vfs_vnode.c revision 1.68 1 /* $NetBSD: vfs_vnode.c,v 1.68 2017/01/02 10:36:58 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 1997-2011 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1989, 1993
35 * The Regents of the University of California. All rights reserved.
36 * (c) UNIX System Laboratories, Inc.
37 * All or some portions of this file are derived from material licensed
38 * to the University of California by American Telephone and Telegraph
39 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
40 * the permission of UNIX System Laboratories, Inc.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
67 */
68
69 /*
70 * The vnode cache subsystem.
71 *
72 * Life-cycle
73 *
74 * Normally, there are two points where new vnodes are created:
75 * VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
76 * starts in one of the following ways:
77 *
78 * - Allocation, via vcache_get(9) or vcache_new(9).
79 * - Reclamation of inactive vnode, via vcache_vget(9).
80 *
81 * Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
82 * was another, traditional way. Currently, only the draining thread
83 * recycles the vnodes. This behaviour might be revisited.
84 *
85 * The life-cycle ends when the last reference is dropped, usually
86 * in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
87 * the file system that vnode is inactive. Via this call, file system
88 * indicates whether vnode can be recycled (usually, it checks its own
89 * references, e.g. count of links, whether the file was removed).
90 *
91 * Depending on indication, vnode can be put into a free list (cache),
92 * or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to
93 * disassociate underlying file system from the vnode, and finally
94 * destroyed.
95 *
96 * Vnode state
97 *
98 * Vnode is always in one of six states:
99 * - MARKER This is a marker vnode to help list traversal. It
100 * will never change its state.
101 * - LOADING Vnode is associating underlying file system and not
102 * yet ready to use.
103 * - ACTIVE Vnode has associated underlying file system and is
104 * ready to use.
105 * - BLOCKED Vnode is active but cannot get new references.
106 * - RECLAIMING Vnode is disassociating from the underlying file
107 * system.
108 * - RECLAIMED Vnode has disassociated from underlying file system
109 * and is dead.
110 *
111 * Valid state changes are:
112 * LOADING -> ACTIVE
113 * Vnode has been initialised in vcache_get() or
114 * vcache_new() and is ready to use.
115 * ACTIVE -> RECLAIMING
116 * Vnode starts disassociation from underlying file
117 * system in vcache_reclaim().
118 * RECLAIMING -> RECLAIMED
119 * Vnode finished disassociation from underlying file
120 * system in vcache_reclaim().
121 * ACTIVE -> BLOCKED
122 * Either vcache_rekey*() is changing the vnode key or
123 * vrelel() is about to call VOP_INACTIVE().
124 * BLOCKED -> ACTIVE
125 * The block condition is over.
126 * LOADING -> RECLAIMED
127 * Either vcache_get() or vcache_new() failed to
128 * associate the underlying file system or vcache_rekey*()
129 * drops a vnode used as placeholder.
130 *
131 * Of these states LOADING, BLOCKED and RECLAIMING are intermediate
132 * and it is possible to wait for state change.
133 *
134 * State is protected with v_interlock with one exception:
135 * to change from LOADING both v_interlock and vcache.lock must be held
136 * so it is possible to check "state == LOADING" without holding
137 * v_interlock. See vcache_get() for details.
138 *
139 * Reference counting
140 *
141 * Vnode is considered active, if reference count (vnode_t::v_usecount)
142 * is non-zero. It is maintained using: vref(9) and vrele(9), as well
143 * as vput(9), routines. Common points holding references are e.g.
144 * file openings, current working directory, mount points, etc.
145 *
146 * Note on v_usecount and its locking
147 *
148 * At nearly all points it is known that v_usecount could be zero,
149 * the vnode_t::v_interlock will be held. To change v_usecount away
150 * from zero, the interlock must be held. To change from a non-zero
151 * value to zero, again the interlock must be held.
152 *
153 * Changing the usecount from a non-zero value to a non-zero value can
154 * safely be done using atomic operations, without the interlock held.
155 *
156 */
157
158 #include <sys/cdefs.h>
159 __KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.68 2017/01/02 10:36:58 hannken Exp $");
160
161 #include <sys/param.h>
162 #include <sys/kernel.h>
163
164 #include <sys/atomic.h>
165 #include <sys/buf.h>
166 #include <sys/conf.h>
167 #include <sys/device.h>
168 #include <sys/hash.h>
169 #include <sys/kauth.h>
170 #include <sys/kmem.h>
171 #include <sys/kthread.h>
172 #include <sys/module.h>
173 #include <sys/mount.h>
174 #include <sys/namei.h>
175 #include <sys/syscallargs.h>
176 #include <sys/sysctl.h>
177 #include <sys/systm.h>
178 #include <sys/vnode_impl.h>
179 #include <sys/wapbl.h>
180 #include <sys/fstrans.h>
181
182 #include <uvm/uvm.h>
183 #include <uvm/uvm_readahead.h>
184
185 /* Flags to vrelel. */
186 #define VRELEL_ASYNC_RELE 0x0001 /* Always defer to vrele thread. */
187
188 u_int numvnodes __cacheline_aligned;
189
190 /*
191 * There are three lru lists: one holds vnodes waiting for async release,
192 * one is for vnodes which have no buffer/page references and
193 * one for those which do (i.e. v_holdcnt is non-zero).
194 */
195 static vnodelst_t lru_vrele_list __cacheline_aligned;
196 static vnodelst_t lru_free_list __cacheline_aligned;
197 static vnodelst_t lru_hold_list __cacheline_aligned;
198 static kmutex_t vdrain_lock __cacheline_aligned;
199 static kcondvar_t vdrain_cv __cacheline_aligned;
200 static int vdrain_gen;
201 static kcondvar_t vdrain_gen_cv;
202 static bool vdrain_retry;
203 static lwp_t * vdrain_lwp;
204 SLIST_HEAD(hashhead, vnode_impl);
205 static struct {
206 kmutex_t lock;
207 kcondvar_t cv;
208 u_int hashsize;
209 u_long hashmask;
210 struct hashhead *hashtab;
211 pool_cache_t pool;
212 } vcache __cacheline_aligned;
213
214 static void lru_requeue(vnode_t *, vnodelst_t *);
215 static vnodelst_t * lru_which(vnode_t *);
216 static vnode_impl_t * vcache_alloc(void);
217 static void vcache_free(vnode_impl_t *);
218 static void vcache_init(void);
219 static void vcache_reinit(void);
220 static void vcache_reclaim(vnode_t *);
221 static void vrelel(vnode_t *, int);
222 static void vdrain_thread(void *);
223 static void vnpanic(vnode_t *, const char *, ...)
