Home | History | Annotate | Line # | Download | only in kern
vfs_vnode.c revision 1.39.2.6
      1 /*	$NetBSD: vfs_vnode.c,v 1.39.2.6 2016/10/05 20:56:03 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1989, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  * (c) UNIX System Laboratories, Inc.
     37  * All or some portions of this file are derived from material licensed
     38  * to the University of California by American Telephone and Telegraph
     39  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     40  * the permission of UNIX System Laboratories, Inc.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)vfs_subr.c	8.13 (Berkeley) 4/18/94
     67  */
     68 
     69 /*
     70  * The vnode cache subsystem.
     71  *
     72  * Life-cycle
     73  *
     74  *	Normally, there are two points where new vnodes are created:
     75  *	VOP_CREATE(9) and VOP_LOOKUP(9).  The life-cycle of a vnode
     76  *	starts in one of the following ways:
     77  *
     78  *	- Allocation, via vcache_get(9) or vcache_new(9).
     79  *	- Reclamation of inactive vnode, via vget(9).
     80  *
     81  *	Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
     82  *	was another, traditional way.  Currently, only the draining thread
     83  *	recycles the vnodes.  This behaviour might be revisited.
     84  *
     85  *	The life-cycle ends when the last reference is dropped, usually
     86  *	in VOP_REMOVE(9).  In such case, VOP_INACTIVE(9) is called to inform
     87  *	the file system that vnode is inactive.  Via this call, file system
     88  *	indicates whether vnode can be recycled (usually, it checks its own
     89  *	references, e.g. count of links, whether the file was removed).
     90  *
     91  *	Depending on indication, vnode can be put into a free list (cache),
     92  *	or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to
     93  *	disassociate underlying file system from the vnode, and finally
     94  *	destroyed.
     95  *
     96  * Vnode state
     97  *
     98  *	Vnode is always in one of six states:
     99  *	- MARKER	This is a marker vnode to help list traversal.  It
    100  *			will never change its state.
    101  *	- LOADING	Vnode is associating underlying file system and not
    102  *			yet ready to use.
    103  *	- ACTIVE	Vnode has associated underlying file system and is
    104  *			ready to use.
    105  *	- BLOCKED	Vnode is active but cannot get new references.
    106  *	- RECLAIMING	Vnode is disassociating from the underlying file
    107  *			system.
    108  *	- RECLAIMED	Vnode has disassociated from underlying file system
    109  *			and is dead.
    110  *
    111  *	Valid state changes are:
    112  *	LOADING -> ACTIVE
    113  *			Vnode has been initialised in vcache_get() or
    114  *			vcache_new() and is ready to use.
    115  *	ACTIVE -> RECLAIMING
    116  *			Vnode starts disassociation from underlying file
    117  *			system in vcache_reclaim().
    118  *	RECLAIMING -> RECLAIMED
    119  *			Vnode finished disassociation from underlying file
    120  *			system in vcache_reclaim().
    121  *	ACTIVE -> BLOCKED
    122  *			Either vcache_rekey*() is changing the vnode key or
    123  *			vrelel() is about to call VOP_INACTIVE().
    124  *	BLOCKED -> ACTIVE
    125  *			The block condition is over.
    126  *	LOADING -> RECLAIMED
    127  *			Either vcache_get() or vcache_new() failed to
    128  *			associate the underlying file system or vcache_rekey*()
    129  *			drops a vnode used as placeholder.
    130  *
    131  *	Of these states LOADING, BLOCKED and RECLAIMING are intermediate
    132  *	and it is possible to wait for state change.
    133  *
    134  *	State is protected with v_interlock with one exception:
    135  *	to change from LOADING both v_interlock and vcache.lock must be held
    136  *	so it is possible to check "state == LOADING" without holding
    137  *	v_interlock.  See vcache_get() for details.
    138  *
    139  * Reference counting
    140  *
    141  *	Vnode is considered active, if reference count (vnode_t::v_usecount)
    142  *	is non-zero.  It is maintained using: vref(9) and vrele(9), as well
    143  *	as vput(9), routines.  Common points holding references are e.g.
    144  *	file openings, current working directory, mount points, etc.
    145  *
    146  * Note on v_usecount and its locking
    147  *
    148  *	At nearly all points it is known that v_usecount could be zero,
    149  *	the vnode_t::v_interlock will be held.  To change v_usecount away
    150  *	from zero, the interlock must be held.  To change from a non-zero
    151  *	value to zero, again the interlock must be held.
    152  *
    153  *	Changing the usecount from a non-zero value to a non-zero value can
    154  *	safely be done using atomic operations, without the interlock held.
    155  *
    156  */
    157 
    158 #include <sys/cdefs.h>
    159 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.39.2.6 2016/10/05 20:56:03 skrll Exp $");
    160 
    161 #define _VFS_VNODE_PRIVATE
    162 
    163 #include <sys/param.h>
    164 #include <sys/kernel.h>
    165 
    166 #include <sys/atomic.h>
    167 #include <sys/buf.h>
    168 #include <sys/conf.h>
    169 #include <sys/device.h>
    170 #include <sys/hash.h>
    171 #include <sys/kauth.h>
    172 #include <sys/kmem.h>
    173 #include <sys/kthread.h>
    174 #include <sys/module.h>
    175 #include <sys/mount.h>
    176 #include <sys/namei.h>
    177 #include <sys/syscallargs.h>
    178 #include <sys/sysctl.h>
    179 #include <sys/systm.h>
    180 #include <sys/vnode.h>
    181 #include <sys/wapbl.h>
    182 #include <sys/fstrans.h>
    183 
    184 #include <uvm/uvm.h>
    185 #include <uvm/uvm_readahead.h>
    186 
    187 /* Flags to vrelel. */
    188 #define	VRELEL_ASYNC_RELE	0x0001	/* Always defer to vrele thread. */
    189 
    190 enum vcache_state {
    191 	VN_MARKER,	/* Stable, used as marker. Will not change. */
    192 	VN_LOADING,	/* Intermediate, initialising the fs node. */
    193 	VN_ACTIVE,	/* Stable, valid fs node attached. */
    194 	VN_BLOCKED,	/* Intermediate, active, no new references allowed. */
    195 	VN_RECLAIMING,	/* Intermediate, detaching the fs node. */
    196 	VN_RECLAIMED	/* Stable, no fs node attached. */
    197 };
    198 struct vcache_key {
    199 	struct mount *vk_mount;
    200 	const void *vk_key;
    201 	size_t vk_key_len;
    202 };
    203 struct vcache_node {
    204 	struct vnode vn_vnode;
    205 	enum vcache_state vn_state;
    206 	SLIST_ENTRY(vcache_node) vn_hash;
    207 	struct vcache_key vn_key;
    208 };
    209 
    210 #define VN_TO_VP(node)	((vnode_t *)(node))
    211 #define VP_TO_VN(vp)	((struct vcache_node *)(vp))
    212 
    213 u_int			numvnodes		__cacheline_aligned;
    214 
    215 /*
    216  * There are two free lists: one is for vnodes which have no buffer/page
    217  * references and one for those which do (i.e. v_holdcnt is non-zero).
    218  * Vnode recycling mechanism first attempts to look into the former list.
    219  */
    220 static kmutex_t		vnode_free_list_lock	__cacheline_aligned;
    221 static vnodelst_t	vnode_free_list		__cacheline_aligned;
    222 static vnodelst_t	vnode_hold_list		__cacheline_aligned;
    223 static kcondvar_t	vdrain_cv		__cacheline_aligned;
    224 
    225 static vnodelst_t	vrele_list		__cacheline_aligned;
    226 static kmutex_t		vrele_lock		__cacheline_aligned;
    227 static kcondvar_t	vrele_cv		__cacheline_aligned;
    228 static lwp_t *		vrele_lwp		__cacheline_aligned;
    229 static int		vrele_pending		__cacheline_aligned;
    230 static int		vrele_gen		__cacheline_aligned;
    231 
    232 SLIST_HEAD(hashhead, vcache_node);
    233 static struct {
    234 	kmutex_t	lock;
    235 	kcondvar_t	cv;
    236 	u_long		hashmask;
    237 	struct hashhead	*hashtab;
    238 	pool_cache_t	pool;
    239 }			vcache			__cacheline_aligned;
    240 
    241 static int		cleanvnode(void);
    242 static struct vcache_node *vcache_alloc(void);
    243 static void		vcache_free(struct vcache_node *);
    244 static void		vcache_init(void);
    245 static void		vcache_reinit(void);
    246 static void		vcache_reclaim(vnode_t *);
    247 static void		vrelel(vnode_t *, int);
    248 static void		vdrain_thread(void *);
    249 static void		vrele_thread(void *);
    250 static void		vnpanic(vnode_t *, const char *, ...)
