Home | History | Annotate | Line # | Download | only in kern
vfs_vnode.c revision 1.39.2.4
      1 /*	$NetBSD: vfs_vnode.c,v 1.39.2.4 2015/12/27 12:10:05 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     67  */
     68 
     69 /*
     70  * The vnode cache subsystem.
     71  *
     72  * Life-cycle
     73  *
     74  *	Normally, there are two points where new vnodes are created:
     75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
     76  *	starts in one of the following ways:
     77  *
     78  *	- Allocation, via vcache_get(9) or vcache_new(9).
     79  *	- Reclamation of inactive vnode, via vget(9).
     80  *
     81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
     82  *	was another, traditional way.  Currently, only the draining thread
     83  *	recycles the vnodes.  This behaviour might be revisited.
     84  *
     85  *	The life-cycle ends when the last reference is dropped, usually
     86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
     87  *	the file system that vnode is inactive.  Via this call, file system
     88  *	indicates whether vnode can be recycled (usually, it checks its own
     89  *	references, e.g. count of links, whether the file was removed).
     90  *
     91  *	Depending on indication, vnode can be put into a free list (cache),
     92  *	or cleaned via vclean(9), which calls VOP_RECLAIM(9) to disassociate
     93  *	underlying file system from the vnode, and finally destroyed.
     94  *
     95  * Reference counting
     96  *
     97  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
     98  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
     99  *	as vput(9), routines.  Common points holding references are e.g.
    100  *	file openings, current working directory, mount points, etc.
    101  *
    102  * Note on v_usecount and its locking
    103  *
    104  *	At nearly all points it is known that v_usecount could be zero,
    105  *	the vnode_t::v_interlock will be held.  To change v_usecount away
    106  *	from zero, the interlock must be held.  To change from a non-zero
    107  *	value to zero, again the interlock must be held.
    108  *
    109  *	Changing the usecount from a non-zero value to a non-zero value can
    110  *	safely be done using atomic operations, without the interlock held.
    111  *
    112  *	Note: if VI_CLEAN is set, vnode_t::v_interlock will be released while
    113  *	mntvnode_lock is still held.
    114  *
    115  *	See PR 41374.
    116  */
    117 
    118 #include <sys/cdefs.h>
    119 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.39.2.4 2015/12/27 12:10:05 skrll Exp $");
    120 
    121 #define _VFS_VNODE_PRIVATE
    122 
    123 #include <sys/param.h>
    124 #include <sys/kernel.h>
    125 
    126 #include <sys/atomic.h>
    127 #include <sys/buf.h>
    128 #include <sys/conf.h>
    129 #include <sys/device.h>
    130 #include <sys/hash.h>
    131 #include <sys/kauth.h>
    132 #include <sys/kmem.h>
    133 #include <sys/kthread.h>
    134 #include <sys/module.h>
    135 #include <sys/mount.h>
    136 #include <sys/namei.h>
    137 #include <sys/syscallargs.h>
    138 #include <sys/sysctl.h>
    139 #include <sys/systm.h>
    140 #include <sys/vnode.h>
    141 #include <sys/wapbl.h>
    142 #include <sys/fstrans.h>
    143 
    144 #include <uvm/uvm.h>
    145 #include <uvm/uvm_readahead.h>
    146 
    147 /* Flags to vrelel. */
    148 #define	VRELEL_ASYNC_RELE	0x0001	/* Always defer to vrele thread. */
    149 #define	VRELEL_CHANGING_SET	0x0002	/* VI_CHANGING set by caller. */
    150 
    151 struct vcache_key {
    152 	struct mount *vk_mount;
    153 	const void *vk_key;
    154 	size_t vk_key_len;
    155 };
    156 struct vcache_node {
    157 	SLIST_ENTRY(vcache_node) vn_hash;
    158 	struct vnode *vn_vnode;
    159 	struct vcache_key vn_key;
    160 };
    161 
    162 u_int			numvnodes		__cacheline_aligned;
    163 
    164 static pool_cache_t	vnode_cache		__read_mostly;
    165 
    166 /*
    167  * There are two free lists: one is for vnodes which have no buffer/page
    168  * references and one for those which do (i.e. v_holdcnt is non-zero).
    169  * Vnode recycling mechanism first attempts to look into the former list.
    170  */
    171 static kmutex_t		vnode_free_list_lock	__cacheline_aligned;
    172 static vnodelst_t	vnode_free_list		__cacheline_aligned;
    173 static vnodelst_t	vnode_hold_list		__cacheline_aligned;
    174 static kcondvar_t	vdrain_cv		__cacheline_aligned;
    175 
    176 static vnodelst_t	vrele_list		__cacheline_aligned;
    177 static kmutex_t		vrele_lock		__cacheline_aligned;
    178 static kcondvar_t	vrele_cv		__cacheline_aligned;
    179 static lwp_t *		vrele_lwp		__cacheline_aligned;
    180 static int		vrele_pending		__cacheline_aligned;
    181 static int		vrele_gen		__cacheline_aligned;
    182 
    183 SLIST_HEAD(hashhead, vcache_node);
    184 static struct {
    185 	kmutex_t	lock;
    186 	u_long		hashmask;
    187 	struct hashhead	*hashtab;
    188 	pool_cache_t	pool;
    189 }			vcache			__cacheline_aligned;
    190 
    191 static int		cleanvnode(void);
    192 static void		vcache_init(void);
    193 static void		vcache_reinit(void);
    194 static void		vclean(vnode_t *);
    195 static void		vrelel(vnode_t *, int);
    196 static void		vdrain_thread(void *);
    197 static void		vrele_thread(void *);
    198 static void		vnpanic(vnode_t *, const char *, ...)
    199     __printflike(2, 3);
    200 static void		vwait(vnode_t *, int);
    201 
    202 /* Routines having to do with the management of the vnode table. */
    203 extern struct mount	*dead_rootmount;
    204 extern int		(**dead_vnodeop_p)(void *);
    205 extern struct vfsops	dead_vfsops;
    206 
    207 void
    208 vfs_vnode_sysinit(void)
    209 {
    210 	int error __diagused;
    211 
    212 	vnode_cache = pool_cache_init(sizeof(vnode_t), 0, 0, 0, "vnodepl",
    213 	    NULL, IPL_NONE, NULL, NULL, NULL);
    214 	KASSERT(vnode_cache != NULL);
    215 
    216 	dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
    217 	KASSERT(dead_rootmount != NULL);
    218 	dead_rootmount->mnt_iflag = IMNT_MPSAFE;
    219 
    220 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
    221 	TAILQ_INIT(&vnode_free_list);
    222 	TAILQ_INIT(&vnode_hold_list);
    223 	TAILQ_INIT(&vrele_list);
    224 
    225 	vcache_init();
    226 
    227 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
    228 	cv_init(&vdrain_cv, "vdrain");
    229 	cv_init(&vrele_cv, "vrele");
    230 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
    231 	    NULL, NULL, "vdrain");
    232 	KASSERT(error == 0);
    233 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
    234 	    NULL, &vrele_lwp, "vrele");
    235 	KASSERT(error == 0);
    236 }
    237 
    238 /*
    239  * Allocate a new, uninitialized vnode.  If 'mp' is non-NULL, this is a
    240  * marker vnode.
