks its own
89 * references, e.g. count of links, whether the file was removed).
90 *
91 * Depending on indication, vnode can be put into a free list (cache),
92 * or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
93 * underlying file system from the vnode, and finally destroyed.
94 *
95 * Reference counting
96 *
97 * Vnode is considered active, if reference count (vnode_t::v_usecount)
98 * is non-zero. It is maintained using: vref(9) and vrele(9), as well
99 * as vput(9), routines. Common points holding references are e.g.
100 * file openings, current working directory, mount points, etc.
101 *
102 * Note on v_usecount and its locking
103 *
104 * At nearly all points it is known that v_usecount could be zero,
105 * the vnode_t::v_interlock will be held. To change v_usecount away
106 * from zero, the interlock must be held. To change from a non-zero
107 * value to zero, again the interlock must be held.
108 *
109 * Changing the usecount from a non-zero value to a non-zero value can
110 * safely be done using atomic operations, without the interlock held.
111 *
112 * Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
113 * mntvnode_lock is still held.
114 *
115 * See PR 41374.
116 */
117
118 #include <sys/cdefs.h>
119 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.39.2.1 2015/04/06 15:18:20 skrll Exp $");
120
121 #define _VFS_VNODE_PRIVATE
122
123 #include <sys/param.h>
124 #include <sys/kernel.h>
125
126 #include <sys/atomic.h>
127 #include <sys/buf.h>
128 #include <sys/conf.h>
129 #include <sys/device.h>
130 #include <sys/hash.h>
131 #include <sys/kauth.h>
132 #include <sys/kmem.h>
133 #include <sys/kthread.h>
134 #include <sys/module.h>
135 #include <sys/mount.h>
136 #include <sys/namei.h>
137 #include <sys/syscallargs.h>
138 #include <sys/sysctl.h>
139 #include <sys/systm.h>
140 #include <sys/vnode.h>
141 #include <sys/wapbl.h>
142 #include <sys/fstrans.h>
143
144 #include <uvm/uvm.h>
145 #include <uvm/uvm_readahead.h>
146
147 /* Flags to vrelel. */
148 #define VRELEL_ASYNC_RELE 0x0001 /* Always defer to vrele thread. */
149 #define VRELEL_CHANGING_SET 0x0002 /* VI_CHANGING set by caller. */
150
151 struct vcache_key {
152 struct mount *vk_mount;
153 const void *vk_key;
154 size_t vk_key_len;
155 };
156 struct vcache_node {
157 SLIST_ENTRY(vcache_node) vn_hash;
158 struct vnode *vn_vnode;
159 struct vcache_key vn_key;
160 };
161
162 u_int numvnodes __cacheline_aligned;
163
164 static pool_cache_t vnode_cache __read_mostly;
165 static struct mount *dead_mount;
166
167 /*
168 * There are two free lists: one is for vnodes which have no buffer/page
169 * references and one for those which do (i.e. v_holdcnt is non-zero).
170 * Vnode recycling mechanism first attempts to look into the former list.
171 */
172 static kmutex_t vnode_free_list_lock __cacheline_aligned;
173 static vnodelst_t vnode_free_list __cacheline_aligned;
174 static vnodelst_t vnode_hold_list __cacheline_aligned;
175 static kcondvar_t vdrain_cv __cacheline_aligned;
176
177 static vnodelst_t vrele_list __cacheline_aligned;
178 static kmutex_t vrele_lock __cacheline_aligned;
179 static kcondvar_t vrele_cv __cacheline_aligned;
180 static lwp_t * vrele_lwp __cacheline_aligned;
181 static int vrele_pending __cacheline_aligned;
182 static int vrele_gen __cacheline_aligned;
183
184 SLIST_HEAD(hashhead, vcache_node);
185 static struct {
186 kmutex_t lock;
187 u_long hashmask;
188 struct hashhead *hashtab;
189 pool_cache_t pool;
190 } vcache __cacheline_aligned;
191
192 static int cleanvnode(void);
193 static void vcache_init(void);
194 static void vcache_reinit(void);
195 static void vclean(vnode_t *);
196 static void vrelel(vnode_t *, int);
197 static void vdrain_thread(void *);
198 static void vrele_thread(void *);
199 static void vnpanic(vnode_t *, const char *, ...)
200 __printflike(2, 3);
201 static void vwait(vnode_t *, int);
202
203 /* Routines having to do with the management of the vnode table. */
204 extern int (**dead_vnodeop_p)(void *);
205 extern struct vfsops dead_vfsops;
206
207 void
208 vfs_vnode_sysinit(void)
209 {
210 int error __diagused;
211
212 vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
213 NULL, IPL_NONE, NULL, NULL, NULL);
214 KASSERT(vnode_cache != NULL);
215
216 dead_mount = vfs_mountalloc(&dead_vfsops, NULL);
217 KASSERT(dead_mount != NULL);
218 dead_mount->mnt_iflag = IMNT_MPSAFE;
219
220 mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
221 TAILQ_INIT(&vnode_free_list);
222 TAILQ_INIT(&vnode_hold_list);
223 TAILQ_INIT(&vrele_list);
224
225 vcache_init();
226
227 mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
228 cv_init(&vdrain_cv, "vdrain");
229 cv_init(&vrele_cv, "vrele");
230 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
231 NULL, NULL, "vdrain");
232 KASSERT(error == 0);
233 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
234 NULL, &vrele_lwp, "vrele");
235 KASSERT(error == 0);
236 }
237
238 /*
239 * Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a
240 * marker vnode.
241 */
242 vnode_t *
243 vnalloc(struct mount *mp)
244 {
245 vnode_t *vp;
246
247 vp = pool_cache_get(vnode_cache, PR_WAITOK);
248 KASSERT(vp != NULL);
249
250 memset(vp, 0, sizeof(*vp));
251 uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
252 cv_init(&vp->v_cv, "vnode");
253 /*
254 * Done by memset() above.