    251     __printflike(2, 3);
    252 
    253 /* Routines having to do with the management of the vnode table. */
    254 extern struct mount	*dead_rootmount;
    255 extern int		(**dead_vnodeop_p)(void *);
    256 extern struct vfsops	dead_vfsops;
    257 
    258 /* Vnode state operations and diagnostics. */
    259 
    260 static const char *
    261 vstate_name(enum vcache_state state)
    262 {
    263 
    264 	switch (state) {
    265 	case VN_MARKER:
    266 		return "MARKER";
    267 	case VN_LOADING:
    268 		return "LOADING";
    269 	case VN_ACTIVE:
    270 		return "ACTIVE";
    271 	case VN_BLOCKED:
    272 		return "BLOCKED";
    273 	case VN_RECLAIMING:
    274 		return "RECLAIMING";
    275 	case VN_RECLAIMED:
    276 		return "RECLAIMED";
    277 	default:
    278 		return "ILLEGAL";
    279 	}
    280 }
    281 
    282 #if defined(DIAGNOSTIC)
    283 
    284 #define VSTATE_GET(vp) \
    285 	vstate_assert_get((vp), __func__, __LINE__)
    286 #define VSTATE_CHANGE(vp, from, to) \
    287 	vstate_assert_change((vp), (from), (to), __func__, __LINE__)
    288 #define VSTATE_WAIT_STABLE(vp) \
    289 	vstate_assert_wait_stable((vp), __func__, __LINE__)
    290 #define VSTATE_ASSERT(vp, state) \
    291 	vstate_assert((vp), (state), __func__, __LINE__)
    292 
    293 static void
    294 vstate_assert(vnode_t *vp, enum vcache_state state, const char *func, int line)
    295 {
    296 	struct vcache_node *node = VP_TO_VN(vp);
    297 
    298 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    299 
    300 	if (__predict_true(node->vn_state == state))
    301 		return;
    302 	vnpanic(vp, "state is %s, expected %s at %s:%d",
    303 	    vstate_name(node->vn_state), vstate_name(state), func, line);
    304 }
    305 
    306 static enum vcache_state
    307 vstate_assert_get(vnode_t *vp, const char *func, int line)
    308 {
    309 	struct vcache_node *node = VP_TO_VN(vp);
    310 
    311 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    312 	if (node->vn_state == VN_MARKER)
    313 		vnpanic(vp, "state is %s at %s:%d",
    314 		    vstate_name(node->vn_state), func, line);
    315 
    316 	return node->vn_state;
    317 }
    318 
    319 static void
    320 vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
    321 {
    322 	struct vcache_node *node = VP_TO_VN(vp);
    323 
    324 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    325 	if (node->vn_state == VN_MARKER)
    326 		vnpanic(vp, "state is %s at %s:%d",
    327 		    vstate_name(node->vn_state), func, line);
    328 
    329 	while (node->vn_state != VN_ACTIVE && node->vn_state != VN_RECLAIMED)
    330 		cv_wait(&vp->v_cv, vp->v_interlock);
    331 
    332 	if (node->vn_state == VN_MARKER)
    333 		vnpanic(vp, "state is %s at %s:%d",
    334 		    vstate_name(node->vn_state), func, line);
    335 }
    336 
    337 static void
    338 vstate_assert_change(vnode_t *vp, enum vcache_state from, enum vcache_state to,
    339     const char *func, int line)
    340 {
    341 	struct vcache_node *node = VP_TO_VN(vp);
    342 
    343 	KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
    344 	if (from == VN_LOADING)
    345 		KASSERTMSG(mutex_owned(&vcache.lock), "at %s:%d", func, line);
    346 
    347 	if (from == VN_MARKER)
    348 		vnpanic(vp, "from is %s at %s:%d",
    349 		    vstate_name(from), func, line);
    350 	if (to == VN_MARKER)
    351 		vnpanic(vp, "to is %s at %s:%d",
    352 		    vstate_name(to), func, line);
    353 	if (node->vn_state != from)
    354 		vnpanic(vp, "from is %s, expected %s at %s:%d\n",
    355 		    vstate_name(node->vn_state), vstate_name(from), func, line);
    356 
    357 	node->vn_state = to;
    358 	if (from == VN_LOADING)
    359 		cv_broadcast(&vcache.cv);
    360 	if (to == VN_ACTIVE || to == VN_RECLAIMED)
    361 		cv_broadcast(&vp->v_cv);
    362 }
    363 
    364 #else /* defined(DIAGNOSTIC) */
    365 
    366 #define VSTATE_GET(vp) \
    367 	(VP_TO_VN((vp))->vn_state)
    368 #define VSTATE_CHANGE(vp, from, to) \
    369 	vstate_change((vp), (from), (to))
    370 #define VSTATE_WAIT_STABLE(vp) \
    371 	vstate_wait_stable((vp))
    372 #define VSTATE_ASSERT(vp, state)
    373 
    374 static void
    375 vstate_wait_stable(vnode_t *vp)
    376 {
    377 	struct vcache_node *node = VP_TO_VN(vp);
    378 
    379 	while (node->vn_state != VN_ACTIVE && node->vn_state != VN_RECLAIMED)
    380 		cv_wait(&vp->v_cv, vp->v_interlock);
    381 }
    382 
    383 static void
    384 vstate_change(vnode_t *vp, enum vcache_state from, enum vcache_state to)
    385 {
    386 	struct vcache_node *node = VP_TO_VN(vp);
    387 
    388 	node->vn_state = to;
    389 	if (from == VN_LOADING)
    390 		cv_broadcast(&vcache.cv);
    391 	if (to == VN_ACTIVE || to == VN_RECLAIMED)
    392 		cv_broadcast(&vp->v_cv);
    393 }
    394 
    395 #endif /* defined(DIAGNOSTIC) */
    396 
    397 void
    398 vfs_vnode_sysinit(void)
    399 {
    400 	int error __diagused;
    401 
    402 	dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
    403 	KASSERT(dead_rootmount != NULL);
    404 	dead_rootmount->mnt_iflag = IMNT_MPSAFE;
    405 
    406 	mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
    407 	TAILQ_INIT(&vnode_free_list);
    408 	TAILQ_INIT(&vnode_hold_list);
    409 	TAILQ_INIT(&vrele_list);
    410 
    411 	vcache_init();
    412 
    413 	mutex_init(&vrele_lock, MUTEX_DEFAULT, IPL_NONE);
    414 	cv_init(&vdrain_cv, "vdrain");
    415 	cv_init(&vrele_cv, "vrele");
    416 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
    417 	    NULL, NULL, "vdrain");
    418 	KASSERTMSG((error == 0), "kthread_create(vdrain) failed: %d", error);
    419 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vrele_thread,
    420 	    NULL, &vrele_lwp, "vrele");
    421 	KASSERTMSG((error == 0), "kthread_create(vrele) failed: %d", error);
    422 }
    423 
    424 /*
    425  * Allocate a new marker vnode.
    426  */
    427 vnode_t *
    428 vnalloc_marker(struct mount *mp)
    429 {
    430 	struct vcache_node *node;
    431 	vnode_t *vp;
    432 
    433 	node = pool_cache_get(vcache.pool, PR_WAITOK);
    434 	memset(node, 0, sizeof(*node));
    435 	vp = VN_TO_VP(node);
    436 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
    437 	vp->v_mount = mp;
    438 	vp->v_type = VBAD;
    439 	node->vn_state = VN_MARKER;
    440 
    441 	return vp;
    442 }
    443 
    444 /*
    445  * Free a marker vnode.
