Home | History | Annotate | Line # | Download | only in kern
vfs_wapbl.c revision 1.105
      1 /*	$NetBSD: vfs_wapbl.c,v 1.105 2020/03/14 15:32:51 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This implements file system independent write ahead filesystem logging.
     34  */
     35 
     36 #define WAPBL_INTERNAL
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.105 2020/03/14 15:32:51 ad Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/bitops.h>
     43 #include <sys/time.h>
     44 #include <sys/wapbl.h>
     45 #include <sys/wapbl_replay.h>
     46 
     47 #ifdef _KERNEL
     48 
     49 #include <sys/atomic.h>
     50 #include <sys/conf.h>
     51 #include <sys/evcnt.h>
     52 #include <sys/file.h>
     53 #include <sys/kauth.h>
     54 #include <sys/kernel.h>
     55 #include <sys/module.h>
     56 #include <sys/mount.h>
     57 #include <sys/mutex.h>
     58 #include <sys/namei.h>
     59 #include <sys/proc.h>
     60 #include <sys/resourcevar.h>
     61 #include <sys/sysctl.h>
     62 #include <sys/uio.h>
     63 #include <sys/vnode.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 #define	wapbl_alloc(s) kmem_alloc((s), KM_SLEEP)
     68 #define	wapbl_free(a, s) kmem_free((a), (s))
     69 #define	wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP)
     70 
     71 static struct sysctllog *wapbl_sysctl;
     72 static int wapbl_flush_disk_cache = 1;
     73 static int wapbl_verbose_commit = 0;
     74 static int wapbl_allow_dpofua = 0; 	/* switched off by default for now */
     75 static int wapbl_journal_iobufs = 4;
     76 
     77 static inline size_t wapbl_space_free(size_t, off_t, off_t);
     78 
     79 #else /* !_KERNEL */
     80 
     81 #include <assert.h>
     82 #include <errno.h>
     83 #include <stdbool.h>
     84 #include <stdio.h>
     85 #include <stdlib.h>
     86 #include <string.h>
     87 
     88 #define	KDASSERT(x) assert(x)
     89 #define	KASSERT(x) assert(x)
     90 #define	wapbl_alloc(s) malloc(s)
     91 #define	wapbl_free(a, s) free(a)
     92 #define	wapbl_calloc(n, s) calloc((n), (s))
     93 
     94 #endif /* !_KERNEL */
     95 
     96 /*
     97  * INTERNAL DATA STRUCTURES
     98  */
     99 
    100 /*
    101  * This structure holds per-mount log information.
    102  *
    103  * Legend:	a = atomic access only
    104  *		r = read-only after init
    105  *		l = rwlock held
    106  *		m = mutex held
    107  *		lm = rwlock held writing or mutex held
    108  *		u = unlocked access ok
    109  *		b = bufcache_lock held
    110  */
    111 LIST_HEAD(wapbl_ino_head, wapbl_ino);
    112 struct wapbl {
    113 	struct vnode *wl_logvp;	/* r:	log here */
    114 	struct vnode *wl_devvp;	/* r:	log on this device */
    115 	struct mount *wl_mount;	/* r:	mountpoint wl is associated with */
    116 	daddr_t wl_logpbn;	/* r:	Physical block number of start of log */
    117 	int wl_log_dev_bshift;	/* r:	logarithm of device block size of log
    118 					device */
    119 	int wl_fs_dev_bshift;	/* r:	logarithm of device block size of
    120 					filesystem device */
    121 
    122 	unsigned wl_lock_count;	/* m:	Count of transactions in progress */
    123 
    124 	size_t wl_circ_size; 	/* r:	Number of bytes in buffer of log */
    125 	size_t wl_circ_off;	/* r:	Number of bytes reserved at start */
    126 
    127 	size_t wl_bufcount_max;	/* r:	Number of buffers reserved for log */
    128 	size_t wl_bufbytes_max;	/* r:	Number of buf bytes reserved for log */
    129 
    130 	off_t wl_head;		/* l:	Byte offset of log head */
    131 	off_t wl_tail;		/* l:	Byte offset of log tail */
    132 	/*
    133 	 * WAPBL log layout, stored on wl_devvp at wl_logpbn:
    134 	 *
    135 	 *  ___________________ wl_circ_size __________________
    136 	 * /                                                   \
    137 	 * +---------+---------+-------+--------------+--------+
    138 	 * [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ]
    139 	 * +---------+---------+-------+--------------+--------+
    140 	 *       wl_circ_off --^       ^-- wl_head    ^-- wl_tail
    141 	 *
    142 	 * commit0 and commit1 are commit headers.  A commit header has
    143 	 * a generation number, indicating which of the two headers is
    144 	 * more recent, and an assignment of head and tail pointers.
    145 	 * The rest is a circular queue of log records, starting at
    146 	 * the byte offset wl_circ_off.
    147 	 *
    148 	 * E marks empty space for records.
    149 	 * W marks records for block writes issued but waiting.
    150 	 * C marks completed records.
    151 	 *
    152 	 * wapbl_flush writes new records to empty `E' spaces after
    153 	 * wl_head from the current transaction in memory.
    154 	 *
    155 	 * wapbl_truncate advances wl_tail past any completed `C'
    156 	 * records, freeing them up for use.
    157 	 *
    158 	 * head == tail == 0 means log is empty.
    159 	 * head == tail != 0 means log is full.
    160 	 *
    161 	 * See assertions in wapbl_advance() for other boundary
    162 	 * conditions.
    163 	 *
    164 	 * Only wapbl_flush moves the head, except when wapbl_truncate
    165 	 * sets it to 0 to indicate that the log is empty.
    166 	 *
    167 	 * Only wapbl_truncate moves the tail, except when wapbl_flush
    168 	 * sets it to wl_circ_off to indicate that the log is full.
    169 	 */
    170 
    171 	struct wapbl_wc_header *wl_wc_header;	/* l	*/
    172 	void *wl_wc_scratch;	/* l:	scratch space (XXX: por que?!?) */
    173 
    174 	kmutex_t wl_mtx;	/* u:	short-term lock */
    175 	krwlock_t wl_rwlock;	/* u:	File system transaction lock */
    176 
    177 	/*
    178 	 * Must be held while accessing
    179 	 * wl_count or wl_bufs or head or tail
    180 	 */
    181 
    182 #if _KERNEL
    183 	/*
    184 	 * Callback called from within the flush routine to flush any extra
    185 	 * bits.  Note that flush may be skipped without calling this if
    186 	 * there are no outstanding buffers in the transaction.
    187 	 */
    188 	wapbl_flush_fn_t wl_flush;	/* r	*/
    189 	wapbl_flush_fn_t wl_flush_abort;/* r	*/
    190 
    191 	/* Event counters */
    192 	char wl_ev_group[EVCNT_STRING_MAX];	/* r	*/
    193 	struct evcnt wl_ev_commit;		/* l	*/
    194 	struct evcnt wl_ev_journalwrite;	/* l	*/
    195 	struct evcnt wl_ev_jbufs_bio_nowait;	/* l	*/
    196 	struct evcnt wl_ev_metawrite;		/* lm	*/
    197 	struct evcnt wl_ev_cacheflush;		/* l	*/
    198 #endif
    199 
    200 	size_t wl_bufbytes;	/* m:	Byte count of pages in wl_bufs */
    201 	size_t wl_bufcount;	/* m:	Count of buffers in wl_bufs */
    202 	size_t wl_bcount;	/* m:	Total bcount of wl_bufs */
    203 
    204 	TAILQ_HEAD(, buf) wl_bufs; /* m: Buffers in current transaction */
    205 
    206 	kcondvar_t wl_reclaimable_cv;	/* m (obviously) */
    207 	size_t wl_reclaimable_bytes; /* m:	Amount of space available for
    208 						reclamation by truncate */
    209 	int wl_error_count;	/* m:	# of wl_entries with errors */
    210 	size_t wl_reserved_bytes; /* never truncate log smaller than this */
    211 
    212 #ifdef WAPBL_DEBUG_BUFBYTES
    213 	size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */
    214 #endif
    215 
    216 #if _KERNEL
    217 	int wl_brperjblock;	/* r Block records per journal block */
    218 #endif
    219 
    220 	TAILQ_HEAD(, wapbl_dealloc) wl_dealloclist;	/* lm:	list head */
    221 	int wl_dealloccnt;				/* lm:	total count */
    222 	int wl_dealloclim;				/* r:	max count */
    223 
    224 	/* hashtable of inode numbers for allocated but unlinked inodes */
    225 	/* synch ??? */
    226 	struct wapbl_ino_head *wl_inohash;
    227 	u_long wl_inohashmask;
    228 	int wl_inohashcnt;
    229 
    230 	SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* On disk transaction
    231 						   accounting */
    232 
    233 	/* buffers for wapbl_buffered_write() */
    234 	TAILQ_HEAD(, buf) wl_iobufs;		/* l: Free or filling bufs */
    235 	TAILQ_HEAD(, buf) wl_iobufs_busy;	/* l: In-transit bufs */
    236 
    237 	int wl_dkcache;		/* r: 	disk cache flags */
    238 #define WAPBL_USE_FUA(wl)	\
    239 		(wapbl_allow_dpofua && ISSET((wl)->wl_dkcache, DKCACHE_FUA))
    240 #define WAPBL_JFLAGS(wl)	\
    241 		(WAPBL_USE_FUA(wl) ? (wl)->wl_jwrite_flags : 0)
    242 #define WAPBL_JDATA_FLAGS(wl)	\
    243 		(WAPBL_JFLAGS(wl) & B_MEDIA_DPO)	/* only DPO */
    244 	int wl_jwrite_flags;	/* r: 	journal write flags */
    245 };
    246 
    247 #ifdef WAPBL_DEBUG_PRINT
    248 int wapbl_debug_print = WAPBL_DEBUG_PRINT;
    249 #endif
    250 
    251 /****************************************************************/
    252 #ifdef _KERNEL
    253 
    254 #ifdef WAPBL_DEBUG
    255 struct wapbl *wapbl_debug_wl;
    256 #endif
    257 
    258 static int wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail);
    259 static int wapbl_write_blocks(struct wapbl *wl, off_t *offp);
    260 static int wapbl_write_revocations(struct wapbl *wl, off_t *offp);
    261 static int wapbl_write_inodes(struct wapbl *wl, off_t *offp);
    262 #endif /* _KERNEL */
    263 
    264 static int wapbl_replay_process(struct wapbl_replay *wr, off_t, off_t);
    265 
    266 static inline size_t wapbl_space_used(size_t avail, off_t head,
    267 	off_t tail);
    268 
    269 #ifdef _KERNEL
    270 
    271 static struct pool wapbl_entry_pool;
    272 static struct pool wapbl_dealloc_pool;
    273 
    274 #define	WAPBL_INODETRK_SIZE 83
    275 static int wapbl_ino_pool_refcount;
    276 static struct pool wapbl_ino_pool;
    277 struct wapbl_ino {
    278 	LIST_ENTRY(wapbl_ino) wi_hash;
    279 	ino_t wi_ino;
    280 	mode_t wi_mode;
    281 };
    282 
    283 static void wapbl_inodetrk_init(struct wapbl *wl, u_int size);
    284 static void wapbl_inodetrk_free(struct wapbl *wl);
    285 static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino);
    286 
    287 static size_t wapbl_transaction_len(struct wapbl *wl);
    288 static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl);
    289 
    290 static void wapbl_deallocation_free(struct wapbl *, struct wapbl_dealloc *,
    291 	bool);
    292 
    293 static void wapbl_evcnt_init(struct wapbl *);
    294 static void wapbl_evcnt_free(struct wapbl *);
    295 
    296 static void wapbl_dkcache_init(struct wapbl *);
    297 
    298 #if 0
    299 int wapbl_replay_verify(struct wapbl_replay *, struct vnode *);
    300 #endif
    301 
    302 static int wapbl_replay_isopen1(struct wapbl_replay *);
    303 
    304 const struct wapbl_ops wapbl_ops = {
    305 	.wo_wapbl_discard	= wapbl_discard,
    306 	.wo_wapbl_replay_isopen	= wapbl_replay_isopen1,
    307 	.wo_wapbl_replay_can_read = wapbl_replay_can_read,
    308 	.wo_wapbl_replay_read	= wapbl_replay_read,
    309 	.wo_wapbl_add_buf	= wapbl_add_buf,
    310 	.wo_wapbl_remove_buf	= wapbl_remove_buf,
    311 	.wo_wapbl_resize_buf	= wapbl_resize_buf,
    312 	.wo_wapbl_begin		= wapbl_begin,
    313 	.wo_wapbl_end		= wapbl_end,
    314 	.wo_wapbl_junlock_assert= wapbl_junlock_assert,
    315 	.wo_wapbl_jlock_assert	= wapbl_jlock_assert,
    316 
    317 	/* XXX: the following is only used to say "this is a wapbl buf" */
    318 	.wo_wapbl_biodone	= wapbl_biodone,
    319 };
    320 
    321 static int
    322 wapbl_sysctl_init(void)
    323 {
    324 	int rv;
    325 	const struct sysctlnode *rnode, *cnode;
    326 
    327 	wapbl_sysctl = NULL;
    328 
    329 	rv = sysctl_createv(&wapbl_sysctl, 0, NULL, &rnode,
    330 		       CTLFLAG_PERMANENT,
    331 		       CTLTYPE_NODE, "wapbl",
    332 		       SYSCTL_DESCR("WAPBL journaling options"),
    333 		       NULL, 0, NULL, 0,
    334 		       CTL_VFS, CTL_CREATE, CTL_EOL);
    335 	if (rv)
    336 		return rv;
    337 
    338 	rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode,
    339 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    340 		       CTLTYPE_INT, "flush_disk_cache",
    341 		       SYSCTL_DESCR("flush disk cache"),
    342 		       NULL, 0, &wapbl_flush_disk_cache, 0,
    343 		       CTL_CREATE, CTL_EOL);
    344 	if (rv)
    345 		return rv;
    346 
    347 	rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode,
    348 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    349 		       CTLTYPE_INT, "verbose_commit",
    350 		       SYSCTL_DESCR("show time and size of wapbl log commits"),
    351 		       NULL, 0, &wapbl_verbose_commit, 0,
    352 		       CTL_CREATE, CTL_EOL);
    353 	if (rv)
    354 		return rv;
    355 
    356 	rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode,
    357 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    358 		       CTLTYPE_INT, "allow_dpofua",
    359 		       SYSCTL_DESCR("allow use of FUA/DPO instead of cache flush if available"),
    360 		       NULL, 0, &wapbl_allow_dpofua, 0,
    361 		       CTL_CREATE, CTL_EOL);
    362 	if (rv)
    363 		return rv;
    364 
    365 	rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode,
    366 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    367 		       CTLTYPE_INT, "journal_iobufs",
    368 		       SYSCTL_DESCR("count of bufs used for journal I/O (max async count)"),
    369 		       NULL, 0, &wapbl_journal_iobufs, 0,
    370 		       CTL_CREATE, CTL_EOL);
    371 	if (rv)
    372 		return rv;
    373 
    374 	return rv;
    375 }
    376 
    377 static void
    378 wapbl_init(void)
    379 {
    380 
    381 	pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0,
    382 	    "wapblentrypl", &pool_allocator_kmem, IPL_VM);
    383 	pool_init(&wapbl_dealloc_pool, sizeof(struct wapbl_dealloc), 0, 0, 0,
    384 	    "wapbldealloc", &pool_allocator_nointr, IPL_NONE);
    385 
    386 	wapbl_sysctl_init();
    387 }
    388 
    389 static int
    390 wapbl_fini(void)
    391 {
    392 
    393 	if (wapbl_sysctl != NULL)
    394 		 sysctl_teardown(&wapbl_sysctl);
    395 
    396 	pool_destroy(&wapbl_dealloc_pool);
    397 	pool_destroy(&wapbl_entry_pool);
    398 
    399 	return 0;
    400 }
    401 
    402 static void
    403 wapbl_evcnt_init(struct wapbl *wl)
    404 {
    405 	snprintf(wl->wl_ev_group, sizeof(wl->wl_ev_group),
    406 	    "wapbl fsid 0x%x/0x%x",
    407 	    wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[0],
    408 	    wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[1]
    409 	);
    410 
    411 	evcnt_attach_dynamic(&wl->wl_ev_commit, EVCNT_TYPE_MISC,
    412 	    NULL, wl->wl_ev_group, "commit");
    413 	evcnt_attach_dynamic(&wl->wl_ev_journalwrite, EVCNT_TYPE_MISC,
    414 	    NULL, wl->wl_ev_group, "journal write total");
    415 	evcnt_attach_dynamic(&wl->wl_ev_jbufs_bio_nowait, EVCNT_TYPE_MISC,
    416 	    NULL, wl->wl_ev_group, "journal write finished async");
    417 	evcnt_attach_dynamic(&wl->wl_ev_metawrite, EVCNT_TYPE_MISC,
    418 	    NULL, wl->wl_ev_group, "metadata async write");
    419 	evcnt_attach_dynamic(&wl->wl_ev_cacheflush, EVCNT_TYPE_MISC,
    420 	    NULL, wl->wl_ev_group, "cache flush");
    421 }
    422 
    423 static void
    424 wapbl_evcnt_free(struct wapbl *wl)
    425 {
    426 	evcnt_detach(&wl->wl_ev_commit);
    427 	evcnt_detach(&wl->wl_ev_journalwrite);
    428 	evcnt_detach(&wl->wl_ev_jbufs_bio_nowait);
    429 	evcnt_detach(&wl->wl_ev_metawrite);
    430 	evcnt_detach(&wl->wl_ev_cacheflush);
    431 }
    432 
    433 static void
    434 wapbl_dkcache_init(struct wapbl *wl)
    435 {
    436 	int error;
    437 
    438 	/* Get disk cache flags */
    439 	error = VOP_IOCTL(wl->wl_devvp, DIOCGCACHE, &wl->wl_dkcache,
    440 	    FWRITE, FSCRED);
    441 	if (error) {
    442 		/* behave as if there was a write cache */
    443 		wl->wl_dkcache = DKCACHE_WRITE;
    444 	}
    445 
    446 	/* Use FUA instead of cache flush if available */
    447 	if (ISSET(wl->wl_dkcache, DKCACHE_FUA))
    448 		wl->wl_jwrite_flags |= B_MEDIA_FUA;
    449 
    450 	/* Use DPO for journal writes if available */
    451 	if (ISSET(wl->wl_dkcache, DKCACHE_DPO))
    452 		wl->wl_jwrite_flags |= B_MEDIA_DPO;
    453 }
    454 
    455 static int
    456 wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr)
    457 {
    458 	int error, i;
    459 
    460 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
    461 	    ("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt));
    462 
    463 	/*
    464 	 * Its only valid to reuse the replay log if its
    465 	 * the same as the new log we just opened.