    241  */
    242 vnode_t *
    243 vnalloc(struct mount *mp)
    244 {
    245 	vnode_t *vp;
    246 
    247 	vp = pool_cache_get(vnode_cache, PR_WAITOK);
    248 	KASSERT(vp != NULL);
    249 
    250 	memset(vp, 0, sizeof(*vp));
    251 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
    252 	cv_init(&vp->v_cv, "vnode");
    253 	/*
    254 	 * Done by memset() above.
    255 	 *	LIST_INIT(&vp->v_nclist);
    256 	 *	LIST_INIT(&vp->v_dnclist);
    257 	 */
    258 
    259 	if (mp != NULL) {
    260 		vp->v_mount = mp;
    261 		vp->v_type = VBAD;
    262 		vp->v_iflag = VI_MARKER;
    263 		return vp;
    264 	}
    265 
    266 	mutex_enter(&vnode_free_list_lock);
    267 	numvnodes++;
    268 	if (numvnodes > desiredvnodes + desiredvnodes / 10)
    269 		cv_signal(&vdrain_cv);
    270 	mutex_exit(&vnode_free_list_lock);
    271 
    272 	rw_init(&vp->v_lock);
    273 	vp->v_usecount = 1;
    274 	vp->v_type = VNON;
    275 	vp->v_size = vp->v_writesize = VSIZENOTSET;
    276 
    277 	return vp;
    278 }
    279 
    280 /*
    281  * Free an unused, unreferenced vnode.
    282  */
    283 void
    284 vnfree(vnode_t *vp)
    285 {
    286 
    287 	KASSERT(vp->v_usecount == 0);
    288 
    289 	if ((vp->v_iflag & VI_MARKER) == 0) {
    290 		rw_destroy(&vp->v_lock);
    291 		mutex_enter(&vnode_free_list_lock);
    292 		numvnodes--;
    293 		mutex_exit(&vnode_free_list_lock);
    294 	}
    295 
    296 	uvm_obj_destroy(&vp->v_uobj, true);
    297 	cv_destroy(&vp->v_cv);
    298 	pool_cache_put(vnode_cache, vp);
    299 }
    300 
    301 /*
    302  * cleanvnode: grab a vnode from freelist, clean and free it.
    303  *
    304  * => Releases vnode_free_list_lock.
    305  */
    306 static int
    307 cleanvnode(void)
    308 {
    309 	vnode_t *vp;
    310 	vnodelst_t *listhd;
    311 	struct mount *mp;
    312 
    313 	KASSERT(mutex_owned(&vnode_free_list_lock));
    314 
    315 	listhd = &vnode_free_list;
    316 try_nextlist:
    317 	TAILQ_FOREACH(vp, listhd, v_freelist) {
    318 		/*
    319 		 * It's safe to test v_usecount and v_iflag
    320 		 * without holding the interlock here, since
    321 		 * these vnodes should never appear on the
    322 		 * lists.
    323 		 */
    324 		KASSERT(vp->v_usecount == 0);
    325 		KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    326 		KASSERT(vp->v_freelisthd == listhd);
    327 
    328 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
    329 			continue;
    330 		if (!mutex_tryenter(vp->v_interlock)) {
    331 			VOP_UNLOCK(vp);
    332 			continue;
    333 		}
    334 		KASSERT((vp->v_iflag & VI_XLOCK) == 0);
    335 		mp = vp->v_mount;
    336 		if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
    337 			mutex_exit(vp->v_interlock);
    338 			VOP_UNLOCK(vp);
    339 			continue;
    340 		}
    341 		break;
    342 	}
    343 
    344 	if (vp == NULL) {
    345 		if (listhd == &vnode_free_list) {
    346 			listhd = &vnode_hold_list;
    347 			goto try_nextlist;
    348 		}
    349 		mutex_exit(&vnode_free_list_lock);
    350 		return EBUSY;
    351 	}
    352 
    353 	/* Remove it from the freelist. */
    354 	TAILQ_REMOVE(listhd, vp, v_freelist);
    355 	vp->v_freelisthd = NULL;
    356 	mutex_exit(&vnode_free_list_lock);
    357 
    358 	KASSERT(vp->v_usecount == 0);
    359 
    360 	/*
    361 	 * The vnode is still associated with a file system, so we must
    362 	 * clean it out before freeing it.  We need to add a reference
    363 	 * before doing this.
    364 	 */
    365 	vp->v_usecount = 1;
    366 	KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    367 	vp->v_iflag |= VI_CHANGING;
    368 	vclean(vp);
    369 	vrelel(vp, VRELEL_CHANGING_SET);
    370 	fstrans_done(mp);
    371 
    372 	return 0;
    373 }
    374 
    375 /*
    376  * Helper thread to keep the number of vnodes below desiredvnodes.
    377  */
    378 static void
    379 vdrain_thread(void *cookie)
    380 {
    381 	int error;
    382 
    383 	mutex_enter(&vnode_free_list_lock);
    384 
    385 	for (;;) {
    386 		cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
    387 		while (numvnodes > desiredvnodes) {
    388 			error = cleanvnode();
    389 			if (error)
    390 				kpause("vndsbusy", false, hz, NULL);
    391 			mutex_enter(&vnode_free_list_lock);
    392 			if (error)
    393 				break;
    394 		}
    395 	}
    396 }
    397 
    398 /*
    399  * Remove a vnode from its freelist.
    400  */
    401 void
    402 vremfree(vnode_t *vp)
    403 {
    404 
    405 	KASSERT(mutex_owned(vp->v_interlock));
    406 	KASSERT(vp->v_usecount == 0);
    407 
    408 	/*
    409 	 * Note that the reference count must not change until
    410 	 * the vnode is removed.
    411 	 */
    412 	mutex_enter(&vnode_free_list_lock);
    413 	if (vp->v_holdcnt > 0) {
    414 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    415 	} else {
    416 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    417 	}
    418 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    419 	vp->v_freelisthd = NULL;
    420 	mutex_exit(&vnode_free_list_lock);
    421 }
    422 
    423 /*
    424  * vget: get a particular vnode from the free list, increment its reference
    425  * count and lock it.