255 * LIST_INIT(&vp->v_nclist);
256 * LIST_INIT(&vp->v_dnclist);
257 */
258
259 if (mp != NULL) {
260 vp->v_mount = mp;
261 vp->v_type = VBAD;
262 vp->v_iflag = VI_MARKER;
263 return vp;
264 }
265
266 mutex_enter(&vnode_free_list_lock);
267 numvnodes++;
268 if (numvnodes > desiredvnodes + desiredvnodes / 10)
269 cv_signal(&vdrain_cv);
270 mutex_exit(&vnode_free_list_lock);
271
272 rw_init(&vp->v_lock);
273 vp->v_usecount = 1;
274 vp->v_type = VNON;
275 vp->v_size = vp->v_writesize = VSIZENOTSET;
276
277 return vp;
278 }
279
280 /*
281 * Free an unused, unreferenced vnode.
282 */
283 void
284 vnfree(vnode_t *vp)
285 {
286
287 KASSERT(vp->v_usecount == 0);
288
289 if ((vp->v_iflag & VI_MARKER) == 0) {
290 rw_destroy(&vp->v_lock);
291 mutex_enter(&vnode_free_list_lock);
292 numvnodes--;
293 mutex_exit(&vnode_free_list_lock);
294 }
295
296 /*
297 * Note: the vnode interlock will either be freed, of reference
298 * dropped (if VI_LOCKSHARE was in use).
299 */
300 uvm_obj_destroy(&vp->v_uobj, true);
301 cv_destroy(&vp->v_cv);
302 pool_cache_put(vnode_cache, vp);
303 }
304
305 /*
306 * cleanvnode: grab a vnode from freelist, clean and free it.
307 *
308 * => Releases vnode_free_list_lock.
309 */
310 static int
311 cleanvnode(void)
312 {
313 vnode_t *vp;
314 vnodelst_t *listhd;
315 struct mount *mp;
316
317 KASSERT(mutex_owned(&vnode_free_list_lock));
318
319 listhd = &vnode_free_list;
320 try_nextlist:
321 TAILQ_FOREACH(vp, listhd, v_freelist) {
322 /*
323 * It's safe to test v_usecount and v_iflag
324 * without holding the interlock here, since
325 * these vnodes should never appear on the
326 * lists.
327 */
328 KASSERT(vp->v_usecount == 0);
329 KASSERT((vp->v_iflag & VI_CLEAN) == 0);
330 KASSERT(vp->v_freelisthd == listhd);
331
332 if (!mutex_tryenter(vp->v_interlock))
333 continue;
334 if ((vp->v_iflag & VI_XLOCK) != 0) {
335 mutex_exit(vp->v_interlock);
336 continue;
337 }
338 mp = vp->v_mount;
339 if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
340 mutex_exit(vp->v_interlock);
341 continue;
342 }
343 break;
344 }
345
346 if (vp == NULL) {
347 if (listhd == &vnode_free_list) {
348 listhd = &vnode_hold_list;
349 goto try_nextlist;
350 }
351 mutex_exit(&vnode_free_list_lock);
352 return EBUSY;
353 }
354
355 /* Remove it from the freelist. */
356 TAILQ_REMOVE(listhd, vp, v_freelist);
357 vp->v_freelisthd = NULL;
358 mutex_exit(&vnode_free_list_lock);
359
360 KASSERT(vp->v_usecount == 0);
361
362 /*
363 * The vnode is still associated with a file system, so we must
364 * clean it out before freeing it. We need to add a reference
365 * before doing this.
366 */
367 vp->v_usecount = 1;
368 KASSERT((vp->v_iflag & VI_CHANGING) == 0);
369 vp->v_iflag |= VI_CHANGING;
370 vclean(vp);
371 vrelel(vp, VRELEL_CHANGING_SET);
372 fstrans_done(mp);
373
374 return 0;
375 }
376
377 /*
378 * getnewvnode: return a fresh vnode.
379 *
380 * => Returns referenced vnode, moved into the mount queue.
381 * => Shares the interlock specified by 'slock', if it is not NULL.
382 */
383 int
384 getnewvnode(enum vtagtype tag, struct mount *mp, int (**vops)(void *),
385 kmutex_t *slock, vnode_t **vpp)
386 {
387 struct uvm_object *uobj __diagused;
388 vnode_t *vp;
389 int error = 0;
390
391 if (mp != NULL) {
392 /*
393 * Mark filesystem busy while we are creating a vnode.
394 * If unmount is in progress, this will fail.
395 */
396 error = vfs_busy(mp, NULL);
397 if (error)
398 return error;
399 }
400
401 vp = NULL;
402
403 /* Allocate a new vnode. */
404 vp = vnalloc(NULL);
405
406 KASSERT(vp->v_freelisthd == NULL);
407 KASSERT(LIST_EMPTY(&vp->v_nclist));
408 KASSERT(LIST_EMPTY(&vp->v_dnclist));
409 KASSERT(vp->v_data == NULL);
410
411 /* Initialize vnode. */
412 vp->v_tag = tag;
413 vp->v_op = vops;
414
415 uobj = &vp->v_uobj;
416 KASSERT(uobj->pgops == &uvm_vnodeops);
417 KASSERT(uobj->uo_npages == 0);
418 KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
419
420 /* Share the vnode_t::v_interlock, if requested. */
421 if (slock) {
422 /* Set the interlock and mark that it is shared. */
423 KASSERT(vp->v_mount == NULL);
424 mutex_obj_hold(slock);
425 uvm_obj_setlock(&vp->v_uobj, slock);
426 KASSERT(vp->v_interlock == slock);
427 vp->v_iflag |= VI_LOCKSHARE;
428 }
429
430 /* Finally, move vnode into the mount queue. */
431 vfs_insmntque(vp, mp);
432
433 if (mp != NULL) {
434 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
435 vp->v_vflag |= VV_MPSAFE;
436 vfs_unbusy(mp, true, NULL);
437 }
438
439 *vpp = vp;
440 return 0;
441 }
442
443 /*
444 * This is really just the reverse of getnewvnode(). Needed for
445 * VFS_VGET functions who may need to push back a vnode in case
446 * of a locking race.
447 */
448 void
449 ungetnewvnode(vnode_t *vp)
450 {
451
452 KASSERT(vp->v_usecount == 1);
453 KASSERT(vp->v_data == NULL);
454 KASSERT(vp->v_freelisthd == NULL);
455
456 mutex_enter(vp->v_interlock);
457 vp->v_iflag |= VI_CLEAN;
458 vrelel(vp, 0);
459 }
460
461 /*
462 * Helper thread to keep the number of vnodes below desiredvnodes.