    466 	 */
    467 	KDASSERT(!wapbl_replay_isopen(wr));
    468 	KASSERT(wl->wl_devvp->v_type == VBLK);
    469 	KASSERT(wr->wr_devvp->v_type == VBLK);
    470 	KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev);
    471 	KASSERT(wl->wl_logpbn == wr->wr_logpbn);
    472 	KASSERT(wl->wl_circ_size == wr->wr_circ_size);
    473 	KASSERT(wl->wl_circ_off == wr->wr_circ_off);
    474 	KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift);
    475 	KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift);
    476 
    477 	wl->wl_wc_header->wc_generation = wr->wr_generation + 1;
    478 
    479 	for (i = 0; i < wr->wr_inodescnt; i++)
    480 		wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber,
    481 		    wr->wr_inodes[i].wr_imode);
    482 
    483 	/* Make sure new transaction won't overwrite old inodes list */
    484 	KDASSERT(wapbl_transaction_len(wl) <=
    485 	    wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead,
    486 	    wr->wr_inodestail));
    487 
    488 	wl->wl_head = wl->wl_tail = wr->wr_inodeshead;
    489 	wl->wl_reclaimable_bytes = wl->wl_reserved_bytes =
    490 	    wapbl_transaction_len(wl);
    491 
    492 	error = wapbl_write_inodes(wl, &wl->wl_head);
    493 	if (error)
    494 		return error;
    495 
    496 	KASSERT(wl->wl_head != wl->wl_tail);
    497 	KASSERT(wl->wl_head != 0);
    498 
    499 	return 0;
    500 }
    501 
    502 int
    503 wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp,
    504 	daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr,
    505 	wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn)
    506 {
    507 	struct wapbl *wl;
    508 	struct vnode *devvp;
    509 	daddr_t logpbn;
    510 	int error;
    511 	int log_dev_bshift = ilog2(blksize);
    512 	int fs_dev_bshift = log_dev_bshift;
    513 	int run;
    514 
    515 	WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_start: vp=%p off=%" PRId64
    516 	    " count=%zu blksize=%zu\n", vp, off, count, blksize));
    517 
    518 	if (log_dev_bshift > fs_dev_bshift) {
    519 		WAPBL_PRINTF(WAPBL_PRINT_OPEN,
    520 			("wapbl: log device's block size cannot be larger "
    521 			 "than filesystem's\n"));
    522 		/*
    523 		 * Not currently implemented, although it could be if
    524 		 * needed someday.
    525 		 */
    526 		return ENOSYS;
    527 	}
    528 
    529 	if (off < 0)
    530 		return EINVAL;
    531 
    532 	if (blksize < DEV_BSIZE)
    533 		return EINVAL;
    534 	if (blksize % DEV_BSIZE)
    535 		return EINVAL;
    536 
    537 	/* XXXTODO: verify that the full load is writable */
    538 
    539 	/*
    540 	 * XXX check for minimum log size
    541 	 * minimum is governed by minimum amount of space
    542 	 * to complete a transaction. (probably truncate)
    543 	 */
    544 	/* XXX for now pick something minimal */
    545 	if ((count * blksize) < MAXPHYS) {
    546 		return ENOSPC;
    547 	}
    548 
    549 	if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) {
    550 		return error;
    551 	}
    552 
    553 	wl = wapbl_calloc(1, sizeof(*wl));
    554 	rw_init(&wl->wl_rwlock);
    555 	mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE);
    556 	cv_init(&wl->wl_reclaimable_cv, "wapblrec");
    557 	TAILQ_INIT(&wl->wl_bufs);
    558 	SIMPLEQ_INIT(&wl->wl_entries);
    559 
    560 	wl->wl_logvp = vp;
    561 	wl->wl_devvp = devvp;
    562 	wl->wl_mount = mp;
    563 	wl->wl_logpbn = logpbn;
    564 	wl->wl_log_dev_bshift = log_dev_bshift;
    565 	wl->wl_fs_dev_bshift = fs_dev_bshift;
    566 
    567 	wl->wl_flush = flushfn;
    568 	wl->wl_flush_abort = flushabortfn;
    569 
    570 	/* Reserve two log device blocks for the commit headers */
    571 	wl->wl_circ_off = 2<<wl->wl_log_dev_bshift;
    572 	wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off);
    573 	/* truncate the log usage to a multiple of log_dev_bshift */
    574 	wl->wl_circ_size >>= wl->wl_log_dev_bshift;
    575 	wl->wl_circ_size <<= wl->wl_log_dev_bshift;
    576 
    577 	/*
    578 	 * wl_bufbytes_max limits the size of the in memory transaction space.
    579 	 * - Since buffers are allocated and accounted for in units of
    580 	 *   PAGE_SIZE it is required to be a multiple of PAGE_SIZE
    581 	 *   (i.e. 1<<PAGE_SHIFT)
    582 	 * - Since the log device has to be written in units of
    583 	 *   1<<wl_log_dev_bshift it is required to be a mulitple of
    584 	 *   1<<wl_log_dev_bshift.
    585 	 * - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift,
    586 	 *   it is convenient to be a multiple of 1<<wl_fs_dev_bshift.
    587 	 * Therefore it must be multiple of the least common multiple of those
    588 	 * three quantities.  Fortunately, all of those quantities are
    589 	 * guaranteed to be a power of two, and the least common multiple of
    590 	 * a set of numbers which are all powers of two is simply the maximum
    591 	 * of those numbers.  Finally, the maximum logarithm of a power of two
    592 	 * is the same as the log of the maximum power of two.  So we can do
    593 	 * the following operations to size wl_bufbytes_max:
    594 	 */
    595 
    596 	/* XXX fix actual number of pages reserved per filesystem. */
    597 	wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2);
    598 
    599 	/* Round wl_bufbytes_max to the largest power of two constraint */
    600 	wl->wl_bufbytes_max >>= PAGE_SHIFT;
    601 	wl->wl_bufbytes_max <<= PAGE_SHIFT;
    602 	wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift;
    603 	wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift;
    604 	wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift;
    605 	wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift;
    606 
    607 	/* XXX maybe use filesystem fragment size instead of 1024 */
    608 	/* XXX fix actual number of buffers reserved per filesystem. */
    609 	wl->wl_bufcount_max = (buf_nbuf() / 2) * 1024;
    610 
    611 	wl->wl_brperjblock = ((1<<wl->wl_log_dev_bshift)
    612 	    - offsetof(struct wapbl_wc_blocklist, wc_blocks)) /
    613 	    sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]);
    614 	KASSERT(wl->wl_brperjblock > 0);
    615 
    616 	/* XXX tie this into resource estimation */
    617 	wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2;
    618 	TAILQ_INIT(&wl->wl_dealloclist);
    619 
    620 	wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE);
    621 
    622 	wapbl_evcnt_init(wl);
    623 
    624 	wapbl_dkcache_init(wl);
    625 
    626 	/* Initialize the commit header */
    627 	{
    628 		struct wapbl_wc_header *wc;
    629 		size_t len = 1 << wl->wl_log_dev_bshift;
    630 		wc = wapbl_calloc(1, len);
    631 		wc->wc_type = WAPBL_WC_HEADER;
    632 		wc->wc_len = len;
    633 		wc->wc_circ_off = wl->wl_circ_off;
    634 		wc->wc_circ_size = wl->wl_circ_size;
    635 		/* XXX wc->wc_fsid */
    636 		wc->wc_log_dev_bshift = wl->wl_log_dev_bshift;
    637 		wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift;
    638 		wl->wl_wc_header = wc;
    639 		wl->wl_wc_scratch = wapbl_alloc(len);
    640 	}
    641 
    642 	TAILQ_INIT(&wl->wl_iobufs);
    643 	TAILQ_INIT(&wl->wl_iobufs_busy);
    644 	for (int i = 0; i < wapbl_journal_iobufs; i++) {
    645 		struct buf *bp;
    646 
    647 		if ((bp = geteblk(MAXPHYS)) == NULL)
    648 			goto errout;
    649 
    650 		mutex_enter(&bufcache_lock);
    651 		mutex_enter(devvp->v_interlock);
    652 		bgetvp(devvp, bp);
    653 		mutex_exit(devvp->v_interlock);
    654 		mutex_exit(&bufcache_lock);
    655 
    656 		bp->b_dev = devvp->v_rdev;
    657 
    658 		TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
    659 	}
    660 
    661 	/*
    662 	 * if there was an existing set of unlinked but
    663 	 * allocated inodes, preserve it in the new
    664 	 * log.
    665 	 */
    666 	if (wr && wr->wr_inodescnt) {
    667 		error = wapbl_start_flush_inodes(wl, wr);
    668 		if (error)
    669 			goto errout;
    670 	}
    671 
    672 	error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail);
    673 	if (error) {
    674 		goto errout;
    675 	}
    676 
    677 	*wlp = wl;
    678 #if defined(WAPBL_DEBUG)
    679 	wapbl_debug_wl = wl;
    680 #endif
    681 
    682 	return 0;
    683  errout:
    684 	wapbl_discard(wl);
    685 	wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
    686 	wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
    687 	while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
    688 		struct buf *bp;
    689 
    690 		bp = TAILQ_FIRST(&wl->wl_iobufs);
    691 		TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
    692 		brelse(bp, BC_INVAL);
    693 	}
    694 	wapbl_inodetrk_free(wl);
    695 	wapbl_free(wl, sizeof(*wl));
    696 
    697 	return error;
    698 }
    699 
    700 /*
    701  * Like wapbl_flush, only discards the transaction
    702  * completely
    703  */
    704 
    705 void
    706 wapbl_discard(struct wapbl *wl)
    707 {
    708 	struct wapbl_entry *we;
    709 	struct wapbl_dealloc *wd;
    710 	struct buf *bp;
    711 	int i;
    712 
    713 	/*
    714 	 * XXX we may consider using upgrade here
    715 	 * if we want to call flush from inside a transaction
    716 	 */
    717 	rw_enter(&wl->wl_rwlock, RW_WRITER);
    718 	wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
    719 
    720 #ifdef WAPBL_DEBUG_PRINT
    721 	{
    722 		pid_t pid = -1;
    723 		lwpid_t lid = -1;
    724 		if (curproc)
    725 			pid = curproc->p_pid;
    726 		if (curlwp)
    727 			lid = curlwp->l_lid;
    728 #ifdef WAPBL_DEBUG_BUFBYTES
    729 		WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    730 		    ("wapbl_discard: thread %d.%d discarding "
    731 		    "transaction\n"
    732 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
    733 		    "deallocs=%d inodes=%d\n"
    734 		    "\terrcnt = %u, reclaimable=%zu reserved=%zu "
    735 		    "unsynced=%zu\n",
    736 		    pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
    737 		    wl->wl_bcount, wl->wl_dealloccnt,
    738 		    wl->wl_inohashcnt, wl->wl_error_count,
    739 		    wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
    740 		    wl->wl_unsynced_bufbytes));
    741 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
    742 			WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    743 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
    744 			     "error = %d, unsynced = %zu\n",
    745 			     we->we_bufcount, we->we_reclaimable_bytes,
    746 			     we->we_error, we->we_unsynced_bufbytes));
    747 		}
    748 #else /* !WAPBL_DEBUG_BUFBYTES */
    749 		WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    750 		    ("wapbl_discard: thread %d.%d discarding transaction\n"
    751 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
    752 		    "deallocs=%d inodes=%d\n"
    753 		    "\terrcnt = %u, reclaimable=%zu reserved=%zu\n",
    754 		    pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
    755 		    wl->wl_bcount, wl->wl_dealloccnt,
    756 		    wl->wl_inohashcnt, wl->wl_error_count,
    757 		    wl->wl_reclaimable_bytes, wl->wl_reserved_bytes));
    758 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
    759 			WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    760 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
    761 			     "error = %d\n",
    762 			     we->we_bufcount, we->we_reclaimable_bytes,
    763 			     we->we_error));
    764 		}
    765 #endif /* !WAPBL_DEBUG_BUFBYTES */
    766 	}
    767 #endif /* WAPBL_DEBUG_PRINT */
    768 
    769 	for (i = 0; i <= wl->wl_inohashmask; i++) {
    770 		struct wapbl_ino_head *wih;
    771 		struct wapbl_ino *wi;
    772 
    773 		wih = &wl->wl_inohash[i];
    774 		while ((wi = LIST_FIRST(wih)) != NULL) {
    775 			LIST_REMOVE(wi, wi_hash);
    776 			pool_put(&wapbl_ino_pool, wi);
    777 			KASSERT(wl->wl_inohashcnt > 0);
    778 			wl->wl_inohashcnt--;
    779 		}
    780 	}
    781 
    782 	/*
    783 	 * clean buffer list
    784 	 */
    785 	mutex_enter(&bufcache_lock);
    786 	mutex_enter(&wl->wl_mtx);
    787 	while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
    788 		if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) {
    789 			/*
    790 			 * The buffer will be unlocked and
    791 			 * removed from the transaction in brelse
    792 			 */
    793 			mutex_exit(&wl->wl_mtx);
    794 			brelsel(bp, 0);
    795 			mutex_enter(&wl->wl_mtx);
    796 		}
    797 	}
    798 	mutex_exit(&wl->wl_mtx);
    799 	mutex_exit(&bufcache_lock);
    800 
    801 	/*
    802 	 * Remove references to this wl from wl_entries, free any which
    803 	 * no longer have buffers, others will be freed in wapbl_biodone
    804 	 * when they no longer have any buffers.