224 __printflike(2, 3);
225
226 /* Routines having to do with the management of the vnode table. */
227 extern struct mount *dead_rootmount;
228 extern int (**dead_vnodeop_p)(void *);
229 extern struct vfsops dead_vfsops;
230
231 /* Vnode state operations and diagnostics. */
232
233 #if defined(DIAGNOSTIC)
234
235 #define VSTATE_GET(vp) \
236 vstate_assert_get((vp), __func__, __LINE__)
237 #define VSTATE_CHANGE(vp, from, to) \
238 vstate_assert_change((vp), (from), (to), __func__, __LINE__)
239 #define VSTATE_WAIT_STABLE(vp) \
240 vstate_assert_wait_stable((vp), __func__, __LINE__)
241 #define VSTATE_ASSERT(vp, state) \
242 vstate_assert((vp), (state), __func__, __LINE__)
243
244 static void
245 vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line)
246 {
247 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
248
249 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
250
251 if (__predict_true(node->vi_state == state))
252 return;
253 vnpanic(vp, "state is %s, expected %s at %s:%d",
254 vstate_name(node->vi_state), vstate_name(state), func, line);
255 }
256
257 static enum vnode_state
258 vstate_assert_get(vnode_t *vp, const char *func, int line)
259 {
260 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
261
262 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
263 if (node->vi_state == VS_MARKER)
264 vnpanic(vp, "state is %s at %s:%d",
265 vstate_name(node->vi_state), func, line);
266
267 return node->vi_state;
268 }
269
270 static void
271 vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
272 {
273 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
274
275 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
276 if (node->vi_state == VS_MARKER)
277 vnpanic(vp, "state is %s at %s:%d",
278 vstate_name(node->vi_state), func, line);
279
280 while (node->vi_state != VS_ACTIVE && node->vi_state != VS_RECLAIMED)
281 cv_wait(&vp->v_cv, vp->v_interlock);
282
283 if (node->vi_state == VS_MARKER)
284 vnpanic(vp, "state is %s at %s:%d",
285 vstate_name(node->vi_state), func, line);
286 }
287
288 static void
289 vstate_assert_change(vnode_t *vp, enum vnode_state from, enum vnode_state to,
290 const char *func, int line)
291 {
292 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
293
294 KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
295 if (from == VS_LOADING)
296 KASSERTMSG(mutex_owned(&vcache.lock), "at %s:%d", func, line);
297
298 if (from == VS_MARKER)
299 vnpanic(vp, "from is %s at %s:%d",
300 vstate_name(from), func, line);
301 if (to == VS_MARKER)
302 vnpanic(vp, "to is %s at %s:%d",
303 vstate_name(to), func, line);
304 if (node->vi_state != from)
305 vnpanic(vp, "from is %s, expected %s at %s:%d\n",
306 vstate_name(node->vi_state), vstate_name(from), func, line);
307 if ((from == VS_BLOCKED || to == VS_BLOCKED) && vp->v_usecount != 1)
308 vnpanic(vp, "%s to %s with usecount %d at %s:%d",
309 vstate_name(from), vstate_name(to), vp->v_usecount,
310 func, line);
311
312 node->vi_state = to;
313 if (from == VS_LOADING)
314 cv_broadcast(&vcache.cv);
315 if (to == VS_ACTIVE || to == VS_RECLAIMED)
316 cv_broadcast(&vp->v_cv);
317 }
318
319 #else /* defined(DIAGNOSTIC) */
320
321 #define VSTATE_GET(vp) \
322 (VNODE_TO_VIMPL((vp))->vi_state)
323 #define VSTATE_CHANGE(vp, from, to) \
324 vstate_change((vp), (from), (to))
325 #define VSTATE_WAIT_STABLE(vp) \
326 vstate_wait_stable((vp))
327 #define VSTATE_ASSERT(vp, state)
328
329 static void
330 vstate_wait_stable(vnode_t *vp)
331 {
332 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
333
334 while (node->vi_state != VS_ACTIVE && node->vi_state != VS_RECLAIMED)
335 cv_wait(&vp->v_cv, vp->v_interlock);
336 }
337
338 static void
339 vstate_change(vnode_t *vp, enum vnode_state from, enum vnode_state to)
340 {
341 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
342
343 node->vi_state = to;
344 if (from == VS_LOADING)
345 cv_broadcast(&vcache.cv);
346 if (to == VS_ACTIVE || to == VS_RECLAIMED)
347 cv_broadcast(&vp->v_cv);
348 }
349
350 #endif /* defined(DIAGNOSTIC) */
351
352 void
353 vfs_vnode_sysinit(void)
354 {
355 int error __diagused;
356
357 dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
358 KASSERT(dead_rootmount != NULL);
359 dead_rootmount->mnt_iflag = IMNT_MPSAFE;
360
361 mutex_init(&vdrain_lock, MUTEX_DEFAULT, IPL_NONE);
362 TAILQ_INIT(&lru_free_list);
363 TAILQ_INIT(&lru_hold_list);
364 TAILQ_INIT(&lru_vrele_list);
365
366 vcache_init();
367
368 cv_init(&vdrain_cv, "vdrain");
369 cv_init(&vdrain_gen_cv, "vdrainwt");
370 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, vdrain_thread,
371 NULL, &vdrain_lwp, "vdrain");
372 KASSERTMSG((error == 0), "kthread_create(vdrain) failed: %d", error);
373 }
374
375 /*
376 * Allocate a new marker vnode.
377 */
378 vnode_t *
379 vnalloc_marker(struct mount *mp)
380 {
381 vnode_impl_t *node;
382 vnode_t *vp;
383
384 node = pool_cache_get(vcache.pool, PR_WAITOK);
385 memset(node, 0, sizeof(*node));
386 vp = VIMPL_TO_VNODE(node);
387 uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
388 vp->v_mount = mp;
389 vp->v_type = VBAD;
390 node->vi_state = VS_MARKER;
391
392 return vp;
393 }
394
395 /*
396 * Free a marker vnode.
397 */
398 void
399 vnfree_marker(vnode_t *vp)
400 {
401 vnode_impl_t *node;
402
403 node = VNODE_TO_VIMPL(vp);
404 KASSERT(node->vi_state == VS_MARKER);
405 uvm_obj_destroy(&vp->v_uobj, true);
406 pool_cache_put(vcache.pool, node);
407 }
408
409 /*
410 * Test a vnode for being a marker vnode.
411 */
412 bool
413 vnis_marker(vnode_t *vp)
414 {
415
416 return (VNODE_TO_VIMPL(vp)->vi_state == VS_MARKER);
417 }
418
419 /*
420 * Return the lru list this node should be on.
421 */
422 static vnodelst_t *
423 lru_which(vnode_t *vp)
424 {
425
426 KASSERT(mutex_owned(vp->v_interlock));
427
428 if (vp->v_holdcnt > 0)
429 return &lru_hold_list;
430 else
431 return &lru_free_list;
432 }
433
434 /*
435 * Put vnode to end of given list.
436 * Both the current and the new list may be NULL, used on vnode alloc/free.
437 * Adjust numvnodes and signal vdrain thread if there is work.
