vfs_vnode.c revision 1.39.2.3 1 /* $NetBSD: vfs_vnode.c,v 1.39.2.3 2015/09/22 12:06:07 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
67 */
68
69 /*
70 * The vnode cache subsystem.
71 *
72 * Life-cycle
73 *
74 * Normally, there are two points where new vnodes are created:
75 * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
76 * starts in one of the following ways:
77 *
78 * - Allocation, via vcache_get(9) or vcache_new(9).
79 * - Reclamation of inactive vnode, via vget(9).
80 *
81 * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82 * was another, traditional way. Currently, only the draining thread
83 * recycles the vnodes. This behaviour might be revisited.
84 *
85 * The life-cycle ends when the last reference is dropped, usually
86 * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
87 * the file system that vnode is inactive. Via this call, file system
88 * indicates whether vnode can be recycled (usually, it checks its own
89 * references, e.g. count of links, whether the file was removed).
90 *
91 * Depending on indication, vnode can be put into a free list (cache),
92 * or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
93 * underlying file system from the vnode, and finally destroyed.
94 *
95 * Reference counting
96 *
97 * Vnode is considered active, if reference count (vnode_t::v_usecount)
98 * is non-zero. It is maintained using: vref(9) and vrele(9), as well
99 * as vput(9), routines. Common points holding references are e.g.
100 * file openings, current working directory, mount points, etc.
101 *
102 * Note on v_usecount and its locking
103 *
104 * At nearly all points it is known that v_usecount could be zero,
105 * the vnode_t::v_interlock will be held. To change v_usecount away
106 * from zero, the interlock must be held. To change from a non-zero
107 * value to zero, again the interlock must be held.
108 *
109 * Changing the usecount from a non-zero value to a non-zero value can
110 * safely be done using atomic operations, without the interlock held.
111 *
112 * Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
113 * mntvnode_lock is still held.
114 *
115 * See PR 41374.
116 */
117
118 #include <sys/cdefs.h>
119 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.39.2.3 2015/09/22 12:06:07 skrll Exp $");
120
121 #define _VFS_VNODE_PRIVATE
122
123 #include <sys/param.h>
124 #include <sys/kernel.h>
125
126 #include <sys/atomic.h>
127 #include <sys/buf.h>
128 #include <sys/conf.h>
129 #include <sys/device.h>
130 #include <sys/hash.h>
131 #include <sys/kauth.h>
132 #include <sys/kmem.h>
133 #include <sys/kthread.h>
134 #include <sys/module.h>
135 #include <sys/mount.h>
136 #include <sys/namei.h>
137 #include <sys/syscallargs.h>
138 #include <sys/sysctl.h>
139 #include <sys/systm.h>
140 #include <sys/vnode.h>
141 #include <sys/wapbl.h>
142 #include <sys/fstrans.h>
143
144 #include <uvm/uvm.h>
145 #include <uvm/uvm_readahead.h>
146
147 /* Flags to vrelel. */
148 #define VRELEL_ASYNC_RELE 0x0001 /* Always defer to vrele thread. */
149 #define VRELEL_CHANGING_SET 0x0002 /* VI_CHANGING set by caller. */
150
151 struct vcache_key {
152 struct mount *vk_mount;
153 const void *vk_key;
154 size_t vk_key_len;
155 };
156 struct vcache_node {
157 SLIST_ENTRY(vcache_node) vn_hash;
158 struct vnode *vn_vnode;
159 struct vcache_key vn_key;
160 };
161
162 u_int numvnodes __cacheline_aligned;
163
164 static pool_cache_t vnode_cache __read_mostly;
165
166 /*
167 * There are two free lists: one is for vnodes which have no buffer/page
168 * references and one for those which do (i.e. v_holdcnt is non-zero).
169 * Vnode recycling mechanism first attempts to look into the former list.
170 */
171 static kmutex_t vnode_free_list_lock __cacheline_aligned;
172 static vnodelst_t vnode_free_list __cacheline_aligned;
173 static vnodelst_t vnode_hold_list __cacheline_aligned;
174 static kcondvar_t vdrain_cv __cacheline_aligned;
175
176 static vnodelst_t vrele_list __cacheline_aligned;
177 static kmutex_t vrele_lock __cacheline_aligned;
178 static kcondvar_t vrele_cv __cacheline_aligned;
179 static lwp_t * vrele_lwp __cacheline_aligned;
180 static int vrele_pending __cacheline_aligned;
181 static int vrele_gen __cacheline_aligned;
182
183 SLIST_HEAD(hashhead, vcache_node);
184 static struct {
185 kmutex_t lock;
186 u_long hashmask;
187 struct hashhead *hashtab;
188 pool_cache_t pool;
189 } vcache __cacheline_aligned;
190
191 static int cleanvnode(void);
192 static void vcache_init(void);
193 static void vcache_reinit(void);
194 static void vclean(vnode_t *);
195 static void vrelel(vnode_t *, int);
196 static void vdrain_thread(void *);
197 static void vrele_thread(void *);
198 static void vnpanic(vnode_t *, const char *, ...)
199 __printflike(2, 3);
200 static void vwait(vnode_t *, int);
201
202 /* Routines having to do with the management of the vnode table. */
203 extern struct mount *dead_rootmount;
204 extern int (**dead_vnodeop_p)(void *);
205 extern struct vfsops dead_vfsops;
206
207 void
208 vfs_vnode_sysinit(void)
209 {
210 int error __diagused;
211
212 vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
213 NULL, IPL_NONE, NULL, NULL, NULL);
214 KASSERT(vnode_cache != NULL);
215
216 dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
217 KASSERT(dead_rootmount != NULL);
218 dead_rootmount->mnt_iflag = IMNT_MPSAFE;
219
220 mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
221 TAILQ_INIT(&vnode_free_list);
222 TAILQ_INIT(&vnode_hold_list);
223 TAILQ_INIT(&vrele_list);
224
225 vcache_init();
226
227 mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
228 cv_init(&vdrain_cv, "vdrain");
229 cv_init(&vrele_cv, "vrele");
230 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
231 NULL, NULL, "vdrain");
232 KASSERT(error == 0);
233 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
234 NULL, &vrele_lwp, "vrele");
235 KASSERT(error == 0);
236 }
237
238 /*
239 * Allocate a new, uninitialized vnode. If 'mp' is non-NULL, this is a
240 * marker vnode.