    426  *
    427  * => Should be called with v_interlock held.
    428  *
    429  * If VI_CHANGING is set, the vnode may be eliminated in vgone()/vclean().
    430  * In that case, we cannot grab the vnode, so the process is awakened when
    431  * the transition is completed, and an error returned to indicate that the
    432  * vnode is no longer usable.
    433  */
    434 int
    435 vget(vnode_t *vp, int flags, bool waitok)
    436 {
    437 	int error = 0;
    438 
    439 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    440 	KASSERT(mutex_owned(vp->v_interlock));
    441 	KASSERT((flags & ~LK_NOWAIT) == 0);
    442 	KASSERT(waitok == ((flags & LK_NOWAIT) == 0));
    443 
    444 	/*
    445 	 * Before adding a reference, we must remove the vnode
    446 	 * from its freelist.
    447 	 */
    448 	if (vp->v_usecount == 0) {
    449 		vremfree(vp);
    450 		vp->v_usecount = 1;
    451 	} else {
    452 		atomic_inc_uint(&vp->v_usecount);
    453 	}
    454 
    455 	/*
    456 	 * If the vnode is in the process of changing state we wait
    457 	 * for the change to complete and take care not to return
    458 	 * a clean vnode.
    459 	 */
    460 	if ((vp->v_iflag & VI_CHANGING) != 0) {
    461 		if ((flags & LK_NOWAIT) != 0) {
    462 			vrelel(vp, 0);
    463 			return EBUSY;
    464 		}
    465 		vwait(vp, VI_CHANGING);
    466 		if ((vp->v_iflag & VI_CLEAN) != 0) {
    467 			vrelel(vp, 0);
    468 			return ENOENT;
    469 		}
    470 	}
    471 
    472 	/*
    473 	 * Ok, we got it in good shape.
    474 	 */
    475 	KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    476 	mutex_exit(vp->v_interlock);
    477 	return error;
    478 }
    479 
    480 /*
    481  * vput: unlock and release the reference.
    482  */
    483 void
    484 vput(vnode_t *vp)
    485 {
    486 
    487 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    488 
    489 	VOP_UNLOCK(vp);
    490 	vrele(vp);
    491 }
    492 
    493 /*
    494  * Try to drop reference on a vnode.  Abort if we are releasing the
    495  * last reference.  Note: this _must_ succeed if not the last reference.
    496  */
    497 static inline bool
    498 vtryrele(vnode_t *vp)
    499 {
    500 	u_int use, next;
    501 
    502 	for (use = vp->v_usecount;; use = next) {
    503 		if (use == 1) {
    504 			return false;
    505 		}
    506 		KASSERT(use > 1);
    507 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
    508 		if (__predict_true(next == use)) {
    509 			return true;
    510 		}
    511 	}
    512 }
    513 
    514 /*
    515  * Vnode release.  If reference count drops to zero, call inactive
    516  * routine and either return to freelist or free to the pool.
    517  */
    518 static void
    519 vrelel(vnode_t *vp, int flags)
    520 {
    521 	bool recycle, defer;
    522 	int error;
    523 
    524 	KASSERT(mutex_owned(vp->v_interlock));
    525 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    526 	KASSERT(vp->v_freelisthd == NULL);
    527 
    528 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
    529 	    (vp->v_iflag & (VI_CLEAN|VI_XLOCK)) == 0)) {
    530 		vnpanic(vp, "dead but not clean");
    531 	}
    532 
    533 	/*
    534 	 * If not the last reference, just drop the reference count
    535 	 * and unlock.
    536 	 */
    537 	if (vtryrele(vp)) {
    538 		if ((flags & VRELEL_CHANGING_SET) != 0) {
    539 			KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    540 			vp->v_iflag &= ~VI_CHANGING;
    541 			cv_broadcast(&vp->v_cv);
    542 		}
    543 		mutex_exit(vp->v_interlock);
    544 		return;
    545 	}
    546 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
    547 		vnpanic(vp, "%s: bad ref count", __func__);
    548 	}
    549 
    550 	KASSERT((vp->v_iflag & VI_XLOCK) == 0);
    551 
    552 #ifdef DIAGNOSTIC
    553 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
    554 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
    555 		vprint("vrelel: missing VOP_CLOSE()", vp);
    556 	}
    557 #endif
    558 
    559 	/*
    560 	 * If not clean, deactivate the vnode, but preserve
    561 	 * our reference across the call to VOP_INACTIVE().
    562 	 */
    563 	if ((vp->v_iflag & VI_CLEAN) == 0) {
    564 		recycle = false;
    565 
    566 		/*
    567 		 * XXX This ugly block can be largely eliminated if
    568 		 * locking is pushed down into the file systems.
    569 		 *
    570 		 * Defer vnode release to vrele_thread if caller
    571 		 * requests it explicitly or is the pagedaemon.
    572 		 */
    573 		if ((curlwp == uvm.pagedaemon_lwp) ||
    574 		    (flags & VRELEL_ASYNC_RELE) != 0) {
    575 			defer = true;
    576 		} else if (curlwp == vrele_lwp) {
    577 			/*
    578 			 * We have to try harder.
    579 			 */
    580 			mutex_exit(vp->v_interlock);
    581 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    582 			KASSERT(error == 0);
    583 			mutex_enter(vp->v_interlock);
    584 			defer = false;
    585 		} else {
    586 			/* If we can't acquire the lock, then defer. */
    587 			mutex_exit(vp->v_interlock);
    588 			error = vn_lock(vp,
    589 			    LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
    590 			defer = (error != 0);
    591 			mutex_enter(vp->v_interlock);
    592 		}
    593 
    594 		KASSERT(mutex_owned(vp->v_interlock));
    595 		KASSERT(! (curlwp == vrele_lwp && defer));
    596 
    597 		if (defer) {
    598 			/*
    599 			 * Defer reclaim to the kthread; it's not safe to
    600 			 * clean it here.  We donate it our last reference.
    601 			 */
    602 			if ((flags & VRELEL_CHANGING_SET) != 0) {
    603 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    604 				vp->v_iflag &= ~VI_CHANGING;
    605 				cv_broadcast(&vp->v_cv);
    606 			}
    607 			mutex_enter(&vrele_lock);
    608 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
    609 			if (++vrele_pending > (desiredvnodes >> 8))
    610 				cv_signal(&vrele_cv);
    611 			mutex_exit(&vrele_lock);
    612 			mutex_exit(vp->v_interlock);
    613 			return;
    614 		}
    615 
    616 		/*
    617 		 * If the node got another reference while we
    618 		 * released the interlock, don't try to inactivate it yet.