438 */
439 static void
440 lru_requeue(vnode_t *vp, vnodelst_t *listhd)
441 {
442 vnode_impl_t *node;
443
444 mutex_enter(&vdrain_lock);
445 node = VNODE_TO_VIMPL(vp);
446 if (node->vi_lrulisthd != NULL)
447 TAILQ_REMOVE(node->vi_lrulisthd, node, vi_lrulist);
448 else
449 numvnodes++;
450 node->vi_lrulisthd = listhd;
451 if (node->vi_lrulisthd != NULL)
452 TAILQ_INSERT_TAIL(node->vi_lrulisthd, node, vi_lrulist);
453 else
454 numvnodes--;
455 if (numvnodes > desiredvnodes || listhd == &lru_vrele_list)
456 cv_broadcast(&vdrain_cv);
457 mutex_exit(&vdrain_lock);
458 }
459
460 /*
461 * Reclaim a cached vnode. Used from vdrain_thread only.
462 */
463 static __inline void
464 vdrain_remove(vnode_t *vp)
465 {
466 struct mount *mp;
467
468 KASSERT(mutex_owned(&vdrain_lock));
469
470 /* Probe usecount (unlocked). */
471 if (vp->v_usecount > 0)
472 return;
473 /* Try v_interlock -- we lock the wrong direction! */
474 if (!mutex_tryenter(vp->v_interlock))
475 return;
476 /* Probe usecount and state. */
477 if (vp->v_usecount > 0 || VSTATE_GET(vp) != VS_ACTIVE) {
478 mutex_exit(vp->v_interlock);
479 return;
480 }
481 mp = vp->v_mount;
482 if (fstrans_start_nowait(mp, FSTRANS_SHARED) != 0) {
483 mutex_exit(vp->v_interlock);
484 return;
485 }
486 vdrain_retry = true;
487 mutex_exit(&vdrain_lock);
488
489 if (vcache_vget(vp) == 0) {
490 if (!vrecycle(vp))
491 vrele(vp);
492 }
493 fstrans_done(mp);
494
495 mutex_enter(&vdrain_lock);
496 }
497
498 /*
499 * Release a cached vnode. Used from vdrain_thread only.
500 */
501 static __inline void
502 vdrain_vrele(vnode_t *vp)
503 {
504 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
505 struct mount *mp;
506
507 KASSERT(mutex_owned(&vdrain_lock));
508
509 mp = vp->v_mount;
510 if (fstrans_start_nowait(mp, FSTRANS_LAZY) != 0)
511 return;
512
513 /*
514 * First remove the vnode from the vrele list.
515 * Put it on the last lru list, the last vrele()
516 * will put it back onto the right list before
517 * its v_usecount reaches zero.
518 */
519 KASSERT(node->vi_lrulisthd == &lru_vrele_list);
520 TAILQ_REMOVE(node->vi_lrulisthd, node, vi_lrulist);
521 node->vi_lrulisthd = &lru_hold_list;
522 TAILQ_INSERT_TAIL(node->vi_lrulisthd, node, vi_lrulist);
523
524 vdrain_retry = true;
525 mutex_exit(&vdrain_lock);
526
527 mutex_enter(vp->v_interlock);
528 vrelel(vp, 0);
529 fstrans_done(mp);
530
531 mutex_enter(&vdrain_lock);
532 }
533
534 /*
535 * Helper thread to keep the number of vnodes below desiredvnodes
536 * and release vnodes from asynchronous vrele.
537 */
538 static void
539 vdrain_thread(void *cookie)
540 {
541 vnodelst_t *listhd[] = {
542 &lru_vrele_list, &lru_free_list, &lru_hold_list
543 };
544 int i;
545 u_int target;
546 vnode_impl_t *node, *marker;
547
548 marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
549
550 mutex_enter(&vdrain_lock);
551
552 for (;;) {
553 vdrain_retry = false;
554 target = desiredvnodes - desiredvnodes/10;
555
556 for (i = 0; i < __arraycount(listhd); i++) {
557 TAILQ_INSERT_HEAD(listhd[i], marker, vi_lrulist);
558 while ((node = TAILQ_NEXT(marker, vi_lrulist))) {
559 TAILQ_REMOVE(listhd[i], marker, vi_lrulist);
560 TAILQ_INSERT_AFTER(listhd[i], node, marker,
561 vi_lrulist);
562 if (listhd[i] == &lru_vrele_list)
563 vdrain_vrele(VIMPL_TO_VNODE(node));
564 else if (numvnodes < target)
565 break;
566 else
567 vdrain_remove(VIMPL_TO_VNODE(node));
568 }
569 TAILQ_REMOVE(listhd[i], marker, vi_lrulist);
570 }
571
572 if (vdrain_retry) {
573 mutex_exit(&vdrain_lock);
574 yield();
575 mutex_enter(&vdrain_lock);
576 } else {
577 vdrain_gen++;
578 cv_broadcast(&vdrain_gen_cv);
579 cv_wait(&vdrain_cv, &vdrain_lock);
580 }
581 }
582 }
583
584 /*
585 * vput: unlock and release the reference.
586 */
587 void
588 vput(vnode_t *vp)
589 {
590
591 VOP_UNLOCK(vp);
592 vrele(vp);
593 }
594
595 /*
596 * Try to drop reference on a vnode. Abort if we are releasing the
597 * last reference. Note: this _must_ succeed if not the last reference.
598 */
599 static inline bool
600 vtryrele(vnode_t *vp)
601 {
602 u_int use, next;
603
604 for (use = vp->v_usecount;; use = next) {
605 if (use == 1) {
606 return false;
607 }
608 KASSERT(use > 1);
609 next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
610 if (__predict_true(next == use)) {
611 return true;
612 }
613 }
614 }
615
616 /*
617 * Vnode release. If reference count drops to zero, call inactive
618 * routine and either return to freelist or free to the pool.
619 */
620 static void
621 vrelel(vnode_t *vp, int flags)
622 {
623 bool recycle, defer;
624 int error;
625
626 KASSERT(mutex_owned(vp->v_interlock));
627
628 if (__predict_false(vp->v_op == dead_vnodeop_p &&
629 VSTATE_GET(vp) != VS_RECLAIMED)) {
630 vnpanic(vp, "dead but not clean");
631 }
632
633 /*
634 * If not the last reference, just drop the reference count
635 * and unlock.
636 */
637 if (vtryrele(vp)) {
638 mutex_exit(vp->v_interlock);
639 return;
640 }
641 if (vp->v_usecount <= 0 || vp->v_writecount != 0) {
642 vnpanic(vp, "%s: bad ref count", __func__);
643 }
644
645 #ifdef DIAGNOSTIC
646 if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
647 vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
648 vprint("vrelel: missing VOP_CLOSE()", vp);
649 }
650 #endif
651
652 /*
653 * If not clean, deactivate the vnode, but preserve
654 * our reference across the call to VOP_INACTIVE().