241 */
242 vnode_t *
243 vnalloc(struct mount *mp)
244 {
245 vnode_t *vp;
246
247 vp = pool_cache_get(vnode_cache, PR_WAITOK);
248 KASSERT(vp != NULL);
249
250 memset(vp, 0, sizeof(*vp));
251 uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
252 cv_init(&vp->v_cv, "vnode");
253 /*
254 * Done by memset() above.
255 * LIST_INIT(&vp->v_nclist);
256 * LIST_INIT(&vp->v_dnclist);
257 */
258
259 if (mp != NULL) {
260 vp->v_mount = mp;
261 vp->v_type = VBAD;
262 vp->v_iflag = VI_MARKER;
263 return vp;
264 }
265
266 mutex_enter(&vnode_free_list_lock);
267 numvnodes++;
268 if (numvnodes > desiredvnodes + desiredvnodes / 10)
269 cv_signal(&vdrain_cv);
270 mutex_exit(&vnode_free_list_lock);
271
272 rw_init(&vp->v_lock);
273 vp->v_usecount = 1;
274 vp->v_type = VNON;
275 vp->v_size = vp->v_writesize = VSIZENOTSET;
276
277 return vp;
278 }
279
280 /*
281 * Free an unused, unreferenced vnode.
282 */
283 void
284 vnfree(vnode_t *vp)
285 {
286
287 KASSERT(vp->v_usecount == 0);
288
289 if ((vp->v_iflag & VI_MARKER) == 0) {
290 rw_destroy(&vp->v_lock);
291 mutex_enter(&vnode_free_list_lock);
292 numvnodes--;
293 mutex_exit(&vnode_free_list_lock);
294 }
295
296 uvm_obj_destroy(&vp->v_uobj, true);
297 cv_destroy(&vp->v_cv);
298 pool_cache_put(vnode_cache, vp);
299 }
300
301 /*
302 * cleanvnode: grab a vnode from freelist, clean and free it.
303 *
304 * => Releases vnode_free_list_lock.
305 */
306 static int
307 cleanvnode(void)
308 {
309 vnode_t *vp;
310 vnodelst_t *listhd;
311 struct mount *mp;
312
313 KASSERT(mutex_owned(&vnode_free_list_lock));
314
315 listhd = &vnode_free_list;
316 try_nextlist:
317 TAILQ_FOREACH(vp, listhd, v_freelist) {
318 /*
319 * It's safe to test v_usecount and v_iflag
320 * without holding the interlock here, since
321 * these vnodes should never appear on the
322 * lists.
323 */
324 KASSERT(vp->v_usecount == 0);
325 KASSERT((vp->v_iflag & VI_CLEAN) == 0);
326 KASSERT(vp->v_freelisthd == listhd);
327
328 if (!mutex_tryenter(vp->v_interlock))
329 continue;
330 if ((vp->v_iflag & VI_XLOCK) != 0) {
331 mutex_exit(vp->v_interlock);
332 continue;
333 }
334 mp = vp->v_mount;
335 if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
336 mutex_exit(vp->v_interlock);
337 continue;
338 }
339 break;
340 }
341
342 if (vp == NULL) {
343 if (listhd == &vnode_free_list) {
344 listhd = &vnode_hold_list;
345 goto try_nextlist;
346 }
347 mutex_exit(&vnode_free_list_lock);
348 return EBUSY;
349 }
350
351 /* Remove it from the freelist. */
352 TAILQ_REMOVE(listhd, vp, v_freelist);
353 vp->v_freelisthd = NULL;
354 mutex_exit(&vnode_free_list_lock);
355
356 KASSERT(vp->v_usecount == 0);
357
358 /*
359 * The vnode is still associated with a file system, so we must
360 * clean it out before freeing it. We need to add a reference
361 * before doing this.
362 */
363 vp->v_usecount = 1;
364 KASSERT((vp->v_iflag & VI_CHANGING) == 0);
365 vp->v_iflag |= VI_CHANGING;
366 vclean(vp);
367 vrelel(vp, VRELEL_CHANGING_SET);
368 fstrans_done(mp);
369
370 return 0;
371 }
372
373 /*
374 * Helper thread to keep the number of vnodes below desiredvnodes.
375 */
376 static void
377 vdrain_thread(void *cookie)
378 {
379 int error;
380
381 mutex_enter(&vnode_free_list_lock);
382
383 for (;;) {
384 cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
385 while (numvnodes > desiredvnodes) {
386 error = cleanvnode();
387 if (error)
388 kpause("vndsbusy", false, hz, NULL);
389 mutex_enter(&vnode_free_list_lock);
390 if (error)
391 break;
392 }
393 }
394 }
395
396 /*
397 * Remove a vnode from its freelist.
398 */
399 void
400 vremfree(vnode_t *vp)
401 {
402
403 KASSERT(mutex_owned(vp->v_interlock));
404 KASSERT(vp->v_usecount == 0);
405
406 /*
407 * Note that the reference count must not change until
408 * the vnode is removed.
409 */
410 mutex_enter(&vnode_free_list_lock);
411 if (vp->v_holdcnt > 0) {
412 KASSERT(vp->v_freelisthd == &vnode_hold_list);
413 } else {
414 KASSERT(vp->v_freelisthd == &vnode_free_list);
415 }
416 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
417 vp->v_freelisthd = NULL;
418 mutex_exit(&vnode_free_list_lock);
419 }
420
421 /*
422 * vget: get a particular vnode from the free list, increment its reference
423 * count and lock it.
