vfs_wapbl.c revision 1.117 1 /* $NetBSD: vfs_wapbl.c,v 1.117 2024/12/07 15:10:42 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Wasabi Systems, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * This implements file system independent write ahead filesystem logging.
34 */
35
36 #define WAPBL_INTERNAL
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.117 2024/12/07 15:10:42 riastradh Exp $");
40
41 #include <sys/param.h>
42 #include <sys/types.h>
43
44 #include <sys/bitops.h>
45 #include <sys/time.h>
46 #include <sys/wapbl.h>
47 #include <sys/wapbl_replay.h>
48
49 #ifdef _KERNEL
50
51 #include <sys/atomic.h>
52 #include <sys/conf.h>
53 #include <sys/evcnt.h>
54 #include <sys/file.h>
55 #include <sys/kauth.h>
56 #include <sys/kernel.h>
57 #include <sys/module.h>
58 #include <sys/mount.h>
59 #include <sys/mutex.h>
60 #include <sys/namei.h>
61 #include <sys/proc.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sdt.h>
64 #include <sys/sysctl.h>
65 #include <sys/uio.h>
66 #include <sys/vnode.h>
67
68 #include <miscfs/specfs/specdev.h>
69
70 #define wapbl_alloc(s) kmem_alloc((s), KM_SLEEP)
71 #define wapbl_free(a, s) kmem_free((a), (s))
72 #define wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP)
73
74 static int wapbl_flush_disk_cache = 1;
75 static int wapbl_verbose_commit = 0;
76 static int wapbl_allow_dpofua = 0; /* switched off by default for now */
77 static int wapbl_journal_iobufs = 4;
78
79 static inline size_t wapbl_space_free(size_t, off_t, off_t);
80
81 #else /* !_KERNEL */
82
83 #include <assert.h>
84 #include <errno.h>
85 #include <stdbool.h>
86 #include <stdio.h>
87 #include <stdlib.h>
88 #include <string.h>
89
90 #define KDASSERT(x) assert(x)
91 #define KASSERT(x) assert(x)
92 #define wapbl_alloc(s) malloc(s)
93 #define wapbl_free(a, s) free(a)
94 #define wapbl_calloc(n, s) calloc((n), (s))
95
96 #define SET_ERROR(E) (E)
97
98 #endif /* !_KERNEL */
99
100 /*
101 * INTERNAL DATA STRUCTURES
102 */
103
104 /*
105 * This structure holds per-mount log information.
106 *
107 * Legend: a = atomic access only
108 * r = read-only after init
109 * l = rwlock held
110 * m = mutex held
111 * lm = rwlock held writing or mutex held
112 * u = unlocked access ok
113 * b = bufcache_lock held
114 */
115 LIST_HEAD(wapbl_ino_head, wapbl_ino);
116 struct wapbl {
117 struct vnode *wl_logvp; /* r: log here */
118 struct vnode *wl_devvp; /* r: log on this device */
119 struct mount *wl_mount; /* r: mountpoint wl is associated with */
120 daddr_t wl_logpbn; /* r: Physical block number of start of log */
121 int wl_log_dev_bshift; /* r: logarithm of device block size of log
122 device */
123 int wl_fs_dev_bshift; /* r: logarithm of device block size of
124 filesystem device */
125
126 unsigned wl_lock_count; /* m: Count of transactions in progress */
127
128 size_t wl_circ_size; /* r: Number of bytes in buffer of log */
129 size_t wl_circ_off; /* r: Number of bytes reserved at start */
130
131 size_t wl_bufcount_max; /* r: Number of buffers reserved for log */
132 size_t wl_bufbytes_max; /* r: Number of buf bytes reserved for log */
133
134 off_t wl_head; /* l: Byte offset of log head */
135 off_t wl_tail; /* l: Byte offset of log tail */
136 /*
137 * WAPBL log layout, stored on wl_devvp at wl_logpbn:
138 *
139 * ___________________ wl_circ_size __________________
140 * / \
141 * +---------+---------+-------+--------------+--------+
142 * [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ]
143 * +---------+---------+-------+--------------+--------+
144 * wl_circ_off --^ ^-- wl_head ^-- wl_tail
145 *
146 * commit0 and commit1 are commit headers. A commit header has
147 * a generation number, indicating which of the two headers is
148 * more recent, and an assignment of head and tail pointers.
149 * The rest is a circular queue of log records, starting at
150 * the byte offset wl_circ_off.
151 *
152 * E marks empty space for records.
153 * W marks records for block writes issued but waiting.
154 * C marks completed records.
155 *
156 * wapbl_flush writes new records to empty `E' spaces after
157 * wl_head from the current transaction in memory.
158 *
159 * wapbl_truncate advances wl_tail past any completed `C'
160 * records, freeing them up for use.
161 *
162 * head == tail == 0 means log is empty.
163 * head == tail != 0 means log is full.
164 *
165 * See assertions in wapbl_advance() for other boundary
166 * conditions.
167 *
168 * Only wapbl_flush moves the head, except when wapbl_truncate
169 * sets it to 0 to indicate that the log is empty.