    805 	 */
    806 	while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) {
    807 		SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
    808 		/* XXX should we be accumulating wl_error_count
    809 		 * and increasing reclaimable bytes ? */
    810 		we->we_wapbl = NULL;
    811 		if (we->we_bufcount == 0) {
    812 #ifdef WAPBL_DEBUG_BUFBYTES
    813 			KASSERT(we->we_unsynced_bufbytes == 0);
    814 #endif
    815 			pool_put(&wapbl_entry_pool, we);
    816 		}
    817 	}
    818 
    819 	/* Discard list of deallocs */
    820 	while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL)
    821 		wapbl_deallocation_free(wl, wd, true);
    822 
    823 	/* XXX should we clear wl_reserved_bytes? */
    824 
    825 	KASSERT(wl->wl_bufbytes == 0);
    826 	KASSERT(wl->wl_bcount == 0);
    827 	KASSERT(wl->wl_bufcount == 0);
    828 	KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
    829 	KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
    830 	KASSERT(wl->wl_inohashcnt == 0);
    831 	KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
    832 	KASSERT(wl->wl_dealloccnt == 0);
    833 
    834 	rw_exit(&wl->wl_rwlock);
    835 }
    836 
    837 int
    838 wapbl_stop(struct wapbl *wl, int force)
    839 {
    840 	int error;
    841 
    842 	WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n"));
    843 	error = wapbl_flush(wl, 1);
    844 	if (error) {
    845 		if (force)
    846 			wapbl_discard(wl);
    847 		else
    848 			return error;
    849 	}
    850 
    851 	/* Unlinked inodes persist after a flush */
    852 	if (wl->wl_inohashcnt) {
    853 		if (force) {
    854 			wapbl_discard(wl);
    855 		} else {
    856 			return EBUSY;
    857 		}
    858 	}
    859 
    860 	KASSERT(wl->wl_bufbytes == 0);
    861 	KASSERT(wl->wl_bcount == 0);
    862 	KASSERT(wl->wl_bufcount == 0);
    863 	KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
    864 	KASSERT(wl->wl_dealloccnt == 0);
    865 	KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
    866 	KASSERT(wl->wl_inohashcnt == 0);
    867 	KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
    868 	KASSERT(wl->wl_dealloccnt == 0);
    869 	KASSERT(TAILQ_EMPTY(&wl->wl_iobufs_busy));
    870 
    871 	wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
    872 	wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
    873 	while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
    874 		struct buf *bp;
    875 
    876 		bp = TAILQ_FIRST(&wl->wl_iobufs);
    877 		TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
    878 		brelse(bp, BC_INVAL);
    879 	}
    880 	wapbl_inodetrk_free(wl);
    881 
    882 	wapbl_evcnt_free(wl);
    883 
    884 	cv_destroy(&wl->wl_reclaimable_cv);
    885 	mutex_destroy(&wl->wl_mtx);
    886 	rw_destroy(&wl->wl_rwlock);
    887 	wapbl_free(wl, sizeof(*wl));
    888 
    889 	return 0;
    890 }
    891 
    892 /****************************************************************/
    893 /*
    894  * Unbuffered disk I/O
    895  */
    896 
    897 static void
    898 wapbl_doio_accounting(struct vnode *devvp, int flags)
    899 {
    900 	struct pstats *pstats = curlwp->l_proc->p_stats;
    901 
    902 	if ((flags & (B_WRITE | B_READ)) == B_WRITE) {
    903 		mutex_enter(devvp->v_interlock);
    904 		devvp->v_numoutput++;
    905 		mutex_exit(devvp->v_interlock);
    906 		pstats->p_ru.ru_oublock++;
    907 	} else {
    908 		pstats->p_ru.ru_inblock++;
    909 	}
    910 
    911 }
    912 
    913 static int
    914 wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags)
    915 {
    916 	struct buf *bp;
    917 	int error;
    918 
    919 	KASSERT(devvp->v_type == VBLK);
    920 
    921 	wapbl_doio_accounting(devvp, flags);
    922 
    923 	bp = getiobuf(devvp, true);
    924 	bp->b_flags = flags;
    925 	bp->b_cflags |= BC_BUSY;	/* mandatory, asserted by biowait() */
    926 	bp->b_dev = devvp->v_rdev;
    927 	bp->b_data = data;
    928 	bp->b_bufsize = bp->b_resid = bp->b_bcount = len;
    929 	bp->b_blkno = pbn;
    930 	BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    931 
    932 	WAPBL_PRINTF(WAPBL_PRINT_IO,
    933 	    ("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n",
    934 	    BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount,
    935 	    bp->b_blkno, bp->b_dev));
    936 
    937 	VOP_STRATEGY(devvp, bp);
    938 
    939 	error = biowait(bp);
    940 	putiobuf(bp);
    941 
    942 	if (error) {
    943 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
    944 		    ("wapbl_doio: %s %zu bytes at block %" PRId64
    945 		    " on dev 0x%"PRIx64" failed with error %d\n",
    946 		    (((flags & (B_WRITE | B_READ)) == B_WRITE) ?
    947 		     "write" : "read"),
    948 		    len, pbn, devvp->v_rdev, error));
    949 	}
    950 
    951 	return error;
    952 }
    953 
    954 /*
    955  * wapbl_write(data, len, devvp, pbn)
    956  *
    957  *	Synchronously write len bytes from data to physical block pbn
    958  *	on devvp.
    959  */
    960 int
    961 wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
    962 {
    963 
    964 	return wapbl_doio(data, len, devvp, pbn, B_WRITE);
    965 }
    966 
    967 /*
    968  * wapbl_read(data, len, devvp, pbn)
    969  *
    970  *	Synchronously read len bytes into data from physical block pbn
    971  *	on devvp.
    972  */
    973 int
    974 wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
    975 {
    976 
    977 	return wapbl_doio(data, len, devvp, pbn, B_READ);
    978 }
    979 
    980 /****************************************************************/
    981 /*
    982  * Buffered disk writes -- try to coalesce writes and emit
    983  * MAXPHYS-aligned blocks.
    984  */
    985 
    986 /*
    987  * wapbl_buffered_write_async(wl, bp)
    988  *
    989  *	Send buffer for asynchronous write.
    990  */
    991 static void
    992 wapbl_buffered_write_async(struct wapbl *wl, struct buf *bp)
    993 {
    994 	wapbl_doio_accounting(wl->wl_devvp, bp->b_flags);
    995 
    996 	KASSERT(TAILQ_FIRST(&wl->wl_iobufs) == bp);
    997 	TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
    998 
    999 	bp->b_flags |= B_WRITE;
   1000 	bp->b_cflags |= BC_BUSY;	/* mandatory, asserted by biowait() */
   1001 	bp->b_oflags = 0;
   1002 	bp->b_bcount = bp->b_resid;
   1003 	BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1004 
   1005 	VOP_STRATEGY(wl->wl_devvp, bp);
   1006 
   1007 	wl->wl_ev_journalwrite.ev_count++;
   1008 
   1009 	TAILQ_INSERT_TAIL(&wl->wl_iobufs_busy, bp, b_wapbllist);
   1010 }
   1011 
   1012 /*
   1013  * wapbl_buffered_flush(wl)
   1014  *
   1015  *	Flush any buffered writes from wapbl_buffered_write.
   1016  */
   1017 static int
   1018 wapbl_buffered_flush(struct wapbl *wl, bool full)
   1019 {
   1020 	int error = 0;
   1021 	struct buf *bp, *bnext;
   1022 	bool only_done = true, found = false;
   1023 
   1024 	/* if there is outstanding buffered write, send it now */
   1025 	if ((bp = TAILQ_FIRST(&wl->wl_iobufs)) && bp->b_resid > 0)
   1026 		wapbl_buffered_write_async(wl, bp);
   1027 
   1028 	/* wait for I/O to complete */
   1029 again:
   1030 	TAILQ_FOREACH_SAFE(bp, &wl->wl_iobufs_busy, b_wapbllist, bnext) {
   1031 		if (!full && only_done) {
   1032 			/* skip unfinished */
   1033 			if (!ISSET(bp->b_oflags, BO_DONE))
   1034 				continue;
   1035 		}
   1036 
   1037 		if (ISSET(bp->b_oflags, BO_DONE))
   1038 			wl->wl_ev_jbufs_bio_nowait.ev_count++;
   1039 
   1040 		TAILQ_REMOVE(&wl->wl_iobufs_busy, bp, b_wapbllist);
   1041 		error = biowait(bp);
   1042 
   1043 		/* reset for reuse */
   1044 		bp->b_blkno = bp->b_resid = bp->b_flags = 0;
   1045 		TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
   1046 		found = true;
   1047 
   1048 		if (!full)
   1049 			break;
   1050 	}
   1051 
   1052 	if (!found && only_done && !TAILQ_EMPTY(&wl->wl_iobufs_busy)) {
   1053 		only_done = false;
   1054 		goto again;
   1055 	}
   1056 
   1057 	return error;
   1058 }
   1059 
   1060 /*
   1061  * wapbl_buffered_write(data, len, wl, pbn)
   1062  *
   1063  *	Write len bytes from data to physical block pbn on
   1064  *	wl->wl_devvp.  The write may not complete until
   1065  *	wapbl_buffered_flush.
   1066  */
   1067 static int
   1068 wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn,
   1069     int bflags)
   1070 {
   1071 	size_t resid;
   1072 	struct buf *bp;
   1073 
   1074 again:
   1075 	bp = TAILQ_FIRST(&wl->wl_iobufs);
   1076 
   1077 	if (bp == NULL) {
   1078 		/* No more buffers, wait for any previous I/O to finish. */
   1079 		wapbl_buffered_flush(wl, false);
   1080 
   1081 		bp = TAILQ_FIRST(&wl->wl_iobufs);
   1082 		KASSERT(bp != NULL);
   1083 	}
   1084 
   1085 	/*
   1086 	 * If not adjacent to buffered data flush first.  Disk block
   1087 	 * address is always valid for non-empty buffer.
   1088 	 */
   1089 	if ((bp->b_resid > 0 && pbn != bp->b_blkno + btodb(bp->b_resid))) {
   1090 		wapbl_buffered_write_async(wl, bp);
   1091 		goto again;
   1092 	}
   1093 
   1094 	/*
   1095 	 * If this write goes to an empty buffer we have to
   1096 	 * save the disk block address first.
   1097 	 */
   1098 	if (bp->b_blkno == 0) {
   1099 		bp->b_blkno = pbn;
   1100 		bp->b_flags |= bflags;
   1101 	}
   1102 
   1103 	/*
   1104 	 * Remaining space so this buffer ends on a buffer size boundary.
   1105 	 *
   1106 	 * Cannot become less or equal zero as the buffer would have been
   1107 	 * flushed on the last call then.
   1108 	 */
   1109 	resid = bp->b_bufsize - dbtob(bp->b_blkno % btodb(bp->b_bufsize)) -
   1110 	    bp->b_resid;
   1111 	KASSERT(resid > 0);
   1112 	KASSERT(dbtob(btodb(resid)) == resid);
   1113 
   1114 	if (len < resid)
   1115 		resid = len;
   1116 
   1117 	memcpy((uint8_t *)bp->b_data + bp->b_resid, data, resid);
   1118 	bp->b_resid += resid;
   1119 
   1120 	if (len >= resid) {
   1121 		/* Just filled the buf, or data did not fit */
   1122 		wapbl_buffered_write_async(wl, bp);
   1123 
   1124 		data = (uint8_t *)data + resid;
   1125 		len -= resid;
   1126 		pbn += btodb(resid);
   1127 
   1128 		if (len > 0)
   1129 			goto again;
   1130 	}
   1131 
   1132 	return 0;
   1133 }
   1134 
   1135 /*
   1136  * wapbl_circ_write(wl, data, len, offp)
   1137  *
   1138  *	Write len bytes from data to the circular queue of wl, starting
   1139  *	at linear byte offset *offp, and returning the new linear byte
   1140  *	offset in *offp.
   1141  *
   1142  *	If the starting linear byte offset precedes wl->wl_circ_off,
   1143  *	the write instead begins at wl->wl_circ_off.  XXX WTF?  This
   1144  *	should be a KASSERT, not a conditional.
   1145  *
   1146  *	The write is buffered in wl and must be flushed with
   1147  *	wapbl_buffered_flush before it will be submitted to the disk.
   1148  */
   1149 static int
   1150 wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp)
   1151 {
   1152 	size_t slen;
   1153 	off_t off = *offp;
   1154 	int error;
   1155 	daddr_t pbn;
   1156 
   1157 	KDASSERT(((len >> wl->wl_log_dev_bshift) <<
   1158 	    wl->wl_log_dev_bshift) == len);
   1159 
   1160 	if (off < wl->wl_circ_off)
   1161 		off = wl->wl_circ_off;
   1162 	slen = wl->wl_circ_off + wl->wl_circ_size - off;
   1163 	if (slen < len) {
   1164 		pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
   1165 #ifdef _KERNEL
   1166 		pbn = btodb(pbn << wl->wl_log_dev_bshift);
   1167 #endif
   1168 		error = wapbl_buffered_write(data, slen, wl, pbn,
   1169 		    WAPBL_JDATA_FLAGS(wl));
   1170 		if (error)
   1171 			return error;
   1172 		data = (uint8_t *)data + slen;
   1173 		len -= slen;
   1174 		off = wl->wl_circ_off;
   1175 	}
   1176 	pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
   1177 #ifdef _KERNEL
   1178 	pbn = btodb(pbn << wl->wl_log_dev_bshift);
   1179 #endif
   1180 	error = wapbl_buffered_write(data, len, wl, pbn,
   1181 	    WAPBL_JDATA_FLAGS(wl));
   1182 	if (error)
   1183 		return error;
   1184 	off += len;
   1185 	if (off >= wl->wl_circ_off + wl->wl_circ_size)
   1186 		off = wl->wl_circ_off;
   1187 	*offp = off;
   1188 	return 0;
   1189 }
   1190 
   1191 /****************************************************************/
   1192 /*
   1193  * WAPBL transactions: entering, adding/removing bufs, and exiting
   1194  */
   1195 
   1196 int
   1197 wapbl_begin(struct wapbl *wl, const char *file, int line)
   1198 {
   1199 	int doflush;
   1200 	unsigned lockcount;
   1201 
   1202 	KDASSERT(wl);
   1203 
   1204 	/*
   1205 	 * XXX this needs to be made much more sophisticated.
   1206 	 * perhaps each wapbl_begin could reserve a specified
   1207 	 * number of buffers and bytes.
   1208 	 */
   1209 	mutex_enter(&wl->wl_mtx);
   1210 	lockcount = wl->wl_lock_count;
   1211 	doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) >
   1212 		   wl->wl_bufbytes_max / 2) ||
   1213 		  ((wl->wl_bufcount + (lockcount * 10)) >
   1214 		   wl->wl_bufcount_max / 2) ||
   1215 		  (wapbl_transaction_len(wl) > wl->wl_circ_size / 2) ||
   1216 		  (wl->wl_dealloccnt >= (wl->wl_dealloclim / 2));
   1217 	mutex_exit(&wl->wl_mtx);
   1218 
   1219 	if (doflush) {
   1220 		WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1221 		    ("force flush lockcnt=%d bufbytes=%zu "
   1222 		    "(max=%zu) bufcount=%zu (max=%zu) "
   1223 		    "dealloccnt %d (lim=%d)\n",
   1224 		    lockcount, wl->wl_bufbytes,
   1225 		    wl->wl_bufbytes_max, wl->wl_bufcount,
   1226 		    wl->wl_bufcount_max,
   1227 		    wl->wl_dealloccnt, wl->wl_dealloclim));
   1228 	}
   1229 
   1230 	if (doflush) {
   1231 		int error = wapbl_flush(wl, 0);
   1232 		if (error)
   1233 			return error;
   1234 	}
   1235 
   1236 	rw_enter(&wl->wl_rwlock, RW_READER);
   1237 	mutex_enter(&wl->wl_mtx);
   1238 	wl->wl_lock_count++;
   1239 	mutex_exit(&wl->wl_mtx);
   1240 
   1241 #if defined(WAPBL_DEBUG_PRINT)
   1242 	WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
   1243 	    ("wapbl_begin thread %d.%d with bufcount=%zu "
   1244 	    "bufbytes=%zu bcount=%zu at %s:%d\n",
   1245 	    curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
   1246 	    wl->wl_bufbytes, wl->wl_bcount, file, line));
   1247 #endif
   1248 
   1249 	return 0;
   1250 }
   1251 
   1252 void
   1253 wapbl_end(struct wapbl *wl)
   1254 {
   1255 
   1256 #if defined(WAPBL_DEBUG_PRINT)
   1257 	WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
   1258 	     ("wapbl_end thread %d.%d with bufcount=%zu "
   1259 	      "bufbytes=%zu bcount=%zu\n",
   1260 	      curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
   1261 	      wl->wl_bufbytes, wl->wl_bcount));
   1262 #endif
   1263 
   1264 	/*
   1265 	 * XXX this could be handled more gracefully, perhaps place
   1266 	 * only a partial transaction in the log and allow the
   1267 	 * remaining to flush without the protection of the journal.