424 *
425 * => Should be called with v_interlock held.
426 *
427 * If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean().
428 * In that case, we cannot grab the vnode, so the process is awakened when
429 * the transition is completed, and an error returned to indicate that the
430 * vnode is no longer usable.
431 */
432 int
433 vget(vnode_t *vp, int flags, bool waitok)
434 {
435 int error = 0;
436
437 KASSERT((vp->v_iflag & VI_MARKER) == 0);
438 KASSERT(mutex_owned(vp->v_interlock));
439 KASSERT((flags & ~LK_NOWAIT) == 0);
440 KASSERT(waitok == ((flags & LK_NOWAIT) == 0));
441
442 /*
443 * Before adding a reference, we must remove the vnode
444 * from its freelist.
445 */
446 if (vp->v_usecount == 0) {
447 vremfree(vp);
448 vp->v_usecount = 1;
449 } else {
450 atomic_inc_uint(&vp->v_usecount);
451 }
452
453 /*
454 * If the vnode is in the process of changing state we wait
455 * for the change to complete and take care not to return
456 * a clean vnode.
457 */
458 if ((vp->v_iflag & VI_CHANGING) != 0) {
459 if ((flags & LK_NOWAIT) != 0) {
460 vrelel(vp, 0);
461 return EBUSY;
462 }
463 vwait(vp, VI_CHANGING);
464 if ((vp->v_iflag & VI_CLEAN) != 0) {
465 vrelel(vp, 0);
466 return ENOENT;
467 }
468 }
469
470 /*
471 * Ok, we got it in good shape.
472 */
473 KASSERT((vp->v_iflag & VI_CLEAN) == 0);
474 mutex_exit(vp->v_interlock);
475 return error;
476 }
477
478 /*
479 * vput: unlock and release the reference.
480 */
481 void
482 vput(vnode_t *vp)
483 {
484
485 KASSERT((vp->v_iflag & VI_MARKER) == 0);
486
487 VOP_UNLOCK(vp);
488 vrele(vp);
489 }
490
491 /*
492 * Try to drop reference on a vnode. Abort if we are releasing the
493 * last reference. Note: this _must_ succeed if not the last reference.
494 */
495 static inline bool
496 vtryrele(vnode_t *vp)
497 {
498 u_int use, next;
499
500 for (use = vp->v_usecount;; use = next) {
501 if (use == 1) {
502 return false;
503 }
504 KASSERT(use > 1);
505 next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
506 if (__predict_true(next == use)) {
507 return true;
508 }
509 }
510 }
511
512 /*
513 * Vnode release. If reference count drops to zero, call inactive
514 * routine and either return to freelist or free to the pool.
515 */
516 static void
517 vrelel(vnode_t *vp, int flags)
518 {
519 bool recycle, defer;
520 int error;
521
522 KASSERT(mutex_owned(vp->v_interlock));
523 KASSERT((vp->v_iflag & VI_MARKER) == 0);
524 KASSERT(vp->v_freelisthd == NULL);
525
526 if (__predict_false(vp->v_op == dead_vnodeop_p &&
527 (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
528 vnpanic(vp, "dead but not clean");
529 }
530
531 /*
532 * If not the last reference, just drop the reference count
533 * and unlock.
534 */
535 if (vtryrele(vp)) {
536 if ((flags & VRELEL_CHANGING_SET) != 0) {
537 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
538 vp->v_iflag &= ~VI_CHANGING;
539 cv_broadcast(&vp->v_cv);
540 }
541 mutex_exit(vp->v_interlock);
542 return;
543 }
544 if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
545 vnpanic(vp, "%s: bad ref count", __func__);
546 }
547
548 KASSERT((vp->v_iflag & VI_XLOCK) == 0);
549
550 #ifdef DIAGNOSTIC
551 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
552 vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
553 vprint("vrelel: missing VOP_CLOSE()", vp);
554 }
555 #endif
556
557 /*
558 * If not clean, deactivate the vnode, but preserve
559 * our reference across the call to VOP_INACTIVE().
560 */
561 if ((vp->v_iflag & VI_CLEAN) == 0) {
562 recycle = false;
563
564 /*
565 * XXX This ugly block can be largely eliminated if
566 * locking is pushed down into the file systems.
567 *
568 * Defer vnode release to vrele_thread if caller
569 * requests it explicitly or is the pagedaemon.
570 */
571 if ((curlwp == uvm.pagedaemon_lwp) ||
572 (flags & VRELEL_ASYNC_RELE) != 0) {
573 defer = true;
574 } else if (curlwp == vrele_lwp) {
575 /*
576 * We have to try harder.
577 */
578 mutex_exit(vp->v_interlock);
579 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
580 KASSERT(error == 0);
581 mutex_enter(vp->v_interlock);
582 defer = false;
583 } else {
584 /* If we can't acquire the lock, then defer. */
585 mutex_exit(vp->v_interlock);
586 error = vn_lock(vp,
587 LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
588 defer = (error != 0);
589 mutex_enter(vp->v_interlock);
590 }
591
592 KASSERT(mutex_owned(vp->v_interlock));
593 KASSERT(! (curlwp == vrele_lwp && defer));
594
595 if (defer) {
596 /*
597 * Defer reclaim to the kthread; it's not safe to
598 * clean it here. We donate it our last reference.
599 */
600 if ((flags & VRELEL_CHANGING_SET) != 0) {
601 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
602 vp->v_iflag &= ~VI_CHANGING;
603 cv_broadcast(&vp->v_cv);
604 }
605 mutex_enter(&vrele_lock);
606 TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
607 if (++vrele_pending > (desiredvnodes >> 8))
608 cv_signal(&vrele_cv);
609 mutex_exit(&vrele_lock);
610 mutex_exit(vp->v_interlock);
611 return;
612 }
613
614 /*
615 * If the node got another reference while we
616 * released the interlock, don't try to inactivate it yet.