463 */
464 static void
465 vdrain_thread(void *cookie)
466 {
467 int error;
468
469 mutex_enter(&vnode_free_list_lock);
470
471 for (;;) {
472 cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
473 while (numvnodes > desiredvnodes) {
474 error = cleanvnode();
475 if (error)
476 kpause("vndsbusy", false, hz, NULL);
477 mutex_enter(&vnode_free_list_lock);
478 if (error)
479 break;
480 }
481 }
482 }
483
484 /*
485 * Remove a vnode from its freelist.
486 */
487 void
488 vremfree(vnode_t *vp)
489 {
490
491 KASSERT(mutex_owned(vp->v_interlock));
492 KASSERT(vp->v_usecount == 0);
493
494 /*
495 * Note that the reference count must not change until
496 * the vnode is removed.
497 */
498 mutex_enter(&vnode_free_list_lock);
499 if (vp->v_holdcnt > 0) {
500 KASSERT(vp->v_freelisthd == &vnode_hold_list);
501 } else {
502 KASSERT(vp->v_freelisthd == &vnode_free_list);
503 }
504 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
505 vp->v_freelisthd = NULL;
506 mutex_exit(&vnode_free_list_lock);
507 }
508
509 /*
510 * vget: get a particular vnode from the free list, increment its reference
511 * count and lock it.
512 *
513 * => Should be called with v_interlock held.
514 *
515 * If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean().
516 * In that case, we cannot grab the vnode, so the process is awakened when
517 * the transition is completed, and an error returned to indicate that the
518 * vnode is no longer usable.
519 */
520 int
521 vget(vnode_t *vp, int flags)
522 {
523 int error = 0;
524
525 KASSERT((vp->v_iflag & VI_MARKER) == 0);
526 KASSERT(mutex_owned(vp->v_interlock));
527 KASSERT((flags & ~(LK_SHARED|LK_EXCLUSIVE|LK_NOWAIT)) == 0);
528
529 /*
530 * Before adding a reference, we must remove the vnode
531 * from its freelist.
532 */
533 if (vp->v_usecount == 0) {
534 vremfree(vp);
535 vp->v_usecount = 1;
536 } else {
537 atomic_inc_uint(&vp->v_usecount);
538 }
539
540 /*
541 * If the vnode is in the process of changing state we wait
542 * for the change to complete and take care not to return
543 * a clean vnode.
544 */
545 if ((vp->v_iflag & VI_CHANGING) != 0) {
546 if ((flags & LK_NOWAIT) != 0) {
547 vrelel(vp, 0);
548 return EBUSY;
549 }
550 vwait(vp, VI_CHANGING);
551 if ((vp->v_iflag & VI_CLEAN) != 0) {
552 vrelel(vp, 0);
553 return ENOENT;
554 }
555 }
556
557 /*
558 * Ok, we got it in good shape. Just locking left.
559 */
560 KASSERT((vp->v_iflag & VI_CLEAN) == 0);
561 mutex_exit(vp->v_interlock);
562 if (flags & (LK_EXCLUSIVE | LK_SHARED)) {
563 error = vn_lock(vp, flags);
564 if (error != 0) {
565 vrele(vp);
566 }
567 }
568 return error;
569 }
570
571 /*
572 * vput: unlock and release the reference.
573 */
574 void
575 vput(vnode_t *vp)
576 {
577
578 KASSERT((vp->v_iflag & VI_MARKER) == 0);
579
580 VOP_UNLOCK(vp);
581 vrele(vp);
582 }
583
584 /*
585 * Try to drop reference on a vnode. Abort if we are releasing the
586 * last reference. Note: this _must_ succeed if not the last reference.
587 */
588 static inline bool
589 vtryrele(vnode_t *vp)
590 {
591 u_int use, next;
592
593 for (use = vp->v_usecount;; use = next) {
594 if (use == 1) {
595 return false;
596 }
597 KASSERT(use > 1);
598 next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
599 if (__predict_true(next == use)) {
600 return true;
601 }
602 }
603 }
604
605 /*
606 * Vnode release. If reference count drops to zero, call inactive
607 * routine and either return to freelist or free to the pool.
608 */
609 static void
610 vrelel(vnode_t *vp, int flags)
611 {
612 bool recycle, defer;
613 int error;
614
615 KASSERT(mutex_owned(vp->v_interlock));
616 KASSERT((vp->v_iflag & VI_MARKER) == 0);
617 KASSERT(vp->v_freelisthd == NULL);
618
619 if (__predict_false(vp->v_op == dead_vnodeop_p &&
620 (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
621 vnpanic(vp, "dead but not clean");
622 }
623
624 /*
625 * If not the last reference, just drop the reference count
626 * and unlock.
627 */
628 if (vtryrele(vp)) {
629 if ((flags & VRELEL_CHANGING_SET) != 0) {
630 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
631 vp->v_iflag &= ~VI_CHANGING;
632 cv_broadcast(&vp->v_cv);
633 }
634 mutex_exit(vp->v_interlock);
635 return;
636 }
637 if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
638 vnpanic(vp, "%s: bad ref count", __func__);
639 }
640
641 KASSERT((vp->v_iflag & VI_XLOCK) == 0);
642
643 #ifdef DIAGNOSTIC
644 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
645 vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
646 vprint("vrelel: missing VOP_CLOSE()", vp);
647 }
648 #endif
649
650 /*
651 * If not clean, deactivate the vnode, but preserve
652 * our reference across the call to VOP_INACTIVE().
653 */
654 if ((vp->v_iflag & VI_CLEAN) == 0) {
655 recycle = false;
656
657 /*
658 * XXX This ugly block can be largely eliminated if
659 * locking is pushed down into the file systems.
660 *
661 * Defer vnode release to vrele_thread if caller
662 * requests it explicitly or is the pagedaemon.
663 */
664 if ((curlwp == uvm.pagedaemon_lwp) ||
665 (flags & VRELEL_ASYNC_RELE) != 0) {
666 defer = true;
667 } else if (curlwp == vrele_lwp) {
668 /*
669 * We have to try harder.