    446  */
    447 void
    448 vnfree_marker(vnode_t *vp)
    449 {
    450 	struct vcache_node *node;
    451 
    452 	node = VP_TO_VN(vp);
    453 	KASSERT(node->vn_state == VN_MARKER);
    454 	uvm_obj_destroy(&vp->v_uobj, true);
    455 	pool_cache_put(vcache.pool, node);
    456 }
    457 
    458 /*
    459  * Test a vnode for being a marker vnode.
    460  */
    461 bool
    462 vnis_marker(vnode_t *vp)
    463 {
    464 
    465 	return (VP_TO_VN(vp)->vn_state == VN_MARKER);
    466 }
    467 
    468 /*
    469  * cleanvnode: grab a vnode from freelist, clean and free it.
    470  *
    471  * => Releases vnode_free_list_lock.
    472  */
    473 static int
    474 cleanvnode(void)
    475 {
    476 	vnode_t *vp;
    477 	vnodelst_t *listhd;
    478 	struct mount *mp;
    479 
    480 	KASSERT(mutex_owned(&vnode_free_list_lock));
    481 
    482 	listhd = &vnode_free_list;
    483 try_nextlist:
    484 	TAILQ_FOREACH(vp, listhd, v_freelist) {
    485 		/*
    486 		 * It's safe to test v_usecount and v_iflag
    487 		 * without holding the interlock here, since
    488 		 * these vnodes should never appear on the
    489 		 * lists.
    490 		 */
    491 		KASSERT(vp->v_usecount == 0);
    492 		KASSERT(vp->v_freelisthd == listhd);
    493 
    494 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
    495 			continue;
    496 		if (!mutex_tryenter(vp->v_interlock)) {
    497 			VOP_UNLOCK(vp);
    498 			continue;
    499 		}
    500 		mp = vp->v_mount;
    501 		if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
    502 			mutex_exit(vp->v_interlock);
    503 			VOP_UNLOCK(vp);
    504 			continue;
    505 		}
    506 		break;
    507 	}
    508 
    509 	if (vp == NULL) {
    510 		if (listhd == &vnode_free_list) {
    511 			listhd = &vnode_hold_list;
    512 			goto try_nextlist;
    513 		}
    514 		mutex_exit(&vnode_free_list_lock);
    515 		return EBUSY;
    516 	}
    517 
    518 	/* Remove it from the freelist. */
    519 	TAILQ_REMOVE(listhd, vp, v_freelist);
    520 	vp->v_freelisthd = NULL;
    521 	mutex_exit(&vnode_free_list_lock);
    522 
    523 	KASSERT(vp->v_usecount == 0);
    524 
    525 	/*
    526 	 * The vnode is still associated with a file system, so we must
    527 	 * clean it out before freeing it.  We need to add a reference
    528 	 * before doing this.
    529 	 */
    530 	vp->v_usecount = 1;
    531 	vcache_reclaim(vp);
    532 	vrelel(vp, 0);
    533 	fstrans_done(mp);
    534 
    535 	return 0;
    536 }
    537 
    538 /*
    539  * Helper thread to keep the number of vnodes below desiredvnodes.
    540  */
    541 static void
    542 vdrain_thread(void *cookie)
    543 {
    544 	int error;
    545 
    546 	mutex_enter(&vnode_free_list_lock);
    547 
    548 	for (;;) {
    549 		cv_timedwait(&vdrain_cv, &vnode_free_list_lock, hz);
    550 		while (numvnodes > desiredvnodes) {
    551 			error = cleanvnode();
    552 			if (error)
    553 				kpause("vndsbusy", false, hz, NULL);
    554 			mutex_enter(&vnode_free_list_lock);
    555 			if (error)
    556 				break;
    557 		}
    558 	}
    559 }
    560 
    561 /*
    562  * Remove a vnode from its freelist.
    563  */
    564 void
    565 vremfree(vnode_t *vp)
    566 {
    567 
    568 	KASSERT(mutex_owned(vp->v_interlock));
    569 	KASSERT(vp->v_usecount == 0);
    570 
    571 	/*
    572 	 * Note that the reference count must not change until
    573 	 * the vnode is removed.
    574 	 */
    575 	mutex_enter(&vnode_free_list_lock);
    576 	if (vp->v_holdcnt > 0) {
    577 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    578 	} else {
    579 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    580 	}
    581 	TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    582 	vp->v_freelisthd = NULL;
    583 	mutex_exit(&vnode_free_list_lock);
    584 }
    585 
    586 /*
    587  * vget: get a particular vnode from the free list, increment its reference
    588  * count and return it.
    589  *
    590  * => Must be called with v_interlock held.
    591  *
    592  * If state is VN_RECLAIMING, the vnode may be eliminated in vcache_reclaim().
    593  * In that case, we cannot grab the vnode, so the process is awakened when
    594  * the transition is completed, and an error returned to indicate that the
    595  * vnode is no longer usable.
    596  *
    597  * If state is VN_LOADING or VN_BLOCKED, wait until the vnode enters a
    598  * stable state (VN_ACTIVE or VN_RECLAIMED).
    599  */
    600 int
    601 vget(vnode_t *vp, int flags, bool waitok)
    602 {
    603 
    604 	KASSERT(mutex_owned(vp->v_interlock));
    605 	KASSERT((flags & ~LK_NOWAIT) == 0);
    606 	KASSERT(waitok == ((flags & LK_NOWAIT) == 0));
    607 
    608 	/*
    609 	 * Before adding a reference, we must remove the vnode
    610 	 * from its freelist.
    611 	 */
    612 	if (vp->v_usecount == 0) {
    613 		vremfree(vp);
    614 		vp->v_usecount = 1;
    615 	} else {
    616 		atomic_inc_uint(&vp->v_usecount);
    617 	}
    618 
    619 	/*
    620 	 * If the vnode is in the process of changing state we wait
    621 	 * for the change to complete and take care not to return
    622 	 * a clean vnode.
    623 	 */
    624 	if (! ISSET(flags, LK_NOWAIT))
    625 		VSTATE_WAIT_STABLE(vp);
    626 	if (VSTATE_GET(vp) == VN_RECLAIMED) {
    627 		vrelel(vp, 0);
    628 		return ENOENT;
    629 	} else if (VSTATE_GET(vp) != VN_ACTIVE) {
    630 		KASSERT(ISSET(flags, LK_NOWAIT));
    631 		vrelel(vp, 0);
    632 		return EBUSY;
    633 	}
    634 
    635 	/*
    636 	 * Ok, we got it in good shape.
    637 	 */
    638 	VSTATE_ASSERT(vp, VN_ACTIVE);
    639 	mutex_exit(vp->v_interlock);
    640 
    641 	return 0;
    642 }
    643 
    644 /*
    645  * vput: unlock and release the reference.
    646  */
    647 void
    648 vput(vnode_t *vp)
    649 {
    650 
    651 	VOP_UNLOCK(vp);
    652 	vrele(vp);
    653 }
    654 
    655 /*
    656  * Try to drop reference on a vnode.  Abort if we are releasing the
    657  * last reference.  Note: this _must_ succeed if not the last reference.
    658  */
    659 static inline bool
    660 vtryrele(vnode_t *vp)
    661 {
    662 	u_int use, next;
    663 
    664 	for (use = vp->v_usecount;; use = next) {
    665 		if (use == 1) {
    666 			return false;
    667 		}
    668 		KASSERT(use > 1);
    669 		next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
    670 		if (__predict_true(next == use)) {
    671 			return true;
    672 		}
    673 	}
    674 }
    675 
    676 /*
    677  * Vnode release.  If reference count drops to zero, call inactive
    678  * routine and either return to freelist or free to the pool.