170 *
171 * Only wapbl_truncate moves the tail, except when wapbl_flush
172 * sets it to wl_circ_off to indicate that the log is full.
173 */
174
175 struct wapbl_wc_header *wl_wc_header; /* l */
176 void *wl_wc_scratch; /* l: scratch space (XXX: por que?!?) */
177
178 kmutex_t wl_mtx; /* u: short-term lock */
179 krwlock_t wl_rwlock; /* u: File system transaction lock */
180
181 /*
182 * Must be held while accessing
183 * wl_count or wl_bufs or head or tail
184 */
185
186 #if _KERNEL
187 /*
188 * Callback called from within the flush routine to flush any extra
189 * bits. Note that flush may be skipped without calling this if
190 * there are no outstanding buffers in the transaction.
191 */
192 wapbl_flush_fn_t wl_flush; /* r */
193 wapbl_flush_fn_t wl_flush_abort;/* r */
194
195 /* Event counters */
196 char wl_ev_group[EVCNT_STRING_MAX]; /* r */
197 struct evcnt wl_ev_commit; /* l */
198 struct evcnt wl_ev_journalwrite; /* l */
199 struct evcnt wl_ev_jbufs_bio_nowait; /* l */
200 struct evcnt wl_ev_metawrite; /* lm */
201 struct evcnt wl_ev_cacheflush; /* l */
202 #endif
203
204 size_t wl_bufbytes; /* m: Byte count of pages in wl_bufs */
205 size_t wl_bufcount; /* m: Count of buffers in wl_bufs */
206 size_t wl_bcount; /* m: Total bcount of wl_bufs */
207
208 TAILQ_HEAD(, buf) wl_bufs; /* m: Buffers in current transaction */
209
210 kcondvar_t wl_reclaimable_cv; /* m (obviously) */
211 size_t wl_reclaimable_bytes; /* m: Amount of space available for
212 reclamation by truncate */
213 int wl_error_count; /* m: # of wl_entries with errors */
214 size_t wl_reserved_bytes; /* never truncate log smaller than this */
215
216 #ifdef WAPBL_DEBUG_BUFBYTES
217 size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */
218 #endif
219
220 #if _KERNEL
221 int wl_brperjblock; /* r Block records per journal block */
222 #endif
223
224 TAILQ_HEAD(, wapbl_dealloc) wl_dealloclist; /* lm: list head */
225 int wl_dealloccnt; /* lm: total count */
226 int wl_dealloclim; /* r: max count */
227
228 /* hashtable of inode numbers for allocated but unlinked inodes */
229 /* synch ??? */
230 struct wapbl_ino_head *wl_inohash;
231 u_long wl_inohashmask;
232 int wl_inohashcnt;
233
234 SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* m: On disk transaction
235 accounting */
236
237 /* buffers for wapbl_buffered_write() */
238 TAILQ_HEAD(, buf) wl_iobufs; /* l: Free or filling bufs */
239 TAILQ_HEAD(, buf) wl_iobufs_busy; /* l: In-transit bufs */
240
241 int wl_dkcache; /* r: disk cache flags */
242 #define WAPBL_USE_FUA(wl) \
243 (wapbl_allow_dpofua && ISSET((wl)->wl_dkcache, DKCACHE_FUA))
244 #define WAPBL_JFLAGS(wl) \
245 (WAPBL_USE_FUA(wl) ? (wl)->wl_jwrite_flags : 0)
246 #define WAPBL_JDATA_FLAGS(wl) \
247 (WAPBL_JFLAGS(wl) & B_MEDIA_DPO) /* only DPO */
248 int wl_jwrite_flags; /* r: journal write flags */
249 };
250
251 #ifdef WAPBL_DEBUG_PRINT
252 int wapbl_debug_print = WAPBL_DEBUG_PRINT;
253 #endif
254
255 /****************************************************************/
256 #ifdef _KERNEL
257
258 #ifdef WAPBL_DEBUG
259 struct wapbl *wapbl_debug_wl;
260 #endif
261
262 static int wapbl_write_commit(struct wapbl *, off_t, off_t);
263 static int wapbl_write_blocks(struct wapbl *, off_t *);
264 static int wapbl_write_revocations(struct wapbl *, off_t *);
265 static int wapbl_write_inodes(struct wapbl *, off_t *);
266 #endif /* _KERNEL */
267
268 static int wapbl_replay_process(struct wapbl_replay *, off_t, off_t);
269
270 static inline size_t wapbl_space_used(size_t, off_t, off_t);
271
272 #ifdef _KERNEL
273
274 static struct pool wapbl_entry_pool;
275 static struct pool wapbl_dealloc_pool;
276
277 #define WAPBL_INODETRK_SIZE 83
278 static int wapbl_ino_pool_refcount;
279 static struct pool wapbl_ino_pool;
280 struct wapbl_ino {
281 LIST_ENTRY(wapbl_ino) wi_hash;
282 ino_t wi_ino;
283 mode_t wi_mode;
284 };
285
286 static void wapbl_inodetrk_init(struct wapbl *wl, u_int size);
287 static void wapbl_inodetrk_free(struct wapbl *wl);
288 static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino);
289
290 static size_t wapbl_transaction_len(struct wapbl *wl);
291 static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl);
292
293 static void wapbl_deallocation_free(struct wapbl *, struct wapbl_dealloc *,
294 bool);
295