670 */
671 mutex_exit(vp->v_interlock);
672 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
673 KASSERT(error == 0);
674 mutex_enter(vp->v_interlock);
675 defer = false;
676 } else {
677 /* If we can't acquire the lock, then defer. */
678 mutex_exit(vp->v_interlock);
679 error = vn_lock(vp,
680 LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
681 defer = (error != 0);
682 mutex_enter(vp->v_interlock);
683 }
684
685 KASSERT(mutex_owned(vp->v_interlock));
686 KASSERT(! (curlwp == vrele_lwp && defer));
687
688 if (defer) {
689 /*
690 * Defer reclaim to the kthread; it's not safe to
691 * clean it here. We donate it our last reference.
692 */
693 if ((flags & VRELEL_CHANGING_SET) != 0) {
694 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
695 vp->v_iflag &= ~VI_CHANGING;
696 cv_broadcast(&vp->v_cv);
697 }
698 mutex_enter(&vrele_lock);
699 TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
700 if (++vrele_pending > (desiredvnodes >> 8))
701 cv_signal(&vrele_cv);
702 mutex_exit(&vrele_lock);
703 mutex_exit(vp->v_interlock);
704 return;
705 }
706
707 /*
708 * If the node got another reference while we
709 * released the interlock, don't try to inactivate it yet.
710 */
711 if (__predict_false(vtryrele(vp))) {
712 VOP_UNLOCK(vp);
713 if ((flags & VRELEL_CHANGING_SET) != 0) {
714 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
715 vp->v_iflag &= ~VI_CHANGING;
716 cv_broadcast(&vp->v_cv);
717 }
718 mutex_exit(vp->v_interlock);
719 return;
720 }
721
722 if ((flags & VRELEL_CHANGING_SET) == 0) {
723 KASSERT((vp->v_iflag & VI_CHANGING) == 0);
724 vp->v_iflag |= VI_CHANGING;
725 }
726 mutex_exit(vp->v_interlock);
727
728 /*
729 * The vnode can gain another reference while being
730 * deactivated. If VOP_INACTIVE() indicates that
731 * the described file has been deleted, then recycle
732 * the vnode irrespective of additional references.
733 * Another thread may be waiting to re-use the on-disk
734 * inode.
735 *
736 * Note that VOP_INACTIVE() will drop the vnode lock.
737 */
738 VOP_INACTIVE(vp, &recycle);
739 mutex_enter(vp->v_interlock);
740 if (!recycle) {
741 if (vtryrele(vp)) {
742 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
743 vp->v_iflag &= ~VI_CHANGING;
744 cv_broadcast(&vp->v_cv);
745 mutex_exit(vp->v_interlock);
746 return;
747 }
748 }
749
750 /* Take care of space accounting. */
751 if (vp->v_iflag & VI_EXECMAP) {
752 atomic_add_int(&uvmexp.execpages,
753 -vp->v_uobj.uo_npages);
754 atomic_add_int(&uvmexp.filepages,
755 vp->v_uobj.uo_npages);
756 }
757 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
758 vp->v_vflag &= ~VV_MAPPED;
759
760 /*
761 * Recycle the vnode if the file is now unused (unlinked),
762 * otherwise just free it.
763 */
764 if (recycle) {
765 vclean(vp);
766 }
767 KASSERT(vp->v_usecount > 0);
768 } else { /* vnode was already clean */
769 if ((flags & VRELEL_CHANGING_SET) == 0) {
770 KASSERT((vp->v_iflag & VI_CHANGING) == 0);
771 vp->v_iflag |= VI_CHANGING;
772 }
773 }
774
775 if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
776 /* Gained another reference while being reclaimed. */
777 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
778 vp->v_iflag &= ~VI_CHANGING;
779 cv_broadcast(&vp->v_cv);
780 mutex_exit(vp->v_interlock);
781 return;
782 }
783
784 if ((vp->v_iflag & VI_CLEAN) != 0) {
785 /*
786 * It's clean so destroy it. It isn't referenced
787 * anywhere since it has been reclaimed.
788 */
789 KASSERT(vp->v_holdcnt == 0);
790 KASSERT(vp->v_writecount == 0);
791 mutex_exit(vp->v_interlock);
792 vfs_insmntque(vp, NULL);
793 if (vp->v_type == VBLK || vp->v_type == VCHR) {
794 spec_node_destroy(vp);
795 }
796 vnfree(vp);
797 } else {
798 /*
799 * Otherwise, put it back onto the freelist. It
800 * can't be destroyed while still associated with
801 * a file system.
802 */
803 mutex_enter(&vnode_free_list_lock);
804 if (vp->v_holdcnt > 0) {
805 vp->v_freelisthd = &vnode_hold_list;
806 } else {
807 vp->v_freelisthd = &vnode_free_list;
808 }
809 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
810 mutex_exit(&vnode_free_list_lock);
811 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
812 vp->v_iflag &= ~VI_CHANGING;
813 cv_broadcast(&vp->v_cv);
814 mutex_exit(vp->v_interlock);
815 }
816 }
817
818 void
819 vrele(vnode_t *vp)
820 {
821
822 KASSERT((vp->v_iflag & VI_MARKER) == 0);
823
824 if (vtryrele(vp)) {
825 return;
826 }
827 mutex_enter(vp->v_interlock);
828 vrelel(vp, 0);
829 }
830
831 /*
832 * Asynchronous vnode release, vnode is released in different context.
833 */
834 void
835 vrele_async(vnode_t *vp)
836 {
837
838 KASSERT((vp->v_iflag & VI_MARKER) == 0);
839
840 if (vtryrele(vp)) {
841 return;
842 }
843 mutex_enter(vp->v_interlock);
844 vrelel(vp, VRELEL_ASYNC_RELE);
845 }
846
847 static void
848 vrele_thread(void *cookie)
849 {
850 vnodelst_t skip_list;
851 vnode_t *vp;
852 struct mount *mp;
853
854 TAILQ_INIT(&skip_list);
855
856 mutex_enter(&vrele_lock);
857 for (;;) {
858 while (TAILQ_EMPTY(&vrele_list)) {
859 vrele_gen++;
860 cv_broadcast(&vrele_cv);
861 cv_timedwait(&vrele_cv, &vrele_lock, hz);
862 TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
863 }
864 vp = TAILQ_FIRST(&vrele_list);
865 mp = vp->v_mount;
866 TAILQ_REMOVE(&vrele_list, vp, v_freelist);
867 if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
868 TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
869 continue;
870 }
871 vrele_pending--;
872 mutex_exit(&vrele_lock);
873
874 /*
875 * If not the last reference, then ignore the vnode
876 * and look for more work.