    679  */
    680 static void
    681 vrelel(vnode_t *vp, int flags)
    682 {
    683 	bool recycle, defer;
    684 	int error;
    685 
    686 	KASSERT(mutex_owned(vp->v_interlock));
    687 	KASSERT(vp->v_freelisthd == NULL);
    688 
    689 	if (__predict_false(vp->v_op == dead_vnodeop_p &&
    690 	    VSTATE_GET(vp) != VN_RECLAIMED)) {
    691 		vnpanic(vp, "dead but not clean");
    692 	}
    693 
    694 	/*
    695 	 * If not the last reference, just drop the reference count
    696 	 * and unlock.
    697 	 */
    698 	if (vtryrele(vp)) {
    699 		mutex_exit(vp->v_interlock);
    700 		return;
    701 	}
    702 	if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
    703 		vnpanic(vp, "%s: bad ref count", __func__);
    704 	}
    705 
    706 #ifdef DIAGNOSTIC
    707 	if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
    708 	    vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
    709 		vprint("vrelel: missing VOP_CLOSE()", vp);
    710 	}
    711 #endif
    712 
    713 	/*
    714 	 * If not clean, deactivate the vnode, but preserve
    715 	 * our reference across the call to VOP_INACTIVE().
    716 	 */
    717 	if (VSTATE_GET(vp) != VN_RECLAIMED) {
    718 		recycle = false;
    719 
    720 		/*
    721 		 * XXX This ugly block can be largely eliminated if
    722 		 * locking is pushed down into the file systems.
    723 		 *
    724 		 * Defer vnode release to vrele_thread if caller
    725 		 * requests it explicitly or is the pagedaemon.
    726 		 */
    727 		if ((curlwp == uvm.pagedaemon_lwp) ||
    728 		    (flags & VRELEL_ASYNC_RELE) != 0) {
    729 			defer = true;
    730 		} else if (curlwp == vrele_lwp) {
    731 			/*
    732 			 * We have to try harder.
    733 			 */
    734 			mutex_exit(vp->v_interlock);
    735 			error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
    736 			KASSERTMSG((error == 0), "vn_lock failed: %d", error);
    737 			mutex_enter(vp->v_interlock);
    738 			defer = false;
    739 		} else {
    740 			/* If we can't acquire the lock, then defer. */
    741 			mutex_exit(vp->v_interlock);
    742 			error = vn_lock(vp,
    743 			    LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
    744 			defer = (error != 0);
    745 			mutex_enter(vp->v_interlock);
    746 		}
    747 
    748 		KASSERT(mutex_owned(vp->v_interlock));
    749 		KASSERT(! (curlwp == vrele_lwp && defer));
    750 
    751 		if (defer) {
    752 			/*
    753 			 * Defer reclaim to the kthread; it's not safe to
    754 			 * clean it here.  We donate it our last reference.
    755 			 */
    756 			mutex_enter(&vrele_lock);
    757 			TAILQ_INSERT_TAIL(&vrele_list, vp, v_freelist);
    758 			if (++vrele_pending > (desiredvnodes >> 8))
    759 				cv_signal(&vrele_cv);
    760 			mutex_exit(&vrele_lock);
    761 			mutex_exit(vp->v_interlock);
    762 			return;
    763 		}
    764 
    765 		/*
    766 		 * If the node got another reference while we
    767 		 * released the interlock, don't try to inactivate it yet.
    768 		 */
    769 		if (__predict_false(vtryrele(vp))) {
    770 			VOP_UNLOCK(vp);
    771 			mutex_exit(vp->v_interlock);
    772 			return;
    773 		}
    774 		VSTATE_CHANGE(vp, VN_ACTIVE, VN_BLOCKED);
    775 		mutex_exit(vp->v_interlock);
    776 
    777 		/*
    778 		 * The vnode must not gain another reference while being
    779 		 * deactivated.  If VOP_INACTIVE() indicates that
    780 		 * the described file has been deleted, then recycle
    781 		 * the vnode.
    782 		 *
    783 		 * Note that VOP_INACTIVE() will drop the vnode lock.
    784 		 */
    785 		VOP_INACTIVE(vp, &recycle);
    786 		if (recycle) {
    787 			/* vcache_reclaim() below will drop the lock. */
    788 			if (vn_lock(vp, LK_EXCLUSIVE) != 0)
    789 				recycle = false;
    790 		}
    791 		mutex_enter(vp->v_interlock);
    792 		VSTATE_CHANGE(vp, VN_BLOCKED, VN_ACTIVE);
    793 		if (!recycle) {
    794 			if (vtryrele(vp)) {
    795 				mutex_exit(vp->v_interlock);
    796 				return;
    797 			}
    798 		}
    799 
    800 		/* Take care of space accounting. */
    801 		if (vp->v_iflag & VI_EXECMAP) {
    802 			atomic_add_int(&uvmexp.execpages,
    803 			    -vp->v_uobj.uo_npages);
    804 			atomic_add_int(&uvmexp.filepages,
    805 			    vp->v_uobj.uo_npages);
    806 		}
    807 		vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
    808 		vp->v_vflag &= ~VV_MAPPED;
    809 
    810 		/*
    811 		 * Recycle the vnode if the file is now unused (unlinked),
    812 		 * otherwise just free it.
    813 		 */
    814 		if (recycle) {
    815 			VSTATE_ASSERT(vp, VN_ACTIVE);
    816 			vcache_reclaim(vp);
    817 		}
    818 		KASSERT(vp->v_usecount > 0);
    819 	}
    820 
    821 	if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
    822 		/* Gained another reference while being reclaimed. */
    823 		mutex_exit(vp->v_interlock);
    824 		return;
    825 	}
    826 
    827 	if (VSTATE_GET(vp) == VN_RECLAIMED) {
    828 		/*
    829 		 * It's clean so destroy it.  It isn't referenced
    830 		 * anywhere since it has been reclaimed.
    831 		 */
    832 		KASSERT(vp->v_holdcnt == 0);
    833 		KASSERT(vp->v_writecount == 0);
    834 		mutex_exit(vp->v_interlock);
    835 		vfs_insmntque(vp, NULL);
    836 		if (vp->v_type == VBLK || vp->v_type == VCHR) {
    837 			spec_node_destroy(vp);
    838 		}
    839 		vcache_free(VP_TO_VN(vp));
    840 	} else {
    841 		/*
    842 		 * Otherwise, put it back onto the freelist.  It
    843 		 * can't be destroyed while still associated with
    844 		 * a file system.
    845 		 */
    846 		mutex_enter(&vnode_free_list_lock);
    847 		if (vp->v_holdcnt > 0) {
    848 			vp->v_freelisthd = &vnode_hold_list;
    849 		} else {
    850 			vp->v_freelisthd = &vnode_free_list;
    851 		}
    852 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    853 		mutex_exit(&vnode_free_list_lock);
    854 		mutex_exit(vp->v_interlock);
    855 	}
    856 }
    857 
    858 void
    859 vrele(vnode_t *vp)
    860 {
    861 
    862 	if (vtryrele(vp)) {
    863 		return;
    864 	}
    865 	mutex_enter(vp->v_interlock);
    866 	vrelel(vp, 0);
    867 }
    868 
    869 /*
    870  * Asynchronous vnode release, vnode is released in different context.
    871  */
    872 void
    873 vrele_async(vnode_t *vp)
    874 {
    875 
    876 	if (vtryrele(vp)) {
    877 		return;
    878 	}
    879 	mutex_enter(vp->v_interlock);
    880 	vrelel(vp, VRELEL_ASYNC_RELE);
    881 }
    882 
    883 static void
    884 vrele_thread(void *cookie)
    885 {
    886 	vnodelst_t skip_list;
    887 	vnode_t *vp;
    888 	struct mount *mp;
    889 
    890 	TAILQ_INIT(&skip_list);
    891 
    892 	mutex_enter(&vrele_lock);
    893 	for (;;) {
    894 		while (TAILQ_EMPTY(&vrele_list)) {
    895 			vrele_gen++;
    896 			cv_broadcast(&vrele_cv);
    897 			cv_timedwait(&vrele_cv, &vrele_lock, hz);
    898 			TAILQ_CONCAT(&vrele_list, &skip_list, v_freelist);
    899 		}
    900 		vp = TAILQ_FIRST(&vrele_list);
    901 		mp = vp->v_mount;
    902 		TAILQ_REMOVE(&vrele_list, vp, v_freelist);
    903 		if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0) {
    904 			TAILQ_INSERT_TAIL(&skip_list, vp, v_freelist);
    905 			continue;
    906 		}
    907 		vrele_pending--;
    908 		mutex_exit(&vrele_lock);
    909 
    910 		/*
    911 		 * If not the last reference, then ignore the vnode
    912 		 * and look for more work.