296 static void wapbl_evcnt_init(struct wapbl *);
297 static void wapbl_evcnt_free(struct wapbl *);
298
299 static void wapbl_dkcache_init(struct wapbl *);
300
301 #if 0
302 int wapbl_replay_verify(struct wapbl_replay *, struct vnode *);
303 #endif
304
305 static int wapbl_replay_isopen1(struct wapbl_replay *);
306
307 const struct wapbl_ops wapbl_ops = {
308 .wo_wapbl_discard = wapbl_discard,
309 .wo_wapbl_replay_isopen = wapbl_replay_isopen1,
310 .wo_wapbl_replay_can_read = wapbl_replay_can_read,
311 .wo_wapbl_replay_read = wapbl_replay_read,
312 .wo_wapbl_add_buf = wapbl_add_buf,
313 .wo_wapbl_remove_buf = wapbl_remove_buf,
314 .wo_wapbl_resize_buf = wapbl_resize_buf,
315 .wo_wapbl_begin = wapbl_begin,
316 .wo_wapbl_end = wapbl_end,
317 .wo_wapbl_junlock_assert= wapbl_junlock_assert,
318 .wo_wapbl_jlock_assert = wapbl_jlock_assert,
319
320 /* XXX: the following is only used to say "this is a wapbl buf" */
321 .wo_wapbl_biodone = wapbl_biodone,
322 };
323
324 SYSCTL_SETUP(wapbl_sysctl_init, "wapbl sysctl")
325 {
326 int rv;
327 const struct sysctlnode *rnode, *cnode;
328
329 rv = sysctl_createv(clog, 0, NULL, &rnode,
330 CTLFLAG_PERMANENT,
331 CTLTYPE_NODE, "wapbl",
332 SYSCTL_DESCR("WAPBL journaling options"),
333 NULL, 0, NULL, 0,
334 CTL_VFS, CTL_CREATE, CTL_EOL);
335 if (rv)
336 return;
337
338 rv = sysctl_createv(clog, 0, &rnode, &cnode,
339 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
340 CTLTYPE_INT, "flush_disk_cache",
341 SYSCTL_DESCR("flush disk cache"),
342 NULL, 0, &wapbl_flush_disk_cache, 0,
343 CTL_CREATE, CTL_EOL);
344 if (rv)
345 return;
346
347 rv = sysctl_createv(clog, 0, &rnode, &cnode,
348 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
349 CTLTYPE_INT, "verbose_commit",
350 SYSCTL_DESCR("show time and size of wapbl log commits"),
351 NULL, 0, &wapbl_verbose_commit, 0,
352 CTL_CREATE, CTL_EOL);
353 if (rv)
354 return;
355
356 rv = sysctl_createv(clog, 0, &rnode, &cnode,
357 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
358 CTLTYPE_INT, "allow_dpofua",
359 SYSCTL_DESCR("allow use of FUA/DPO instead of cache flush"
360 " if available"),
361 NULL, 0, &wapbl_allow_dpofua, 0,
362 CTL_CREATE, CTL_EOL);
363 if (rv)
364 return;
365
366 rv = sysctl_createv(clog, 0, &rnode, &cnode,
367 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
368 CTLTYPE_INT, "journal_iobufs",
369 SYSCTL_DESCR("count of bufs used for journal I/O"
370 " (max async count)"),
371 NULL, 0, &wapbl_journal_iobufs, 0,
372 CTL_CREATE, CTL_EOL);
373 if (rv)
374 return;
375
376 return;
377 }
378
379 static void
380 wapbl_init(void)
381 {
382
383 pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0,
384 "wapblentrypl", &pool_allocator_kmem, IPL_VM);
385 pool_init(&wapbl_dealloc_pool, sizeof(struct wapbl_dealloc), 0, 0, 0,
386 "wapbldealloc", &pool_allocator_nointr, IPL_NONE);
387 }
388
389 static int
390 wapbl_fini(void)
391 {
392
393 pool_destroy(&wapbl_dealloc_pool);
394 pool_destroy(&wapbl_entry_pool);
395
396 return 0;
397 }
398
399 static void
400 wapbl_evcnt_init(struct wapbl *wl)
401 {
402
403 snprintf(wl->wl_ev_group, sizeof(wl->wl_ev_group),
404 "wapbl fsid 0x%x/0x%x",
405 wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[0],
406 wl->wl_mount->mnt_stat.f_fsidx.__fsid_val[1]);
407
408 evcnt_attach_dynamic(&wl->wl_ev_commit, EVCNT_TYPE_MISC,
409 NULL, wl->wl_ev_group, "commit");
410 evcnt_attach_dynamic(&wl->wl_ev_journalwrite, EVCNT_TYPE_MISC,
411 NULL, wl->wl_ev_group, "journal write total");
412 evcnt_attach_dynamic(&wl->wl_ev_jbufs_bio_nowait, EVCNT_TYPE_MISC,
413 NULL, wl->wl_ev_group, "journal write finished async");
414 evcnt_attach_dynamic(&wl->wl_ev_metawrite, EVCNT_TYPE_MISC,
415 NULL, wl->wl_ev_group, "metadata async write");
416 evcnt_attach_dynamic(&wl->wl_ev_cacheflush, EVCNT_TYPE_MISC,
417 NULL, wl->wl_ev_group, "cache flush");
418 }
419
420 static void
421 wapbl_evcnt_free(struct wapbl *wl)
422 {
423
424 evcnt_detach(&wl->wl_ev_commit);
425 evcnt_detach(&wl->wl_ev_journalwrite);
426 evcnt_detach(&wl->wl_ev_jbufs_bio_nowait);
427 evcnt_detach(&wl->wl_ev_metawrite);
428 evcnt_detach(&wl->wl_ev_cacheflush);
429 }
430
431 static void
432 wapbl_dkcache_init(struct wapbl *wl)
433 {
434 int error;
435
436 /* Get disk cache flags */
437 error = VOP_IOCTL(wl->wl_devvp, DIOCGCACHE, &wl->wl_dkcache,