617 */
618 if (__predict_false(vtryrele(vp))) {
619 VOP_UNLOCK(vp);
620 if ((flags & VRELEL_CHANGING_SET) != 0) {
621 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
622 vp->v_iflag &= ~VI_CHANGING;
623 cv_broadcast(&vp->v_cv);
624 }
625 mutex_exit(vp->v_interlock);
626 return;
627 }
628
629 if ((flags & VRELEL_CHANGING_SET) == 0) {
630 KASSERT((vp->v_iflag & VI_CHANGING) == 0);
631 vp->v_iflag |= VI_CHANGING;
632 }
633 mutex_exit(vp->v_interlock);
634
635 /*
636 * The vnode can gain another reference while being
637 * deactivated. If VOP_INACTIVE() indicates that
638 * the described file has been deleted, then recycle
639 * the vnode irrespective of additional references.
640 * Another thread may be waiting to re-use the on-disk
641 * inode.
642 *
643 * Note that VOP_INACTIVE() will drop the vnode lock.
644 */
645 VOP_INACTIVE(vp, &recycle);
646 mutex_enter(vp->v_interlock);
647 if (!recycle) {
648 if (vtryrele(vp)) {
649 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
650 vp->v_iflag &= ~VI_CHANGING;
651 cv_broadcast(&vp->v_cv);
652 mutex_exit(vp->v_interlock);
653 return;
654 }
655 }
656
657 /* Take care of space accounting. */
658 if (vp->v_iflag & VI_EXECMAP) {
659 atomic_add_int(&uvmexp.execpages,
660 -vp->v_uobj.uo_npages);
661 atomic_add_int(&uvmexp.filepages,
662 vp->v_uobj.uo_npages);
663 }
664 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
665 vp->v_vflag &= ~VV_MAPPED;
666
667 /*
668 * Recycle the vnode if the file is now unused (unlinked),
669 * otherwise just free it.
670 */
671 if (recycle) {
672 vclean(vp);
673 }
674 KASSERT(vp->v_usecount > 0);
675 } else { /* vnode was already clean */
676 if ((flags & VRELEL_CHANGING_SET) == 0) {
677 KASSERT((vp->v_iflag & VI_CHANGING) == 0);
678 vp->v_iflag |= VI_CHANGING;
679 }
680 }
681
682 if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
683 /* Gained another reference while being reclaimed. */
684 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
685 vp->v_iflag &= ~VI_CHANGING;
686 cv_broadcast(&vp->v_cv);
687 mutex_exit(vp->v_interlock);
688 return;
689 }
690
691 if ((vp->v_iflag & VI_CLEAN) != 0) {
692 /*
693 * It's clean so destroy it. It isn't referenced
694 * anywhere since it has been reclaimed.
695 */
696 KASSERT(vp->v_holdcnt == 0);
697 KASSERT(vp->v_writecount == 0);
698 mutex_exit(vp->v_interlock);
699 vfs_insmntque(vp, NULL);
700 if (vp->v_type == VBLK || vp->v_type == VCHR) {
701 spec_node_destroy(vp);
702 }
703 vnfree(vp);
704 } else {
705 /*
706 * Otherwise, put it back onto the freelist. It
707 * can't be destroyed while still associated with
708 * a file system.
709 */
710 mutex_enter(&vnode_free_list_lock);
711 if (vp->v_holdcnt > 0) {
712 vp->v_freelisthd = &vnode_hold_list;
713 } else {
714 vp->v_freelisthd = &vnode_free_list;
715 }
716 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
717 mutex_exit(&vnode_free_list_lock);
718 KASSERT((vp->v_iflag & VI_CHANGING) != 0);
719 vp->v_iflag &= ~VI_CHANGING;
720 cv_broadcast(&vp->v_cv);
721 mutex_exit(vp->v_interlock);
722 }
723 }
724
725 void
726 vrele(vnode_t *vp)
727 {
728
729 KASSERT((vp->v_iflag & VI_MARKER) == 0);
730
731 if (vtryrele(vp)) {
732 return;
733 }
734 mutex_enter(vp->v_interlock);
735 vrelel(vp, 0);
736 }
737
738 /*
739 * Asynchronous vnode release, vnode is released in different context.
740 */
741 void
742 vrele_async(vnode_t *vp)
743 {
744
745 KASSERT((vp->v_iflag & VI_MARKER) == 0);
746
747 if (vtryrele(vp)) {
748 return;
749 }
750 mutex_enter(vp->v_interlock);
751 vrelel(vp, VRELEL_ASYNC_RELE);
752 }
753
754 static void
755 vrele_thread(void *cookie)
756 {
757 vnodelst_t skip_list;
758 vnode_t *vp;
759 struct mount *mp;
760
761 TAILQ_INIT(&skip_list);
762
763 mutex_enter(&vrele_lock);
764 for (;;) {
765 while (TAILQ_EMPTY(&vrele_list)) {
766 vrele_gen++;
767 cv_broadcast(&vrele_cv);
768 cv_timedwait(&vrele_cv, &vrele_lock, hz);
769 TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
770 }
771 vp = TAILQ_FIRST(&vrele_list);
772 mp = vp->v_mount;
773 TAILQ_REMOVE(&vrele_list, vp, v_freelist);
774 if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
775 TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
776 continue;
777 }
778 vrele_pending--;
779 mutex_exit(&vrele_lock);
780
781 /*
782 * If not the last reference, then ignore the vnode
783 * and look for more work.
784 */
785 mutex_enter(vp->v_interlock);
786 vrelel(vp, 0);
787 fstrans_done(mp);
788 mutex_enter(&vrele_lock);
789 }
790 }
791
792 void
793 vrele_flush(void)
794 {
795 int gen;
796
797 mutex_enter(&vrele_lock);
798 gen = vrele_gen;
799 while (vrele_pending && gen == vrele_gen) {
800 cv_broadcast(&vrele_cv);
801 cv_wait(&vrele_cv, &vrele_lock);
802 }
803 mutex_exit(&vrele_lock);
804 }
805
806 /*
807 * Vnode reference, where a reference is already held by some other
808 * object (for example, a file structure).