877 */
878 mutex_enter(vp->v_interlock);
879 vrelel(vp, 0);
880 fstrans_done(mp);
881 mutex_enter(&vrele_lock);
882 }
883 }
884
885 void
886 vrele_flush(void)
887 {
888 int gen;
889
890 mutex_enter(&vrele_lock);
891 gen = vrele_gen;
892 while (vrele_pending && gen == vrele_gen) {
893 cv_broadcast(&vrele_cv);
894 cv_wait(&vrele_cv, &vrele_lock);
895 }
896 mutex_exit(&vrele_lock);
897 }
898
899 /*
900 * Vnode reference, where a reference is already held by some other
901 * object (for example, a file structure).
902 */
903 void
904 vref(vnode_t *vp)
905 {
906
907 KASSERT((vp->v_iflag & VI_MARKER) == 0);
908 KASSERT(vp->v_usecount != 0);
909
910 atomic_inc_uint(&vp->v_usecount);
911 }
912
913 /*
914 * Page or buffer structure gets a reference.
915 * Called with v_interlock held.
916 */
917 void
918 vholdl(vnode_t *vp)
919 {
920
921 KASSERT(mutex_owned(vp->v_interlock));
922 KASSERT((vp->v_iflag & VI_MARKER) == 0);
923
924 if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
925 mutex_enter(&vnode_free_list_lock);
926 KASSERT(vp->v_freelisthd == &vnode_free_list);
927 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
928 vp->v_freelisthd = &vnode_hold_list;
929 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
930 mutex_exit(&vnode_free_list_lock);
931 }
932 }
933
934 /*
935 * Page or buffer structure frees a reference.
936 * Called with v_interlock held.
937 */
938 void
939 holdrelel(vnode_t *vp)
940 {
941
942 KASSERT(mutex_owned(vp->v_interlock));
943 KASSERT((vp->v_iflag & VI_MARKER) == 0);
944
945 if (vp->v_holdcnt <= 0) {
946 vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
947 }
948
949 vp->v_holdcnt--;
950 if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
951 mutex_enter(&vnode_free_list_lock);
952 KASSERT(vp->v_freelisthd == &vnode_hold_list);
953 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
954 vp->v_freelisthd = &vnode_free_list;
955 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
956 mutex_exit(&vnode_free_list_lock);
957 }
958 }
959
960 /*
961 * Disassociate the underlying file system from a vnode.
962 *
963 * Must be called with the interlock held, and will return with it held.
964 */
965 static void
966 vclean(vnode_t *vp)
967 {
968 lwp_t *l = curlwp;
969 bool recycle, active, doclose;
970 int error;
971
972 KASSERT(mutex_owned(vp->v_interlock));
973 KASSERT((vp->v_iflag & VI_MARKER) == 0);
974 KASSERT(vp->v_usecount != 0);
975
976 /* If already clean, nothing to do. */
977 if ((vp->v_iflag & VI_CLEAN) != 0) {
978 return;
979 }
980
981 active = (vp->v_usecount > 1);
982 doclose = ! (active && vp->v_type == VBLK &&
983 spec_node_getmountedfs(vp) != NULL);
984 mutex_exit(vp->v_interlock);
985
986 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
987
988 /*
989 * Prevent the vnode from being recycled or brought into use
990 * while we clean it out.
991 */
992 mutex_enter(vp->v_interlock);
993 KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0);
994 vp->v_iflag |= VI_XLOCK;
995 if (vp->v_iflag & VI_EXECMAP) {
996 atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
997 atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
998 }
999 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1000 mutex_exit(vp->v_interlock);
1001
1002 /*
1003 * Clean out any cached data associated with the vnode.
1004 * If purging an active vnode, it must be closed and
1005 * deactivated before being reclaimed. Note that the
1006 * VOP_INACTIVE will unlock the vnode.
1007 */
1008 if (doclose) {
1009 error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1010 if (error != 0) {
1011 if (wapbl_vphaswapbl(vp))
1012 WAPBL_DISCARD(wapbl_vptomp(vp));
1013 error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1014 }
1015 KASSERT(error == 0);
1016 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1017 if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1018 spec_node_revoke(vp);
1019 }
1020 }
1021 if (active) {
1022 VOP_INACTIVE(vp, &recycle);
1023 } else {
1024 /*
1025 * Any other processes trying to obtain this lock must first
1026 * wait for VI_XLOCK to clear, then call the new lock operation.
1027 */
1028 VOP_UNLOCK(vp);
1029 }
1030
1031 /* Disassociate the underlying file system from the vnode. */
1032 if (VOP_RECLAIM(vp)) {
1033 vnpanic(vp, "%s: cannot reclaim", __func__);
1034 }
1035
1036 KASSERT(vp->v_data == NULL);
1037 KASSERT(vp->v_uobj.uo_npages == 0);
1038
1039 if (vp->v_type == VREG && vp->v_ractx != NULL) {
1040 uvm_ra_freectx(vp->v_ractx);
1041 vp->v_ractx = NULL;
1042 }
1043
1044 /* Purge name cache. */
1045 cache_purge(vp);
1046
1047 /* Move to dead mount. */
1048 vp->v_vflag &= ~VV_ROOT;
1049 atomic_inc_uint(&dead_mount->mnt_refcnt);
1050 vfs_insmntque(vp, dead_mount);
1051
1052 /* Done with purge, notify sleepers of the grim news. */
1053 mutex_enter(vp->v_interlock);
1054 if (doclose) {
1055 vp->v_op = dead_vnodeop_p;
1056 vp->v_vflag |= VV_LOCKSWORK;
1057 vp->v_iflag |= VI_CLEAN;
1058 } else {
1059 vp->v_op = spec_vnodeop_p;
1060 vp->v_vflag &= ~VV_LOCKSWORK;
1061 }
1062 vp->v_tag = VT_NON;
1063 KNOTE(&vp->v_klist, NOTE_REVOKE);
1064 vp->v_iflag &= ~VI_XLOCK;
1065 cv_broadcast(&vp->v_cv);
1066
1067 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1068 }
1069
1070 /*
1071 * Recycle an unused vnode if caller holds the last reference.