438 FWRITE, FSCRED);
439 if (error) {
440 /* behave as if there was a write cache */
441 wl->wl_dkcache = DKCACHE_WRITE;
442 }
443
444 /* Use FUA instead of cache flush if available */
445 if (ISSET(wl->wl_dkcache, DKCACHE_FUA))
446 wl->wl_jwrite_flags |= B_MEDIA_FUA;
447
448 /* Use DPO for journal writes if available */
449 if (ISSET(wl->wl_dkcache, DKCACHE_DPO))
450 wl->wl_jwrite_flags |= B_MEDIA_DPO;
451 }
452
453 static int
454 wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr)
455 {
456 int error, i;
457
458 WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
459 ("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt));
460
461 /*
462 * Its only valid to reuse the replay log if its
463 * the same as the new log we just opened.
464 */
465 KDASSERT(!wapbl_replay_isopen(wr));
466 KASSERT(wl->wl_devvp->v_type == VBLK);
467 KASSERT(wr->wr_devvp->v_type == VBLK);
468 KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev);
469 KASSERT(wl->wl_logpbn == wr->wr_logpbn);
470 KASSERT(wl->wl_circ_size == wr->wr_circ_size);
471 KASSERT(wl->wl_circ_off == wr->wr_circ_off);
472 KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift);
473 KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift);
474
475 wl->wl_wc_header->wc_generation = wr->wr_generation + 1;
476
477 for (i = 0; i < wr->wr_inodescnt; i++)
478 wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber,
479 wr->wr_inodes[i].wr_imode);
480
481 /* Make sure new transaction won't overwrite old inodes list */
482 KDASSERT(wapbl_transaction_len(wl) <=
483 wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead,
484 wr->wr_inodestail));
485
486 wl->wl_head = wl->wl_tail = wr->wr_inodeshead;
487 wl->wl_reclaimable_bytes = wl->wl_reserved_bytes =
488 wapbl_transaction_len(wl);
489
490 error = wapbl_write_inodes(wl, &wl->wl_head);
491 if (error)
492 return error;
493
494 KASSERT(wl->wl_head != wl->wl_tail);
495 KASSERT(wl->wl_head != 0);
496
497 return 0;
498 }
499
500 int
501 wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp,
502 daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr,
503 wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn)
504 {
505 struct wapbl *wl;
506 struct vnode *devvp;
507 daddr_t logpbn;
508 int error;
509 int log_dev_bshift = ilog2(blksize);
510 int fs_dev_bshift = log_dev_bshift;
511 int run;
512
513 WAPBL_PRINTF(WAPBL_PRINT_OPEN,
514 ("wapbl_start: vp=%p off=%"PRId64" count=%zu blksize=%zu\n",
515 vp, off, count, blksize));
516
517 if (log_dev_bshift > fs_dev_bshift) {
518 WAPBL_PRINTF(WAPBL_PRINT_OPEN,
519 ("wapbl: log device's block size cannot be larger "
520 "than filesystem's\n"));
521 /*
522 * Not currently implemented, although it could be if
523 * needed someday.
524 */
525 return SET_ERROR(ENOSYS);
526 }
527
528 if (off < 0)
529 return SET_ERROR(EINVAL);
530
531 if (blksize < DEV_BSIZE)
532 return SET_ERROR(EINVAL);
533 if (blksize % DEV_BSIZE)
534 return SET_ERROR(EINVAL);
535
536 /* XXXTODO: verify that the full load is writable */
537
538 /*
539 * XXX check for minimum log size
540 * minimum is governed by minimum amount of space
541 * to complete a transaction. (probably truncate)
542 */
543 /* XXX for now pick something minimal */
544 if ((count * blksize) < MAXPHYS) {
545 return SET_ERROR(ENOSPC);
546 }
547
548 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) {
549 return error;
550 }
551
552 wl = wapbl_calloc(1, sizeof(*wl));
553 rw_init(&wl->wl_rwlock);
554 mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE);
555 cv_init(&wl->wl_reclaimable_cv, "wapblrec");
556 TAILQ_INIT(&wl->wl_bufs);
557 SIMPLEQ_INIT(&wl->wl_entries);
558
559 wl->wl_logvp = vp;
560 wl->wl_devvp = devvp;
561 wl->wl_mount = mp;
562 wl->wl_logpbn = logpbn;
563 wl->wl_log_dev_bshift = log_dev_bshift;
564 wl->wl_fs_dev_bshift = fs_dev_bshift;
565
566 wl->wl_flush = flushfn;
567 wl->wl_flush_abort = flushabortfn;
568
569 /* Reserve two log device blocks for the commit headers */
570 wl->wl_circ_off = 2<<wl->wl_log_dev_bshift;
571 wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off);
572 /* truncate the log usage to a multiple of log_dev_bshift */
573 wl->wl_circ_size >>= wl->wl_log_dev_bshift;
574 wl->wl_circ_size <<= wl->wl_log_dev_bshift;
575
576 /*
577 * wl_bufbytes_max limits the size of the in memory transaction space.