    913 		 */
    914 		mutex_enter(vp->v_interlock);
    915 		vrelel(vp, 0);
    916 		fstrans_done(mp);
    917 		mutex_enter(&vrele_lock);
    918 	}
    919 }
    920 
    921 void
    922 vrele_flush(void)
    923 {
    924 	int gen;
    925 
    926 	mutex_enter(&vrele_lock);
    927 	gen = vrele_gen;
    928 	while (vrele_pending && gen == vrele_gen) {
    929 		cv_broadcast(&vrele_cv);
    930 		cv_wait(&vrele_cv, &vrele_lock);
    931 	}
    932 	mutex_exit(&vrele_lock);
    933 }
    934 
    935 /*
    936  * Vnode reference, where a reference is already held by some other
    937  * object (for example, a file structure).
    938  */
    939 void
    940 vref(vnode_t *vp)
    941 {
    942 
    943 	KASSERT(vp->v_usecount != 0);
    944 
    945 	atomic_inc_uint(&vp->v_usecount);
    946 }
    947 
    948 /*
    949  * Page or buffer structure gets a reference.
    950  * Called with v_interlock held.
    951  */
    952 void
    953 vholdl(vnode_t *vp)
    954 {
    955 
    956 	KASSERT(mutex_owned(vp->v_interlock));
    957 
    958 	if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0) {
    959 		mutex_enter(&vnode_free_list_lock);
    960 		KASSERT(vp->v_freelisthd == &vnode_free_list);
    961 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    962 		vp->v_freelisthd = &vnode_hold_list;
    963 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    964 		mutex_exit(&vnode_free_list_lock);
    965 	}
    966 }
    967 
    968 /*
    969  * Page or buffer structure frees a reference.
    970  * Called with v_interlock held.
    971  */
    972 void
    973 holdrelel(vnode_t *vp)
    974 {
    975 
    976 	KASSERT(mutex_owned(vp->v_interlock));
    977 
    978 	if (vp->v_holdcnt <= 0) {
    979 		vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
    980 	}
    981 
    982 	vp->v_holdcnt--;
    983 	if (vp->v_holdcnt == 0 && vp->v_usecount == 0) {
    984 		mutex_enter(&vnode_free_list_lock);
    985 		KASSERT(vp->v_freelisthd == &vnode_hold_list);
    986 		TAILQ_REMOVE(vp->v_freelisthd, vp, v_freelist);
    987 		vp->v_freelisthd = &vnode_free_list;
    988 		TAILQ_INSERT_TAIL(vp->v_freelisthd, vp, v_freelist);
    989 		mutex_exit(&vnode_free_list_lock);
    990 	}
    991 }
    992 
    993 /*
    994  * Recycle an unused vnode if caller holds the last reference.
    995  */
    996 bool
    997 vrecycle(vnode_t *vp)
    998 {
    999 
   1000 	if (vn_lock(vp, LK_EXCLUSIVE) != 0)
   1001 		return false;
   1002 
   1003 	mutex_enter(vp->v_interlock);
   1004 
   1005 	if (vp->v_usecount != 1) {
   1006 		mutex_exit(vp->v_interlock);
   1007 		VOP_UNLOCK(vp);
   1008 		return false;
   1009 	}
   1010 	vcache_reclaim(vp);
   1011 	vrelel(vp, 0);
   1012 	return true;
   1013 }
   1014 
   1015 /*
   1016  * Eliminate all activity associated with the requested vnode
   1017  * and with all vnodes aliased to the requested vnode.
   1018  */
   1019 void
   1020 vrevoke(vnode_t *vp)
   1021 {
   1022 	vnode_t *vq;
   1023 	enum vtype type;
   1024 	dev_t dev;
   1025 
   1026 	KASSERT(vp->v_usecount > 0);
   1027 
   1028 	mutex_enter(vp->v_interlock);
   1029 	VSTATE_WAIT_STABLE(vp);
   1030 	if (VSTATE_GET(vp) == VN_RECLAIMED) {
   1031 		mutex_exit(vp->v_interlock);
   1032 		return;
   1033 	} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
   1034 		atomic_inc_uint(&vp->v_usecount);
   1035 		mutex_exit(vp->v_interlock);
   1036 		vgone(vp);
   1037 		return;
   1038 	} else {
   1039 		dev = vp->v_rdev;
   1040 		type = vp->v_type;
   1041 		mutex_exit(vp->v_interlock);
   1042 	}
   1043 
   1044 	while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
   1045 		vgone(vq);
   1046 	}
   1047 }
   1048 
   1049 /*
   1050  * Eliminate all activity associated with a vnode in preparation for
   1051  * reuse.  Drops a reference from the vnode.
   1052  */
   1053 void
   1054 vgone(vnode_t *vp)
   1055 {
   1056 
   1057 	if (vn_lock(vp, LK_EXCLUSIVE) != 0) {
   1058 		VSTATE_ASSERT(vp, VN_RECLAIMED);
   1059 		vrele(vp);
   1060 	}
   1061 
   1062 	mutex_enter(vp->v_interlock);
   1063 	vcache_reclaim(vp);
   1064 	vrelel(vp, 0);
   1065 }
   1066 
   1067 static inline uint32_t
   1068 vcache_hash(const struct vcache_key *key)
   1069 {
   1070 	uint32_t hash = HASH32_BUF_INIT;
   1071 
   1072 	hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
   1073 	hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
   1074 	return hash;
   1075 }
   1076 
   1077 static void
   1078 vcache_init(void)
   1079 {
   1080 
   1081 	vcache.pool = pool_cache_init(sizeof(struct vcache_node), 0, 0, 0,
   1082 	    "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
   1083 	KASSERT(vcache.pool != NULL);
   1084 	mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
   1085 	cv_init(&vcache.cv, "vcache");
   1086 	vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
   1087 	    &vcache.hashmask);
   1088 }
   1089 
   1090 static void
   1091 vcache_reinit(void)
   1092 {
   1093 	int i;
   1094 	uint32_t hash;
   1095 	u_long oldmask, newmask;
   1096 	struct hashhead *oldtab, *newtab;
   1097 	struct vcache_node *node;
   1098 
   1099 	newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
   1100 	mutex_enter(&vcache.lock);
   1101 	oldtab = vcache.hashtab;
   1102 	oldmask = vcache.hashmask;
   1103 	vcache.hashtab = newtab;
   1104 	vcache.hashmask = newmask;
   1105 	for (i = 0; i <= oldmask; i++) {
   1106 		while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
   1107 			SLIST_REMOVE(&oldtab[i], node, vcache_node, vn_hash);
   1108 			hash = vcache_hash(&node->vn_key);
   1109 			SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
   1110 			    node, vn_hash);
   1111 		}
   1112 	}
   1113 	mutex_exit(&vcache.lock);
   1114 	hashdone(oldtab, HASH_SLIST, oldmask);
   1115 }
   1116 
   1117 static inline struct vcache_node *
   1118 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
   1119 {
   1120 	struct hashhead *hashp;
   1121 	struct vcache_node *node;
   1122 
   1123 	KASSERT(mutex_owned(&vcache.lock));
   1124 
   1125 	hashp = &vcache.hashtab[hash & vcache.hashmask];
   1126 	SLIST_FOREACH(node, hashp, vn_hash) {
   1127 		if (key->vk_mount != node->vn_key.vk_mount)
   1128 			continue;
   1129 		if (key->vk_key_len != node->vn_key.vk_key_len)
   1130 			continue;
   1131 		if (memcmp(key->vk_key, node->vn_key.vk_key, key->vk_key_len))
   1132 			continue;
   1133 		return node;
   1134 	}
   1135 	return NULL;
   1136 }
   1137 
   1138 /*
   1139  * Allocate a new, uninitialized vcache node.