809 */
810 void
811 vref(vnode_t *vp)
812 {
813
814 KASSERT((vp->v_iflag & VI_MARKER) == 0);
815 KASSERT(vp->v_usecount != 0);
816
817 atomic_inc_uint(&vp->v_usecount);
818 }
819
820 /*
821 * Page or buffer structure gets a reference.
822 * Called with v_interlock held.
823 */
824 void
825 vholdl(vnode_t *vp)
826 {
827
828 KASSERT(mutex_owned(vp->v_interlock));
829 KASSERT((vp->v_iflag & VI_MARKER) == 0);
830
831 if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
832 mutex_enter(&vnode_free_list_lock);
833 KASSERT(vp->v_freelisthd == &vnode_free_list);
834 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
835 vp->v_freelisthd = &vnode_hold_list;
836 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
837 mutex_exit(&vnode_free_list_lock);
838 }
839 }
840
841 /*
842 * Page or buffer structure frees a reference.
843 * Called with v_interlock held.
844 */
845 void
846 holdrelel(vnode_t *vp)
847 {
848
849 KASSERT(mutex_owned(vp->v_interlock));
850 KASSERT((vp->v_iflag & VI_MARKER) == 0);
851
852 if (vp->v_holdcnt <= 0) {
853 vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
854 }
855
856 vp->v_holdcnt--;
857 if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
858 mutex_enter(&vnode_free_list_lock);
859 KASSERT(vp->v_freelisthd == &vnode_hold_list);
860 TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
861 vp->v_freelisthd = &vnode_free_list;
862 TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
863 mutex_exit(&vnode_free_list_lock);
864 }
865 }
866
867 /*
868 * Disassociate the underlying file system from a vnode.
869 *
870 * Must be called with the interlock held, and will return with it held.
871 */
872 static void
873 vclean(vnode_t *vp)
874 {
875 lwp_t *l = curlwp;
876 bool recycle, active;
877 int error;
878
879 KASSERT(mutex_owned(vp->v_interlock));
880 KASSERT((vp->v_iflag & VI_MARKER) == 0);
881 KASSERT(vp->v_usecount != 0);
882
883 /* If already clean, nothing to do. */
884 if ((vp->v_iflag & VI_CLEAN) != 0) {
885 return;
886 }
887
888 active = (vp->v_usecount > 1);
889 mutex_exit(vp->v_interlock);
890
891 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
892
893 /*
894 * Prevent the vnode from being recycled or brought into use
895 * while we clean it out.
896 */
897 mutex_enter(vp->v_interlock);
898 KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0);
899 vp->v_iflag |= VI_XLOCK;
900 if (vp->v_iflag & VI_EXECMAP) {
901 atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
902 atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
903 }
904 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
905 mutex_exit(vp->v_interlock);
906
907 /*
908 * Clean out any cached data associated with the vnode.
909 * If purging an active vnode, it must be closed and
910 * deactivated before being reclaimed. Note that the
911 * VOP_INACTIVE will unlock the vnode.
912 */
913 error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
914 if (error != 0) {
915 if (wapbl_vphaswapbl(vp))
916 WAPBL_DISCARD(wapbl_vptomp(vp));
917 error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
918 }
919 KASSERT(error == 0);
920 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
921 if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
922 spec_node_revoke(vp);
923 }
924 if (active) {
925 VOP_INACTIVE(vp, &recycle);
926 } else {
927 /*
928 * Any other processes trying to obtain this lock must first
929 * wait for VI_XLOCK to clear, then call the new lock operation.
930 */
931 VOP_UNLOCK(vp);
932 }
933
934 /* Disassociate the underlying file system from the vnode. */
935 if (VOP_RECLAIM(vp)) {
936 vnpanic(vp, "%s: cannot reclaim", __func__);
937 }
938
939 KASSERT(vp->v_data == NULL);
940 KASSERT(vp->v_uobj.uo_npages == 0);
941
942 if (vp->v_type == VREG && vp->v_ractx != NULL) {
943 uvm_ra_freectx(vp->v_ractx);
944 vp->v_ractx = NULL;
945 }
946
947 /* Purge name cache. */
948 cache_purge(vp);
949
950 /* Move to dead mount. */
951 vp->v_vflag &= ~VV_ROOT;
952 atomic_inc_uint(&dead_rootmount->mnt_refcnt);
953 vfs_insmntque(vp, dead_rootmount);
954
955 /* Done with purge, notify sleepers of the grim news. */
956 mutex_enter(vp->v_interlock);
957 vp->v_op = dead_vnodeop_p;
958 vp->v_vflag |= VV_LOCKSWORK;
959 vp->v_iflag |= VI_CLEAN;
960 vp->v_tag = VT_NON;
961 KNOTE(&vp->v_klist, NOTE_REVOKE);
962 vp->v_iflag &= ~VI_XLOCK;
963 cv_broadcast(&vp->v_cv);
964
965 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
966 }
967
968 /*
969 * Recycle an unused vnode if caller holds the last reference.
970 */
971 bool
972 vrecycle(vnode_t *vp)
973 {
974
975 mutex_enter(vp->v_interlock);
976
977 KASSERT((vp->v_iflag & VI_MARKER) == 0);
978
979 if (vp->v_usecount != 1) {
980 mutex_exit(vp->v_interlock);
981 return false;
982 }
983 if ((vp->v_iflag & VI_CHANGING) != 0)
984 vwait(vp, VI_CHANGING);
985 if (vp->v_usecount != 1) {
986 mutex_exit(vp->v_interlock);
987 return false;
988 } else if ((vp->v_iflag & VI_CLEAN) != 0) {
989 mutex_exit(vp->v_interlock);
990 return true;
991 }
992 vp->v_iflag |= VI_CHANGING;
993 vclean(vp);
994 vrelel(vp, VRELEL_CHANGING_SET);
995 return true;
996 }
997
998 /*
999 * Eliminate all activity associated with the requested vnode
1000 * and with all vnodes aliased to the requested vnode.