578 * - Since buffers are allocated and accounted for in units of
579 * PAGE_SIZE it is required to be a multiple of PAGE_SIZE
580 * (i.e. 1<<PAGE_SHIFT)
581 * - Since the log device has to be written in units of
582 * 1<<wl_log_dev_bshift it is required to be a multiple of
583 * 1<<wl_log_dev_bshift.
584 * - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift,
585 * it is convenient to be a multiple of 1<<wl_fs_dev_bshift.
586 * Therefore it must be multiple of the least common multiple of those
587 * three quantities. Fortunately, all of those quantities are
588 * guaranteed to be a power of two, and the least common multiple of
589 * a set of numbers which are all powers of two is simply the maximum
590 * of those numbers. Finally, the maximum logarithm of a power of two
591 * is the same as the log of the maximum power of two. So we can do
592 * the following operations to size wl_bufbytes_max:
593 */
594
595 /* XXX fix actual number of pages reserved per filesystem. */
596 wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2);
597
598 /* Round wl_bufbytes_max to the largest power of two constraint */
599 wl->wl_bufbytes_max >>= PAGE_SHIFT;
600 wl->wl_bufbytes_max <<= PAGE_SHIFT;
601 wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift;
602 wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift;
603 wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift;
604 wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift;
605
606 /* XXX maybe use filesystem fragment size instead of 1024 */
607 /* XXX fix actual number of buffers reserved per filesystem. */
608 wl->wl_bufcount_max = (buf_nbuf() / 2) * 1024;
609
610 wl->wl_brperjblock = ((1<<wl->wl_log_dev_bshift)
611 - offsetof(struct wapbl_wc_blocklist, wc_blocks)) /
612 sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]);
613 KASSERT(wl->wl_brperjblock > 0);
614
615 /* XXX tie this into resource estimation */
616 wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2;
617 TAILQ_INIT(&wl->wl_dealloclist);
618
619 wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE);
620
621 wapbl_evcnt_init(wl);
622
623 wapbl_dkcache_init(wl);
624
625 /* Initialize the commit header */
626 {
627 struct wapbl_wc_header *wc;
628 size_t len = 1 << wl->wl_log_dev_bshift;
629 wc = wapbl_calloc(1, len);
630 wc->wc_type = WAPBL_WC_HEADER;
631 wc->wc_len = len;
632 wc->wc_circ_off = wl->wl_circ_off;
633 wc->wc_circ_size = wl->wl_circ_size;
634 /* XXX wc->wc_fsid */
635 wc->wc_log_dev_bshift = wl->wl_log_dev_bshift;
636 wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift;
637 wl->wl_wc_header = wc;
638 wl->wl_wc_scratch = wapbl_alloc(len);
639 }
640
641 TAILQ_INIT(&wl->wl_iobufs);
642 TAILQ_INIT(&wl->wl_iobufs_busy);
643 for (int i = 0; i < wapbl_journal_iobufs; i++) {
644 struct buf *bp;
645
646 if ((bp = geteblk(MAXPHYS)) == NULL)
647 goto errout;
648
649 mutex_enter(&bufcache_lock);
650 mutex_enter(devvp->v_interlock);
651 bgetvp(devvp, bp);
652 mutex_exit(devvp->v_interlock);
653 mutex_exit(&bufcache_lock);
654
655 bp->b_dev = devvp->v_rdev;
656
657 TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
658 }
659
660 /*
661 * if there was an existing set of unlinked but
662 * allocated inodes, preserve it in the new
663 * log.