   1268 	 */
   1269 	KASSERTMSG((wapbl_transaction_len(wl) <=
   1270 		(wl->wl_circ_size - wl->wl_reserved_bytes)),
   1271 	    "wapbl_end: current transaction too big to flush");
   1272 
   1273 	mutex_enter(&wl->wl_mtx);
   1274 	KASSERT(wl->wl_lock_count > 0);
   1275 	wl->wl_lock_count--;
   1276 	mutex_exit(&wl->wl_mtx);
   1277 
   1278 	rw_exit(&wl->wl_rwlock);
   1279 }
   1280 
   1281 void
   1282 wapbl_add_buf(struct wapbl *wl, struct buf * bp)
   1283 {
   1284 
   1285 	KASSERT(bp->b_cflags & BC_BUSY);
   1286 	KASSERT(bp->b_vp);
   1287 
   1288 	wapbl_jlock_assert(wl);
   1289 
   1290 #if 0
   1291 	/*
   1292 	 * XXX this might be an issue for swapfiles.
   1293 	 * see uvm_swap.c:1702
   1294 	 *
   1295 	 * XXX2 why require it then?  leap of semantics?
   1296 	 */
   1297 	KASSERT((bp->b_cflags & BC_NOCACHE) == 0);
   1298 #endif
   1299 
   1300 	mutex_enter(&wl->wl_mtx);
   1301 	if (bp->b_flags & B_LOCKED) {
   1302 		TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
   1303 		WAPBL_PRINTF(WAPBL_PRINT_BUFFER2,
   1304 		   ("wapbl_add_buf thread %d.%d re-adding buf %p "
   1305 		    "with %d bytes %d bcount\n",
   1306 		    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
   1307 		    bp->b_bcount));
   1308 	} else {
   1309 		/* unlocked by dirty buffers shouldn't exist */
   1310 		KASSERT(!(bp->b_oflags & BO_DELWRI));
   1311 		wl->wl_bufbytes += bp->b_bufsize;
   1312 		wl->wl_bcount += bp->b_bcount;
   1313 		wl->wl_bufcount++;
   1314 		WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
   1315 		   ("wapbl_add_buf thread %d.%d adding buf %p "
   1316 		    "with %d bytes %d bcount\n",
   1317 		    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
   1318 		    bp->b_bcount));
   1319 	}
   1320 	TAILQ_INSERT_TAIL(&wl->wl_bufs, bp, b_wapbllist);
   1321 	mutex_exit(&wl->wl_mtx);
   1322 
   1323 	bp->b_flags |= B_LOCKED;
   1324 }
   1325 
   1326 static void
   1327 wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp)
   1328 {
   1329 
   1330 	KASSERT(mutex_owned(&wl->wl_mtx));
   1331 	KASSERT(bp->b_cflags & BC_BUSY);
   1332 	wapbl_jlock_assert(wl);
   1333 
   1334 #if 0
   1335 	/*
   1336 	 * XXX this might be an issue for swapfiles.
   1337 	 * see uvm_swap.c:1725
   1338 	 *
   1339 	 * XXXdeux: see above
   1340 	 */
   1341 	KASSERT((bp->b_flags & BC_NOCACHE) == 0);
   1342 #endif
   1343 	KASSERT(bp->b_flags & B_LOCKED);
   1344 
   1345 	WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
   1346 	   ("wapbl_remove_buf thread %d.%d removing buf %p with "
   1347 	    "%d bytes %d bcount\n",
   1348 	    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, bp->b_bcount));
   1349 
   1350 	KASSERT(wl->wl_bufbytes >= bp->b_bufsize);
   1351 	wl->wl_bufbytes -= bp->b_bufsize;
   1352 	KASSERT(wl->wl_bcount >= bp->b_bcount);
   1353 	wl->wl_bcount -= bp->b_bcount;
   1354 	KASSERT(wl->wl_bufcount > 0);
   1355 	wl->wl_bufcount--;
   1356 	KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
   1357 	KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
   1358 	TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
   1359 
   1360 	bp->b_flags &= ~B_LOCKED;
   1361 }
   1362 
   1363 /* called from brelsel() in vfs_bio among other places */
   1364 void
   1365 wapbl_remove_buf(struct wapbl * wl, struct buf *bp)
   1366 {
   1367 
   1368 	mutex_enter(&wl->wl_mtx);
   1369 	wapbl_remove_buf_locked(wl, bp);
   1370 	mutex_exit(&wl->wl_mtx);
   1371 }
   1372 
   1373 void
   1374 wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt)
   1375 {
   1376 
   1377 	KASSERT(bp->b_cflags & BC_BUSY);
   1378 
   1379 	/*
   1380 	 * XXX: why does this depend on B_LOCKED?  otherwise the buf
   1381 	 * is not for a transaction?  if so, why is this called in the
   1382 	 * first place?
   1383 	 */
   1384 	if (bp->b_flags & B_LOCKED) {
   1385 		mutex_enter(&wl->wl_mtx);
   1386 		wl->wl_bufbytes += bp->b_bufsize - oldsz;
   1387 		wl->wl_bcount += bp->b_bcount - oldcnt;
   1388 		mutex_exit(&wl->wl_mtx);
   1389 	}
   1390 }
   1391 
   1392 #endif /* _KERNEL */
   1393 
   1394 /****************************************************************/
   1395 /* Some utility inlines */
   1396 
   1397 /*
   1398  * wapbl_space_used(avail, head, tail)
   1399  *
   1400  *	Number of bytes used in a circular queue of avail total bytes,
   1401  *	from tail to head.
   1402  */
   1403 static inline size_t
   1404 wapbl_space_used(size_t avail, off_t head, off_t tail)
   1405 {
   1406 
   1407 	if (tail == 0) {
   1408 		KASSERT(head == 0);
   1409 		return 0;
   1410 	}
   1411 	return ((head + (avail - 1) - tail) % avail) + 1;
   1412 }
   1413 
   1414 #ifdef _KERNEL
   1415 /*
   1416  * wapbl_advance(size, off, oldoff, delta)
   1417  *
   1418  *	Given a byte offset oldoff into a circular queue of size bytes
   1419  *	starting at off, return a new byte offset oldoff + delta into
   1420  *	the circular queue.
   1421  */
   1422 static inline off_t
   1423 wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta)
   1424 {
   1425 	off_t newoff;
   1426 
   1427 	/* Define acceptable ranges for inputs. */
   1428 	KASSERT(delta <= (size_t)size);
   1429 	KASSERT((oldoff == 0) || ((size_t)oldoff >= off));
   1430 	KASSERT(oldoff < (off_t)(size + off));
   1431 
   1432 	if ((oldoff == 0) && (delta != 0))
   1433 		newoff = off + delta;
   1434 	else if ((oldoff + delta) < (size + off))
   1435 		newoff = oldoff + delta;
   1436 	else
   1437 		newoff = (oldoff + delta) - size;
   1438 
   1439 	/* Note some interesting axioms */
   1440 	KASSERT((delta != 0) || (newoff == oldoff));
   1441 	KASSERT((delta == 0) || (newoff != 0));
   1442 	KASSERT((delta != (size)) || (newoff == oldoff));
   1443 
   1444 	/* Define acceptable ranges for output. */
   1445 	KASSERT((newoff == 0) || ((size_t)newoff >= off));
   1446 	KASSERT((size_t)newoff < (size + off));
   1447 	return newoff;
   1448 }
   1449 
   1450 /*
   1451  * wapbl_space_free(avail, head, tail)
   1452  *
   1453  *	Number of bytes free in a circular queue of avail total bytes,
   1454  *	in which everything from tail to head is used.
   1455  */
   1456 static inline size_t
   1457 wapbl_space_free(size_t avail, off_t head, off_t tail)
   1458 {
   1459 
   1460 	return avail - wapbl_space_used(avail, head, tail);
   1461 }
   1462 
   1463 /*
   1464  * wapbl_advance_head(size, off, delta, headp, tailp)
   1465  *
   1466  *	In a circular queue of size bytes starting at off, given the
   1467  *	old head and tail offsets *headp and *tailp, store the new head
   1468  *	and tail offsets in *headp and *tailp resulting from adding
   1469  *	delta bytes of data to the head.
   1470  */
   1471 static inline void
   1472 wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp,
   1473 		   off_t *tailp)
   1474 {
   1475 	off_t head = *headp;
   1476 	off_t tail = *tailp;
   1477 
   1478 	KASSERT(delta <= wapbl_space_free(size, head, tail));
   1479 	head = wapbl_advance(size, off, head, delta);
   1480 	if ((tail == 0) && (head != 0))
   1481 		tail = off;
   1482 	*headp = head;
   1483 	*tailp = tail;
   1484 }
   1485 
   1486 /*
   1487  * wapbl_advance_tail(size, off, delta, headp, tailp)
   1488  *
   1489  *	In a circular queue of size bytes starting at off, given the
   1490  *	old head and tail offsets *headp and *tailp, store the new head
   1491  *	and tail offsets in *headp and *tailp resulting from removing
   1492  *	delta bytes of data from the tail.
   1493  */
   1494 static inline void
   1495 wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp,
   1496 		   off_t *tailp)
   1497 {
   1498 	off_t head = *headp;
   1499 	off_t tail = *tailp;
   1500 
   1501 	KASSERT(delta <= wapbl_space_used(size, head, tail));
   1502 	tail = wapbl_advance(size, off, tail, delta);
   1503 	if (head == tail) {
   1504 		head = tail = 0;
   1505 	}
   1506 	*headp = head;
   1507 	*tailp = tail;
   1508 }
   1509 
   1510 
   1511 /****************************************************************/
   1512 
   1513 /*
   1514  * wapbl_truncate(wl, minfree)
   1515  *
   1516  *	Wait until at least minfree bytes are available in the log.
   1517  *
   1518  *	If it was necessary to wait for writes to complete,
   1519  *	advance the circular queue tail to reflect the new write
   1520  *	completions and issue a write commit to the log.
   1521  *
   1522  *	=> Caller must hold wl->wl_rwlock writer lock.
   1523  */
   1524 static int
   1525 wapbl_truncate(struct wapbl *wl, size_t minfree)
   1526 {
   1527 	size_t delta;
   1528 	size_t avail;
   1529 	off_t head;
   1530 	off_t tail;
   1531 	int error = 0;
   1532 
   1533 	KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes));
   1534 	KASSERT(rw_write_held(&wl->wl_rwlock));
   1535 
   1536 	mutex_enter(&wl->wl_mtx);
   1537 
   1538 	/*
   1539 	 * First check to see if we have to do a commit
   1540 	 * at all.
   1541 	 */
   1542 	avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail);
   1543 	if (minfree < avail) {
   1544 		mutex_exit(&wl->wl_mtx);
   1545 		return 0;
   1546 	}
   1547 	minfree -= avail;
   1548 	while ((wl->wl_error_count == 0) &&
   1549 	    (wl->wl_reclaimable_bytes < minfree)) {
   1550         	WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
   1551                    ("wapbl_truncate: sleeping on %p wl=%p bytes=%zd "
   1552 		    "minfree=%zd\n",
   1553                     &wl->wl_reclaimable_bytes, wl, wl->wl_reclaimable_bytes,
   1554 		    minfree));
   1555 
   1556 		cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx);
   1557 	}
   1558 	if (wl->wl_reclaimable_bytes < minfree) {
   1559 		KASSERT(wl->wl_error_count);
   1560 		/* XXX maybe get actual error from buffer instead someday? */
   1561 		error = EIO;
   1562 	}
   1563 	head = wl->wl_head;
   1564 	tail = wl->wl_tail;
   1565 	delta = wl->wl_reclaimable_bytes;
   1566 
   1567 	/* If all of of the entries are flushed, then be sure to keep
   1568 	 * the reserved bytes reserved.  Watch out for discarded transactions,
   1569 	 * which could leave more bytes reserved than are reclaimable.
   1570 	 */
   1571 	if (SIMPLEQ_EMPTY(&wl->wl_entries) &&
   1572 	    (delta >= wl->wl_reserved_bytes)) {
   1573 		delta -= wl->wl_reserved_bytes;
   1574 	}
   1575 	wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head,
   1576 			   &tail);
   1577 	KDASSERT(wl->wl_reserved_bytes <=
   1578 		wapbl_space_used(wl->wl_circ_size, head, tail));
   1579 	mutex_exit(&wl->wl_mtx);
   1580 
   1581 	if (error)
   1582 		return error;
   1583 
   1584 	/*
   1585 	 * This is where head, tail and delta are unprotected
   1586 	 * from races against itself or flush.  This is ok since
   1587 	 * we only call this routine from inside flush itself.
   1588 	 *
   1589 	 * XXX: how can it race against itself when accessed only
   1590 	 * from behind the write-locked rwlock?
   1591 	 */
   1592 	error = wapbl_write_commit(wl, head, tail);
   1593 	if (error)
   1594 		return error;
   1595 
   1596 	wl->wl_head = head;
   1597 	wl->wl_tail = tail;
   1598 
   1599 	mutex_enter(&wl->wl_mtx);
   1600 	KASSERT(wl->wl_reclaimable_bytes >= delta);
   1601 	wl->wl_reclaimable_bytes -= delta;
   1602 	mutex_exit(&wl->wl_mtx);
   1603 	WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
   1604 	    ("wapbl_truncate thread %d.%d truncating %zu bytes\n",
   1605 	    curproc->p_pid, curlwp->l_lid, delta));
   1606 
   1607 	return 0;
   1608 }
   1609 
   1610 /****************************************************************/
   1611 
   1612 void
   1613 wapbl_biodone(struct buf *bp)
   1614 {
   1615 	struct wapbl_entry *we = bp->b_private;
   1616 	struct wapbl *wl = we->we_wapbl;
   1617 #ifdef WAPBL_DEBUG_BUFBYTES
   1618 	const int bufsize = bp->b_bufsize;
   1619 #endif
   1620 
   1621 	/*
   1622 	 * Handle possible flushing of buffers after log has been
   1623 	 * decomissioned.
   1624 	 */
   1625 	if (!wl) {
   1626 		KASSERT(we->we_bufcount > 0);
   1627 		we->we_bufcount--;
   1628 #ifdef WAPBL_DEBUG_BUFBYTES
   1629 		KASSERT(we->we_unsynced_bufbytes >= bufsize);
   1630 		we->we_unsynced_bufbytes -= bufsize;
   1631 #endif
   1632 
   1633 		if (we->we_bufcount == 0) {
   1634 #ifdef WAPBL_DEBUG_BUFBYTES
   1635 			KASSERT(we->we_unsynced_bufbytes == 0);
   1636 #endif
   1637 			pool_put(&wapbl_entry_pool, we);
   1638 		}
   1639 
   1640 		brelse(bp, 0);
   1641 		return;
   1642 	}
   1643 
   1644 #ifdef ohbother
   1645 	KDASSERT(bp->b_oflags & BO_DONE);
   1646 	KDASSERT(!(bp->b_oflags & BO_DELWRI));
   1647 	KDASSERT(bp->b_flags & B_ASYNC);
   1648 	KDASSERT(bp->b_cflags & BC_BUSY);
   1649 	KDASSERT(!(bp->b_flags & B_LOCKED));
   1650 	KDASSERT(!(bp->b_flags & B_READ));
   1651 	KDASSERT(!(bp->b_cflags & BC_INVAL));
   1652 	KDASSERT(!(bp->b_cflags & BC_NOCACHE));
   1653 #endif
   1654 
   1655 	if (bp->b_error) {
   1656 		/*
   1657 		 * If an error occurs, it would be nice to leave the buffer
   1658 		 * as a delayed write on the LRU queue so that we can retry
   1659 		 * it later. But buffercache(9) can't handle dirty buffer
   1660 		 * reuse, so just mark the log permanently errored out.
   1661 		 */
   1662 		mutex_enter(&wl->wl_mtx);
   1663 		if (wl->wl_error_count == 0) {
   1664 			wl->wl_error_count++;
   1665 			cv_broadcast(&wl->wl_reclaimable_cv);
   1666 		}
   1667 		mutex_exit(&wl->wl_mtx);
   1668 	}
   1669 
   1670 	/*
   1671 	 * Make sure that the buf doesn't retain the media flags, so that
   1672 	 * e.g. wapbl_allow_fuadpo has immediate effect on any following I/O.
   1673 	 * The flags will be set again if needed by another I/O.
   1674 	 */
   1675 	bp->b_flags &= ~B_MEDIA_FLAGS;
   1676 
   1677 	/*
   1678 	 * Release the buffer here. wapbl_flush() may wait for the
   1679 	 * log to become empty and we better unbusy the buffer before
   1680 	 * wapbl_flush() returns.