1001 */
1002 void
1003 vrevoke(vnode_t *vp)
1004 {
1005 vnode_t *vq;
1006 enum vtype type;
1007 dev_t dev;
1008
1009 KASSERT(vp->v_usecount > 0);
1010
1011 mutex_enter(vp->v_interlock);
1012 if ((vp->v_iflag & VI_CLEAN) != 0) {
1013 mutex_exit(vp->v_interlock);
1014 return;
1015 } else if (vp->v_type != VBLK && vp->v_type != VCHR) {
1016 atomic_inc_uint(&vp->v_usecount);
1017 mutex_exit(vp->v_interlock);
1018 vgone(vp);
1019 return;
1020 } else {
1021 dev = vp->v_rdev;
1022 type = vp->v_type;
1023 mutex_exit(vp->v_interlock);
1024 }
1025
1026 while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
1027 vgone(vq);
1028 }
1029 }
1030
1031 /*
1032 * Eliminate all activity associated with a vnode in preparation for
1033 * reuse. Drops a reference from the vnode.
1034 */
1035 void
1036 vgone(vnode_t *vp)
1037 {
1038
1039 mutex_enter(vp->v_interlock);
1040 if ((vp->v_iflag & VI_CHANGING) != 0)
1041 vwait(vp, VI_CHANGING);
1042 vp->v_iflag |= VI_CHANGING;
1043 vclean(vp);
1044 vrelel(vp, VRELEL_CHANGING_SET);
1045 }
1046
1047 static inline uint32_t
1048 vcache_hash(const struct vcache_key *key)
1049 {
1050 uint32_t hash = HASH32_BUF_INIT;
1051
1052 hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
1053 hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
1054 return hash;
1055 }
1056
1057 static void
1058 vcache_init(void)
1059 {
1060
1061 vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
1062 "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
1063 KASSERT(vcache.pool != NULL);
1064 mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
1065 vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
1066 &vcache.hashmask);
1067 }
1068
1069 static void
1070 vcache_reinit(void)
1071 {
1072 int i;
1073 uint32_t hash;
1074 u_long oldmask, newmask;
1075 struct hashhead *oldtab, *newtab;
1076 struct vcache_node *node;
1077
1078 newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
1079 mutex_enter(&vcache.lock);
1080 oldtab = vcache.hashtab;
1081 oldmask = vcache.hashmask;
1082 vcache.hashtab = newtab;
1083 vcache.hashmask = newmask;
1084 for (i = 0; i <= oldmask; i++) {
1085 while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
1086 SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
1087 hash = vcache_hash(&node->vn_key);
1088 SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
1089 node, vn_hash);
1090 }
1091 }
1092 mutex_exit(&vcache.lock);
1093 hashdone(oldtab, HASH_SLIST, oldmask);
1094 }
1095
1096 static inline struct vcache_node *
1097 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
1098 {
1099 struct hashhead *hashp;
1100 struct vcache_node *node;
1101
1102 KASSERT(mutex_owned(&vcache.lock));
1103
1104 hashp = &vcache.hashtab[hash & vcache.hashmask];
1105 SLIST_FOREACH(node, hashp, vn_hash) {
1106 if (key->vk_mount != node->vn_key.vk_mount)
1107 continue;
1108 if (key->vk_key_len != node->vn_key.vk_key_len)
1109 continue;
1110 if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
1111 continue;
1112 return node;
1113 }
1114 return NULL;
1115 }
1116
1117 /*
1118 * Get a vnode / fs node pair by key and return it referenced through vpp.
1119 */
1120 int
1121 vcache_get(struct mount *mp, const void *key, size_t key_len,
1122 struct vnode **vpp)
1123 {
1124 int error;
1125 uint32_t hash;
1126 const void *new_key;
1127 struct vnode *vp;
1128 struct vcache_key vcache_key;
1129 struct vcache_node *node, *new_node;
1130
1131 new_key = NULL;
1132 *vpp = NULL;
1133
1134 vcache_key.vk_mount = mp;
1135 vcache_key.vk_key = key;
1136 vcache_key.vk_key_len = key_len;
1137 hash = vcache_hash(&vcache_key);
1138
1139 again:
1140 mutex_enter(&vcache.lock);
1141 node = vcache_hash_lookup(&vcache_key, hash);
1142
1143 /* If found, take a reference or retry. */
1144 if (__predict_true(node != NULL && node->vn_vnode != NULL)) {
1145 vp = node->vn_vnode;
1146 mutex_enter(vp->v_interlock);
1147 mutex_exit(&vcache.lock);
1148 error = vget(vp, 0, true /* wait */);
1149 if (error == ENOENT)
1150 goto again;
1151 if (error == 0)
1152 *vpp = vp;
1153 KASSERT((error != 0) == (*vpp == NULL));
1154 return error;
1155 }
1156
1157 /* If another thread loads this node, wait and retry. */
1158 if (node != NULL) {
1159 KASSERT(node->vn_vnode == NULL);
1160 mutex_exit(&vcache.lock);
1161 kpause("vcache", false, mstohz(20), NULL);
1162 goto again;
1163 }
1164 mutex_exit(&vcache.lock);
1165
1166 /* Allocate and initialize a new vcache / vnode pair. */
1167 error = vfs_busy(mp, NULL);
1168 if (error)
1169 return error;
1170 new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1171 new_node->vn_vnode = NULL;
1172 new_node->vn_key = vcache_key;
1173 vp = vnalloc(NULL);
1174 mutex_enter(&vcache.lock);
1175 node = vcache_hash_lookup(&vcache_key, hash);
1176 if (node == NULL) {
1177 SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1178 new_node, vn_hash);
1179 node = new_node;
1180 }
1181 mutex_exit(&vcache.lock);
1182
1183 /* If another thread beat us inserting this node, retry. */
1184 if (node != new_node) {
1185 pool_cache_put(vcache.pool, new_node);
1186 KASSERT(vp->v_usecount == 1);
1187 vp->v_usecount = 0;
1188 vnfree(vp);
1189 vfs_unbusy(mp, false, NULL);