664 */
665 if (wr && wr->wr_inodescnt) {
666 error = wapbl_start_flush_inodes(wl, wr);
667 if (error)
668 goto errout;
669 }
670
671 error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail);
672 if (error) {
673 goto errout;
674 }
675
676 *wlp = wl;
677 #if defined(WAPBL_DEBUG)
678 wapbl_debug_wl = wl;
679 #endif
680
681 return 0;
682 errout:
683 wapbl_discard(wl);
684 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
685 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
686 while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
687 struct buf *bp;
688
689 bp = TAILQ_FIRST(&wl->wl_iobufs);
690 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
691 brelse(bp, BC_INVAL);
692 }
693 wapbl_inodetrk_free(wl);
694 wapbl_free(wl, sizeof(*wl));
695
696 return error;
697 }
698
699 /*
700 * Like wapbl_flush, only discards the transaction
701 * completely
702 */
703
704 void
705 wapbl_discard(struct wapbl *wl)
706 {
707 struct wapbl_entry *we;
708 struct wapbl_dealloc *wd;
709 struct buf *bp;
710 int i;
711
712 /*
713 * XXX we may consider using upgrade here
714 * if we want to call flush from inside a transaction
715 */
716 rw_enter(&wl->wl_rwlock, RW_WRITER);
717 wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
718
719 #ifdef WAPBL_DEBUG_PRINT
720 {
721 pid_t pid = -1;
722 lwpid_t lid = -1;
723 if (curproc)
724 pid = curproc->p_pid;
725 if (curlwp)
726 lid = curlwp->l_lid;
727 #ifdef WAPBL_DEBUG_BUFBYTES
728 WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
729 ("wapbl_discard: thread %d.%d discarding "
730 "transaction\n"
731 "\tbufcount=%zu bufbytes=%zu bcount=%zu "
732 "deallocs=%d inodes=%d\n"
733 "\terrcnt = %u, reclaimable=%zu reserved=%zu "
734 "unsynced=%zu\n",
735 pid, lid,
736 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
737 wl->wl_dealloccnt, wl->wl_inohashcnt,
738 wl->wl_error_count, wl->wl_reclaimable_bytes,
739 wl->wl_reserved_bytes,
740 wl->wl_unsynced_bufbytes));
741 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
742 WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
743 ("\tentry: bufcount = %zu, reclaimable = %zu, "
744 "error = %d, unsynced = %zu\n",
745 we->we_bufcount, we->we_reclaimable_bytes,
746 we->we_error, we->we_unsynced_bufbytes));
747 }
748 #else /* !WAPBL_DEBUG_BUFBYTES */
749 WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
750 ("wapbl_discard: thread %d.%d discarding transaction\n"
751 "\tbufcount=%zu bufbytes=%zu bcount=%zu "
752 "deallocs=%d inodes=%d\n"
753 "\terrcnt = %u, reclaimable=%zu reserved=%zu\n",
754 pid, lid,
755 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
756 wl->wl_dealloccnt, wl->wl_inohashcnt,
757 wl->wl_error_count, wl->wl_reclaimable_bytes,
758 wl->wl_reserved_bytes));
759 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
760 WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
761 ("\tentry: bufcount = %zu, reclaimable = %zu, "
762 "error = %d\n",
763 we->we_bufcount, we->we_reclaimable_bytes,
764 we->we_error));
765 }
766 #endif /* !WAPBL_DEBUG_BUFBYTES */
767 }
768 #endif /* WAPBL_DEBUG_PRINT */
769
770 for (i = 0; i <= wl->wl_inohashmask; i++) {
771 struct wapbl_ino_head *wih;
772 struct wapbl_ino *wi;
773
774 wih = &wl->wl_inohash[i];
775 while ((wi = LIST_FIRST(wih)) != NULL) {
776 LIST_REMOVE(wi, wi_hash);
777 pool_put(&wapbl_ino_pool, wi);
778 KASSERT(wl->wl_inohashcnt > 0);
779 wl->wl_inohashcnt--;
780 }
781 }
782
783 /*
784 * clean buffer list
785 */
786 mutex_enter(&bufcache_lock);
787 mutex_enter(&wl->wl_mtx);
788 while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
789 if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) {
790 KASSERT(bp->b_flags & B_LOCKED);
791 KASSERT(bp->b_oflags & BO_DELWRI);
792 /*
793 * Buffer is already on BQ_LOCKED queue.
794 * The buffer will be unlocked and
795 * removed from the transaction in brelsel()
796 */
797 mutex_exit(&wl->wl_mtx);
798 bremfree(bp);
799 brelsel(bp, BC_INVAL);
800 mutex_enter(&wl->wl_mtx);
801 }
802 }
803
804 /*
805 * Remove references to this wl from wl_entries, free any which
806 * no longer have buffers, others will be freed in wapbl_biodone()
807 * when they no longer have any buffers.