   1140  */
   1141 static struct vcache_node *
   1142 vcache_alloc(void)
   1143 {
   1144 	struct vcache_node *node;
   1145 	vnode_t *vp;
   1146 
   1147 	node = pool_cache_get(vcache.pool, PR_WAITOK);
   1148 	memset(node, 0, sizeof(*node));
   1149 
   1150 	/* SLIST_INIT(&node->vn_hash); */
   1151 
   1152 	vp = VN_TO_VP(node);
   1153 	uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
   1154 	cv_init(&vp->v_cv, "vnode");
   1155 	/* LIST_INIT(&vp->v_nclist); */
   1156 	/* LIST_INIT(&vp->v_dnclist); */
   1157 
   1158 	mutex_enter(&vnode_free_list_lock);
   1159 	numvnodes++;
   1160 	if (numvnodes > desiredvnodes + desiredvnodes / 10)
   1161 		cv_signal(&vdrain_cv);
   1162 	mutex_exit(&vnode_free_list_lock);
   1163 
   1164 	rw_init(&vp->v_lock);
   1165 	vp->v_usecount = 1;
   1166 	vp->v_type = VNON;
   1167 	vp->v_size = vp->v_writesize = VSIZENOTSET;
   1168 
   1169 	node->vn_state = VN_LOADING;
   1170 
   1171 	return node;
   1172 }
   1173 
   1174 /*
   1175  * Free an unused, unreferenced vcache node.
   1176  */
   1177 static void
   1178 vcache_free(struct vcache_node *node)
   1179 {
   1180 	vnode_t *vp;
   1181 
   1182 	vp = VN_TO_VP(node);
   1183 
   1184 	KASSERT(vp->v_usecount == 0);
   1185 
   1186 	rw_destroy(&vp->v_lock);
   1187 	mutex_enter(&vnode_free_list_lock);
   1188 	numvnodes--;
   1189 	mutex_exit(&vnode_free_list_lock);
   1190 
   1191 	uvm_obj_destroy(&vp->v_uobj, true);
   1192 	cv_destroy(&vp->v_cv);
   1193 	pool_cache_put(vcache.pool, node);
   1194 }
   1195 
   1196 /*
   1197  * Get a vnode / fs node pair by key and return it referenced through vpp.
   1198  */
   1199 int
   1200 vcache_get(struct mount *mp, const void *key, size_t key_len,
   1201     struct vnode **vpp)
   1202 {
   1203 	int error;
   1204 	uint32_t hash;
   1205 	const void *new_key;
   1206 	struct vnode *vp;
   1207 	struct vcache_key vcache_key;
   1208 	struct vcache_node *node, *new_node;
   1209 
   1210 	new_key = NULL;
   1211 	*vpp = NULL;
   1212 
   1213 	vcache_key.vk_mount = mp;
   1214 	vcache_key.vk_key = key;
   1215 	vcache_key.vk_key_len = key_len;
   1216 	hash = vcache_hash(&vcache_key);
   1217 
   1218 again:
   1219 	mutex_enter(&vcache.lock);
   1220 	node = vcache_hash_lookup(&vcache_key, hash);
   1221 
   1222 	/* If found, take a reference or retry. */
   1223 	if (__predict_true(node != NULL)) {
   1224 		/*
   1225 		 * If the vnode is loading we cannot take the v_interlock
   1226 		 * here as it might change during load (see uvm_obj_setlock()).
   1227 		 * As changing state from VN_LOADING requires both vcache.lock
   1228 		 * and v_interlock it is safe to test with vcache.lock held.
   1229 		 *
   1230 		 * Wait for vnodes changing state from VN_LOADING and retry.
   1231 		 */
   1232 		if (__predict_false(node->vn_state == VN_LOADING)) {
   1233 			cv_wait(&vcache.cv, &vcache.lock);
   1234 			mutex_exit(&vcache.lock);
   1235 			goto again;
   1236 		}
   1237 		vp = VN_TO_VP(node);
   1238 		mutex_enter(vp->v_interlock);
   1239 		mutex_exit(&vcache.lock);
   1240 		error = vget(vp, 0, true /* wait */);
   1241 		if (error == ENOENT)
   1242 			goto again;
   1243 		if (error == 0)
   1244 			*vpp = vp;
   1245 		KASSERT((error != 0) == (*vpp == NULL));
   1246 		return error;
   1247 	}
   1248 	mutex_exit(&vcache.lock);
   1249 
   1250 	/* Allocate and initialize a new vcache / vnode pair. */
   1251 	error = vfs_busy(mp, NULL);
   1252 	if (error)
   1253 		return error;
   1254 	new_node = vcache_alloc();
   1255 	new_node->vn_key = vcache_key;
   1256 	vp = VN_TO_VP(new_node);
   1257 	mutex_enter(&vcache.lock);
   1258 	node = vcache_hash_lookup(&vcache_key, hash);
   1259 	if (node == NULL) {
   1260 		SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
   1261 		    new_node, vn_hash);
   1262 		node = new_node;
   1263 	}
   1264 
   1265 	/* If another thread beat us inserting this node, retry. */
   1266 	if (node != new_node) {
   1267 		mutex_enter(vp->v_interlock);
   1268 		VSTATE_CHANGE(vp, VN_LOADING, VN_RECLAIMED);
   1269 		mutex_exit(&vcache.lock);
   1270 		vrelel(vp, 0);
   1271 		vfs_unbusy(mp, false, NULL);
   1272 		goto again;
   1273 	}
   1274 	mutex_exit(&vcache.lock);
   1275 
   1276 	/* Load the fs node.  Exclusive as new_node is VN_LOADING. */
   1277 	error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
   1278 	if (error) {
   1279 		mutex_enter(&vcache.lock);
   1280 		SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1281 		    new_node, vcache_node, vn_hash);
   1282 		mutex_enter(vp->v_interlock);
   1283 		VSTATE_CHANGE(vp, VN_LOADING, VN_RECLAIMED);
   1284 		mutex_exit(&vcache.lock);
   1285 		vrelel(vp, 0);
   1286 		vfs_unbusy(mp, false, NULL);
   1287 		KASSERT(*vpp == NULL);
   1288 		return error;
   1289 	}
   1290 	KASSERT(new_key != NULL);
   1291 	KASSERT(memcmp(key, new_key, key_len) == 0);
   1292 	KASSERT(vp->v_op != NULL);
   1293 	vfs_insmntque(vp, mp);
   1294 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1295 		vp->v_vflag |= VV_MPSAFE;
   1296 	vfs_unbusy(mp, true, NULL);
   1297 
   1298 	/* Finished loading, finalize node. */
   1299 	mutex_enter(&vcache.lock);
   1300 	new_node->vn_key.vk_key = new_key;
   1301 	mutex_enter(vp->v_interlock);
   1302 	VSTATE_CHANGE(vp, VN_LOADING, VN_ACTIVE);
   1303 	mutex_exit(vp->v_interlock);
   1304 	mutex_exit(&vcache.lock);
   1305 	*vpp = vp;
   1306 	return 0;
   1307 }
   1308 
   1309 /*
   1310  * Create a new vnode / fs node pair and return it referenced through vpp.