655 */
656 if (VSTATE_GET(vp) != VS_RECLAIMED) {
657 recycle = false;
658
659 /*
660 * XXX This ugly block can be largely eliminated if
661 * locking is pushed down into the file systems.
662 *
663 * Defer vnode release to vdrain_thread if caller
664 * requests it explicitly or is the pagedaemon.
665 */
666 if ((curlwp == uvm.pagedaemon_lwp) ||
667 (flags & VRELEL_ASYNC_RELE) != 0) {
668 defer = true;
669 } else if (curlwp == vdrain_lwp) {
670 /*
671 * We have to try harder.
672 */
673 mutex_exit(vp->v_interlock);
674 error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
675 KASSERTMSG((error == 0), "vn_lock failed: %d", error);
676 mutex_enter(vp->v_interlock);
677 defer = false;
678 } else {
679 /* If we can't acquire the lock, then defer. */
680 mutex_exit(vp->v_interlock);
681 error = vn_lock(vp,
682 LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
683 defer = (error != 0);
684 mutex_enter(vp->v_interlock);
685 }
686
687 KASSERT(mutex_owned(vp->v_interlock));
688 KASSERT(! (curlwp == vdrain_lwp && defer));
689
690 if (defer) {
691 /*
692 * Defer reclaim to the kthread; it's not safe to
693 * clean it here. We donate it our last reference.
694 */
695 lru_requeue(vp, &lru_vrele_list);
696 mutex_exit(vp->v_interlock);
697 return;
698 }
699
700 /*
701 * If the node got another reference while we
702 * released the interlock, don't try to inactivate it yet.
703 */
704 if (__predict_false(vtryrele(vp))) {
705 VOP_UNLOCK(vp);
706 mutex_exit(vp->v_interlock);
707 return;
708 }
709 VSTATE_CHANGE(vp, VS_ACTIVE, VS_BLOCKED);
710 mutex_exit(vp->v_interlock);
711
712 /*
713 * The vnode must not gain another reference while being
714 * deactivated. If VOP_INACTIVE() indicates that
715 * the described file has been deleted, then recycle
716 * the vnode.
717 *
718 * Note that VOP_INACTIVE() will drop the vnode lock.
719 */
720 VOP_INACTIVE(vp, &recycle);
721 if (recycle) {
722 /* vcache_reclaim() below will drop the lock. */
723 if (vn_lock(vp, LK_EXCLUSIVE) != 0)
724 recycle = false;
725 }
726 mutex_enter(vp->v_interlock);
727 VSTATE_CHANGE(vp, VS_BLOCKED, VS_ACTIVE);
728 if (!recycle) {
729 if (vtryrele(vp)) {
730 mutex_exit(vp->v_interlock);
731 return;
732 }
733 }
734
735 /* Take care of space accounting. */
736 if (vp->v_iflag & VI_EXECMAP) {
737 atomic_add_int(&uvmexp.execpages,
738 -vp->v_uobj.uo_npages);
739 atomic_add_int(&uvmexp.filepages,
740 vp->v_uobj.uo_npages);
741 }
742 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
743 vp->v_vflag &= ~VV_MAPPED;
744
745 /*
746 * Recycle the vnode if the file is now unused (unlinked),
747 * otherwise just free it.
748 */
749 if (recycle) {
750 VSTATE_ASSERT(vp, VS_ACTIVE);
751 vcache_reclaim(vp);
752 }
753 KASSERT(vp->v_usecount > 0);
754 }
755
756 if (atomic_dec_uint_nv(&vp->v_usecount) != 0) {
757 /* Gained another reference while being reclaimed. */
758 mutex_exit(vp->v_interlock);
759 return;
760 }
761
762 if (VSTATE_GET(vp) == VS_RECLAIMED && vp->v_holdcnt == 0) {
763 /*
764 * It's clean so destroy it. It isn't referenced
765 * anywhere since it has been reclaimed.
766 */
767 vcache_free(VNODE_TO_VIMPL(vp));
768 } else {
769 /*
770 * Otherwise, put it back onto the freelist. It
771 * can't be destroyed while still associated with
772 * a file system.
773 */
774 lru_requeue(vp, lru_which(vp));
775 mutex_exit(vp->v_interlock);
776 }
777 }
778
779 void
780 vrele(vnode_t *vp)
781 {
782
783 if (vtryrele(vp)) {
784 return;
785 }
786 mutex_enter(vp->v_interlock);
787 vrelel(vp, 0);
788 }
789
790 /*
791 * Asynchronous vnode release, vnode is released in different context.
792 */
793 void
794 vrele_async(vnode_t *vp)
795 {
796
797 if (vtryrele(vp)) {
798 return;
799 }
800 mutex_enter(vp->v_interlock);
801 vrelel(vp, VRELEL_ASYNC_RELE);
802 }
803
804 /*
805 * Vnode reference, where a reference is already held by some other
806 * object (for example, a file structure).
807 */
808 void
809 vref(vnode_t *vp)
810 {
811
812 KASSERT(vp->v_usecount != 0);
813
814 atomic_inc_uint(&vp->v_usecount);
815 }
816
817 /*
818 * Page or buffer structure gets a reference.
819 * Called with v_interlock held.
820 */
821 void
822 vholdl(vnode_t *vp)
823 {
824
825 KASSERT(mutex_owned(vp->v_interlock));
826
827 if (vp->v_holdcnt++ == 0 && vp->v_usecount == 0)
828 lru_requeue(vp, lru_which(vp));
829 }
830
831 /*
832 * Page or buffer structure frees a reference.
833 * Called with v_interlock held.
834 */
835 void
836 holdrelel(vnode_t *vp)
837 {
838
839 KASSERT(mutex_owned(vp->v_interlock));
840
841 if (vp->v_holdcnt <= 0) {
842 vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
843 }
844
845 vp->v_holdcnt--;
846 if (vp->v_holdcnt == 0 && vp->v_usecount == 0)
847 lru_requeue(vp, lru_which(vp));
848 }
849
850 /*
851 * Recycle an unused vnode if caller holds the last reference.
852 */
853 bool
854 vrecycle(vnode_t *vp)
855 {
856 int error __diagused;
857
858 mutex_enter(vp->v_interlock);
859
860 /* Make sure we hold the last reference. */
861 VSTATE_WAIT_STABLE(vp);
862 if (vp->v_usecount != 1) {
863 mutex_exit(vp->v_interlock);
864 return false;
865 }
866
867 /* If the vnode is already clean we're done. */
868 if (VSTATE_GET(vp) != VS_ACTIVE) {
869 VSTATE_ASSERT(vp, VS_RECLAIMED);
870 vrelel(vp, 0);
871 return true;
872 }
873
874 /* Prevent further references until the vnode is locked. */
875 VSTATE_CHANGE(vp, VS_ACTIVE, VS_BLOCKED);
876 mutex_exit(vp->v_interlock);
877
878 error = vn_lock(vp, LK_EXCLUSIVE);
879 KASSERT(error == 0);
880
881 mutex_enter(vp->v_interlock);
882 VSTATE_CHANGE(vp, VS_BLOCKED, VS_ACTIVE);
883
884 KASSERT(vp->v_usecount == 1);
885 vcache_reclaim(vp);
886 vrelel(vp, 0);
887
888 return true;
889 }
890
891 /*
892 * Eliminate all activity associated with the requested vnode
893 * and with all vnodes aliased to the requested vnode.