808 */
809 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) {
810 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
811 /* XXX should we be accumulating wl_error_count
812 * and increasing reclaimable bytes ? */
813 we->we_wapbl = NULL;
814 if (we->we_bufcount == 0) {
815 #ifdef WAPBL_DEBUG_BUFBYTES
816 KASSERT(we->we_unsynced_bufbytes == 0);
817 #endif
818 pool_put(&wapbl_entry_pool, we);
819 }
820 }
821
822 mutex_exit(&wl->wl_mtx);
823 mutex_exit(&bufcache_lock);
824
825 /* Discard list of deallocs */
826 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL)
827 wapbl_deallocation_free(wl, wd, true);
828
829 /* XXX should we clear wl_reserved_bytes? */
830
831 KASSERT(wl->wl_bufbytes == 0);
832 KASSERT(wl->wl_bcount == 0);
833 KASSERT(wl->wl_bufcount == 0);
834 KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
835 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
836 KASSERT(wl->wl_inohashcnt == 0);
837 KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
838 KASSERT(wl->wl_dealloccnt == 0);
839
840 rw_exit(&wl->wl_rwlock);
841 }
842
843 int
844 wapbl_stop(struct wapbl *wl, int force)
845 {
846 int error;
847
848 WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n"));
849 error = wapbl_flush(wl, 1);
850 if (error) {
851 if (force)
852 wapbl_discard(wl);
853 else
854 return error;
855 }
856
857 /* Unlinked inodes persist after a flush */
858 if (wl->wl_inohashcnt) {
859 if (force) {
860 wapbl_discard(wl);
861 } else {
862 return SET_ERROR(EBUSY);
863 }
864 }
865
866 KASSERT(wl->wl_bufbytes == 0);
867 KASSERT(wl->wl_bcount == 0);
868 KASSERT(wl->wl_bufcount == 0);
869 KASSERT(TAILQ_EMPTY(&wl->wl_bufs));
870 KASSERT(wl->wl_dealloccnt == 0);
871 KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
872 KASSERT(wl->wl_inohashcnt == 0);
873 KASSERT(TAILQ_EMPTY(&wl->wl_dealloclist));
874 KASSERT(wl->wl_dealloccnt == 0);
875 KASSERT(TAILQ_EMPTY(&wl->wl_iobufs_busy));
876
877 wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
878 wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
879 while (!TAILQ_EMPTY(&wl->wl_iobufs)) {
880 struct buf *bp;
881
882 bp = TAILQ_FIRST(&wl->wl_iobufs);
883 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
884 brelse(bp, BC_INVAL);
885 }
886 wapbl_inodetrk_free(wl);
887
888 wapbl_evcnt_free(wl);
889
890 cv_destroy(&wl->wl_reclaimable_cv);
891 mutex_destroy(&wl->wl_mtx);
892 rw_destroy(&wl->wl_rwlock);
893 wapbl_free(wl, sizeof(*wl));
894
895 return 0;
896 }
897
898 /****************************************************************/
899 /*
900 * Unbuffered disk I/O
901 */
902
903 static void
904 wapbl_doio_accounting(struct vnode *devvp, int flags)
905 {
906 struct pstats *pstats = curlwp->l_proc->p_stats;
907
908 if ((flags & (B_WRITE | B_READ)) == B_WRITE) {
909 mutex_enter(devvp->v_interlock);
910 devvp->v_numoutput++;
911 mutex_exit(devvp->v_interlock);
912 pstats->p_ru.ru_oublock++;
913 } else {
914 pstats->p_ru.ru_inblock++;
915 }
916
917 }
918
919 static int
920 wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags)
921 {
922 struct buf *bp;
923 int error;
924
925 KASSERT(devvp->v_type == VBLK);
926
927 wapbl_doio_accounting(devvp, flags);
928
929 bp = getiobuf(devvp, true);
930 bp->b_flags = flags;
931 bp->b_cflags |= BC_BUSY; /* mandatory, asserted by biowait() */
932 bp->b_dev = devvp->v_rdev;
933 bp->b_data = data;
934 bp->b_bufsize = bp->b_resid = bp->b_bcount = len;
935 bp->b_blkno = pbn;
936 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
937
938 WAPBL_PRINTF(WAPBL_PRINT_IO,
939 ("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n",
940 BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount,
941 bp->b_blkno, bp->b_dev));
942
943 VOP_STRATEGY(devvp, bp);
944
945 error = biowait(bp);
946 putiobuf(bp);
947
948 if (error) {
949 WAPBL_PRINTF(WAPBL_PRINT_ERROR,
950 ("wapbl_doio: %s %zu bytes at block %" PRId64
951 " on dev 0x%"PRIx64" failed with error %d\n",
952 (((flags & (B_WRITE | B_READ)) == B_WRITE) ?
953 "write" : "read"),
954 len, pbn, devvp->v_rdev, error));
955 }
956
957 return error;
958 }
959
960 /*
961 * wapbl_write(data, len, devvp, pbn)
962 *
963 * Synchronously write len bytes from data to physical block pbn
964 * on devvp.
965 */
966 int
967 wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
968 {
969
970 return wapbl_doio(data, len, devvp, pbn, B_WRITE);
971 }
972
973 /*
974 * wapbl_read(data, len, devvp, pbn)
975 *
976 * Synchronously read len bytes into data from physical block pbn
977 * on devvp.
978 */
979 int
980 wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
981 {
982
983 return wapbl_doio(data, len, devvp, pbn, B_READ);
984 }
985
986 /****************************************************************/
987 /*
988 * Buffered disk writes -- try to coalesce writes and emit
989 * MAXPHYS-aligned blocks.
990 */
991
992 /*
993 * wapbl_buffered_write_async(wl, bp)
994 *
995 * Send buffer for asynchronous write.