   1311  */
   1312 int
   1313 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
   1314     kauth_cred_t cred, struct vnode **vpp)
   1315 {
   1316 	int error;
   1317 	uint32_t hash;
   1318 	struct vnode *ovp, *vp;
   1319 	struct vcache_node *new_node;
   1320 	struct vcache_node *old_node __diagused;
   1321 
   1322 	*vpp = NULL;
   1323 
   1324 	/* Allocate and initialize a new vcache / vnode pair. */
   1325 	error = vfs_busy(mp, NULL);
   1326 	if (error)
   1327 		return error;
   1328 	new_node = vcache_alloc();
   1329 	new_node->vn_key.vk_mount = mp;
   1330 	vp = VN_TO_VP(new_node);
   1331 
   1332 	/* Create and load the fs node. */
   1333 	error = VFS_NEWVNODE(mp, dvp, vp, vap, cred,
   1334 	    &new_node->vn_key.vk_key_len, &new_node->vn_key.vk_key);
   1335 	if (error) {
   1336 		mutex_enter(&vcache.lock);
   1337 		mutex_enter(vp->v_interlock);
   1338 		VSTATE_CHANGE(vp, VN_LOADING, VN_RECLAIMED);
   1339 		mutex_exit(&vcache.lock);
   1340 		vrelel(vp, 0);
   1341 		vfs_unbusy(mp, false, NULL);
   1342 		KASSERT(*vpp == NULL);
   1343 		return error;
   1344 	}
   1345 	KASSERT(new_node->vn_key.vk_key != NULL);
   1346 	KASSERT(vp->v_op != NULL);
   1347 	hash = vcache_hash(&new_node->vn_key);
   1348 
   1349 	/* Wait for previous instance to be reclaimed, then insert new node. */
   1350 	mutex_enter(&vcache.lock);
   1351 	while ((old_node = vcache_hash_lookup(&new_node->vn_key, hash))) {
   1352 		ovp = VN_TO_VP(old_node);
   1353 		mutex_enter(ovp->v_interlock);
   1354 		mutex_exit(&vcache.lock);
   1355 		error = vget(ovp, 0, true /* wait */);
   1356 		KASSERT(error == ENOENT);
   1357 		mutex_enter(&vcache.lock);
   1358 	}
   1359 	SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
   1360 	    new_node, vn_hash);
   1361 	mutex_exit(&vcache.lock);
   1362 	vfs_insmntque(vp, mp);
   1363 	if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
   1364 		vp->v_vflag |= VV_MPSAFE;
   1365 	vfs_unbusy(mp, true, NULL);
   1366 
   1367 	/* Finished loading, finalize node. */
   1368 	mutex_enter(&vcache.lock);
   1369 	mutex_enter(vp->v_interlock);
   1370 	VSTATE_CHANGE(vp, VN_LOADING, VN_ACTIVE);
   1371 	mutex_exit(&vcache.lock);
   1372 	mutex_exit(vp->v_interlock);
   1373 	*vpp = vp;
   1374 	return 0;
   1375 }
   1376 
   1377 /*
   1378  * Prepare key change: lock old and new cache node.
   1379  * Return an error if the new node already exists.
   1380  */
   1381 int
   1382 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
   1383     const void *old_key, size_t old_key_len,
   1384     const void *new_key, size_t new_key_len)
   1385 {
   1386 	uint32_t old_hash, new_hash;
   1387 	struct vcache_key old_vcache_key, new_vcache_key;
   1388 	struct vcache_node *node, *new_node;
   1389 	struct vnode *tvp;
   1390 
   1391 	old_vcache_key.vk_mount = mp;
   1392 	old_vcache_key.vk_key = old_key;
   1393 	old_vcache_key.vk_key_len = old_key_len;
   1394 	old_hash = vcache_hash(&old_vcache_key);
   1395 
   1396 	new_vcache_key.vk_mount = mp;
   1397 	new_vcache_key.vk_key = new_key;
   1398 	new_vcache_key.vk_key_len = new_key_len;
   1399 	new_hash = vcache_hash(&new_vcache_key);
   1400 
   1401 	new_node = vcache_alloc();
   1402 	new_node->vn_key = new_vcache_key;
   1403 	tvp = VN_TO_VP(new_node);
   1404 
   1405 	/* Insert locked new node used as placeholder. */
   1406 	mutex_enter(&vcache.lock);
   1407 	node = vcache_hash_lookup(&new_vcache_key, new_hash);
   1408 	if (node != NULL) {
   1409 		mutex_enter(tvp->v_interlock);
   1410 		VSTATE_CHANGE(tvp, VN_LOADING, VN_RECLAIMED);
   1411 		mutex_exit(&vcache.lock);
   1412 		vrelel(tvp, 0);
   1413 		return EEXIST;
   1414 	}
   1415 	SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
   1416 	    new_node, vn_hash);
   1417 
   1418 	/* Lock old node. */
   1419 	node = vcache_hash_lookup(&old_vcache_key, old_hash);
   1420 	KASSERT(node != NULL);
   1421 	KASSERT(VN_TO_VP(node) == vp);
   1422 	mutex_enter(vp->v_interlock);
   1423 	VSTATE_CHANGE(vp, VN_ACTIVE, VN_BLOCKED);
   1424 	node->vn_key = old_vcache_key;
   1425 	mutex_exit(vp->v_interlock);
   1426 	mutex_exit(&vcache.lock);
   1427 	return 0;
   1428 }
   1429 
   1430 /*
   1431  * Key change complete: remove old node and unlock new node.
   1432  */
   1433 void
   1434 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
   1435     const void *old_key, size_t old_key_len,
   1436     const void *new_key, size_t new_key_len)
   1437 {
   1438 	uint32_t old_hash, new_hash;
   1439 	struct vcache_key old_vcache_key, new_vcache_key;
   1440 	struct vcache_node *old_node, *new_node;
   1441 	struct vnode *tvp;
   1442 
   1443 	old_vcache_key.vk_mount = mp;
   1444 	old_vcache_key.vk_key = old_key;
   1445 	old_vcache_key.vk_key_len = old_key_len;
   1446 	old_hash = vcache_hash(&old_vcache_key);
   1447 
   1448 	new_vcache_key.vk_mount = mp;
   1449 	new_vcache_key.vk_key = new_key;
   1450 	new_vcache_key.vk_key_len = new_key_len;
   1451 	new_hash = vcache_hash(&new_vcache_key);
   1452 
   1453 	mutex_enter(&vcache.lock);
   1454 
   1455 	/* Lookup old and new node. */
   1456 	old_node = vcache_hash_lookup(&old_vcache_key, old_hash);
   1457 	KASSERT(old_node != NULL);
   1458 	KASSERT(VN_TO_VP(old_node) == vp);
   1459 	mutex_enter(vp->v_interlock);
   1460 	VSTATE_ASSERT(vp, VN_BLOCKED);
   1461 
   1462 	new_node = vcache_hash_lookup(&new_vcache_key, new_hash);
   1463 	KASSERT(new_node != NULL);
   1464 	KASSERT(new_node->vn_key.vk_key_len == new_key_len);
   1465 	tvp = VN_TO_VP(new_node);
   1466 	mutex_enter(tvp->v_interlock);
   1467 	VSTATE_ASSERT(VN_TO_VP(new_node), VN_LOADING);
   1468 
   1469 	/* Rekey old node and put it onto its new hashlist. */
   1470 	old_node->vn_key = new_vcache_key;
   1471 	if (old_hash != new_hash) {
   1472 		SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
   1473 		    old_node, vcache_node, vn_hash);
   1474 		SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
   1475 		    old_node, vn_hash);
   1476 	}
   1477 	VSTATE_CHANGE(vp, VN_BLOCKED, VN_ACTIVE);
   1478 	mutex_exit(vp->v_interlock);
   1479 
   1480 	/* Remove new node used as placeholder. */
   1481 	SLIST_REMOVE(&vcache.hashtab[new_hash & vcache.hashmask],
   1482 	    new_node, vcache_node, vn_hash);
   1483 	VSTATE_CHANGE(tvp, VN_LOADING, VN_RECLAIMED);
   1484 	mutex_exit(&vcache.lock);
   1485 	vrelel(tvp, 0);
   1486 }
   1487 
   1488 /*
   1489  * Disassociate the underlying file system from a vnode.
   1490  *
   1491  * Must be called with vnode locked and will return unlocked.
   1492  * Must be called with the interlock held, and will return with it held.