   1681 	 */
   1682 	brelse(bp, 0);
   1683 
   1684 	mutex_enter(&wl->wl_mtx);
   1685 
   1686 	KASSERT(we->we_bufcount > 0);
   1687 	we->we_bufcount--;
   1688 #ifdef WAPBL_DEBUG_BUFBYTES
   1689 	KASSERT(we->we_unsynced_bufbytes >= bufsize);
   1690 	we->we_unsynced_bufbytes -= bufsize;
   1691 	KASSERT(wl->wl_unsynced_bufbytes >= bufsize);
   1692 	wl->wl_unsynced_bufbytes -= bufsize;
   1693 #endif
   1694 	wl->wl_ev_metawrite.ev_count++;
   1695 
   1696 	/*
   1697 	 * If the current transaction can be reclaimed, start
   1698 	 * at the beginning and reclaim any consecutive reclaimable
   1699 	 * transactions.  If we successfully reclaim anything,
   1700 	 * then wakeup anyone waiting for the reclaim.
   1701 	 */
   1702 	if (we->we_bufcount == 0) {
   1703 		size_t delta = 0;
   1704 		int errcnt = 0;
   1705 #ifdef WAPBL_DEBUG_BUFBYTES
   1706 		KDASSERT(we->we_unsynced_bufbytes == 0);
   1707 #endif
   1708 		/*
   1709 		 * clear any posted error, since the buffer it came from
   1710 		 * has successfully flushed by now
   1711 		 */
   1712 		while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) &&
   1713 		       (we->we_bufcount == 0)) {
   1714 			delta += we->we_reclaimable_bytes;
   1715 			if (we->we_error)
   1716 				errcnt++;
   1717 			SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
   1718 			pool_put(&wapbl_entry_pool, we);
   1719 		}
   1720 
   1721 		if (delta) {
   1722 			wl->wl_reclaimable_bytes += delta;
   1723 			KASSERT(wl->wl_error_count >= errcnt);
   1724 			wl->wl_error_count -= errcnt;
   1725 			cv_broadcast(&wl->wl_reclaimable_cv);
   1726 		}
   1727 	}
   1728 
   1729 	mutex_exit(&wl->wl_mtx);
   1730 }
   1731 
   1732 /*
   1733  * wapbl_flush(wl, wait)
   1734  *
   1735  *	Flush pending block writes, deallocations, and inodes from
   1736  *	the current transaction in memory to the log on disk:
   1737  *
   1738  *	1. Call the file system's wl_flush callback to flush any
   1739  *	   per-file-system pending updates.
   1740  *	2. Wait for enough space in the log for the current transaction.
   1741  *	3. Synchronously write the new log records, advancing the
   1742  *	   circular queue head.
   1743  *	4. Issue the pending block writes asynchronously, now that they
   1744  *	   are recorded in the log and can be replayed after crash.
   1745  *	5. If wait is true, wait for all writes to complete and for the
   1746  *	   log to become empty.
   1747  *
   1748  *	On failure, call the file system's wl_flush_abort callback.
   1749  */
   1750 int
   1751 wapbl_flush(struct wapbl *wl, int waitfor)
   1752 {
   1753 	struct buf *bp;
   1754 	struct wapbl_entry *we;
   1755 	off_t off;
   1756 	off_t head;
   1757 	off_t tail;
   1758 	size_t delta = 0;
   1759 	size_t flushsize;
   1760 	size_t reserved;
   1761 	int error = 0;
   1762 
   1763 	/*
   1764 	 * Do a quick check to see if a full flush can be skipped
   1765 	 * This assumes that the flush callback does not need to be called
   1766 	 * unless there are other outstanding bufs.
   1767 	 */
   1768 	if (!waitfor) {
   1769 		size_t nbufs;
   1770 		mutex_enter(&wl->wl_mtx);	/* XXX need mutex here to
   1771 						   protect the KASSERTS */
   1772 		nbufs = wl->wl_bufcount;
   1773 		KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
   1774 		KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
   1775 		mutex_exit(&wl->wl_mtx);
   1776 		if (nbufs == 0)
   1777 			return 0;
   1778 	}
   1779 
   1780 	/*
   1781 	 * XXX we may consider using LK_UPGRADE here
   1782 	 * if we want to call flush from inside a transaction
   1783 	 */
   1784 	rw_enter(&wl->wl_rwlock, RW_WRITER);
   1785 	wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
   1786 
   1787 	/*
   1788 	 * Now that we are exclusively locked and the file system has
   1789 	 * issued any deferred block writes for this transaction, check
   1790 	 * whether there are any blocks to write to the log.  If not,
   1791 	 * skip waiting for space or writing any log entries.
   1792 	 *
   1793 	 * XXX Shouldn't this also check wl_dealloccnt and
   1794 	 * wl_inohashcnt?  Perhaps wl_dealloccnt doesn't matter if the
   1795 	 * file system didn't produce any blocks as a consequence of
   1796 	 * it, but the same does not seem to be so of wl_inohashcnt.
   1797 	 */
   1798 	if (wl->wl_bufcount == 0) {
   1799 		goto wait_out;
   1800 	}
   1801 
   1802 #if 0
   1803 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1804 		     ("wapbl_flush thread %d.%d flushing entries with "
   1805 		      "bufcount=%zu bufbytes=%zu\n",
   1806 		      curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
   1807 		      wl->wl_bufbytes));
   1808 #endif
   1809 
   1810 	/* Calculate amount of space needed to flush */
   1811 	flushsize = wapbl_transaction_len(wl);
   1812 	if (wapbl_verbose_commit) {
   1813 		struct timespec ts;
   1814 		getnanotime(&ts);
   1815 		printf("%s: %lld.%09ld this transaction = %zu bytes\n",
   1816 		    __func__, (long long)ts.tv_sec,
   1817 		    (long)ts.tv_nsec, flushsize);
   1818 	}
   1819 
   1820 	if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) {
   1821 		/*
   1822 		 * XXX this could be handled more gracefully, perhaps place
   1823 		 * only a partial transaction in the log and allow the
   1824 		 * remaining to flush without the protection of the journal.
   1825 		 */
   1826 		panic("wapbl_flush: current transaction too big to flush");
   1827 	}
   1828 
   1829 	error = wapbl_truncate(wl, flushsize);
   1830 	if (error)
   1831 		goto out;
   1832 
   1833 	off = wl->wl_head;
   1834 	KASSERT((off == 0) || (off >= wl->wl_circ_off));
   1835 	KASSERT((off == 0) || (off < wl->wl_circ_off + wl->wl_circ_size));
   1836 	error = wapbl_write_blocks(wl, &off);
   1837 	if (error)
   1838 		goto out;
   1839 	error = wapbl_write_revocations(wl, &off);
   1840 	if (error)
   1841 		goto out;
   1842 	error = wapbl_write_inodes(wl, &off);
   1843 	if (error)
   1844 		goto out;
   1845 
   1846 	reserved = 0;
   1847 	if (wl->wl_inohashcnt)
   1848 		reserved = wapbl_transaction_inodes_len(wl);
   1849 
   1850 	head = wl->wl_head;
   1851 	tail = wl->wl_tail;
   1852 
   1853 	wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize,
   1854 	    &head, &tail);
   1855 
   1856 	KASSERTMSG(head == off,
   1857 	    "lost head! head=%"PRIdMAX" tail=%" PRIdMAX
   1858 	    " off=%"PRIdMAX" flush=%zu",
   1859 	    (intmax_t)head, (intmax_t)tail, (intmax_t)off,
   1860 	    flushsize);
   1861 
   1862 	/* Opportunistically move the tail forward if we can */
   1863 	mutex_enter(&wl->wl_mtx);
   1864 	delta = wl->wl_reclaimable_bytes;
   1865 	mutex_exit(&wl->wl_mtx);
   1866 	wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta,
   1867 	    &head, &tail);
   1868 
   1869 	error = wapbl_write_commit(wl, head, tail);
   1870 	if (error)
   1871 		goto out;
   1872 
   1873 	we = pool_get(&wapbl_entry_pool, PR_WAITOK);
   1874 
   1875 #ifdef WAPBL_DEBUG_BUFBYTES
   1876 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1877 		("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
   1878 		 " unsynced=%zu"
   1879 		 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
   1880 		 "inodes=%d\n",
   1881 		 curproc->p_pid, curlwp->l_lid, flushsize, delta,
   1882 		 wapbl_space_used(wl->wl_circ_size, head, tail),
   1883 		 wl->wl_unsynced_bufbytes, wl->wl_bufcount,
   1884 		 wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt,
   1885 		 wl->wl_inohashcnt));
   1886 #else
   1887 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1888 		("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
   1889 		 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
   1890 		 "inodes=%d\n",
   1891 		 curproc->p_pid, curlwp->l_lid, flushsize, delta,
   1892 		 wapbl_space_used(wl->wl_circ_size, head, tail),
   1893 		 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
   1894 		 wl->wl_dealloccnt, wl->wl_inohashcnt));
   1895 #endif
   1896 
   1897 
   1898 	mutex_enter(&bufcache_lock);
   1899 	mutex_enter(&wl->wl_mtx);
   1900 
   1901 	wl->wl_reserved_bytes = reserved;
   1902 	wl->wl_head = head;
   1903 	wl->wl_tail = tail;
   1904 	KASSERT(wl->wl_reclaimable_bytes >= delta);
   1905 	wl->wl_reclaimable_bytes -= delta;
   1906 	KDASSERT(wl->wl_dealloccnt == 0);
   1907 #ifdef WAPBL_DEBUG_BUFBYTES
   1908 	wl->wl_unsynced_bufbytes += wl->wl_bufbytes;
   1909 #endif
   1910 
   1911 	we->we_wapbl = wl;
   1912 	we->we_bufcount = wl->wl_bufcount;
   1913 #ifdef WAPBL_DEBUG_BUFBYTES
   1914 	we->we_unsynced_bufbytes = wl->wl_bufbytes;
   1915 #endif
   1916 	we->we_reclaimable_bytes = flushsize;
   1917 	we->we_error = 0;
   1918 	SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries);
   1919 
   1920 	/*
   1921 	 * This flushes bufs in order than they were queued, so the LRU
   1922 	 * order is preserved.
   1923 	 */
   1924 	while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
   1925 		if (bbusy(bp, 0, 0, &wl->wl_mtx)) {
   1926 			continue;
   1927 		}
   1928 		bp->b_iodone = wapbl_biodone;
   1929 		bp->b_private = we;
   1930 
   1931 		bremfree(bp);
   1932 		wapbl_remove_buf_locked(wl, bp);
   1933 		mutex_exit(&wl->wl_mtx);
   1934 		mutex_exit(&bufcache_lock);
   1935 		bawrite(bp);
   1936 		mutex_enter(&bufcache_lock);
   1937 		mutex_enter(&wl->wl_mtx);
   1938 	}
   1939 	mutex_exit(&wl->wl_mtx);
   1940 	mutex_exit(&bufcache_lock);
   1941 
   1942 #if 0
   1943 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1944 		     ("wapbl_flush thread %d.%d done flushing entries...\n",
   1945 		     curproc->p_pid, curlwp->l_lid));
   1946 #endif
   1947 
   1948  wait_out:
   1949 
   1950 	/*
   1951 	 * If the waitfor flag is set, don't return until everything is
   1952 	 * fully flushed and the on disk log is empty.
   1953 	 */
   1954 	if (waitfor) {
   1955 		error = wapbl_truncate(wl, wl->wl_circ_size -
   1956 			wl->wl_reserved_bytes);
   1957 	}
   1958 
   1959  out:
   1960 	if (error) {
   1961 		wl->wl_flush_abort(wl->wl_mount,
   1962 		    TAILQ_FIRST(&wl->wl_dealloclist));
   1963 	}
   1964 
   1965 #ifdef WAPBL_DEBUG_PRINT
   1966 	if (error) {
   1967 		pid_t pid = -1;
   1968 		lwpid_t lid = -1;
   1969 		if (curproc)
   1970 			pid = curproc->p_pid;
   1971 		if (curlwp)
   1972 			lid = curlwp->l_lid;
   1973 		mutex_enter(&wl->wl_mtx);
   1974 #ifdef WAPBL_DEBUG_BUFBYTES
   1975 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   1976 		    ("wapbl_flush: thread %d.%d aborted flush: "
   1977 		    "error = %d\n"
   1978 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
   1979 		    "deallocs=%d inodes=%d\n"
   1980 		    "\terrcnt = %d, reclaimable=%zu reserved=%zu "
   1981 		    "unsynced=%zu\n",
   1982 		    pid, lid, error, wl->wl_bufcount,
   1983 		    wl->wl_bufbytes, wl->wl_bcount,
   1984 		    wl->wl_dealloccnt, wl->wl_inohashcnt,
   1985 		    wl->wl_error_count, wl->wl_reclaimable_bytes,
   1986 		    wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes));
   1987 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
   1988 			WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   1989 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
   1990 			     "error = %d, unsynced = %zu\n",
   1991 			     we->we_bufcount, we->we_reclaimable_bytes,
   1992 			     we->we_error, we->we_unsynced_bufbytes));
   1993 		}
   1994 #else
   1995 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   1996 		    ("wapbl_flush: thread %d.%d aborted flush: "
   1997 		     "error = %d\n"
   1998 		     "\tbufcount=%zu bufbytes=%zu bcount=%zu "
   1999 		     "deallocs=%d inodes=%d\n"
   2000 		     "\terrcnt = %d, reclaimable=%zu reserved=%zu\n",
   2001 		     pid, lid, error, wl->wl_bufcount,
   2002 		     wl->wl_bufbytes, wl->wl_bcount,
   2003 		     wl->wl_dealloccnt, wl->wl_inohashcnt,
   2004 		     wl->wl_error_count, wl->wl_reclaimable_bytes,
   2005 		     wl->wl_reserved_bytes));
   2006 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
   2007 			WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   2008 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
   2009 			     "error = %d\n", we->we_bufcount,
   2010 			     we->we_reclaimable_bytes, we->we_error));
   2011 		}
   2012 #endif
   2013 		mutex_exit(&wl->wl_mtx);
   2014 	}
   2015 #endif
   2016 
   2017 	rw_exit(&wl->wl_rwlock);
   2018 	return error;
   2019 }
   2020 
   2021 /****************************************************************/
   2022 
   2023 void
   2024 wapbl_jlock_assert(struct wapbl *wl)
   2025 {
   2026 
   2027 	KASSERT(rw_lock_held(&wl->wl_rwlock));
   2028 }
   2029 
   2030 void
   2031 wapbl_junlock_assert(struct wapbl *wl)
   2032 {
   2033 
   2034 	KASSERT(!rw_write_held(&wl->wl_rwlock));
   2035 }
   2036 
   2037 /****************************************************************/
   2038 
   2039 /* locks missing */
   2040 void
   2041 wapbl_print(struct wapbl *wl,
   2042 		int full,
   2043 		void (*pr)(const char *, ...))