1072 */
1073 bool
1074 vrecycle(vnode_t *vp)
1075 {
1076
1077 mutex_enter(vp->v_interlock);
1078
1079 KASSERT((vp->v_iflag & VI_MARKER) == 0);
1080
1081 if (vp->v_usecount != 1) {
1082 mutex_exit(vp->v_interlock);
1083 return false;
1084 }
1085 if ((vp->v_iflag & VI_CHANGING) != 0)
1086 vwait(vp, VI_CHANGING);
1087 if (vp->v_usecount != 1) {
1088 mutex_exit(vp->v_interlock);
1089 return false;
1090 } else if ((vp->v_iflag & VI_CLEAN) != 0) {
1091 mutex_exit(vp->v_interlock);
1092 return true;
1093 }
1094 vp->v_iflag |= VI_CHANGING;
1095 vclean(vp);
1096 vrelel(vp, VRELEL_CHANGING_SET);
1097 return true;
1098 }
1099
1100 /*
1101 * Eliminate all activity associated with the requested vnode
1102 * and with all vnodes aliased to the requested vnode.
1103 */
1104 void
1105 vrevoke(vnode_t *vp)
1106 {
1107 vnode_t *vq;
1108 enum vtype type;
1109 dev_t dev;
1110
1111 KASSERT(vp->v_usecount > 0);
1112
1113 mutex_enter(vp->v_interlock);
1114 if ((vp->v_iflag & VI_CLEAN) != 0) {
1115 mutex_exit(vp->v_interlock);
1116 return;
1117 } else if (vp->v_type != VBLK && vp->v_type != VCHR) {
1118 atomic_inc_uint(&vp->v_usecount);
1119 mutex_exit(vp->v_interlock);
1120 vgone(vp);
1121 return;
1122 } else {
1123 dev = vp->v_rdev;
1124 type = vp->v_type;
1125 mutex_exit(vp->v_interlock);
1126 }
1127
1128 while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
1129 vgone(vq);
1130 }
1131 }
1132
1133 /*
1134 * Eliminate all activity associated with a vnode in preparation for
1135 * reuse. Drops a reference from the vnode.
1136 */
1137 void
1138 vgone(vnode_t *vp)
1139 {
1140
1141 mutex_enter(vp->v_interlock);
1142 if ((vp->v_iflag & VI_CHANGING) != 0)
1143 vwait(vp, VI_CHANGING);
1144 vp->v_iflag |= VI_CHANGING;
1145 vclean(vp);
1146 vrelel(vp, VRELEL_CHANGING_SET);
1147 }
1148
1149 static inline uint32_t
1150 vcache_hash(const struct vcache_key *key)
1151 {
1152 uint32_t hash = HASH32_BUF_INIT;
1153
1154 hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
1155 hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
1156 return hash;
1157 }
1158
1159 static void
1160 vcache_init(void)
1161 {
1162
1163 vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
1164 "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
1165 KASSERT(vcache.pool != NULL);
1166 mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
1167 vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
1168 &vcache.hashmask);
1169 }
1170
1171 static void
1172 vcache_reinit(void)
1173 {
1174 int i;
1175 uint32_t hash;
1176 u_long oldmask, newmask;
1177 struct hashhead *oldtab, *newtab;
1178 struct vcache_node *node;
1179
1180 newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
1181 mutex_enter(&vcache.lock);
1182 oldtab = vcache.hashtab;
1183 oldmask = vcache.hashmask;
1184 vcache.hashtab = newtab;
1185 vcache.hashmask = newmask;
1186 for (i = 0; i <= oldmask; i++) {
1187 while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
1188 SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
1189 hash = vcache_hash(&node->vn_key);
1190 SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
1191 node, vn_hash);
1192 }
1193 }
1194 mutex_exit(&vcache.lock);
1195 hashdone(oldtab, HASH_SLIST, oldmask);
1196 }
1197
1198 static inline struct vcache_node *
1199 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
1200 {
1201 struct hashhead *hashp;
1202 struct vcache_node *node;
1203
1204 KASSERT(mutex_owned(&vcache.lock));
1205
1206 hashp = &vcache.hashtab[hash & vcache.hashmask];
1207 SLIST_FOREACH(node, hashp, vn_hash) {
1208 if (key->vk_mount != node->vn_key.vk_mount)
1209 continue;
1210 if (key->vk_key_len != node->vn_key.vk_key_len)
1211 continue;
1212 if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
1213 continue;
1214 return node;
1215 }
1216 return NULL;
1217 }
1218
1219 /*
1220 * Get a vnode / fs node pair by key and return it referenced through vpp.