894 */
895 void
896 vrevoke(vnode_t *vp)
897 {
898 vnode_t *vq;
899 enum vtype type;
900 dev_t dev;
901
902 KASSERT(vp->v_usecount > 0);
903
904 mutex_enter(vp->v_interlock);
905 VSTATE_WAIT_STABLE(vp);
906 if (VSTATE_GET(vp) == VS_RECLAIMED) {
907 mutex_exit(vp->v_interlock);
908 return;
909 } else if (vp->v_type != VBLK && vp->v_type != VCHR) {
910 atomic_inc_uint(&vp->v_usecount);
911 mutex_exit(vp->v_interlock);
912 vgone(vp);
913 return;
914 } else {
915 dev = vp->v_rdev;
916 type = vp->v_type;
917 mutex_exit(vp->v_interlock);
918 }
919
920 while (spec_node_lookup_by_dev(type, dev, &vq) == 0) {
921 vgone(vq);
922 }
923 }
924
925 /*
926 * Eliminate all activity associated with a vnode in preparation for
927 * reuse. Drops a reference from the vnode.
928 */
929 void
930 vgone(vnode_t *vp)
931 {
932
933 if (vn_lock(vp, LK_EXCLUSIVE) != 0) {
934 VSTATE_ASSERT(vp, VS_RECLAIMED);
935 vrele(vp);
936 }
937
938 mutex_enter(vp->v_interlock);
939 vcache_reclaim(vp);
940 vrelel(vp, 0);
941 }
942
943 static inline uint32_t
944 vcache_hash(const struct vcache_key *key)
945 {
946 uint32_t hash = HASH32_BUF_INIT;
947
948 hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
949 hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
950 return hash;
951 }
952
953 static void
954 vcache_init(void)
955 {
956
957 vcache.pool = pool_cache_init(sizeof(vnode_impl_t), 0, 0, 0,
958 "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
959 KASSERT(vcache.pool != NULL);
960 mutex_init(&vcache.lock, MUTEX_DEFAULT, IPL_NONE);
961 cv_init(&vcache.cv, "vcache");
962 vcache.hashsize = desiredvnodes;
963 vcache.hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
964 &vcache.hashmask);
965 }
966
967 static void
968 vcache_reinit(void)
969 {
970 int i;
971 uint32_t hash;
972 u_long oldmask, newmask;
973 struct hashhead *oldtab, *newtab;
974 vnode_impl_t *node;
975
976 newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
977 mutex_enter(&vcache.lock);
978 oldtab = vcache.hashtab;
979 oldmask = vcache.hashmask;
980 vcache.hashsize = desiredvnodes;
981 vcache.hashtab = newtab;
982 vcache.hashmask = newmask;
983 for (i = 0; i <= oldmask; i++) {
984 while ((node = SLIST_FIRST(&oldtab[i])) != NULL) {
985 SLIST_REMOVE(&oldtab[i], node, vnode_impl, vi_hash);
986 hash = vcache_hash(&node->vi_key);
987 SLIST_INSERT_HEAD(&newtab[hash & vcache.hashmask],
988 node, vi_hash);
989 }
990 }
991 mutex_exit(&vcache.lock);
992 hashdone(oldtab, HASH_SLIST, oldmask);
993 }
994
995 static inline vnode_impl_t *
996 vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
997 {
998 struct hashhead *hashp;
999 vnode_impl_t *node;
1000
1001 KASSERT(mutex_owned(&vcache.lock));
1002
1003 hashp = &vcache.hashtab[hash & vcache.hashmask];
1004 SLIST_FOREACH(node, hashp, vi_hash) {
1005 if (key->vk_mount != node->vi_key.vk_mount)
1006 continue;
1007 if (key->vk_key_len != node->vi_key.vk_key_len)
1008 continue;
1009 if (memcmp(key->vk_key, node->vi_key.vk_key, key->vk_key_len))
1010 continue;
1011 return node;
1012 }
1013 return NULL;
1014 }
1015
1016 /*
1017 * Allocate a new, uninitialized vcache node.
1018 */
1019 static vnode_impl_t *
1020 vcache_alloc(void)
1021 {
1022 vnode_impl_t *node;
1023 vnode_t *vp;
1024
1025 node = pool_cache_get(vcache.pool, PR_WAITOK);
1026 memset(node, 0, sizeof(*node));
1027
1028 /* SLIST_INIT(&node->vi_hash); */
1029
1030 vp = VIMPL_TO_VNODE(node);
1031 uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 0);
1032 cv_init(&vp->v_cv, "vnode");
1033 /* LIST_INIT(&vp->v_nclist); */
1034 /* LIST_INIT(&vp->v_dnclist); */
1035
1036 rw_init(&vp->v_lock);
1037 vp->v_usecount = 1;
1038 vp->v_type = VNON;
1039 vp->v_size = vp->v_writesize = VSIZENOTSET;
1040
1041 node->vi_state = VS_LOADING;
1042
1043 lru_requeue(vp, &lru_free_list);
1044
1045 return node;
1046 }
1047
1048 /*
1049 * Free an unused, unreferenced vcache node.
1050 * v_interlock locked on entry.
1051 */
1052 static void
1053 vcache_free(vnode_impl_t *node)
1054 {
1055 vnode_t *vp;
1056
1057 vp = VIMPL_TO_VNODE(node);
1058 KASSERT(mutex_owned(vp->v_interlock));
1059
1060 KASSERT(vp->v_usecount == 0);
1061 KASSERT(vp->v_holdcnt == 0);
1062 KASSERT(vp->v_writecount == 0);
1063 lru_requeue(vp, NULL);
1064 mutex_exit(vp->v_interlock);
1065
1066 vfs_insmntque(vp, NULL);
1067 if (vp->v_type == VBLK || vp->v_type == VCHR)
1068 spec_node_destroy(vp);
1069
1070 rw_destroy(&vp->v_lock);
1071 uvm_obj_destroy(&vp->v_uobj, true);
1072 cv_destroy(&vp->v_cv);
1073 pool_cache_put(vcache.pool, node);
1074 }
1075
1076 /*
1077 * Try to get an initial reference on this cached vnode.
1078 * Returns zero on success, ENOENT if the vnode has been reclaimed and
1079 * EBUSY if the vnode state is unstable.
1080 *
1081 * v_interlock locked on entry and unlocked on exit.