    619 		 */
    620 		if (__predict_false(vtryrele(vp))) {
    621 			VOP_UNLOCK(vp);
    622 			if ((flags & VRELEL_CHANGING_SET) != 0) {
    623 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    624 				vp->v_iflag &= ~VI_CHANGING;
    625 				cv_broadcast(&vp->v_cv);
    626 			}
    627 			mutex_exit(vp->v_interlock);
    628 			return;
    629 		}
    630 
    631 		if ((flags & VRELEL_CHANGING_SET) == 0) {
    632 			KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    633 			vp->v_iflag |= VI_CHANGING;
    634 		}
    635 		mutex_exit(vp->v_interlock);
    636 
    637 		/*
    638 		 * The vnode can gain another reference while being
    639 		 * deactivated.  If VOP_INACTIVE() indicates that
    640 		 * the described file has been deleted, then recycle
    641 		 * the vnode irrespective of additional references.
    642 		 * Another thread may be waiting to re-use the on-disk
    643 		 * inode.
    644 		 *
    645 		 * Note that VOP_INACTIVE() will drop the vnode lock.
    646 		 */
    647 		VOP_INACTIVE(vp, &recycle);
    648 		if (recycle) {
    649 			/* vclean() below will drop the lock. */
    650 			if (vn_lock(vp, LK_EXCLUSIVE) != 0)
    651 				recycle = false;
    652 		}
    653 		mutex_enter(vp->v_interlock);
    654 		if (!recycle) {
    655 			if (vtryrele(vp)) {
    656 				KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    657 				vp->v_iflag &= ~VI_CHANGING;
    658 				cv_broadcast(&vp->v_cv);
    659 				mutex_exit(vp->v_interlock);
    660 				return;
    661 			}
    662 		}
    663 
    664 		/* Take care of space accounting. */
    665 		if (vp->v_iflag & VI_EXECMAP) {
    666 			atomic_add_int(&uvmexp.execpages,
    667 			    -vp->v_uobj.uo_npages);
    668 			atomic_add_int(&uvmexp.filepages,
    669 			    vp->v_uobj.uo_npages);
    670 		}
    671 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
    672 		vp->v_vflag &= ~VV_MAPPED;
    673 
    674 		/*
    675 		 * Recycle the vnode if the file is now unused (unlinked),
    676 		 * otherwise just free it.
    677 		 */
    678 		if (recycle) {
    679 			vclean(vp);
    680 		}
    681 		KASSERT(vp->v_usecount > 0);
    682 	} else { /* vnode was already clean */
    683 		if ((flags & VRELEL_CHANGING_SET) == 0) {
    684 			KASSERT((vp->v_iflag & VI_CHANGING) == 0);
    685 			vp->v_iflag |= VI_CHANGING;
    686 		}
    687 	}
    688 
    689 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
    690 		/* Gained another reference while being reclaimed. */
    691 		KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    692 		vp->v_iflag &= ~VI_CHANGING;
    693 		cv_broadcast(&vp->v_cv);
    694 		mutex_exit(vp->v_interlock);
    695 		return;
    696 	}
    697 
    698 	if ((vp->v_iflag & VI_CLEAN) != 0) {
    699 		/*
    700 		 * It's clean so destroy it.  It isn't referenced
    701 		 * anywhere since it has been reclaimed.
    702 		 */
    703 		KASSERT(vp->v_holdcnt == 0);
    704 		KASSERT(vp->v_writecount == 0);
    705 		mutex_exit(vp->v_interlock);
    706 		vfs_insmntque(vp, NULL);
    707 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
    708 			spec_node_destroy(vp);
    709 		}
    710 		vnfree(vp);
    711 	} else {
    712 		/*
    713 		 * Otherwise, put it back onto the freelist.  It
    714 		 * can't be destroyed while still associated with
    715 		 * a file system.
    716 		 */
    717 		mutex_enter(&vnode_free_list_lock);
    718 		if (vp->v_holdcnt > 0) {
    719 			vp->v_freelisthd = &vnode_hold_list;
    720 		} else {
    721 			vp->v_freelisthd = &vnode_free_list;
    722 		}
    723 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    724 		mutex_exit(&vnode_free_list_lock);
    725 		KASSERT((vp->v_iflag & VI_CHANGING) != 0);
    726 		vp->v_iflag &= ~VI_CHANGING;
    727 		cv_broadcast(&vp->v_cv);
    728 		mutex_exit(vp->v_interlock);
    729 	}
    730 }
    731 
    732 void
    733 vrele(vnode_t *vp)
    734 {
    735 
    736 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    737 
    738 	if (vtryrele(vp)) {
    739 		return;
    740 	}
    741 	mutex_enter(vp->v_interlock);
    742 	vrelel(vp, 0);
    743 }
    744 
    745 /*
    746  * Asynchronous vnode release, vnode is released in different context.
    747  */
    748 void
    749 vrele_async(vnode_t *vp)
    750 {
    751 
    752 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    753 
    754 	if (vtryrele(vp)) {
    755 		return;
    756 	}
    757 	mutex_enter(vp->v_interlock);
    758 	vrelel(vp, VRELEL_ASYNC_RELE);
    759 }
    760 
    761 static void
    762 vrele_thread(void *cookie)
    763 {
    764 	vnodelst_t skip_list;
    765 	vnode_t *vp;
    766 	struct mount *mp;
    767 
    768 	TAILQ_INIT(&skip_list);
    769 
    770 	mutex_enter(&vrele_lock);
    771 	for (;;) {
    772 		while (TAILQ_EMPTY(&vrele_list)) {
    773 			vrele_gen++;
    774 			cv_broadcast(&vrele_cv);
    775 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
    776 			TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
    777 		}
    778 		vp = TAILQ_FIRST(&vrele_list);
    779 		mp = vp->v_mount;
    780 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
    781 		if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
    782 			TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
    783 			continue;
    784 		}
    785 		vrele_pending--;
    786 		mutex_exit(&vrele_lock);
    787 
    788 		/*
    789 		 * If not the last reference, then ignore the vnode
    790 		 * and look for more work.
    791 		 */
    792 		mutex_enter(vp->v_interlock);
    793 		vrelel(vp, 0);
    794 		fstrans_done(mp);
    795 		mutex_enter(&vrele_lock);
    796 	}
    797 }
    798 
    799 void
    800 vrele_flush(void)
    801 {
    802 	int gen;
    803 
    804 	mutex_enter(&vrele_lock);
    805 	gen = vrele_gen;
    806 	while (vrele_pending && gen == vrele_gen) {
    807 		cv_broadcast(&vrele_cv);
    808 		cv_wait(&vrele_cv, &vrele_lock);
    809 	}
    810 	mutex_exit(&vrele_lock);
    811 }
    812 
    813 /*
    814  * Vnode reference, where a reference is already held by some other
    815  * object (for example, a file structure).