1221 */
1222 int
1223 vcache_get(struct mount *mp, const void *key, size_t key_len,
1224 struct vnode **vpp)
1225 {
1226 int error;
1227 uint32_t hash;
1228 const void *new_key;
1229 struct vnode *vp;
1230 struct vcache_key vcache_key;
1231 struct vcache_node *node, *new_node;
1232
1233 new_key = NULL;
1234 *vpp = NULL;
1235
1236 vcache_key.vk_mount = mp;
1237 vcache_key.vk_key = key;
1238 vcache_key.vk_key_len = key_len;
1239 hash = vcache_hash(&vcache_key);
1240
1241 again:
1242 mutex_enter(&vcache.lock);
1243 node = vcache_hash_lookup(&vcache_key, hash);
1244
1245 /* If found, take a reference or retry. */
1246 if (__predict_true(node != NULL && node->vn_vnode != NULL)) {
1247 vp = node->vn_vnode;
1248 mutex_enter(vp->v_interlock);
1249 mutex_exit(&vcache.lock);
1250 error = vget(vp, 0);
1251 if (error == ENOENT)
1252 goto again;
1253 if (error == 0)
1254 *vpp = vp;
1255 KASSERT((error != 0) == (*vpp == NULL));
1256 return error;
1257 }
1258
1259 /* If another thread loads this node, wait and retry. */
1260 if (node != NULL) {
1261 KASSERT(node->vn_vnode == NULL);
1262 mutex_exit(&vcache.lock);
1263 kpause("vcache", false, mstohz(20), NULL);
1264 goto again;
1265 }
1266 mutex_exit(&vcache.lock);
1267
1268 /* Allocate and initialize a new vcache / vnode pair. */
1269 error = vfs_busy(mp, NULL);
1270 if (error)
1271 return error;
1272 new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1273 new_node->vn_vnode = NULL;
1274 new_node->vn_key = vcache_key;
1275 vp = vnalloc(NULL);
1276 mutex_enter(&vcache.lock);
1277 node = vcache_hash_lookup(&vcache_key, hash);
1278 if (node == NULL) {
1279 SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1280 new_node, vn_hash);
1281 node = new_node;
1282 }
1283 mutex_exit(&vcache.lock);
1284
1285 /* If another thread beat us inserting this node, retry. */
1286 if (node != new_node) {
1287 pool_cache_put(vcache.pool, new_node);
1288 KASSERT(vp->v_usecount == 1);
1289 vp->v_usecount = 0;
1290 vnfree(vp);
1291 vfs_unbusy(mp, false, NULL);
1292 goto again;
1293 }
1294
1295 /* Load the fs node. Exclusive as new_node->vn_vnode is NULL. */
1296 vp->v_iflag |= VI_CHANGING;
1297 error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
1298 if (error) {
1299 mutex_enter(&vcache.lock);
1300 SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1301 new_node, vcache_node, vn_hash);
1302 mutex_exit(&vcache.lock);
1303 pool_cache_put(vcache.pool, new_node);
1304 KASSERT(vp->v_usecount == 1);
1305 vp->v_usecount = 0;
1306 vnfree(vp);
1307 vfs_unbusy(mp, false, NULL);
1308 KASSERT(*vpp == NULL);
1309 return error;
1310 }
1311 KASSERT(new_key != NULL);
1312 KASSERT(memcmp(key, new_key, key_len) == 0);
1313 KASSERT(vp->v_op != NULL);
1314 vfs_insmntque(vp, mp);
1315 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1316 vp->v_vflag |= VV_MPSAFE;
1317 vfs_unbusy(mp, true, NULL);
1318
1319 /* Finished loading, finalize node. */
1320 mutex_enter(&vcache.lock);
1321 new_node->vn_key.vk_key = new_key;
1322 new_node->vn_vnode = vp;
1323 mutex_exit(&vcache.lock);
1324 mutex_enter(vp->v_interlock);
1325 vp->v_iflag &= ~VI_CHANGING;
1326 cv_broadcast(&vp->v_cv);
1327 mutex_exit(vp->v_interlock);
1328 *vpp = vp;
1329 return 0;
1330 }
1331
1332 /*
1333 * Create a new vnode / fs node pair and return it referenced through vpp.
1334 */
1335 int
1336 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
1337 kauth_cred_t cred, struct vnode **vpp)
1338 {
1339 int error;
1340 uint32_t hash;
1341 struct vnode *vp;
1342 struct vcache_node *new_node;
1343 struct vcache_node *old_node __diagused;
1344
1345 *vpp = NULL;
1346
1347 /* Allocate and initialize a new vcache / vnode pair. */
1348 error = vfs_busy(mp, NULL);
1349 if (error)
1350 return error;
1351 new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1352 new_node->vn_key.vk_mount = mp;
1353 new_node->vn_vnode = NULL;
1354 vp = vnalloc(NULL);
1355
1356 /* Create and load the fs node. */
1357 vp->v_iflag |= VI_CHANGING;
1358 error = VFS_NEWVNODE(mp, dvp, vp, vap, cred,
1359 &new_node->vn_key.vk_key_len, &new_node->vn_key.vk_key);
1360 if (error) {
1361 pool_cache_put(vcache.pool, new_node);
1362 KASSERT(vp->v_usecount == 1);
1363 vp->v_usecount = 0;
1364 vnfree(vp);
1365 vfs_unbusy(mp, false, NULL);
1366 KASSERT(*vpp == NULL);
1367 return error;
1368 }
1369 KASSERT(new_node->vn_key.vk_key != NULL);
1370 KASSERT(vp->v_op != NULL);
1371 hash = vcache_hash(&new_node->vn_key);
1372
1373 /* Wait for previous instance to be reclaimed, then insert new node. */
1374 mutex_enter(&vcache.lock);
1375 while ((old_node = vcache_hash_lookup(&new_node->vn_key, hash))) {
1376 #ifdef DIAGNOSTIC
1377 if (old_node->vn_vnode != NULL)
1378 mutex_enter(old_node->vn_vnode->v_interlock);
1379 KASSERT(old_node->vn_vnode == NULL ||
1380 (old_node->vn_vnode->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0);
1381 if (old_node->vn_vnode != NULL)
1382 mutex_exit(old_node->vn_vnode->v_interlock);
1383 #endif
1384 mutex_exit(&vcache.lock);
1385 kpause("vcache", false, mstohz(20), NULL);
1386 mutex_enter(&vcache.lock);
1387 }
1388 SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1389 new_node, vn_hash);
1390 mutex_exit(&vcache.lock);
1391 vfs_insmntque(vp, mp);
1392 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1393 vp->v_vflag |= VV_MPSAFE;
1394 vfs_unbusy(mp, true, NULL);
1395
1396 /* Finished loading, finalize node. */
1397 mutex_enter(&vcache.lock);
1398 new_node->vn_vnode = vp;
1399 mutex_exit(&vcache.lock);
1400 mutex_enter(vp->v_interlock);
1401 vp->v_iflag &= ~VI_CHANGING;
1402 cv_broadcast(&vp->v_cv);
1403 mutex_exit(vp->v_interlock);
1404 *vpp = vp;
1405 return 0;
1406 }
1407
1408 /*
1409 * Prepare key change: lock old and new cache node.
1410 * Return an error if the new node already exists.