   2044 {
   2045 	struct buf *bp;
   2046 	struct wapbl_entry *we;
   2047 	(*pr)("wapbl %p", wl);
   2048 	(*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n",
   2049 	      wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn);
   2050 	(*pr)("circ = %zu, header = %zu, head = %"PRIdMAX" tail = %"PRIdMAX"\n",
   2051 	      wl->wl_circ_size, wl->wl_circ_off,
   2052 	      (intmax_t)wl->wl_head, (intmax_t)wl->wl_tail);
   2053 	(*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n",
   2054 	      wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift);
   2055 #ifdef WAPBL_DEBUG_BUFBYTES
   2056 	(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
   2057 	      "reserved = %zu errcnt = %d unsynced = %zu\n",
   2058 	      wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
   2059 	      wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
   2060 				wl->wl_error_count, wl->wl_unsynced_bufbytes);
   2061 #else
   2062 	(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
   2063 	      "reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes,
   2064 	      wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
   2065 				wl->wl_error_count);
   2066 #endif
   2067 	(*pr)("\tdealloccnt = %d, dealloclim = %d\n",
   2068 	      wl->wl_dealloccnt, wl->wl_dealloclim);
   2069 	(*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n",
   2070 	      wl->wl_inohashcnt, wl->wl_inohashmask);
   2071 	(*pr)("entries:\n");
   2072 	SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
   2073 #ifdef WAPBL_DEBUG_BUFBYTES
   2074 		(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, "
   2075 		      "unsynced = %zu\n",
   2076 		      we->we_bufcount, we->we_reclaimable_bytes,
   2077 		      we->we_error, we->we_unsynced_bufbytes);
   2078 #else
   2079 		(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n",
   2080 		      we->we_bufcount, we->we_reclaimable_bytes, we->we_error);
   2081 #endif
   2082 	}
   2083 	if (full) {
   2084 		int cnt = 0;
   2085 		(*pr)("bufs =");
   2086 		TAILQ_FOREACH(bp, &wl->wl_bufs, b_wapbllist) {
   2087 			if (!TAILQ_NEXT(bp, b_wapbllist)) {
   2088 				(*pr)(" %p", bp);
   2089 			} else if ((++cnt % 6) == 0) {
   2090 				(*pr)(" %p,\n\t", bp);
   2091 			} else {
   2092 				(*pr)(" %p,", bp);
   2093 			}
   2094 		}
   2095 		(*pr)("\n");
   2096 
   2097 		(*pr)("dealloced blks = ");
   2098 		{
   2099 			struct wapbl_dealloc *wd;
   2100 			cnt = 0;
   2101 			TAILQ_FOREACH(wd, &wl->wl_dealloclist, wd_entries) {
   2102 				(*pr)(" %"PRId64":%d,",
   2103 				      wd->wd_blkno,
   2104 				      wd->wd_len);
   2105 				if ((++cnt % 4) == 0) {
   2106 					(*pr)("\n\t");
   2107 				}
   2108 			}
   2109 		}
   2110 		(*pr)("\n");
   2111 
   2112 		(*pr)("registered inodes = ");
   2113 		{
   2114 			int i;
   2115 			cnt = 0;
   2116 			for (i = 0; i <= wl->wl_inohashmask; i++) {
   2117 				struct wapbl_ino_head *wih;
   2118 				struct wapbl_ino *wi;
   2119 
   2120 				wih = &wl->wl_inohash[i];
   2121 				LIST_FOREACH(wi, wih, wi_hash) {
   2122 					if (wi->wi_ino == 0)
   2123 						continue;
   2124 					(*pr)(" %"PRIu64"/0%06"PRIo32",",
   2125 					    wi->wi_ino, wi->wi_mode);
   2126 					if ((++cnt % 4) == 0) {
   2127 						(*pr)("\n\t");
   2128 					}
   2129 				}
   2130 			}
   2131 			(*pr)("\n");
   2132 		}
   2133 
   2134 		(*pr)("iobufs free =");
   2135 		TAILQ_FOREACH(bp, &wl->wl_iobufs, b_wapbllist) {
   2136 			if (!TAILQ_NEXT(bp, b_wapbllist)) {
   2137 				(*pr)(" %p", bp);
   2138 			} else if ((++cnt % 6) == 0) {
   2139 				(*pr)(" %p,\n\t", bp);
   2140 			} else {
   2141 				(*pr)(" %p,", bp);
   2142 			}
   2143 		}
   2144 		(*pr)("\n");
   2145 
   2146 		(*pr)("iobufs busy =");
   2147 		TAILQ_FOREACH(bp, &wl->wl_iobufs_busy, b_wapbllist) {
   2148 			if (!TAILQ_NEXT(bp, b_wapbllist)) {
   2149 				(*pr)(" %p", bp);
   2150 			} else if ((++cnt % 6) == 0) {
   2151 				(*pr)(" %p,\n\t", bp);
   2152 			} else {
   2153 				(*pr)(" %p,", bp);
   2154 			}
   2155 		}
   2156 		(*pr)("\n");
   2157 	}
   2158 }
   2159 
   2160 #if defined(WAPBL_DEBUG) || defined(DDB)
   2161 void
   2162 wapbl_dump(struct wapbl *wl)
   2163 {
   2164 #if defined(WAPBL_DEBUG)
   2165 	if (!wl)
   2166 		wl = wapbl_debug_wl;
   2167 #endif
   2168 	if (!wl)
   2169 		return;
   2170 	wapbl_print(wl, 1, printf);
   2171 }
   2172 #endif
   2173 
   2174 /****************************************************************/
   2175 
   2176 int
   2177 wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len, bool force,
   2178     void **cookiep)
   2179 {
   2180 	struct wapbl_dealloc *wd;
   2181 	int error = 0;
   2182 
   2183 	wapbl_jlock_assert(wl);
   2184 
   2185 	mutex_enter(&wl->wl_mtx);
   2186 
   2187 	if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim)) {
   2188 		if (!force) {
   2189 			error = EAGAIN;
   2190 			goto out;
   2191 		}
   2192 
   2193 		/*
   2194 		 * Forced registration can only be used when:
   2195 		 * 1) the caller can't cope with failure
   2196 		 * 2) the path can be triggered only bounded, small
   2197 		 *    times per transaction
   2198 		 * If this is not fullfilled, and the path would be triggered
   2199 		 * many times, this could overflow maximum transaction size
   2200 		 * and panic later.
   2201 		 */
   2202 		printf("%s: forced dealloc registration over limit: %d >= %d\n",
   2203 			wl->wl_mount->mnt_stat.f_mntonname,
   2204 			wl->wl_dealloccnt, wl->wl_dealloclim);
   2205 	}
   2206 
   2207 	wl->wl_dealloccnt++;
   2208 	mutex_exit(&wl->wl_mtx);
   2209 
   2210 	wd = pool_get(&wapbl_dealloc_pool, PR_WAITOK);
   2211 	wd->wd_blkno = blk;
   2212 	wd->wd_len = len;
   2213 
   2214 	mutex_enter(&wl->wl_mtx);
   2215 	TAILQ_INSERT_TAIL(&wl->wl_dealloclist, wd, wd_entries);
   2216 
   2217 	if (cookiep)
   2218 		*cookiep = wd;
   2219 
   2220  out:
   2221 	mutex_exit(&wl->wl_mtx);
   2222 
   2223 	WAPBL_PRINTF(WAPBL_PRINT_ALLOC,
   2224 	    ("wapbl_register_deallocation: blk=%"PRId64" len=%d error=%d\n",
   2225 	    blk, len, error));
   2226 
   2227 	return error;
   2228 }
   2229 
   2230 static void
   2231 wapbl_deallocation_free(struct wapbl *wl, struct wapbl_dealloc *wd,
   2232 	bool locked)
   2233 {
   2234 	KASSERT(!locked
   2235 	    || rw_lock_held(&wl->wl_rwlock) || mutex_owned(&wl->wl_mtx));
   2236 
   2237 	if (!locked)
   2238 		mutex_enter(&wl->wl_mtx);
   2239 
   2240 	TAILQ_REMOVE(&wl->wl_dealloclist, wd, wd_entries);
   2241 	wl->wl_dealloccnt--;
   2242 
   2243 	if (!locked)
   2244 		mutex_exit(&wl->wl_mtx);
   2245 
   2246 	pool_put(&wapbl_dealloc_pool, wd);
   2247 }
   2248 
   2249 void
   2250 wapbl_unregister_deallocation(struct wapbl *wl, void *cookie)
   2251 {
   2252 	KASSERT(cookie != NULL);
   2253 	wapbl_deallocation_free(wl, cookie, false);
   2254 }
   2255 
   2256 /****************************************************************/
   2257 
   2258 static void
   2259 wapbl_inodetrk_init(struct wapbl *wl, u_int size)
   2260 {
   2261 
   2262 	wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask);
   2263 	if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) {
   2264 		pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0,
   2265 		    "wapblinopl", &pool_allocator_nointr, IPL_NONE);
   2266 	}
   2267 }
   2268 
   2269 static void
   2270 wapbl_inodetrk_free(struct wapbl *wl)
   2271 {
   2272 
   2273 	/* XXX this KASSERT needs locking/mutex analysis */
   2274 	KASSERT(wl->wl_inohashcnt == 0);
   2275 	hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask);
   2276 	if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) {
   2277 		pool_destroy(&wapbl_ino_pool);
   2278 	}
   2279 }
   2280 
   2281 static struct wapbl_ino *
   2282 wapbl_inodetrk_get(struct wapbl *wl, ino_t ino)
   2283 {
   2284 	struct wapbl_ino_head *wih;
   2285 	struct wapbl_ino *wi;
   2286 
   2287 	KASSERT(mutex_owned(&wl->wl_mtx));
   2288 
   2289 	wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
   2290 	LIST_FOREACH(wi, wih, wi_hash) {
   2291 		if (ino == wi->wi_ino)
   2292 			return wi;
   2293 	}
   2294 	return 0;
   2295 }
   2296 
   2297 void
   2298 wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode)
   2299 {
   2300 	struct wapbl_ino_head *wih;
   2301 	struct wapbl_ino *wi;
   2302 
   2303 	wi = pool_get(&wapbl_ino_pool, PR_WAITOK);
   2304 
   2305 	mutex_enter(&wl->wl_mtx);
   2306 	if (wapbl_inodetrk_get(wl, ino) == NULL) {
   2307 		wi->wi_ino = ino;
   2308 		wi->wi_mode = mode;
   2309 		wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
   2310 		LIST_INSERT_HEAD(wih, wi, wi_hash);
   2311 		wl->wl_inohashcnt++;
   2312 		WAPBL_PRINTF(WAPBL_PRINT_INODE,
   2313 		    ("wapbl_register_inode: ino=%"PRId64"\n", ino));
   2314 		mutex_exit(&wl->wl_mtx);
   2315 	} else {
   2316 		mutex_exit(&wl->wl_mtx);
   2317 		pool_put(&wapbl_ino_pool, wi);
   2318 	}
   2319 }
   2320 
   2321 void
   2322 wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode)
   2323 {
   2324 	struct wapbl_ino *wi;
   2325 
   2326 	mutex_enter(&wl->wl_mtx);
   2327 	wi = wapbl_inodetrk_get(wl, ino);
   2328 	if (wi) {
   2329 		WAPBL_PRINTF(WAPBL_PRINT_INODE,
   2330 		    ("wapbl_unregister_inode: ino=%"PRId64"\n", ino));
   2331 		KASSERT(wl->wl_inohashcnt > 0);
   2332 		wl->wl_inohashcnt--;
   2333 		LIST_REMOVE(wi, wi_hash);
   2334 		mutex_exit(&wl->wl_mtx);
   2335 
   2336 		pool_put(&wapbl_ino_pool, wi);
   2337 	} else {
   2338 		mutex_exit(&wl->wl_mtx);
   2339 	}
   2340 }
   2341 
   2342 /****************************************************************/
   2343 
   2344 /*
   2345  * wapbl_transaction_inodes_len(wl)
   2346  *
   2347  *	Calculate the number of bytes required for inode registration
   2348  *	log records in wl.
   2349  */
   2350 static inline size_t
   2351 wapbl_transaction_inodes_len(struct wapbl *wl)
   2352 {
   2353 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2354 	int iph;
   2355 
   2356 	/* Calculate number of inodes described in a inodelist header */
   2357 	iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
   2358 	    sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
   2359 
   2360 	KASSERT(iph > 0);
   2361 
   2362 	return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen;
   2363 }
   2364 
   2365 
   2366 /*
   2367  * wapbl_transaction_len(wl)
   2368  *
   2369  *	Calculate number of bytes required for all log records in wl.
   2370  */
   2371 static size_t
   2372 wapbl_transaction_len(struct wapbl *wl)
   2373 {
   2374 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2375 	size_t len;
   2376 
   2377 	/* Calculate number of blocks described in a blocklist header */
   2378 	len = wl->wl_bcount;
   2379 	len += howmany(wl->wl_bufcount, wl->wl_brperjblock) * blocklen;
   2380 	len += howmany(wl->wl_dealloccnt, wl->wl_brperjblock) * blocklen;
   2381 	len += wapbl_transaction_inodes_len(wl);
   2382 
   2383 	return len;
   2384 }
   2385 
   2386 /*
   2387  * wapbl_cache_sync(wl, msg)
   2388  *
   2389  *	Issue DIOCCACHESYNC to wl->wl_devvp.
   2390  *
   2391  *	If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message
   2392  *	including msg about the duration of the cache sync.
   2393  */
   2394 static int
   2395 wapbl_cache_sync(struct wapbl *wl, const char *msg)
   2396 {
   2397 	const bool verbose = wapbl_verbose_commit >= 2;
   2398 	struct bintime start_time;
   2399 	int force = 1;
   2400 	int error;
   2401 
   2402 	/* Skip full cache sync if disabled */
   2403 	if (!wapbl_flush_disk_cache) {
   2404 		return 0;
   2405 	}
   2406 	if (verbose) {
   2407 		bintime(&start_time);
   2408 	}
   2409 	error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force,
   2410 	    FWRITE, FSCRED);
   2411 	if (error) {
   2412 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   2413 		    ("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%jx "
   2414 		    "returned %d\n", (uintmax_t)wl->wl_devvp->v_rdev, error));
   2415 	}
   2416 	if (verbose) {
   2417 		struct bintime d;
   2418 		struct timespec ts;
   2419 
   2420 		bintime(&d);
   2421 		bintime_sub(&d, &start_time);
   2422 		bintime2timespec(&d, &ts);
   2423 		printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n",
   2424 		    msg, (uintmax_t)wl->wl_devvp->v_rdev,
   2425 		    (uintmax_t)ts.tv_sec, ts.tv_nsec);
   2426 	}
   2427 
   2428 	wl->wl_ev_cacheflush.ev_count++;
   2429 
   2430 	return error;
   2431 }
   2432 
   2433 /*
   2434  * wapbl_write_commit(wl, head, tail)
   2435  *
   2436  *	Issue a disk cache sync to wait for all pending writes to the
   2437  *	log to complete, and then synchronously commit the current
   2438  *	circular queue head and tail to the log, in the next of two
   2439  *	locations for commit headers on disk.
   2440  *
   2441  *	Increment the generation number.  If the generation number
   2442  *	rolls over to zero, then a subsequent commit would appear to
   2443  *	have an older generation than this one -- in that case, issue a
   2444  *	duplicate commit to avoid this.
   2445  *
   2446  *	=> Caller must have exclusive access to wl, either by holding
   2447  *	wl->wl_rwlock for writer or by being wapbl_start before anyone
   2448  *	else has seen wl.
   2449  */
   2450 static int
   2451 wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail)
   2452 {
   2453 	struct wapbl_wc_header *wc = wl->wl_wc_header;
   2454 	struct timespec ts;
   2455 	int error;
   2456 	daddr_t pbn;
   2457 
   2458 	error = wapbl_buffered_flush(wl, true);
   2459 	if (error)
   2460 		return error;
   2461 	/*
   2462 	 * Flush disk cache to ensure that blocks we've written are actually
   2463 	 * written to the stable storage before the commit header.
   2464 	 * This flushes to disk not only journal blocks, but also all
   2465 	 * metadata blocks, written asynchronously since previous commit.
   2466 	 *
   2467 	 * XXX Calc checksum here, instead we do this for now
   2468 	 */
   2469 	wapbl_cache_sync(wl, "1");
   2470 
   2471 	wc->wc_head = head;
   2472 	wc->wc_tail = tail;
   2473 	wc->wc_checksum = 0;
   2474 	wc->wc_version = 1;
   2475 	getnanotime(&ts);
   2476 	wc->wc_time = ts.tv_sec;
   2477 	wc->wc_timensec = ts.tv_nsec;
   2478 
   2479 	WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2480 	    ("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n",
   2481 	    (intmax_t)head, (intmax_t)tail));
   2482 
   2483 	/*
   2484 	 * write the commit header.
   2485 	 *
   2486 	 * XXX if generation will rollover, then first zero
   2487 	 * over second commit header before trying to write both headers.
   2488 	 */
   2489 
   2490 	pbn = wl->wl_logpbn + (wc->wc_generation % 2);
   2491 #ifdef _KERNEL
   2492 	pbn = btodb(pbn << wc->wc_log_dev_bshift);
   2493 #endif
   2494 	error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn, WAPBL_JFLAGS(wl));
   2495 	if (error)
   2496 		return error;
   2497 	error = wapbl_buffered_flush(wl, true);
   2498 	if (error)
   2499 		return error;
   2500 
   2501 	/*
   2502 	 * Flush disk cache to ensure that the commit header is actually
   2503 	 * written before meta data blocks. Commit block is written using
   2504 	 * FUA when enabled, in that case this flush is not needed.
   2505 	 */
   2506 	if (!WAPBL_USE_FUA(wl))
   2507 		wapbl_cache_sync(wl, "2");
   2508 
   2509 	/*
   2510 	 * If the generation number was zero, write it out a second time.
   2511 	 * This handles initialization and generation number rollover
   2512 	 */
   2513 	if (wc->wc_generation++ == 0) {
   2514 		error = wapbl_write_commit(wl, head, tail);
   2515 		/*
   2516 		 * This panic should be able to be removed if we do the
   2517 		 * zero'ing mentioned above, and we are certain to roll
   2518 		 * back generation number on failure.
   2519 		 */
   2520 		if (error)
   2521 			panic("wapbl_write_commit: error writing duplicate "
   2522 			      "log header: %d", error);
   2523 	}
   2524 
   2525 	wl->wl_ev_commit.ev_count++;
   2526 
   2527 	return 0;
   2528 }
   2529 
   2530 /*
   2531  * wapbl_write_blocks(wl, offp)
   2532  *
   2533  *	Write all pending physical blocks in the current transaction
   2534  *	from wapbl_add_buf to the log on disk, adding to the circular
   2535  *	queue head at byte offset *offp, and returning the new head's
   2536  *	byte offset in *offp.