    816  */
    817 void
    818 vref(vnode_t *vp)
    819 {
    820 
    821 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    822 	KASSERT(vp->v_usecount != 0);
    823 
    824 	atomic_inc_uint(&vp->v_usecount);
    825 }
    826 
    827 /*
    828  * Page or buffer structure gets a reference.
    829  * Called with v_interlock held.
    830  */
    831 void
    832 vholdl(vnode_t *vp)
    833 {
    834 
    835 	KASSERT(mutex_owned(vp->v_interlock));
    836 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    837 
    838 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
    839 		mutex_enter(&vnode_free_list_lock);
    840 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    841 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    842 		vp->v_freelisthd = &vnode_hold_list;
    843 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    844 		mutex_exit(&vnode_free_list_lock);
    845 	}
    846 }
    847 
    848 /*
    849  * Page or buffer structure frees a reference.
    850  * Called with v_interlock held.
    851  */
    852 void
    853 holdrelel(vnode_t *vp)
    854 {
    855 
    856 	KASSERT(mutex_owned(vp->v_interlock));
    857 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    858 
    859 	if (vp->v_holdcnt <= 0) {
    860 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
    861 	}
    862 
    863 	vp->v_holdcnt--;
    864 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
    865 		mutex_enter(&vnode_free_list_lock);
    866 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    867 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    868 		vp->v_freelisthd = &vnode_free_list;
    869 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    870 		mutex_exit(&vnode_free_list_lock);
    871 	}
    872 }
    873 
    874 /*
    875  * Disassociate the underlying file system from a vnode.
    876  *
    877  * Must be called with vnode locked and will return unlocked.
    878  * Must be called with the interlock held, and will return with it held.
    879  */
    880 static void
    881 vclean(vnode_t *vp)
    882 {
    883 	lwp_t *l = curlwp;
    884 	bool recycle, active;
    885 	int error;
    886 
    887 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
    888 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
    889 	KASSERT(mutex_owned(vp->v_interlock));
    890 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    891 	KASSERT((vp->v_iflag & (VI_XLOCK | VI_CLEAN)) == 0);
    892 	KASSERT(vp->v_usecount != 0);
    893 
    894 	active = (vp->v_usecount > 1);
    895 	/*
    896 	 * Prevent the vnode from being recycled or brought into use
    897 	 * while we clean it out.
    898 	 */
    899 	vp->v_iflag |= VI_XLOCK;
    900 	if (vp->v_iflag & VI_EXECMAP) {
    901 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
    902 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
    903 	}
    904 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
    905 	mutex_exit(vp->v_interlock);
    906 
    907 	/*
    908 	 * Clean out any cached data associated with the vnode.
    909 	 * If purging an active vnode, it must be closed and
    910 	 * deactivated before being reclaimed. Note that the
    911 	 * VOP_INACTIVE will unlock the vnode.
    912 	 */
    913 	error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
    914 	if (error != 0) {
    915 		if (wapbl_vphaswapbl(vp))
    916 			WAPBL_DISCARD(wapbl_vptomp(vp));
    917 		error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
    918 	}
    919 	KASSERT(error == 0);
    920 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
    921 	if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
    922 		 spec_node_revoke(vp);
    923 	}
    924 	if (active) {
    925 		VOP_INACTIVE(vp, &recycle);
    926 	} else {
    927 		/*
    928 		 * Any other processes trying to obtain this lock must first
    929 		 * wait for VI_XLOCK to clear, then call the new lock operation.
    930 		 */
    931 		VOP_UNLOCK(vp);
    932 	}
    933 
    934 	/* Disassociate the underlying file system from the vnode. */
    935 	if (VOP_RECLAIM(vp)) {
    936 		vnpanic(vp, "%s: cannot reclaim", __func__);
    937 	}
    938 
    939 	KASSERT(vp->v_data == NULL);
    940 	KASSERT(vp->v_uobj.uo_npages == 0);
    941 
    942 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
    943 		uvm_ra_freectx(vp->v_ractx);
    944 		vp->v_ractx = NULL;
    945 	}
    946 
    947 	/* Purge name cache. */
    948 	cache_purge(vp);
    949 
    950 	/* Move to dead mount. */
    951 	vp->v_vflag &= ~VV_ROOT;
    952 	atomic_inc_uint(&dead_rootmount->mnt_refcnt);
    953 	vfs_insmntque(vp, dead_rootmount);
    954 
    955 	/* Done with purge, notify sleepers of the grim news. */
    956 	mutex_enter(vp->v_interlock);
    957 	vp->v_op = dead_vnodeop_p;
    958 	vp->v_vflag |= VV_LOCKSWORK;
    959 	vp->v_iflag |= VI_CLEAN;
    960 	vp->v_tag = VT_NON;
    961 	KNOTE(&vp->v_klist, NOTE_REVOKE);
    962 	vp->v_iflag &= ~VI_XLOCK;
    963 	cv_broadcast(&vp->v_cv);
    964 
    965 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
    966 }
    967 
    968 /*
    969  * Recycle an unused vnode if caller holds the last reference.
    970  */
    971 bool
    972 vrecycle(vnode_t *vp)
    973 {
    974 
    975 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
    976 		return false;
    977 
    978 	mutex_enter(vp->v_interlock);
    979 
    980 	KASSERT((vp->v_iflag & VI_MARKER) == 0);
    981 
    982 	if (vp->v_usecount != 1) {
    983 		mutex_exit(vp->v_interlock);
    984 		VOP_UNLOCK(vp);
    985 		return false;
    986 	}
    987 	if ((vp->v_iflag & VI_CHANGING) != 0)
    988 		vwait(vp, VI_CHANGING);
    989 	if (vp->v_usecount != 1) {
    990 		mutex_exit(vp->v_interlock);
    991 		VOP_UNLOCK(vp);
    992 		return false;
    993 	}
    994 	KASSERT((vp->v_iflag & VI_CLEAN) == 0);
    995 	vp->v_iflag |= VI_CHANGING;
    996 	vclean(vp);
    997 	vrelel(vp, VRELEL_CHANGING_SET);
    998 	return true;
    999 }
   1000 
   1001 /*
   1002  * Eliminate all activity associated with the requested vnode
   1003  * and with all vnodes aliased to the requested vnode.