1411 */
1412 int
1413 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
1414 const void *old_key, size_t old_key_len,
1415 const void *new_key, size_t new_key_len)
1416 {
1417 uint32_t old_hash, new_hash;
1418 struct vcache_key old_vcache_key, new_vcache_key;
1419 struct vcache_node *node, *new_node;
1420
1421 old_vcache_key.vk_mount = mp;
1422 old_vcache_key.vk_key = old_key;
1423 old_vcache_key.vk_key_len = old_key_len;
1424 old_hash = vcache_hash(&old_vcache_key);
1425
1426 new_vcache_key.vk_mount = mp;
1427 new_vcache_key.vk_key = new_key;
1428 new_vcache_key.vk_key_len = new_key_len;
1429 new_hash = vcache_hash(&new_vcache_key);
1430
1431 new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1432 new_node->vn_vnode = NULL;
1433 new_node->vn_key = new_vcache_key;
1434
1435 mutex_enter(&vcache.lock);
1436 node = vcache_hash_lookup(&new_vcache_key, new_hash);
1437 if (node != NULL) {
1438 mutex_exit(&vcache.lock);
1439 pool_cache_put(vcache.pool, new_node);
1440 return EEXIST;
1441 }
1442 SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
1443 new_node, vn_hash);
1444 node = vcache_hash_lookup(&old_vcache_key, old_hash);
1445 KASSERT(node != NULL);
1446 KASSERT(node->vn_vnode == vp);
1447 node->vn_vnode = NULL;
1448 node->vn_key = old_vcache_key;
1449 mutex_exit(&vcache.lock);
1450 return 0;
1451 }
1452
1453 /*
1454 * Key change complete: remove old node and unlock new node.
1455 */
1456 void
1457 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
1458 const void *old_key, size_t old_key_len,
1459 const void *new_key, size_t new_key_len)
1460 {
1461 uint32_t old_hash, new_hash;
1462 struct vcache_key old_vcache_key, new_vcache_key;
1463 struct vcache_node *node;
1464
1465 old_vcache_key.vk_mount = mp;
1466 old_vcache_key.vk_key = old_key;
1467 old_vcache_key.vk_key_len = old_key_len;
1468 old_hash = vcache_hash(&old_vcache_key);
1469
1470 new_vcache_key.vk_mount = mp;
1471 new_vcache_key.vk_key = new_key;
1472 new_vcache_key.vk_key_len = new_key_len;
1473 new_hash = vcache_hash(&new_vcache_key);
1474
1475 mutex_enter(&vcache.lock);
1476 node = vcache_hash_lookup(&new_vcache_key, new_hash);
1477 KASSERT(node != NULL && node->vn_vnode == NULL);
1478 KASSERT(node->vn_key.vk_key_len == new_key_len);
1479 node->vn_vnode = vp;
1480 node->vn_key = new_vcache_key;
1481 node = vcache_hash_lookup(&old_vcache_key, old_hash);
1482 KASSERT(node != NULL);
1483 KASSERT(node->vn_vnode == NULL);
1484 SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
1485 node, vcache_node, vn_hash);
1486 mutex_exit(&vcache.lock);
1487 pool_cache_put(vcache.pool, node);
1488 }
1489
1490 /*
1491 * Remove a vnode / fs node pair from the cache.
1492 */
1493 void
1494 vcache_remove(struct mount *mp, const void *key, size_t key_len)
1495 {
1496 uint32_t hash;
1497 struct vcache_key vcache_key;
1498 struct vcache_node *node;
1499
1500 vcache_key.vk_mount = mp;
1501 vcache_key.vk_key = key;
1502 vcache_key.vk_key_len = key_len;
1503 hash = vcache_hash(&vcache_key);
1504
1505 mutex_enter(&vcache.lock);
1506 node = vcache_hash_lookup(&vcache_key, hash);
1507 KASSERT(node != NULL);
1508 SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1509 node, vcache_node, vn_hash);
1510 mutex_exit(&vcache.lock);
1511 pool_cache_put(vcache.pool, node);
1512 }
1513
1514 /*
1515 * Update outstanding I/O count and do wakeup if requested.
1516 */
1517 void
1518 vwakeup(struct buf *bp)
1519 {
1520 vnode_t *vp;
1521
1522 if ((vp = bp->b_vp) == NULL)
1523 return;
1524
1525 KASSERT(bp->b_objlock == vp->v_interlock);
1526 KASSERT(mutex_owned(bp->b_objlock));
1527
1528 if (--vp->v_numoutput < 0)
1529 vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1530 if (vp->v_numoutput == 0)
1531 cv_broadcast(&vp->v_cv);
1532 }
1533
1534 /*
1535 * Test a vnode for being or becoming dead. Returns one of:
1536 * EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
1537 * ENOENT: vnode is dead.
1538 * 0: otherwise.
1539 *
1540 * Whenever this function returns a non-zero value all future
1541 * calls will also return a non-zero value.
1542 */
1543 int
1544 vdead_check(struct vnode *vp, int flags)
1545 {
1546
1547 KASSERT(mutex_owned(vp->v_interlock));
1548 if (ISSET(vp->v_iflag, VI_XLOCK)) {
1549 if (ISSET(flags, VDEAD_NOWAIT))
1550 return EBUSY;
1551 vwait(vp, VI_XLOCK);
1552 KASSERT(ISSET(vp->v_iflag, VI_CLEAN));
1553 }
1554 if (ISSET(vp->v_iflag, VI_CLEAN))
1555 return ENOENT;
1556 return 0;
1557 }
1558
1559 /*
1560 * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
1561 * recycled.
1562 */
1563 static void
1564 vwait(vnode_t *vp, int flags)
1565 {
1566
1567 KASSERT(mutex_owned(vp->v_interlock));
1568 KASSERT(vp->v_usecount != 0);
1569
1570 while ((vp->v_iflag & flags) != 0)
1571 cv_wait(&vp->v_cv, vp->v_interlock);
1572 }
1573
1574 int
1575 vfs_drainvnodes(long target)
1576 {
1577 int error;
1578
1579 mutex_enter(&vnode_free_list_lock);
1580
1581 while (numvnodes > target) {
1582 error = cleanvnode();
1583 if (error != 0)
1584 return error;
1585 mutex_enter(&vnode_free_list_lock);
1586 }
1587
1588 mutex_exit(&vnode_free_list_lock);
1589
1590 vcache_reinit();
1591
1592 return 0;
1593 }
1594
1595 void
1596 vnpanic(vnode_t *vp, const char *fmt, ...)
1597 {
1598 va_list ap;
1599
1600 #ifdef DIAGNOSTIC
1601 vprint(NULL, vp);
1602 #endif
1603 va_start(ap, fmt);
1604 vpanic(fmt, ap);
1605 va_end(ap);
1606 }
1607