   2537  */
   2538 static int
   2539 wapbl_write_blocks(struct wapbl *wl, off_t *offp)
   2540 {
   2541 	struct wapbl_wc_blocklist *wc =
   2542 	    (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
   2543 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2544 	struct buf *bp;
   2545 	off_t off = *offp;
   2546 	int error;
   2547 	size_t padding;
   2548 
   2549 	KASSERT(rw_write_held(&wl->wl_rwlock));
   2550 
   2551 	bp = TAILQ_FIRST(&wl->wl_bufs);
   2552 
   2553 	while (bp) {
   2554 		int cnt;
   2555 		struct buf *obp = bp;
   2556 
   2557 		KASSERT(bp->b_flags & B_LOCKED);
   2558 
   2559 		wc->wc_type = WAPBL_WC_BLOCKS;
   2560 		wc->wc_len = blocklen;
   2561 		wc->wc_blkcount = 0;
   2562 		while (bp && (wc->wc_blkcount < wl->wl_brperjblock)) {
   2563 			/*
   2564 			 * Make sure all the physical block numbers are up to
   2565 			 * date.  If this is not always true on a given
   2566 			 * filesystem, then VOP_BMAP must be called.  We
   2567 			 * could call VOP_BMAP here, or else in the filesystem
   2568 			 * specific flush callback, although neither of those
   2569 			 * solutions allow us to take the vnode lock.  If a
   2570 			 * filesystem requires that we must take the vnode lock
   2571 			 * to call VOP_BMAP, then we can probably do it in
   2572 			 * bwrite when the vnode lock should already be held
   2573 			 * by the invoking code.
   2574 			 */
   2575 			KASSERT((bp->b_vp->v_type == VBLK) ||
   2576 				 (bp->b_blkno != bp->b_lblkno));
   2577 			KASSERT(bp->b_blkno > 0);
   2578 
   2579 			wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno;
   2580 			wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount;
   2581 			wc->wc_len += bp->b_bcount;
   2582 			wc->wc_blkcount++;
   2583 			bp = TAILQ_NEXT(bp, b_wapbllist);
   2584 		}
   2585 		if (wc->wc_len % blocklen != 0) {
   2586 			padding = blocklen - wc->wc_len % blocklen;
   2587 			wc->wc_len += padding;
   2588 		} else {
   2589 			padding = 0;
   2590 		}
   2591 
   2592 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2593 		    ("wapbl_write_blocks: len = %u (padding %zu) off = %"PRIdMAX"\n",
   2594 		    wc->wc_len, padding, (intmax_t)off));
   2595 
   2596 		error = wapbl_circ_write(wl, wc, blocklen, &off);
   2597 		if (error)
   2598 			return error;
   2599 		bp = obp;
   2600 		cnt = 0;
   2601 		while (bp && (cnt++ < wl->wl_brperjblock)) {
   2602 			error = wapbl_circ_write(wl, bp->b_data,
   2603 			    bp->b_bcount, &off);
   2604 			if (error)
   2605 				return error;
   2606 			bp = TAILQ_NEXT(bp, b_wapbllist);
   2607 		}
   2608 		if (padding) {
   2609 			void *zero;
   2610 
   2611 			zero = wapbl_alloc(padding);
   2612 			memset(zero, 0, padding);
   2613 			error = wapbl_circ_write(wl, zero, padding, &off);
   2614 			wapbl_free(zero, padding);
   2615 			if (error)
   2616 				return error;
   2617 		}
   2618 	}
   2619 	*offp = off;
   2620 	return 0;
   2621 }
   2622 
   2623 /*
   2624  * wapbl_write_revocations(wl, offp)
   2625  *
   2626  *	Write all pending deallocations in the current transaction from
   2627  *	wapbl_register_deallocation to the log on disk, adding to the
   2628  *	circular queue's head at byte offset *offp, and returning the
   2629  *	new head's byte offset in *offp.
   2630  */
   2631 static int
   2632 wapbl_write_revocations(struct wapbl *wl, off_t *offp)
   2633 {
   2634 	struct wapbl_wc_blocklist *wc =
   2635 	    (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
   2636 	struct wapbl_dealloc *wd, *lwd;
   2637 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2638 	off_t off = *offp;
   2639 	int error;
   2640 
   2641 	KASSERT(rw_write_held(&wl->wl_rwlock));
   2642 
   2643 	if (wl->wl_dealloccnt == 0)
   2644 		return 0;
   2645 
   2646 	while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
   2647 		wc->wc_type = WAPBL_WC_REVOCATIONS;
   2648 		wc->wc_len = blocklen;
   2649 		wc->wc_blkcount = 0;
   2650 		while (wd && (wc->wc_blkcount < wl->wl_brperjblock)) {
   2651 			wc->wc_blocks[wc->wc_blkcount].wc_daddr =
   2652 			    wd->wd_blkno;
   2653 			wc->wc_blocks[wc->wc_blkcount].wc_dlen =
   2654 			    wd->wd_len;
   2655 			wc->wc_blkcount++;
   2656 
   2657 			wd = TAILQ_NEXT(wd, wd_entries);
   2658 		}
   2659 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2660 		    ("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n",
   2661 		    wc->wc_len, (intmax_t)off));
   2662 		error = wapbl_circ_write(wl, wc, blocklen, &off);
   2663 		if (error)
   2664 			return error;
   2665 
   2666 		/* free all successfully written deallocs */
   2667 		lwd = wd;
   2668 		while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
   2669 			if (wd == lwd)
   2670 				break;
   2671 			wapbl_deallocation_free(wl, wd, true);
   2672 		}
   2673 	}
   2674 	*offp = off;
   2675 	return 0;
   2676 }
   2677 
   2678 /*
   2679  * wapbl_write_inodes(wl, offp)
   2680  *
   2681  *	Write all pending inode allocations in the current transaction
   2682  *	from wapbl_register_inode to the log on disk, adding to the
   2683  *	circular queue's head at byte offset *offp and returning the
   2684  *	new head's byte offset in *offp.
   2685  */
   2686 static int
   2687 wapbl_write_inodes(struct wapbl *wl, off_t *offp)
   2688 {
   2689 	struct wapbl_wc_inodelist *wc =
   2690 	    (struct wapbl_wc_inodelist *)wl->wl_wc_scratch;
   2691 	int i;
   2692 	int blocklen = 1 << wl->wl_log_dev_bshift;
   2693 	off_t off = *offp;
   2694 	int error;
   2695 
   2696 	struct wapbl_ino_head *wih;
   2697 	struct wapbl_ino *wi;
   2698 	int iph;
   2699 
   2700 	iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
   2701 	    sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
   2702 
   2703 	i = 0;
   2704 	wih = &wl->wl_inohash[0];
   2705 	wi = 0;
   2706 	do {
   2707 		wc->wc_type = WAPBL_WC_INODES;
   2708 		wc->wc_len = blocklen;
   2709 		wc->wc_inocnt = 0;
   2710 		wc->wc_clear = (i == 0);
   2711 		while ((i < wl->wl_inohashcnt) && (wc->wc_inocnt < iph)) {
   2712 			while (!wi) {
   2713 				KASSERT((wih - &wl->wl_inohash[0])
   2714 				    <= wl->wl_inohashmask);
   2715 				wi = LIST_FIRST(wih++);
   2716 			}
   2717 			wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino;
   2718 			wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode;
   2719 			wc->wc_inocnt++;
   2720 			i++;
   2721 			wi = LIST_NEXT(wi, wi_hash);
   2722 		}
   2723 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2724 		    ("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n",
   2725 		    wc->wc_len, (intmax_t)off));
   2726 		error = wapbl_circ_write(wl, wc, blocklen, &off);
   2727 		if (error)
   2728 			return error;
   2729 	} while (i < wl->wl_inohashcnt);
   2730 
   2731 	*offp = off;
   2732 	return 0;
   2733 }
   2734 
   2735 #endif /* _KERNEL */
   2736 
   2737 /****************************************************************/
   2738 
   2739 struct wapbl_blk {
   2740 	LIST_ENTRY(wapbl_blk) wb_hash;
   2741 	daddr_t wb_blk;
   2742 	off_t wb_off; /* Offset of this block in the log */
   2743 };
   2744 #define	WAPBL_BLKPOOL_MIN 83
   2745 
   2746 static void
   2747 wapbl_blkhash_init(struct wapbl_replay *wr, u_int size)
   2748 {
   2749 	if (size < WAPBL_BLKPOOL_MIN)
   2750 		size = WAPBL_BLKPOOL_MIN;
   2751 	KASSERT(wr->wr_blkhash == 0);
   2752 #ifdef _KERNEL
   2753 	wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask);
   2754 #else /* ! _KERNEL */
   2755 	/* Manually implement hashinit */
   2756 	{
   2757 		unsigned long i, hashsize;
   2758 		for (hashsize = 1; hashsize < size; hashsize <<= 1)
   2759 			continue;
   2760 		wr->wr_blkhash = wapbl_alloc(hashsize * sizeof(*wr->wr_blkhash));
   2761 		for (i = 0; i < hashsize; i++)
   2762 			LIST_INIT(&wr->wr_blkhash[i]);
   2763 		wr->wr_blkhashmask = hashsize - 1;
   2764 	}
   2765 #endif /* ! _KERNEL */
   2766 }
   2767 
   2768 static void
   2769 wapbl_blkhash_free(struct wapbl_replay *wr)
   2770 {
   2771 	KASSERT(wr->wr_blkhashcnt == 0);
   2772 #ifdef _KERNEL
   2773 	hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask);
   2774 #else /* ! _KERNEL */
   2775 	wapbl_free(wr->wr_blkhash,
   2776 	    (wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash));
   2777 #endif /* ! _KERNEL */
   2778 }
   2779 
   2780 static struct wapbl_blk *
   2781 wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk)
   2782 {
   2783 	struct wapbl_blk_head *wbh;
   2784 	struct wapbl_blk *wb;
   2785 	wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
   2786 	LIST_FOREACH(wb, wbh, wb_hash) {
   2787 		if (blk == wb->wb_blk)
   2788 			return wb;
   2789 	}
   2790 	return 0;
   2791 }
   2792 
   2793 static void
   2794 wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off)
   2795 {
   2796 	struct wapbl_blk_head *wbh;
   2797 	struct wapbl_blk *wb;
   2798 	wb = wapbl_blkhash_get(wr, blk);
   2799 	if (wb) {
   2800 		KASSERT(wb->wb_blk == blk);
   2801 		wb->wb_off = off;
   2802 	} else {
   2803 		wb = wapbl_alloc(sizeof(*wb));
   2804 		wb->wb_blk = blk;
   2805 		wb->wb_off = off;
   2806 		wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
   2807 		LIST_INSERT_HEAD(wbh, wb, wb_hash);
   2808 		wr->wr_blkhashcnt++;
   2809 	}
   2810 }
   2811 
   2812 static void
   2813 wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk)
   2814 {
   2815 	struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
   2816 	if (wb) {
   2817 		KASSERT(wr->wr_blkhashcnt > 0);
   2818 		wr->wr_blkhashcnt--;
   2819 		LIST_REMOVE(wb, wb_hash);
   2820 		wapbl_free(wb, sizeof(*wb));
   2821 	}
   2822 }
   2823 
   2824 static void
   2825 wapbl_blkhash_clear(struct wapbl_replay *wr)
   2826 {
   2827 	unsigned long i;
   2828 	for (i = 0; i <= wr->wr_blkhashmask; i++) {
   2829 		struct wapbl_blk *wb;
   2830 
   2831 		while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) {
   2832 			KASSERT(wr->wr_blkhashcnt > 0);
   2833 			wr->wr_blkhashcnt--;
   2834 			LIST_REMOVE(wb, wb_hash);
   2835 			wapbl_free(wb, sizeof(*wb));
   2836 		}
   2837 	}
   2838 	KASSERT(wr->wr_blkhashcnt == 0);
   2839 }
   2840 
   2841 /****************************************************************/
   2842 
   2843 /*
   2844  * wapbl_circ_read(wr, data, len, offp)
   2845  *
   2846  *	Read len bytes into data from the circular queue of wr,
   2847  *	starting at the linear byte offset *offp, and returning the new
   2848  *	linear byte offset in *offp.
   2849  *
   2850  *	If the starting linear byte offset precedes wr->wr_circ_off,
   2851  *	the read instead begins at wr->wr_circ_off.  XXX WTF?  This
   2852  *	should be a KASSERT, not a conditional.
   2853  */
   2854 static int
   2855 wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp)
   2856 {
   2857 	size_t slen;
   2858 	off_t off = *offp;
   2859 	int error;
   2860 	daddr_t pbn;
   2861 
   2862 	KASSERT(((len >> wr->wr_log_dev_bshift) <<
   2863 	    wr->wr_log_dev_bshift) == len);
   2864 
   2865 	if (off < wr->wr_circ_off)
   2866 		off = wr->wr_circ_off;
   2867 	slen = wr->wr_circ_off + wr->wr_circ_size - off;
   2868 	if (slen < len) {
   2869 		pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
   2870 #ifdef _KERNEL
   2871 		pbn = btodb(pbn << wr->wr_log_dev_bshift);
   2872 #endif
   2873 		error = wapbl_read(data, slen, wr->wr_devvp, pbn);
   2874 		if (error)
   2875 			return error;
   2876 		data = (uint8_t *)data + slen;
   2877 		len -= slen;
   2878 		off = wr->wr_circ_off;
   2879 	}
   2880 	pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
   2881 #ifdef _KERNEL
   2882 	pbn = btodb(pbn << wr->wr_log_dev_bshift);
   2883 #endif
   2884 	error = wapbl_read(data, len, wr->wr_devvp, pbn);
   2885 	if (error)
   2886 		return error;
   2887 	off += len;
   2888 	if (off >= wr->wr_circ_off + wr->wr_circ_size)
   2889 		off = wr->wr_circ_off;
   2890 	*offp = off;
   2891 	return 0;
   2892 }
   2893 
   2894 /*
   2895  * wapbl_circ_advance(wr, len, offp)
   2896  *
   2897  *	Compute the linear byte offset of the circular queue of wr that
   2898  *	is len bytes past *offp, and store it in *offp.
   2899  *
   2900  *	This is as if wapbl_circ_read, but without actually reading
   2901  *	anything.
   2902  *
   2903  *	If the starting linear byte offset precedes wr->wr_circ_off, it
   2904  *	is taken to be wr->wr_circ_off instead.  XXX WTF?  This should
   2905  *	be a KASSERT, not a conditional.