   1004  */
   1005 void
   1006 vrevoke(vnode_t *vp)
   1007 {
   1008 	vnode_t *vq;
   1009 	enum vtype type;
   1010 	dev_t dev;
   1011 
   1012 	KASSERT(vp->v_usecount > 0);
   1013 
   1014 	mutex_enter(vp->v_interlock);
   1015 	if ((vp->v_iflag & VI_CLEAN) != 0) {
   1016 		mutex_exit(vp->v_interlock);
   1017 		return;
   1018 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
   1019 		atomic_inc_uint(&vp->v_usecount);
   1020 		mutex_exit(vp->v_interlock);
   1021 		vgone(vp);
   1022 		return;
   1023 	} else {
   1024 		dev = vp->v_rdev;
   1025 		type = vp->v_type;
   1026 		mutex_exit(vp->v_interlock);
   1027 	}
   1028 
   1029 	while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
   1030 		vgone(vq);
   1031 	}
   1032 }
   1033 
   1034 /*
   1035  * Eliminate all activity associated with a vnode in preparation for
   1036  * reuse.  Drops a reference from the vnode.
   1037  */
   1038 void
   1039 vgone(vnode_t *vp)
   1040 {
   1041 
   1042 	if (vn_lock(vp, LK_EXCLUSIVE) != 0) {
   1043 		KASSERT((vp->v_iflag & VI_CLEAN) != 0);
   1044 		vrele(vp);
   1045 	}
   1046 
   1047 	mutex_enter(vp->v_interlock);
   1048 	if ((vp->v_iflag & VI_CHANGING) != 0)
   1049 		vwait(vp, VI_CHANGING);
   1050 	vp->v_iflag |= VI_CHANGING;
   1051 	vclean(vp);
   1052 	vrelel(vp, VRELEL_CHANGING_SET);
   1053 }
   1054 
   1055 static inline uint32_t
   1056 vcache_hash(const struct vcache_key *key)
   1057 {
   1058 	uint32_t hash = HASH32_BUF_INIT;
   1059 
   1060 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
   1061 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
   1062 	return hash;
   1063 }
   1064 
   1065 static void
   1066 vcache_init(void)
   1067 {
   1068 
   1069 	vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
   1070 	    "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
   1071 	KASSERT(vcache.pool != NULL);
   1072 	mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
   1073 	vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
   1074 	    &vcache.hashmask);
   1075 }
   1076 
   1077 static void
   1078 vcache_reinit(void)
   1079 {
   1080 	int i;
   1081 	uint32_t hash;
   1082 	u_long oldmask, newmask;
   1083 	struct hashhead *oldtab, *newtab;
   1084 	struct vcache_node *node;
   1085 
   1086 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
   1087 	mutex_enter(&vcache.lock);
   1088 	oldtab = vcache.hashtab;
   1089 	oldmask = vcache.hashmask;
   1090 	vcache.hashtab = newtab;
   1091 	vcache.hashmask = newmask;
   1092 	for (i = 0; i <= oldmask; i++) {
   1093 		while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
   1094 			SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
   1095 			hash = vcache_hash(&node->vn_key);
   1096 			SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
   1097 			    node, vn_hash);
   1098 		}
   1099 	}
   1100 	mutex_exit(&vcache.lock);
   1101 	hashdone(oldtab, HASH_SLIST, oldmask);
   1102 }
   1103 
   1104 static inline struct vcache_node *
   1105 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
   1106 {
   1107 	struct hashhead *hashp;
   1108 	struct vcache_node *node;
   1109 
   1110 	KASSERT(mutex_owned(&vcache.lock));
   1111 
   1112 	hashp = &vcache.hashtab[hash & vcache.hashmask];
   1113 	SLIST_FOREACH(node, hashp, vn_hash) {
   1114 		if (key->vk_mount != node->vn_key.vk_mount)
   1115 			continue;
   1116 		if (key->vk_key_len != node->vn_key.vk_key_len)
   1117 			continue;
   1118 		if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
   1119 			continue;
   1120 		return node;
   1121 	}
   1122 	return NULL;
   1123 }
   1124 
   1125 /*
   1126  * Get a vnode / fs node pair by key and return it referenced through vpp.
   1127  */
   1128 int
   1129 vcache_get(struct mount *mp, const void *key, size_t key_len,
   1130     struct vnode **vpp)
   1131 {
   1132 	int error;
   1133 	uint32_t hash;
   1134 	const void *new_key;
   1135 	struct vnode *vp;
   1136 	struct vcache_key vcache_key;
   1137 	struct vcache_node *node, *new_node;
   1138 
   1139 	new_key = NULL;
   1140 	*vpp = NULL;
   1141 
   1142 	vcache_key.vk_mount = mp;
   1143 	vcache_key.vk_key = key;
   1144 	vcache_key.vk_key_len = key_len;
   1145 	hash = vcache_hash(&vcache_key);
   1146 
   1147 again:
   1148 	mutex_enter(&vcache.lock);
   1149 	node = vcache_hash_lookup(&vcache_key, hash);
   1150 
   1151 	/* If found, take a reference or retry. */
   1152 	if (__predict_true(node != NULL && node->vn_vnode != NULL)) {
   1153 		vp = node->vn_vnode;
   1154 		mutex_enter(vp->v_interlock);
   1155 		mutex_exit(&vcache.lock);
   1156 		error = vget(vp, 0, true /* wait */);
   1157 		if (error == ENOENT)
   1158 			goto again;
   1159 		if (error == 0)
   1160 			*vpp = vp;
   1161 		KASSERT((error != 0) == (*vpp == NULL));
   1162 		return error;
   1163 	}
   1164 
   1165 	/* If another thread loads this node, wait and retry. */
   1166 	if (node != NULL) {
   1167 		KASSERT(node->vn_vnode == NULL);
   1168 		mutex_exit(&vcache.lock);
   1169 		kpause("vcache", false, mstohz(20), NULL);
   1170 		goto again;
   1171 	}
   1172 	mutex_exit(&vcache.lock);
   1173 
   1174 	/* Allocate and initialize a new vcache / vnode pair. */
   1175 	error = vfs_busy(mp, NULL);
   1176 	if (error)
   1177 		return error;
   1178 	new_node = pool_cache_get(vcache.pool, PR_WAITOK);
   1179 	new_node->vn_vnode = NULL;
   1180 	new_node->vn_key = vcache_key;
   1181 	vp = vnalloc(NULL);
   1182 	mutex_enter(&vcache.lock);
   1183 	node = vcache_hash_lookup(&vcache_key, hash);
   1184 	if (node == NULL) {
   1185 		SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
   1186 		    new_node, vn_hash);
   1187 		node = new_node;
   1188 	}
   1189 	mutex_exit(&vcache.lock);
   1190 
   1191 	/* If another thread beat us inserting this node, retry. */
   1192 	if (node != new_node) {
   1193 		pool_cache_put(vcache.pool, new_node);