1190 goto again;
1191 }
1192
1193 /* Load the fs node. Exclusive as new_node->vn_vnode is NULL. */
1194 vp->v_iflag |= VI_CHANGING;
1195 error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
1196 if (error) {
1197 mutex_enter(&vcache.lock);
1198 SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1199 new_node, vcache_node, vn_hash);
1200 mutex_exit(&vcache.lock);
1201 pool_cache_put(vcache.pool, new_node);
1202 KASSERT(vp->v_usecount == 1);
1203 vp->v_usecount = 0;
1204 vnfree(vp);
1205 vfs_unbusy(mp, false, NULL);
1206 KASSERT(*vpp == NULL);
1207 return error;
1208 }
1209 KASSERT(new_key != NULL);
1210 KASSERT(memcmp(key, new_key, key_len) == 0);
1211 KASSERT(vp->v_op != NULL);
1212 vfs_insmntque(vp, mp);
1213 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1214 vp->v_vflag |= VV_MPSAFE;
1215 vfs_unbusy(mp, true, NULL);
1216
1217 /* Finished loading, finalize node. */
1218 mutex_enter(&vcache.lock);
1219 new_node->vn_key.vk_key = new_key;
1220 new_node->vn_vnode = vp;
1221 mutex_exit(&vcache.lock);
1222 mutex_enter(vp->v_interlock);
1223 vp->v_iflag &= ~VI_CHANGING;
1224 cv_broadcast(&vp->v_cv);
1225 mutex_exit(vp->v_interlock);
1226 *vpp = vp;
1227 return 0;
1228 }
1229
1230 /*
1231 * Create a new vnode / fs node pair and return it referenced through vpp.
1232 */
1233 int
1234 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
1235 kauth_cred_t cred, struct vnode **vpp)
1236 {
1237 int error;
1238 uint32_t hash;
1239 struct vnode *vp;
1240 struct vcache_node *new_node;
1241 struct vcache_node *old_node __diagused;
1242
1243 *vpp = NULL;
1244
1245 /* Allocate and initialize a new vcache / vnode pair. */
1246 error = vfs_busy(mp, NULL);
1247 if (error)
1248 return error;
1249 new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1250 new_node->vn_key.vk_mount = mp;
1251 new_node->vn_vnode = NULL;
1252 vp = vnalloc(NULL);
1253
1254 /* Create and load the fs node. */
1255 vp->v_iflag |= VI_CHANGING;
1256 error = VFS_NEWVNODE(mp, dvp, vp, vap, cred,
1257 &new_node->vn_key.vk_key_len, &new_node->vn_key.vk_key);
1258 if (error) {
1259 pool_cache_put(vcache.pool, new_node);
1260 KASSERT(vp->v_usecount == 1);
1261 vp->v_usecount = 0;
1262 vnfree(vp);
1263 vfs_unbusy(mp, false, NULL);
1264 KASSERT(*vpp == NULL);
1265 return error;
1266 }
1267 KASSERT(new_node->vn_key.vk_key != NULL);
1268 KASSERT(vp->v_op != NULL);
1269 hash = vcache_hash(&new_node->vn_key);
1270
1271 /* Wait for previous instance to be reclaimed, then insert new node. */
1272 mutex_enter(&vcache.lock);
1273 while ((old_node = vcache_hash_lookup(&new_node->vn_key, hash))) {
1274 #ifdef DIAGNOSTIC
1275 if (old_node->vn_vnode != NULL)
1276 mutex_enter(old_node->vn_vnode->v_interlock);
1277 KASSERT(old_node->vn_vnode == NULL ||
1278 (old_node->vn_vnode->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0);
1279 if (old_node->vn_vnode != NULL)
1280 mutex_exit(old_node->vn_vnode->v_interlock);
1281 #endif
1282 mutex_exit(&vcache.lock);
1283 kpause("vcache", false, mstohz(20), NULL);
1284 mutex_enter(&vcache.lock);
1285 }
1286 SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1287 new_node, vn_hash);
1288 mutex_exit(&vcache.lock);
1289 vfs_insmntque(vp, mp);
1290 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1291 vp->v_vflag |= VV_MPSAFE;
1292 vfs_unbusy(mp, true, NULL);
1293
1294 /* Finished loading, finalize node. */
1295 mutex_enter(&vcache.lock);
1296 new_node->vn_vnode = vp;
1297 mutex_exit(&vcache.lock);
1298 mutex_enter(vp->v_interlock);
1299 vp->v_iflag &= ~VI_CHANGING;
1300 cv_broadcast(&vp->v_cv);
1301 mutex_exit(vp->v_interlock);
1302 *vpp = vp;
1303 return 0;
1304 }
1305
1306 /*
1307 * Prepare key change: lock old and new cache node.
1308 * Return an error if the new node already exists.
1309 */
1310 int
1311 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
1312 const void *old_key, size_t old_key_len,
1313 const void *new_key, size_t new_key_len)
1314 {
1315 uint32_t old_hash, new_hash;
1316 struct vcache_key old_vcache_key, new_vcache_key;
1317 struct vcache_node *node, *new_node;
1318
1319 old_vcache_key.vk_mount = mp;
1320 old_vcache_key.vk_key = old_key;
1321 old_vcache_key.vk_key_len = old_key_len;
1322 old_hash = vcache_hash(&old_vcache_key);
1323
1324 new_vcache_key.vk_mount = mp;
1325 new_vcache_key.vk_key = new_key;
1326 new_vcache_key.vk_key_len = new_key_len;
1327 new_hash = vcache_hash(&new_vcache_key);
1328
1329 new_node = pool_cache_get(vcache.pool, PR_WAITOK);
1330 new_node->vn_vnode = NULL;
1331 new_node->vn_key = new_vcache_key;
1332
1333 mutex_enter(&vcache.lock);
1334 node = vcache_hash_lookup(&new_vcache_key, new_hash);
1335 if (node != NULL) {
1336 mutex_exit(&vcache.lock);
1337 pool_cache_put(vcache.pool, new_node);
1338 return EEXIST;
1339 }
1340 SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
1341 new_node, vn_hash);
1342 node = vcache_hash_lookup(&old_vcache_key, old_hash);
1343 KASSERT(node != NULL);
1344 KASSERT(node->vn_vnode == vp);
1345 node->vn_vnode = NULL;
1346 node->vn_key = old_vcache_key;
1347 mutex_exit(&vcache.lock);
1348 return 0;
1349 }
1350
1351 /*
1352 * Key change complete: remove old node and unlock new node.