1082 */
1083 int
1084 vcache_tryvget(vnode_t *vp)
1085 {
1086 int error = 0;
1087
1088 KASSERT(mutex_owned(vp->v_interlock));
1089
1090 if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED))
1091 error = ENOENT;
1092 else if (__predict_false(VSTATE_GET(vp) != VS_ACTIVE))
1093 error = EBUSY;
1094 else if (vp->v_usecount == 0)
1095 vp->v_usecount = 1;
1096 else
1097 atomic_inc_uint(&vp->v_usecount);
1098
1099 mutex_exit(vp->v_interlock);
1100
1101 return error;
1102 }
1103
1104 /*
1105 * Try to get an initial reference on this cached vnode.
1106 * Returns zero on success and ENOENT if the vnode has been reclaimed.
1107 * Will wait for the vnode state to be stable.
1108 *
1109 * v_interlock locked on entry and unlocked on exit.
1110 */
1111 int
1112 vcache_vget(vnode_t *vp)
1113 {
1114
1115 KASSERT(mutex_owned(vp->v_interlock));
1116
1117 /* Increment hold count to prevent vnode from disappearing. */
1118 vp->v_holdcnt++;
1119 VSTATE_WAIT_STABLE(vp);
1120 vp->v_holdcnt--;
1121
1122 /* If this was the last reference to a reclaimed vnode free it now. */
1123 if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED)) {
1124 if (vp->v_holdcnt == 0 && vp->v_usecount == 0)
1125 vcache_free(VNODE_TO_VIMPL(vp));
1126 else
1127 mutex_exit(vp->v_interlock);
1128 return ENOENT;
1129 }
1130 VSTATE_ASSERT(vp, VS_ACTIVE);
1131 if (vp->v_usecount == 0)
1132 vp->v_usecount = 1;
1133 else
1134 atomic_inc_uint(&vp->v_usecount);
1135
1136 mutex_exit(vp->v_interlock);
1137
1138 return 0;
1139 }
1140
1141 /*
1142 * Get a vnode / fs node pair by key and return it referenced through vpp.
1143 */
1144 int
1145 vcache_get(struct mount *mp, const void *key, size_t key_len,
1146 struct vnode **vpp)
1147 {
1148 int error;
1149 uint32_t hash;
1150 const void *new_key;
1151 struct vnode *vp;
1152 struct vcache_key vcache_key;
1153 vnode_impl_t *node, *new_node;
1154
1155 new_key = NULL;
1156 *vpp = NULL;
1157
1158 vcache_key.vk_mount = mp;
1159 vcache_key.vk_key = key;
1160 vcache_key.vk_key_len = key_len;
1161 hash = vcache_hash(&vcache_key);
1162
1163 again:
1164 mutex_enter(&vcache.lock);
1165 node = vcache_hash_lookup(&vcache_key, hash);
1166
1167 /* If found, take a reference or retry. */
1168 if (__predict_true(node != NULL)) {
1169 /*
1170 * If the vnode is loading we cannot take the v_interlock
1171 * here as it might change during load (see uvm_obj_setlock()).
1172 * As changing state from VS_LOADING requires both vcache.lock
1173 * and v_interlock it is safe to test with vcache.lock held.
1174 *
1175 * Wait for vnodes changing state from VS_LOADING and retry.
1176 */
1177 if (__predict_false(node->vi_state == VS_LOADING)) {
1178 cv_wait(&vcache.cv, &vcache.lock);
1179 mutex_exit(&vcache.lock);
1180 goto again;
1181 }
1182 vp = VIMPL_TO_VNODE(node);
1183 mutex_enter(vp->v_interlock);
1184 mutex_exit(&vcache.lock);
1185 error = vcache_vget(vp);
1186 if (error == ENOENT)
1187 goto again;
1188 if (error == 0)
1189 *vpp = vp;
1190 KASSERT((error != 0) == (*vpp == NULL));
1191 return error;
1192 }
1193 mutex_exit(&vcache.lock);
1194
1195 /* Allocate and initialize a new vcache / vnode pair. */
1196 error = vfs_busy(mp, NULL);
1197 if (error)
1198 return error;
1199 new_node = vcache_alloc();
1200 new_node->vi_key = vcache_key;
1201 vp = VIMPL_TO_VNODE(new_node);
1202 mutex_enter(&vcache.lock);
1203 node = vcache_hash_lookup(&vcache_key, hash);
1204 if (node == NULL) {
1205 SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1206 new_node, vi_hash);
1207 node = new_node;
1208 }
1209
1210 /* If another thread beat us inserting this node, retry. */
1211 if (node != new_node) {
1212 mutex_enter(vp->v_interlock);
1213 VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
1214 mutex_exit(&vcache.lock);
1215 vrelel(vp, 0);
1216 vfs_unbusy(mp, false, NULL);
1217 goto again;
1218 }
1219 mutex_exit(&vcache.lock);
1220
1221 /* Load the fs node. Exclusive as new_node is VS_LOADING. */
1222 error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
1223 if (error) {
1224 mutex_enter(&vcache.lock);
1225 SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1226 new_node, vnode_impl, vi_hash);
1227 mutex_enter(vp->v_interlock);
1228 VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
1229 mutex_exit(&vcache.lock);
1230 vrelel(vp, 0);
1231 vfs_unbusy(mp, false, NULL);
1232 KASSERT(*vpp == NULL);
1233 return error;
1234 }
1235 KASSERT(new_key != NULL);
1236 KASSERT(memcmp(key, new_key, key_len) == 0);
1237 KASSERT(vp->v_op != NULL);
1238 vfs_insmntque(vp, mp);
1239 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1240 vp->v_vflag |= VV_MPSAFE;
1241 vfs_unbusy(mp, true, NULL);
1242
1243 /* Finished loading, finalize node. */
1244 mutex_enter(&vcache.lock);
1245 new_node->vi_key.vk_key = new_key;
1246 mutex_enter(vp->v_interlock);
1247 VSTATE_CHANGE(vp, VS_LOADING, VS_ACTIVE);
1248 mutex_exit(vp->v_interlock);
1249 mutex_exit(&vcache.lock);
1250 *vpp = vp;
1251 return 0;
1252 }
1253
1254 /*
1255 * Create a new vnode / fs node pair and return it referenced through vpp.