   1194 		KASSERT(vp->v_usecount == 1);
   1195 		vp->v_usecount = 0;
   1196 		vnfree(vp);
   1197 		vfs_unbusy(mp, false, NULL);
   1198 		goto again;
   1199 	}
   1200 
   1201 	/* Load the fs node.  Exclusive as new_node->vn_vnode is NULL. */
   1202 	vp->v_iflag |= VI_CHANGING;
   1203 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
   1204 	if (error) {
   1205 		mutex_enter(&vcache.lock);
   1206 		SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1207 		    new_node, vcache_node, vn_hash);
   1208 		mutex_exit(&vcache.lock);
   1209 		pool_cache_put(vcache.pool, new_node);
   1210 		KASSERT(vp->v_usecount == 1);
   1211 		vp->v_usecount = 0;
   1212 		vnfree(vp);
   1213 		vfs_unbusy(mp, false, NULL);
   1214 		KASSERT(*vpp == NULL);
   1215 		return error;
   1216 	}
   1217 	KASSERT(new_key != NULL);
   1218 	KASSERT(memcmp(key, new_key, key_len) == 0);
   1219 	KASSERT(vp->v_op != NULL);
   1220 	vfs_insmntque(vp, mp);
   1221 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1222 		vp->v_vflag |= VV_MPSAFE;
   1223 	vfs_unbusy(mp, true, NULL);
   1224 
   1225 	/* Finished loading, finalize node. */
   1226 	mutex_enter(&vcache.lock);
   1227 	new_node->vn_key.vk_key = new_key;
   1228 	new_node->vn_vnode = vp;
   1229 	mutex_exit(&vcache.lock);
   1230 	mutex_enter(vp->v_interlock);
   1231 	vp->v_iflag &= ~VI_CHANGING;
   1232 	cv_broadcast(&vp->v_cv);
   1233 	mutex_exit(vp->v_interlock);
   1234 	*vpp = vp;
   1235 	return 0;
   1236 }
   1237 
   1238 /*
   1239  * Create a new vnode / fs node pair and return it referenced through vpp.
   1240  */
   1241 int
   1242 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
   1243     kauth_cred_t cred, struct vnode **vpp)
   1244 {
   1245 	int error;
   1246 	uint32_t hash;
   1247 	struct vnode *vp;
   1248 	struct vcache_node *new_node;
   1249 	struct vcache_node *old_node __diagused;
   1250 
   1251 	*vpp = NULL;
   1252 
   1253 	/* Allocate and initialize a new vcache / vnode pair. */
   1254 	error = vfs_busy(mp, NULL);
   1255 	if (error)
   1256 		return error;
   1257 	new_node = pool_cache_get(vcache.pool, PR_WAITOK);
   1258 	new_node->vn_key.vk_mount = mp;
   1259 	new_node->vn_vnode = NULL;
   1260 	vp = vnalloc(NULL);
   1261 
   1262 	/* Create and load the fs node. */
   1263 	vp->v_iflag |= VI_CHANGING;
   1264 	error = VFS_NEWVNODE(mp, dvp, vp, vap, cred,
   1265 	    &new_node->vn_key.vk_key_len, &new_node->vn_key.vk_key);
   1266 	if (error) {
   1267 		pool_cache_put(vcache.pool, new_node);
   1268 		KASSERT(vp->v_usecount == 1);
   1269 		vp->v_usecount = 0;
   1270 		vnfree(vp);
   1271 		vfs_unbusy(mp, false, NULL);
   1272 		KASSERT(*vpp == NULL);
   1273 		return error;
   1274 	}
   1275 	KASSERT(new_node->vn_key.vk_key != NULL);
   1276 	KASSERT(vp->v_op != NULL);
   1277 	hash = vcache_hash(&new_node->vn_key);
   1278 
   1279 	/* Wait for previous instance to be reclaimed, then insert new node. */
   1280 	mutex_enter(&vcache.lock);
   1281 	while ((old_node = vcache_hash_lookup(&new_node->vn_key, hash))) {
   1282 #ifdef DIAGNOSTIC
   1283 		if (old_node->vn_vnode != NULL)
   1284 			mutex_enter(old_node->vn_vnode->v_interlock);
   1285 		KASSERT(old_node->vn_vnode == NULL ||
   1286 		    (old_node->vn_vnode->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0);
   1287 		if (old_node->vn_vnode != NULL)
   1288 			mutex_exit(old_node->vn_vnode->v_interlock);
   1289 #endif
   1290 		mutex_exit(&vcache.lock);
   1291 		kpause("vcache", false, mstohz(20), NULL);
   1292 		mutex_enter(&vcache.lock);
   1293 	}
   1294 	SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
   1295 	    new_node, vn_hash);
   1296 	mutex_exit(&vcache.lock);
   1297 	vfs_insmntque(vp, mp);
   1298 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1299 		vp->v_vflag |= VV_MPSAFE;
   1300 	vfs_unbusy(mp, true, NULL);
   1301 
   1302 	/* Finished loading, finalize node. */
   1303 	mutex_enter(&vcache.lock);
   1304 	new_node->vn_vnode = vp;
   1305 	mutex_exit(&vcache.lock);
   1306 	mutex_enter(vp->v_interlock);
   1307 	vp->v_iflag &= ~VI_CHANGING;
   1308 	cv_broadcast(&vp->v_cv);
   1309 	mutex_exit(vp->v_interlock);
   1310 	*vpp = vp;
   1311 	return 0;
   1312 }
   1313 
   1314 /*
   1315  * Prepare key change: lock old and new cache node.
   1316  * Return an error if the new node already exists.
   1317  */
   1318 int
   1319 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
   1320     const void *old_key, size_t old_key_len,
   1321     const void *new_key, size_t new_key_len)
   1322 {
   1323 	uint32_t old_hash, new_hash;
   1324 	struct vcache_key old_vcache_key, new_vcache_key;
   1325 	struct vcache_node *node, *new_node;
   1326 
   1327 	old_vcache_key.vk_mount = mp;
   1328 	old_vcache_key.vk_key = old_key;
   1329 	old_vcache_key.vk_key_len = old_key_len;
   1330 	old_hash = vcache_hash(&old_vcache_key);
   1331 
   1332 	new_vcache_key.vk_mount = mp;
   1333 	new_vcache_key.vk_key = new_key;
   1334 	new_vcache_key.vk_key_len = new_key_len;
   1335 	new_hash = vcache_hash(&new_vcache_key);
   1336 
   1337 	new_node = pool_cache_get(vcache.pool, PR_WAITOK);
   1338 	new_node->vn_vnode = NULL;
   1339 	new_node->vn_key = new_vcache_key;
   1340 
   1341 	mutex_enter(&vcache.lock);
   1342 	node = vcache_hash_lookup(&new_vcache_key, new_hash);
   1343 	if (node != NULL) {
   1344 		mutex_exit(&vcache.lock);
   1345 		pool_cache_put(vcache.pool, new_node);
   1346 		return EEXIST;
   1347 	}
   1348 	SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
   1349 	    new_node, vn_hash);
   1350 	node = vcache_hash_lookup(&old_vcache_key, old_hash);
   1351 	KASSERT(node != NULL);
   1352 	KASSERT(node->vn_vnode == vp);
   1353 	node->vn_vnode = NULL;
   1354 	node->vn_key = old_vcache_key;
   1355 	mutex_exit(&vcache.lock);
   1356 	return 0;
   1357 }
   1358 
   1359 /*
   1360  * Key change complete: remove old node and unlock new node.