1353 */
1354 void
1355 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
1356 const void *old_key, size_t old_key_len,
1357 const void *new_key, size_t new_key_len)
1358 {
1359 uint32_t old_hash, new_hash;
1360 struct vcache_key old_vcache_key, new_vcache_key;
1361 struct vcache_node *node;
1362
1363 old_vcache_key.vk_mount = mp;
1364 old_vcache_key.vk_key = old_key;
1365 old_vcache_key.vk_key_len = old_key_len;
1366 old_hash = vcache_hash(&old_vcache_key);
1367
1368 new_vcache_key.vk_mount = mp;
1369 new_vcache_key.vk_key = new_key;
1370 new_vcache_key.vk_key_len = new_key_len;
1371 new_hash = vcache_hash(&new_vcache_key);
1372
1373 mutex_enter(&vcache.lock);
1374 node = vcache_hash_lookup(&new_vcache_key, new_hash);
1375 KASSERT(node != NULL && node->vn_vnode == NULL);
1376 KASSERT(node->vn_key.vk_key_len == new_key_len);
1377 node->vn_vnode = vp;
1378 node->vn_key = new_vcache_key;
1379 node = vcache_hash_lookup(&old_vcache_key, old_hash);
1380 KASSERT(node != NULL);
1381 KASSERT(node->vn_vnode == NULL);
1382 SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
1383 node, vcache_node, vn_hash);
1384 mutex_exit(&vcache.lock);
1385 pool_cache_put(vcache.pool, node);
1386 }
1387
1388 /*
1389 * Remove a vnode / fs node pair from the cache.
1390 */
1391 void
1392 vcache_remove(struct mount *mp, const void *key, size_t key_len)
1393 {
1394 uint32_t hash;
1395 struct vcache_key vcache_key;
1396 struct vcache_node *node;
1397
1398 vcache_key.vk_mount = mp;
1399 vcache_key.vk_key = key;
1400 vcache_key.vk_key_len = key_len;
1401 hash = vcache_hash(&vcache_key);
1402
1403 mutex_enter(&vcache.lock);
1404 node = vcache_hash_lookup(&vcache_key, hash);
1405 KASSERT(node != NULL);
1406 SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1407 node, vcache_node, vn_hash);
1408 mutex_exit(&vcache.lock);
1409 pool_cache_put(vcache.pool, node);
1410 }
1411
1412 /*
1413 * Update outstanding I/O count and do wakeup if requested.
1414 */
1415 void
1416 vwakeup(struct buf *bp)
1417 {
1418 vnode_t *vp;
1419
1420 if ((vp = bp->b_vp) == NULL)
1421 return;
1422
1423 KASSERT(bp->b_objlock == vp->v_interlock);
1424 KASSERT(mutex_owned(bp->b_objlock));
1425
1426 if (--vp->v_numoutput < 0)
1427 vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1428 if (vp->v_numoutput == 0)
1429 cv_broadcast(&vp->v_cv);
1430 }
1431
1432 /*
1433 * Test a vnode for being or becoming dead. Returns one of:
1434 * EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
1435 * ENOENT: vnode is dead.
1436 * 0: otherwise.
1437 *
1438 * Whenever this function returns a non-zero value all future
1439 * calls will also return a non-zero value.
1440 */
1441 int
1442 vdead_check(struct vnode *vp, int flags)
1443 {
1444
1445 KASSERT(mutex_owned(vp->v_interlock));
1446 if (ISSET(vp->v_iflag, VI_XLOCK)) {
1447 if (ISSET(flags, VDEAD_NOWAIT))
1448 return EBUSY;
1449 vwait(vp, VI_XLOCK);
1450 KASSERT(ISSET(vp->v_iflag, VI_CLEAN));
1451 }
1452 if (ISSET(vp->v_iflag, VI_CLEAN))
1453 return ENOENT;
1454 return 0;
1455 }
1456
1457 /*
1458 * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
1459 * recycled.
1460 */
1461 static void
1462 vwait(vnode_t *vp, int flags)
1463 {
1464
1465 KASSERT(mutex_owned(vp->v_interlock));
1466 KASSERT(vp->v_usecount != 0);
1467
1468 while ((vp->v_iflag & flags) != 0)
1469 cv_wait(&vp->v_cv, vp->v_interlock);
1470 }
1471
1472 int
1473 vfs_drainvnodes(long target)
1474 {
1475 int error;
1476
1477 mutex_enter(&vnode_free_list_lock);
1478
1479 while (numvnodes > target) {
1480 error = cleanvnode();
1481 if (error != 0)
1482 return error;
1483 mutex_enter(&vnode_free_list_lock);
1484 }
1485
1486 mutex_exit(&vnode_free_list_lock);
1487
1488 vcache_reinit();
1489
1490 return 0;
1491 }
1492
1493 void
1494 vnpanic(vnode_t *vp, const char *fmt, ...)
1495 {
1496 va_list ap;
1497
1498 #ifdef DIAGNOSTIC
1499 vprint(NULL, vp);
1500 #endif
1501 va_start(ap, fmt);
1502 vpanic(fmt, ap);
1503 va_end(ap);
1504 }
1505