1256 */
1257 int
1258 vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
1259 kauth_cred_t cred, struct vnode **vpp)
1260 {
1261 int error;
1262 uint32_t hash;
1263 struct vnode *ovp, *vp;
1264 vnode_impl_t *new_node;
1265 vnode_impl_t *old_node __diagused;
1266
1267 *vpp = NULL;
1268
1269 /* Allocate and initialize a new vcache / vnode pair. */
1270 error = vfs_busy(mp, NULL);
1271 if (error)
1272 return error;
1273 new_node = vcache_alloc();
1274 new_node->vi_key.vk_mount = mp;
1275 vp = VIMPL_TO_VNODE(new_node);
1276
1277 /* Create and load the fs node. */
1278 error = VFS_NEWVNODE(mp, dvp, vp, vap, cred,
1279 &new_node->vi_key.vk_key_len, &new_node->vi_key.vk_key);
1280 if (error) {
1281 mutex_enter(&vcache.lock);
1282 mutex_enter(vp->v_interlock);
1283 VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
1284 mutex_exit(&vcache.lock);
1285 vrelel(vp, 0);
1286 vfs_unbusy(mp, false, NULL);
1287 KASSERT(*vpp == NULL);
1288 return error;
1289 }
1290 KASSERT(new_node->vi_key.vk_key != NULL);
1291 KASSERT(vp->v_op != NULL);
1292 hash = vcache_hash(&new_node->vi_key);
1293
1294 /* Wait for previous instance to be reclaimed, then insert new node. */
1295 mutex_enter(&vcache.lock);
1296 while ((old_node = vcache_hash_lookup(&new_node->vi_key, hash))) {
1297 ovp = VIMPL_TO_VNODE(old_node);
1298 mutex_enter(ovp->v_interlock);
1299 mutex_exit(&vcache.lock);
1300 error = vcache_vget(ovp);
1301 KASSERT(error == ENOENT);
1302 mutex_enter(&vcache.lock);
1303 }
1304 SLIST_INSERT_HEAD(&vcache.hashtab[hash & vcache.hashmask],
1305 new_node, vi_hash);
1306 mutex_exit(&vcache.lock);
1307 vfs_insmntque(vp, mp);
1308 if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
1309 vp->v_vflag |= VV_MPSAFE;
1310 vfs_unbusy(mp, true, NULL);
1311
1312 /* Finished loading, finalize node. */
1313 mutex_enter(&vcache.lock);
1314 mutex_enter(vp->v_interlock);
1315 VSTATE_CHANGE(vp, VS_LOADING, VS_ACTIVE);
1316 mutex_exit(&vcache.lock);
1317 mutex_exit(vp->v_interlock);
1318 *vpp = vp;
1319 return 0;
1320 }
1321
1322 /*
1323 * Prepare key change: update old cache nodes key and lock new cache node.
1324 * Return an error if the new node already exists.
1325 */
1326 int
1327 vcache_rekey_enter(struct mount *mp, struct vnode *vp,
1328 const void *old_key, size_t old_key_len,
1329 const void *new_key, size_t new_key_len)
1330 {
1331 uint32_t old_hash, new_hash;
1332 struct vcache_key old_vcache_key, new_vcache_key;
1333 vnode_impl_t *node, *new_node;
1334 struct vnode *tvp;
1335
1336 old_vcache_key.vk_mount = mp;
1337 old_vcache_key.vk_key = old_key;
1338 old_vcache_key.vk_key_len = old_key_len;
1339 old_hash = vcache_hash(&old_vcache_key);
1340
1341 new_vcache_key.vk_mount = mp;
1342 new_vcache_key.vk_key = new_key;
1343 new_vcache_key.vk_key_len = new_key_len;
1344 new_hash = vcache_hash(&new_vcache_key);
1345
1346 new_node = vcache_alloc();
1347 new_node->vi_key = new_vcache_key;
1348 tvp = VIMPL_TO_VNODE(new_node);
1349
1350 /* Insert locked new node used as placeholder. */
1351 mutex_enter(&vcache.lock);
1352 node = vcache_hash_lookup(&new_vcache_key, new_hash);
1353 if (node != NULL) {
1354 mutex_enter(tvp->v_interlock);
1355 VSTATE_CHANGE(tvp, VS_LOADING, VS_RECLAIMED);
1356 mutex_exit(&vcache.lock);
1357 vrelel(tvp, 0);
1358 return EEXIST;
1359 }
1360 SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
1361 new_node, vi_hash);
1362
1363 /* Replace old nodes key with the temporary copy. */
1364 node = vcache_hash_lookup(&old_vcache_key, old_hash);
1365 KASSERT(node != NULL);
1366 KASSERT(VIMPL_TO_VNODE(node) == vp);
1367 KASSERT(node->vi_key.vk_key != old_vcache_key.vk_key);
1368 node->vi_key = old_vcache_key;
1369 mutex_exit(&vcache.lock);
1370 return 0;
1371 }
1372
1373 /*
1374 * Key change complete: update old node and remove placeholder.
1375 */
1376 void
1377 vcache_rekey_exit(struct mount *mp, struct vnode *vp,
1378 const void *old_key, size_t old_key_len,
1379 const void *new_key, size_t new_key_len)
1380 {
1381 uint32_t old_hash, new_hash;
1382 struct vcache_key old_vcache_key, new_vcache_key;
1383 vnode_impl_t *old_node, *new_node;
1384 struct vnode *tvp;
1385
1386 old_vcache_key.vk_mount = mp;
1387 old_vcache_key.vk_key = old_key;
1388 old_vcache_key.vk_key_len = old_key_len;
1389 old_hash = vcache_hash(&old_vcache_key);
1390
1391 new_vcache_key.vk_mount = mp;
1392 new_vcache_key.vk_key = new_key;
1393 new_vcache_key.vk_key_len = new_key_len;
1394 new_hash = vcache_hash(&new_vcache_key);
1395
1396 mutex_enter(&vcache.lock);
1397
1398 /* Lookup old and new node. */
1399 old_node = vcache_hash_lookup(&old_vcache_key, old_hash);
1400 KASSERT(old_node != NULL);
1401 KASSERT(VIMPL_TO_VNODE(old_node) == vp);
1402
1403 new_node = vcache_hash_lookup(&new_vcache_key, new_hash);
1404 KASSERT(new_node != NULL);
1405 KASSERT(new_node->vi_key.vk_key_len == new_key_len);
1406 tvp = VIMPL_TO_VNODE(new_node);
1407 mutex_enter(tvp->v_interlock);
1408 VSTATE_ASSERT(VIMPL_TO_VNODE(new_node), VS_LOADING);
1409
1410 /* Rekey old node and put it onto its new hashlist. */
1411 old_node->vi_key = new_vcache_key;
1412 if (old_hash != new_hash) {
1413 SLIST_REMOVE(&vcache.hashtab[old_hash & vcache.hashmask],
1414 old_node, vnode_impl, vi_hash);
1415 SLIST_INSERT_HEAD(&vcache.hashtab[new_hash & vcache.hashmask],
1416 old_node, vi_hash);
1417 }
1418
1419 /* Remove new node used as placeholder. */
1420 SLIST_REMOVE(&vcache.hashtab[new_hash & vcache.hashmask],
1421 new_node, vnode_impl, vi_hash);
1422 VSTATE_CHANGE(tvp, VS_LOADING, VS_RECLAIMED);
1423 mutex_exit(&vcache.lock);
1424 vrelel(tvp, 0);
1425 }
1426
1427 /*
1428 * Disassociate the underlying file system from a vnode.
1429 *
1430 * Must be called with vnode locked and will return unlocked.
1431 * Must be called with the interlock held, and will return with it held.