   1361  */
   1362 void
   1363 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
   1364     const void *old_key, size_t old_key_len,
   1365     const void *new_key, size_t new_key_len)
   1366 {
   1367 	uint32_t old_hash, new_hash;
   1368 	struct vcache_key old_vcache_key, new_vcache_key;
   1369 	struct vcache_node *node;
   1370 
   1371 	old_vcache_key.vk_mount = mp;
   1372 	old_vcache_key.vk_key = old_key;
   1373 	old_vcache_key.vk_key_len = old_key_len;
   1374 	old_hash = vcache_hash(&old_vcache_key);
   1375 
   1376 	new_vcache_key.vk_mount = mp;
   1377 	new_vcache_key.vk_key = new_key;
   1378 	new_vcache_key.vk_key_len = new_key_len;
   1379 	new_hash = vcache_hash(&new_vcache_key);
   1380 
   1381 	mutex_enter(&vcache.lock);
   1382 	node = vcache_hash_lookup(&new_vcache_key, new_hash);
   1383 	KASSERT(node != NULL && node->vn_vnode == NULL);
   1384 	KASSERT(node->vn_key.vk_key_len == new_key_len);
   1385 	node->vn_vnode = vp;
   1386 	node->vn_key = new_vcache_key;
   1387 	node = vcache_hash_lookup(&old_vcache_key, old_hash);
   1388 	KASSERT(node != NULL);
   1389 	KASSERT(node->vn_vnode == NULL);
   1390 	SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
   1391 	    node, vcache_node, vn_hash);
   1392 	mutex_exit(&vcache.lock);
   1393 	pool_cache_put(vcache.pool, node);
   1394 }
   1395 
   1396 /*
   1397  * Remove a vnode / fs node pair from the cache.
   1398  */
   1399 void
   1400 vcache_remove(struct mount *mp, const void *key, size_t key_len)
   1401 {
   1402 	uint32_t hash;
   1403 	struct vcache_key vcache_key;
   1404 	struct vcache_node *node;
   1405 
   1406 	vcache_key.vk_mount = mp;
   1407 	vcache_key.vk_key = key;
   1408 	vcache_key.vk_key_len = key_len;
   1409 	hash = vcache_hash(&vcache_key);
   1410 
   1411 	mutex_enter(&vcache.lock);
   1412 	node = vcache_hash_lookup(&vcache_key, hash);
   1413 	KASSERT(node != NULL);
   1414 	SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1415 	    node, vcache_node, vn_hash);
   1416 	mutex_exit(&vcache.lock);
   1417 	pool_cache_put(vcache.pool, node);
   1418 }
   1419 
   1420 /*
   1421  * Update outstanding I/O count and do wakeup if requested.
   1422  */
   1423 void
   1424 vwakeup(struct buf *bp)
   1425 {
   1426 	vnode_t *vp;
   1427 
   1428 	if ((vp = bp->b_vp) == NULL)
   1429 		return;
   1430 
   1431 	KASSERT(bp->b_objlock == vp->v_interlock);
   1432 	KASSERT(mutex_owned(bp->b_objlock));
   1433 
   1434 	if (--vp->v_numoutput < 0)
   1435 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
   1436 	if (vp->v_numoutput == 0)
   1437 		cv_broadcast(&vp->v_cv);
   1438 }
   1439 
   1440 /*
   1441  * Test a vnode for being or becoming dead.  Returns one of:
   1442  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
   1443  * ENOENT: vnode is dead.
   1444  * 0:      otherwise.
   1445  *
   1446  * Whenever this function returns a non-zero value all future
   1447  * calls will also return a non-zero value.
   1448  */
   1449 int
   1450 vdead_check(struct vnode *vp, int flags)
   1451 {
   1452 
   1453 	KASSERT(mutex_owned(vp->v_interlock));
   1454 	if (ISSET(vp->v_iflag, VI_XLOCK)) {
   1455 		if (ISSET(flags, VDEAD_NOWAIT))
   1456 			return EBUSY;
   1457 		vwait(vp, VI_XLOCK);
   1458 		KASSERT(ISSET(vp->v_iflag, VI_CLEAN));
   1459 	}
   1460 	if (ISSET(vp->v_iflag, VI_CLEAN))
   1461 		return ENOENT;
   1462 	return 0;
   1463 }
   1464 
   1465 /*
   1466  * Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
   1467  * recycled.
   1468  */
   1469 static void
   1470 vwait(vnode_t *vp, int flags)
   1471 {
   1472 
   1473 	KASSERT(mutex_owned(vp->v_interlock));
   1474 	KASSERT(vp->v_usecount != 0);
   1475 
   1476 	while ((vp->v_iflag & flags) != 0)
   1477 		cv_wait(&vp->v_cv, vp->v_interlock);
   1478 }
   1479 
   1480 int
   1481 vfs_drainvnodes(long target)
   1482 {
   1483 	int error;
   1484 
   1485 	mutex_enter(&vnode_free_list_lock);
   1486 
   1487 	while (numvnodes > target) {
   1488 		error = cleanvnode();
   1489 		if (error != 0)
   1490 			return error;
   1491 		mutex_enter(&vnode_free_list_lock);
   1492 	}
   1493 
   1494 	mutex_exit(&vnode_free_list_lock);
   1495 
   1496 	vcache_reinit();
   1497 
   1498 	return 0;
   1499 }
   1500 
   1501 void
   1502 vnpanic(vnode_t *vp, const char *fmt, ...)
   1503 {
   1504 	va_list ap;
   1505 
   1506 #ifdef DIAGNOSTIC
   1507 	vprint(NULL, vp);
   1508 #endif
   1509 	va_start(ap, fmt);
   1510 	vpanic(fmt, ap);
   1511 	va_end(ap);
   1512 }
   1513