   1493  */
   1494 static void
   1495 vcache_reclaim(vnode_t *vp)
   1496 {
   1497 	lwp_t *l = curlwp;
   1498 	struct vcache_node *node = VP_TO_VN(vp);
   1499 	uint32_t hash;
   1500 	uint8_t temp_buf[64], *temp_key;
   1501 	size_t temp_key_len;
   1502 	bool recycle, active;
   1503 	int error;
   1504 
   1505 	KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
   1506 	    VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   1507 	KASSERT(mutex_owned(vp->v_interlock));
   1508 	KASSERT(vp->v_usecount != 0);
   1509 
   1510 	active = (vp->v_usecount > 1);
   1511 	temp_key_len = node->vn_key.vk_key_len;
   1512 	/*
   1513 	 * Prevent the vnode from being recycled or brought into use
   1514 	 * while we clean it out.
   1515 	 */
   1516 	VSTATE_CHANGE(vp, VN_ACTIVE, VN_RECLAIMING);
   1517 	if (vp->v_iflag & VI_EXECMAP) {
   1518 		atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
   1519 		atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
   1520 	}
   1521 	vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
   1522 	mutex_exit(vp->v_interlock);
   1523 
   1524 	/* Replace the vnode key with a temporary copy. */
   1525 	if (node->vn_key.vk_key_len > sizeof(temp_buf)) {
   1526 		temp_key = kmem_alloc(temp_key_len, KM_SLEEP);
   1527 	} else {
   1528 		temp_key = temp_buf;
   1529 	}
   1530 	mutex_enter(&vcache.lock);
   1531 	memcpy(temp_key, node->vn_key.vk_key, temp_key_len);
   1532 	node->vn_key.vk_key = temp_key;
   1533 	mutex_exit(&vcache.lock);
   1534 
   1535 	/*
   1536 	 * Clean out any cached data associated with the vnode.
   1537 	 * If purging an active vnode, it must be closed and
   1538 	 * deactivated before being reclaimed. Note that the
   1539 	 * VOP_INACTIVE will unlock the vnode.
   1540 	 */
   1541 	error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
   1542 	if (error != 0) {
   1543 		if (wapbl_vphaswapbl(vp))
   1544 			WAPBL_DISCARD(wapbl_vptomp(vp));
   1545 		error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
   1546 	}
   1547 	KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
   1548 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1549 	if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
   1550 		 spec_node_revoke(vp);
   1551 	}
   1552 	if (active) {
   1553 		VOP_INACTIVE(vp, &recycle);
   1554 	} else {
   1555 		/*
   1556 		 * Any other processes trying to obtain this lock must first
   1557 		 * wait for VN_RECLAIMED, then call the new lock operation.
   1558 		 */
   1559 		VOP_UNLOCK(vp);
   1560 	}
   1561 
   1562 	/* Disassociate the underlying file system from the vnode. */
   1563 	if (VOP_RECLAIM(vp)) {
   1564 		vnpanic(vp, "%s: cannot reclaim", __func__);
   1565 	}
   1566 
   1567 	KASSERT(vp->v_data == NULL);
   1568 	KASSERT(vp->v_uobj.uo_npages == 0);
   1569 
   1570 	if (vp->v_type == VREG && vp->v_ractx != NULL) {
   1571 		uvm_ra_freectx(vp->v_ractx);
   1572 		vp->v_ractx = NULL;
   1573 	}
   1574 
   1575 	/* Purge name cache. */
   1576 	cache_purge(vp);
   1577 
   1578 	/* Move to dead mount. */
   1579 	vp->v_vflag &= ~VV_ROOT;
   1580 	atomic_inc_uint(&dead_rootmount->mnt_refcnt);
   1581 	vfs_insmntque(vp, dead_rootmount);
   1582 
   1583 	/* Remove from vnode cache. */
   1584 	hash = vcache_hash(&node->vn_key);
   1585 	mutex_enter(&vcache.lock);
   1586 	KASSERT(node == vcache_hash_lookup(&node->vn_key, hash));
   1587 	SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
   1588 	    node, vcache_node, vn_hash);
   1589 	mutex_exit(&vcache.lock);
   1590 	if (temp_key != temp_buf)
   1591 		kmem_free(temp_key, temp_key_len);
   1592 
   1593 	/* Done with purge, notify sleepers of the grim news. */
   1594 	mutex_enter(vp->v_interlock);
   1595 	vp->v_op = dead_vnodeop_p;
   1596 	vp->v_vflag |= VV_LOCKSWORK;
   1597 	VSTATE_CHANGE(vp, VN_RECLAIMING, VN_RECLAIMED);
   1598 	vp->v_tag = VT_NON;
   1599 	KNOTE(&vp->v_klist, NOTE_REVOKE);
   1600 
   1601 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1602 }
   1603 
   1604 /*
   1605  * Print a vcache node.
   1606  */
   1607 void
   1608 vcache_print(vnode_t *vp, const char *prefix, void (*pr)(const char *, ...))
   1609 {
   1610 	int n;
   1611 	const uint8_t *cp;
   1612 	struct vcache_node *node;
   1613 
   1614 	node = VP_TO_VN(vp);
   1615 	n = node->vn_key.vk_key_len;
   1616 	cp = node->vn_key.vk_key;
   1617 
   1618 	(*pr)("%sstate %s, key(%d)", prefix, vstate_name(node->vn_state), n);
   1619 
   1620 	while (n-- > 0)
   1621 		(*pr)(" %02x", *cp++);
   1622 	(*pr)("\n");
   1623 }
   1624 
   1625 /*
   1626  * Update outstanding I/O count and do wakeup if requested.
   1627  */
   1628 void
   1629 vwakeup(struct buf *bp)
   1630 {
   1631 	vnode_t *vp;
   1632 
   1633 	if ((vp = bp->b_vp) == NULL)
   1634 		return;
   1635 
   1636 	KASSERT(bp->b_objlock == vp->v_interlock);
   1637 	KASSERT(mutex_owned(bp->b_objlock));
   1638 
   1639 	if (--vp->v_numoutput < 0)
   1640 		vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
   1641 	if (vp->v_numoutput == 0)
   1642 		cv_broadcast(&vp->v_cv);
   1643 }
   1644 
   1645 /*
   1646  * Test a vnode for being or becoming dead.  Returns one of:
   1647  * EBUSY:  vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
   1648  * ENOENT: vnode is dead.
   1649  * 0:      otherwise.
   1650  *
   1651  * Whenever this function returns a non-zero value all future
   1652  * calls will also return a non-zero value.
   1653  */
   1654 int
   1655 vdead_check(struct vnode *vp, int flags)
   1656 {
   1657 
   1658 	KASSERT(mutex_owned(vp->v_interlock));
   1659 
   1660 	if (! ISSET(flags, VDEAD_NOWAIT))
   1661 		VSTATE_WAIT_STABLE(vp);
   1662 
   1663 	if (VSTATE_GET(vp) == VN_RECLAIMING) {
   1664 		KASSERT(ISSET(flags, VDEAD_NOWAIT));
   1665 		return EBUSY;
   1666 	} else if (VSTATE_GET(vp) == VN_RECLAIMED) {
   1667 		return ENOENT;
   1668 	}
   1669 
   1670 	return 0;
   1671 }
   1672 
   1673 int
   1674 vfs_drainvnodes(long target)
   1675 {
   1676 	int error;
   1677 
   1678 	mutex_enter(&vnode_free_list_lock);
   1679 
   1680 	while (numvnodes > target) {
   1681 		error = cleanvnode();
   1682 		if (error != 0)
   1683 			return error;
   1684 		mutex_enter(&vnode_free_list_lock);
   1685 	}
   1686 
   1687 	mutex_exit(&vnode_free_list_lock);
   1688 
   1689 	vcache_reinit();
   1690 
   1691 	return 0;
   1692 }
   1693 
   1694 void
   1695 vnpanic(vnode_t *vp, const char *fmt, ...)
   1696 {
   1697 	va_list ap;
   1698 
   1699 #ifdef DIAGNOSTIC
   1700 	vprint(NULL, vp);
   1701 #endif
   1702 	va_start(ap, fmt);
   1703 	vpanic(fmt, ap);
   1704 	va_end(ap);
   1705 }
   1706