1432 */
1433 static void
1434 vcache_reclaim(vnode_t *vp)
1435 {
1436 lwp_t *l = curlwp;
1437 vnode_impl_t *node = VNODE_TO_VIMPL(vp);
1438 uint32_t hash;
1439 uint8_t temp_buf[64], *temp_key;
1440 size_t temp_key_len;
1441 bool recycle, active;
1442 int error;
1443
1444 KASSERT((vp->v_vflag & VV_LOCKSWORK) == 0 ||
1445 VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
1446 KASSERT(mutex_owned(vp->v_interlock));
1447 KASSERT(vp->v_usecount != 0);
1448
1449 active = (vp->v_usecount > 1);
1450 temp_key_len = node->vi_key.vk_key_len;
1451 /*
1452 * Prevent the vnode from being recycled or brought into use
1453 * while we clean it out.
1454 */
1455 VSTATE_CHANGE(vp, VS_ACTIVE, VS_RECLAIMING);
1456 if (vp->v_iflag & VI_EXECMAP) {
1457 atomic_add_int(&uvmexp.execpages, -vp->v_uobj.uo_npages);
1458 atomic_add_int(&uvmexp.filepages, vp->v_uobj.uo_npages);
1459 }
1460 vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
1461 mutex_exit(vp->v_interlock);
1462
1463 /* Replace the vnode key with a temporary copy. */
1464 if (node->vi_key.vk_key_len > sizeof(temp_buf)) {
1465 temp_key = kmem_alloc(temp_key_len, KM_SLEEP);
1466 } else {
1467 temp_key = temp_buf;
1468 }
1469 mutex_enter(&vcache.lock);
1470 memcpy(temp_key, node->vi_key.vk_key, temp_key_len);
1471 node->vi_key.vk_key = temp_key;
1472 mutex_exit(&vcache.lock);
1473
1474 /*
1475 * Clean out any cached data associated with the vnode.
1476 * If purging an active vnode, it must be closed and
1477 * deactivated before being reclaimed.
1478 */
1479 error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
1480 if (error != 0) {
1481 if (wapbl_vphaswapbl(vp))
1482 WAPBL_DISCARD(wapbl_vptomp(vp));
1483 error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
1484 }
1485 KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
1486 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1487 if (active && (vp->v_type == VBLK || vp->v_type == VCHR)) {
1488 spec_node_revoke(vp);
1489 }
1490
1491 /*
1492 * Disassociate the underlying file system from the vnode.
1493 * Note that the VOP_INACTIVE will unlock the vnode.
1494 */
1495 VOP_INACTIVE(vp, &recycle);
1496 if (VOP_RECLAIM(vp)) {
1497 vnpanic(vp, "%s: cannot reclaim", __func__);
1498 }
1499
1500 KASSERT(vp->v_data == NULL);
1501 KASSERT(vp->v_uobj.uo_npages == 0);
1502
1503 if (vp->v_type == VREG && vp->v_ractx != NULL) {
1504 uvm_ra_freectx(vp->v_ractx);
1505 vp->v_ractx = NULL;
1506 }
1507
1508 /* Purge name cache. */
1509 cache_purge(vp);
1510
1511 /* Move to dead mount. */
1512 vp->v_vflag &= ~VV_ROOT;
1513 atomic_inc_uint(&dead_rootmount->mnt_refcnt);
1514 vfs_insmntque(vp, dead_rootmount);
1515
1516 /* Remove from vnode cache. */
1517 hash = vcache_hash(&node->vi_key);
1518 mutex_enter(&vcache.lock);
1519 KASSERT(node == vcache_hash_lookup(&node->vi_key, hash));
1520 SLIST_REMOVE(&vcache.hashtab[hash & vcache.hashmask],
1521 node, vnode_impl, vi_hash);
1522 mutex_exit(&vcache.lock);
1523 if (temp_key != temp_buf)
1524 kmem_free(temp_key, temp_key_len);
1525
1526 /* Done with purge, notify sleepers of the grim news. */
1527 mutex_enter(vp->v_interlock);
1528 vp->v_op = dead_vnodeop_p;
1529 vp->v_vflag |= VV_LOCKSWORK;
1530 VSTATE_CHANGE(vp, VS_RECLAIMING, VS_RECLAIMED);
1531 vp->v_tag = VT_NON;
1532 KNOTE(&vp->v_klist, NOTE_REVOKE);
1533
1534 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1535 }
1536
1537 /*
1538 * Update outstanding I/O count and do wakeup if requested.
1539 */
1540 void
1541 vwakeup(struct buf *bp)
1542 {
1543 vnode_t *vp;
1544
1545 if ((vp = bp->b_vp) == NULL)
1546 return;
1547
1548 KASSERT(bp->b_objlock == vp->v_interlock);
1549 KASSERT(mutex_owned(bp->b_objlock));
1550
1551 if (--vp->v_numoutput < 0)
1552 vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
1553 if (vp->v_numoutput == 0)
1554 cv_broadcast(&vp->v_cv);
1555 }
1556
1557 /*
1558 * Test a vnode for being or becoming dead. Returns one of:
1559 * EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
1560 * ENOENT: vnode is dead.
1561 * 0: otherwise.
1562 *
1563 * Whenever this function returns a non-zero value all future
1564 * calls will also return a non-zero value.
1565 */
1566 int
1567 vdead_check(struct vnode *vp, int flags)
1568 {
1569
1570 KASSERT(mutex_owned(vp->v_interlock));
1571
1572 if (! ISSET(flags, VDEAD_NOWAIT))
1573 VSTATE_WAIT_STABLE(vp);
1574
1575 if (VSTATE_GET(vp) == VS_RECLAIMING) {
1576 KASSERT(ISSET(flags, VDEAD_NOWAIT));
1577 return EBUSY;
1578 } else if (VSTATE_GET(vp) == VS_RECLAIMED) {
1579 return ENOENT;
1580 }
1581
1582 return 0;
1583 }
1584
1585 int
1586 vfs_drainvnodes(void)
1587 {
1588 int i, gen;
1589
1590 mutex_enter(&vdrain_lock);
1591 for (i = 0; i < 2; i++) {
1592 gen = vdrain_gen;
1593 while (gen == vdrain_gen) {
1594 cv_broadcast(&vdrain_cv);
1595 cv_wait(&vdrain_gen_cv, &vdrain_lock);
1596 }
1597 }
1598 mutex_exit(&vdrain_lock);
1599
1600 if (numvnodes >= desiredvnodes)
1601 return EBUSY;
1602
1603 if (vcache.hashsize != desiredvnodes)
1604 vcache_reinit();
1605
1606 return 0;
1607 }
1608
1609 void
1610 vnpanic(vnode_t *vp, const char *fmt, ...)
1611 {
1612 va_list ap;
1613
1614 #ifdef DIAGNOSTIC
1615 vprint(NULL, vp);
1616 #endif
1617 va_start(ap, fmt);
1618 vpanic(fmt, ap);
1619 va_end(ap);
1620 }
1621