   2906  */
   2907 static void
   2908 wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp)
   2909 {
   2910 	size_t slen;
   2911 	off_t off = *offp;
   2912 
   2913 	KASSERT(((len >> wr->wr_log_dev_bshift) <<
   2914 	    wr->wr_log_dev_bshift) == len);
   2915 
   2916 	if (off < wr->wr_circ_off)
   2917 		off = wr->wr_circ_off;
   2918 	slen = wr->wr_circ_off + wr->wr_circ_size - off;
   2919 	if (slen < len) {
   2920 		len -= slen;
   2921 		off = wr->wr_circ_off;
   2922 	}
   2923 	off += len;
   2924 	if (off >= wr->wr_circ_off + wr->wr_circ_size)
   2925 		off = wr->wr_circ_off;
   2926 	*offp = off;
   2927 }
   2928 
   2929 /****************************************************************/
   2930 
   2931 int
   2932 wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp,
   2933 	daddr_t off, size_t count, size_t blksize)
   2934 {
   2935 	struct wapbl_replay *wr;
   2936 	int error;
   2937 	struct vnode *devvp;
   2938 	daddr_t logpbn;
   2939 	uint8_t *scratch;
   2940 	struct wapbl_wc_header *wch;
   2941 	struct wapbl_wc_header *wch2;
   2942 	/* Use this until we read the actual log header */
   2943 	int log_dev_bshift = ilog2(blksize);
   2944 	size_t used;
   2945 	daddr_t pbn;
   2946 
   2947 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
   2948 	    ("wapbl_replay_start: vp=%p off=%"PRId64 " count=%zu blksize=%zu\n",
   2949 	    vp, off, count, blksize));
   2950 
   2951 	if (off < 0)
   2952 		return EINVAL;
   2953 
   2954 	if (blksize < DEV_BSIZE)
   2955 		return EINVAL;
   2956 	if (blksize % DEV_BSIZE)
   2957 		return EINVAL;
   2958 
   2959 #ifdef _KERNEL
   2960 #if 0
   2961 	/* XXX vp->v_size isn't reliably set for VBLK devices,
   2962 	 * especially root.  However, we might still want to verify
   2963 	 * that the full load is readable */
   2964 	if ((off + count) * blksize > vp->v_size)
   2965 		return EINVAL;
   2966 #endif
   2967 	if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) {
   2968 		return error;
   2969 	}
   2970 #else /* ! _KERNEL */
   2971 	devvp = vp;
   2972 	logpbn = off;
   2973 #endif /* ! _KERNEL */
   2974 
   2975 	scratch = wapbl_alloc(MAXBSIZE);
   2976 
   2977 	pbn = logpbn;
   2978 #ifdef _KERNEL
   2979 	pbn = btodb(pbn << log_dev_bshift);
   2980 #endif
   2981 	error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn);
   2982 	if (error)
   2983 		goto errout;
   2984 
   2985 	wch = (struct wapbl_wc_header *)scratch;
   2986 	wch2 =
   2987 	    (struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift));
   2988 	/* XXX verify checksums and magic numbers */
   2989 	if (wch->wc_type != WAPBL_WC_HEADER) {
   2990 		printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type);
   2991 		error = EFTYPE;
   2992 		goto errout;
   2993 	}
   2994 
   2995 	if (wch2->wc_generation > wch->wc_generation)
   2996 		wch = wch2;
   2997 
   2998 	wr = wapbl_calloc(1, sizeof(*wr));
   2999 
   3000 	wr->wr_logvp = vp;
   3001 	wr->wr_devvp = devvp;
   3002 	wr->wr_logpbn = logpbn;
   3003 
   3004 	wr->wr_scratch = scratch;
   3005 
   3006 	wr->wr_log_dev_bshift = wch->wc_log_dev_bshift;
   3007 	wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift;
   3008 	wr->wr_circ_off = wch->wc_circ_off;
   3009 	wr->wr_circ_size = wch->wc_circ_size;
   3010 	wr->wr_generation = wch->wc_generation;
   3011 
   3012 	used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail);
   3013 
   3014 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
   3015 	    ("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64
   3016 	    " len=%"PRId64" used=%zu\n",
   3017 	    wch->wc_head, wch->wc_tail, wch->wc_circ_off,
   3018 	    wch->wc_circ_size, used));
   3019 
   3020 	wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift));
   3021 
   3022 	error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail);
   3023 	if (error) {
   3024 		wapbl_replay_stop(wr);
   3025 		wapbl_replay_free(wr);
   3026 		return error;
   3027 	}
   3028 
   3029 	*wrp = wr;
   3030 	return 0;
   3031 
   3032  errout:
   3033 	wapbl_free(scratch, MAXBSIZE);
   3034 	return error;
   3035 }
   3036 
   3037 void
   3038 wapbl_replay_stop(struct wapbl_replay *wr)
   3039 {
   3040 
   3041 	if (!wapbl_replay_isopen(wr))
   3042 		return;
   3043 
   3044 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n"));
   3045 
   3046 	wapbl_free(wr->wr_scratch, MAXBSIZE);
   3047 	wr->wr_scratch = NULL;
   3048 
   3049 	wr->wr_logvp = NULL;
   3050 
   3051 	wapbl_blkhash_clear(wr);
   3052 	wapbl_blkhash_free(wr);
   3053 }
   3054 
   3055 void
   3056 wapbl_replay_free(struct wapbl_replay *wr)
   3057 {
   3058 
   3059 	KDASSERT(!wapbl_replay_isopen(wr));
   3060 
   3061 	if (wr->wr_inodes)
   3062 		wapbl_free(wr->wr_inodes,
   3063 		    wr->wr_inodescnt * sizeof(wr->wr_inodes[0]));
   3064 	wapbl_free(wr, sizeof(*wr));
   3065 }
   3066 
   3067 #ifdef _KERNEL
   3068 int
   3069 wapbl_replay_isopen1(struct wapbl_replay *wr)
   3070 {
   3071 
   3072 	return wapbl_replay_isopen(wr);
   3073 }
   3074 #endif
   3075 
   3076 /*
   3077  * calculate the disk address for the i'th block in the wc_blockblist
   3078  * offset by j blocks of size blen.
   3079  *
   3080  * wc_daddr is always a kernel disk address in DEV_BSIZE units that
   3081  * was written to the journal.
   3082  *
   3083  * The kernel needs that address plus the offset in DEV_BSIZE units.
   3084  *
   3085  * Userland needs that address plus the offset in blen units.
   3086  *
   3087  */
   3088 static daddr_t
   3089 wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen)
   3090 {
   3091 	daddr_t pbn;
   3092 
   3093 #ifdef _KERNEL
   3094 	pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen);
   3095 #else
   3096 	pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j;
   3097 #endif
   3098 
   3099 	return pbn;
   3100 }
   3101 
   3102 static void
   3103 wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp)
   3104 {
   3105 	struct wapbl_wc_blocklist *wc =
   3106 	    (struct wapbl_wc_blocklist *)wr->wr_scratch;
   3107 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3108 	int i, j, n;
   3109 
   3110 	for (i = 0; i < wc->wc_blkcount; i++) {
   3111 		/*
   3112 		 * Enter each physical block into the hashtable independently.
   3113 		 */
   3114 		n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
   3115 		for (j = 0; j < n; j++) {
   3116 			wapbl_blkhash_ins(wr, wapbl_block_daddr(wc, i, j, fsblklen),
   3117 			    *offp);
   3118 			wapbl_circ_advance(wr, fsblklen, offp);
   3119 		}
   3120 	}
   3121 }
   3122 
   3123 static void
   3124 wapbl_replay_process_revocations(struct wapbl_replay *wr)
   3125 {
   3126 	struct wapbl_wc_blocklist *wc =
   3127 	    (struct wapbl_wc_blocklist *)wr->wr_scratch;
   3128 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3129 	int i, j, n;
   3130 
   3131 	for (i = 0; i < wc->wc_blkcount; i++) {
   3132 		/*
   3133 		 * Remove any blocks found from the hashtable.
   3134 		 */
   3135 		n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
   3136 		for (j = 0; j < n; j++)
   3137 			wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j, fsblklen));
   3138 	}
   3139 }
   3140 
   3141 static void
   3142 wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff, off_t newoff)
   3143 {
   3144 	struct wapbl_wc_inodelist *wc =
   3145 	    (struct wapbl_wc_inodelist *)wr->wr_scratch;
   3146 	void *new_inodes;
   3147 	const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]);
   3148 
   3149 	KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0]));
   3150 
   3151 	/*
   3152 	 * Keep track of where we found this so location won't be
   3153 	 * overwritten.
   3154 	 */
   3155 	if (wc->wc_clear) {
   3156 		wr->wr_inodestail = oldoff;
   3157 		wr->wr_inodescnt = 0;
   3158 		if (wr->wr_inodes != NULL) {
   3159 			wapbl_free(wr->wr_inodes, oldsize);
   3160 			wr->wr_inodes = NULL;
   3161 		}
   3162 	}
   3163 	wr->wr_inodeshead = newoff;
   3164 	if (wc->wc_inocnt == 0)
   3165 		return;
   3166 
   3167 	new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) *
   3168 	    sizeof(wr->wr_inodes[0]));
   3169 	if (wr->wr_inodes != NULL) {
   3170 		memcpy(new_inodes, wr->wr_inodes, oldsize);
   3171 		wapbl_free(wr->wr_inodes, oldsize);
   3172 	}
   3173 	wr->wr_inodes = new_inodes;
   3174 	memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes,
   3175 	    wc->wc_inocnt * sizeof(wr->wr_inodes[0]));
   3176 	wr->wr_inodescnt += wc->wc_inocnt;
   3177 }
   3178 
   3179 static int
   3180 wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail)
   3181 {
   3182 	off_t off;
   3183 	int error;
   3184 
   3185 	int logblklen = 1 << wr->wr_log_dev_bshift;
   3186 
   3187 	wapbl_blkhash_clear(wr);
   3188 
   3189 	off = tail;
   3190 	while (off != head) {
   3191 		struct wapbl_wc_null *wcn;
   3192 		off_t saveoff = off;
   3193 		error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
   3194 		if (error)
   3195 			goto errout;
   3196 		wcn = (struct wapbl_wc_null *)wr->wr_scratch;
   3197 		switch (wcn->wc_type) {
   3198 		case WAPBL_WC_BLOCKS:
   3199 			wapbl_replay_process_blocks(wr, &off);
   3200 			break;
   3201 
   3202 		case WAPBL_WC_REVOCATIONS:
   3203 			wapbl_replay_process_revocations(wr);
   3204 			break;
   3205 
   3206 		case WAPBL_WC_INODES:
   3207 			wapbl_replay_process_inodes(wr, saveoff, off);
   3208 			break;
   3209 
   3210 		default:
   3211 			printf("Unrecognized wapbl type: 0x%08x\n",
   3212 			       wcn->wc_type);
   3213  			error = EFTYPE;
   3214 			goto errout;
   3215 		}
   3216 		wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
   3217 		if (off != saveoff) {
   3218 			printf("wapbl_replay: corrupted records\n");
   3219 			error = EFTYPE;
   3220 			goto errout;
   3221 		}
   3222 	}
   3223 	return 0;
   3224 
   3225  errout:
   3226 	wapbl_blkhash_clear(wr);
   3227 	return error;
   3228 }
   3229 
   3230 #if 0
   3231 int
   3232 wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp)
   3233 {
   3234 	off_t off;
   3235 	int mismatchcnt = 0;
   3236 	int logblklen = 1 << wr->wr_log_dev_bshift;
   3237 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3238 	void *scratch1 = wapbl_alloc(MAXBSIZE);
   3239 	void *scratch2 = wapbl_alloc(MAXBSIZE);
   3240 	int error = 0;
   3241 
   3242 	KDASSERT(wapbl_replay_isopen(wr));
   3243 
   3244 	off = wch->wc_tail;
   3245 	while (off != wch->wc_head) {
   3246 		struct wapbl_wc_null *wcn;
   3247 #ifdef DEBUG
   3248 		off_t saveoff = off;
   3249 #endif
   3250 		error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
   3251 		if (error)
   3252 			goto out;
   3253 		wcn = (struct wapbl_wc_null *)wr->wr_scratch;
   3254 		switch (wcn->wc_type) {
   3255 		case WAPBL_WC_BLOCKS:
   3256 			{
   3257 				struct wapbl_wc_blocklist *wc =
   3258 				    (struct wapbl_wc_blocklist *)wr->wr_scratch;
   3259 				int i;
   3260 				for (i = 0; i < wc->wc_blkcount; i++) {
   3261 					int foundcnt = 0;
   3262 					int dirtycnt = 0;
   3263 					int j, n;
   3264 					/*
   3265 					 * Check each physical block into the
   3266 					 * hashtable independently
   3267 					 */
   3268 					n = wc->wc_blocks[i].wc_dlen >>
   3269 					    wch->wc_fs_dev_bshift;
   3270 					for (j = 0; j < n; j++) {
   3271 						struct wapbl_blk *wb =
   3272 						   wapbl_blkhash_get(wr,
   3273 						   wapbl_block_daddr(wc, i, j, fsblklen));
   3274 						if (wb && (wb->wb_off == off)) {
   3275 							foundcnt++;
   3276 							error =
   3277 							    wapbl_circ_read(wr,
   3278 							    scratch1, fsblklen,
   3279 							    &off);
   3280 							if (error)
   3281 								goto out;
   3282 							error =
   3283 							    wapbl_read(scratch2,
   3284 							    fsblklen, fsdevvp,
   3285 							    wb->wb_blk);
   3286 							if (error)
   3287 								goto out;
   3288 							if (memcmp(scratch1,
   3289 								   scratch2,
   3290 								   fsblklen)) {
   3291 								printf(
   3292 		"wapbl_verify: mismatch block %"PRId64" at off %"PRIdMAX"\n",
   3293 		wb->wb_blk, (intmax_t)off);
   3294 								dirtycnt++;
   3295 								mismatchcnt++;
   3296 							}
   3297 						} else {
   3298 							wapbl_circ_advance(wr,
   3299 							    fsblklen, &off);
   3300 						}
   3301 					}
   3302 #if 0
   3303 					/*
   3304 					 * If all of the blocks in an entry
   3305 					 * are clean, then remove all of its
   3306 					 * blocks from the hashtable since they
   3307 					 * never will need replay.
   3308 					 */
   3309 					if ((foundcnt != 0) &&
   3310 					    (dirtycnt == 0)) {
   3311 						off = saveoff;
   3312 						wapbl_circ_advance(wr,
   3313 						    logblklen, &off);
   3314 						for (j = 0; j < n; j++) {
   3315 							struct wapbl_blk *wb =
   3316 							   wapbl_blkhash_get(wr,
   3317 							   wapbl_block_daddr(wc, i, j, fsblklen));
   3318 							if (wb &&
   3319 							  (wb->wb_off == off)) {
   3320 								wapbl_blkhash_rem(wr, wb->wb_blk);
   3321 							}
   3322 							wapbl_circ_advance(wr,
   3323 							    fsblklen, &off);
   3324 						}
   3325 					}
   3326 #endif
   3327 				}
   3328 			}
   3329 			break;
   3330 		case WAPBL_WC_REVOCATIONS:
   3331 		case WAPBL_WC_INODES:
   3332 			break;
   3333 		default:
   3334 			KASSERT(0);
   3335 		}
   3336 #ifdef DEBUG
   3337 		wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
   3338 		KASSERT(off == saveoff);
   3339 #endif
   3340 	}
   3341  out:
   3342 	wapbl_free(scratch1, MAXBSIZE);
   3343 	wapbl_free(scratch2, MAXBSIZE);
   3344 	if (!error && mismatchcnt)
   3345 		error = EFTYPE;
   3346 	return error;
   3347 }
   3348 #endif
   3349 
   3350 int
   3351 wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp)
   3352 {
   3353 	struct wapbl_blk *wb;
   3354 	size_t i;
   3355 	off_t off;
   3356 	void *scratch;
   3357 	int error = 0;
   3358 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3359 
   3360 	KDASSERT(wapbl_replay_isopen(wr));
   3361 
   3362 	scratch = wapbl_alloc(MAXBSIZE);
   3363 
   3364 	for (i = 0; i <= wr->wr_blkhashmask; ++i) {
   3365 		LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) {
   3366 			off = wb->wb_off;
   3367 			error = wapbl_circ_read(wr, scratch, fsblklen, &off);
   3368 			if (error)
   3369 				break;
   3370 			error = wapbl_write(scratch, fsblklen, fsdevvp,
   3371 			    wb->wb_blk);
   3372 			if (error)
   3373 				break;
   3374 		}
   3375 	}
   3376 
   3377 	wapbl_free(scratch, MAXBSIZE);
   3378 	return error;
   3379 }
   3380 
   3381 int
   3382 wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len)
   3383 {
   3384 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3385 
   3386 	KDASSERT(wapbl_replay_isopen(wr));
   3387 	KASSERT((len % fsblklen) == 0);
   3388 
   3389 	while (len != 0) {
   3390 		struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
   3391 		if (wb)
   3392 			return 1;
   3393 		len -= fsblklen;
   3394 	}
   3395 	return 0;
   3396 }
   3397 
   3398 int
   3399 wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len)
   3400 {
   3401 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3402 
   3403 	KDASSERT(wapbl_replay_isopen(wr));
   3404 
   3405 	KASSERT((len % fsblklen) == 0);
   3406 
   3407 	while (len != 0) {
   3408 		struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
   3409 		if (wb) {
   3410 			off_t off = wb->wb_off;
   3411 			int error;
   3412 			error = wapbl_circ_read(wr, data, fsblklen, &off);
   3413 			if (error)
   3414 				return error;
   3415 		}
   3416 		data = (uint8_t *)data + fsblklen;
   3417 		len -= fsblklen;
   3418 		blk++;
   3419 	}
   3420 	return 0;
   3421 }
   3422 
   3423 #ifdef _KERNEL
   3424 
   3425 MODULE(MODULE_CLASS_VFS, wapbl, NULL);
   3426 
   3427 static int
   3428 wapbl_modcmd(modcmd_t cmd, void *arg)
   3429 {
   3430 
   3431 	switch (cmd) {
   3432 	case MODULE_CMD_INIT:
   3433 		wapbl_init();
   3434 		return 0;
   3435 	case MODULE_CMD_FINI:
   3436 		return wapbl_fini();
   3437 	default:
   3438 		return ENOTTY;
   3439 	}
   3440 }
   3441 #endif /* _KERNEL */
   3442