996 */
997 static void
998 wapbl_buffered_write_async(struct wapbl *wl, struct buf *bp)
999 {
1000
1001 wapbl_doio_accounting(wl->wl_devvp, bp->b_flags);
1002
1003 KASSERT(TAILQ_FIRST(&wl->wl_iobufs) == bp);
1004 TAILQ_REMOVE(&wl->wl_iobufs, bp, b_wapbllist);
1005
1006 bp->b_flags |= B_WRITE;
1007 bp->b_cflags |= BC_BUSY; /* mandatory, asserted by biowait() */
1008 bp->b_oflags = 0;
1009 bp->b_bcount = bp->b_resid;
1010 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1011
1012 VOP_STRATEGY(wl->wl_devvp, bp);
1013
1014 wl->wl_ev_journalwrite.ev_count++;
1015
1016 TAILQ_INSERT_TAIL(&wl->wl_iobufs_busy, bp, b_wapbllist);
1017 }
1018
1019 /*
1020 * wapbl_buffered_flush(wl)
1021 *
1022 * Flush any buffered writes from wapbl_buffered_write.
1023 */
1024 static int
1025 wapbl_buffered_flush(struct wapbl *wl, bool full)
1026 {
1027 int error = 0;
1028 struct buf *bp, *bnext;
1029 bool only_done = true, found = false;
1030
1031 /* if there is outstanding buffered write, send it now */
1032 if ((bp = TAILQ_FIRST(&wl->wl_iobufs)) && bp->b_resid > 0)
1033 wapbl_buffered_write_async(wl, bp);
1034
1035 /* wait for I/O to complete */
1036 again:
1037 TAILQ_FOREACH_SAFE(bp, &wl->wl_iobufs_busy, b_wapbllist, bnext) {
1038 if (!full && only_done) {
1039 /* skip unfinished */
1040 if (!ISSET(bp->b_oflags, BO_DONE))
1041 continue;
1042 }
1043
1044 if (ISSET(bp->b_oflags, BO_DONE))
1045 wl->wl_ev_jbufs_bio_nowait.ev_count++;
1046
1047 TAILQ_REMOVE(&wl->wl_iobufs_busy, bp, b_wapbllist);
1048 error = biowait(bp);
1049
1050 /* reset for reuse */
1051 bp->b_blkno = bp->b_resid = bp->b_flags = 0;
1052 TAILQ_INSERT_TAIL(&wl->wl_iobufs, bp, b_wapbllist);
1053 found = true;
1054
1055 if (!full)
1056 break;
1057 }
1058
1059 if (!found && only_done && !TAILQ_EMPTY(&wl->wl_iobufs_busy)) {
1060 only_done = false;
1061 goto again;
1062 }
1063
1064 return error;
1065 }
1066
1067 /*
1068 * wapbl_buffered_write(data, len, wl, pbn)
1069 *
1070 * Write len bytes from data to physical block pbn on
1071 * wl->wl_devvp. The write may not complete until
1072 * wapbl_buffered_flush.
1073 */
1074 static int
1075 wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn,
1076 int bflags)
1077 {
1078 size_t resid;
1079 struct buf *bp;
1080
1081 again:
1082 bp = TAILQ_FIRST(&wl->wl_iobufs);
1083
1084 if (bp == NULL) {
1085 /* No more buffers, wait for any previous I/O to finish. */
1086 wapbl_buffered_flush(wl, false);
1087
1088 bp = TAILQ_FIRST(&wl->wl_iobufs);
1089 KASSERT(bp != NULL);
1090 }
1091
1092 /*
1093 * If not adjacent to buffered data flush first. Disk block
1094 * address is always valid for non-empty buffer.
1095 */
1096 if ((bp->b_resid > 0 && pbn != bp->b_blkno + btodb(bp->b_resid))) {
1097 wapbl_buffered_write_async(wl, bp);
1098 goto again;
1099 }
1100
1101 /*
1102 * If this write goes to an empty buffer we have to
1103 * save the disk block address first.
1104 */
1105 if (bp->b_blkno == 0) {
1106 bp->b_blkno = pbn;
1107 bp->b_flags |= bflags;
1108 }
1109
1110 /*
1111 * Remaining space so this buffer ends on a buffer size boundary.
1112 *
1113 * Cannot become less or equal zero as the buffer would have been
1114 * flushed on the last call then.
1115 */
1116 resid = bp->b_bufsize - dbtob(bp->b_blkno % btodb(bp->b_bufsize)) -
1117 bp->b_resid;
1118 KASSERT(resid > 0);
1119 KASSERT(dbtob(btodb(resid)) == resid);
1120
1121 if (len < resid)
1122 resid = len;
1123
1124 memcpy((uint8_t *)bp->b_data + bp->b_resid, data, resid);
1125 bp->b_resid += resid;
1126
1127 if (len >= resid) {
1128 /* Just filled the buf, or data did not fit */
1129 wapbl_buffered_write_async(wl, bp);
1130
1131 data = (uint8_t *)data + resid;
1132 len -= resid;
1133 pbn += btodb(resid);
1134
1135 if (len > 0)
1136 goto again;
1137 }
1138
1139 return 0;
1140 }
1141
1142 /*
1143 * wapbl_circ_write(wl, data, len, offp)
1144 *
1145 * Write len bytes from data to the circular queue of wl, starting
1146 * at linear byte offset *offp, and returning the new linear byte
1147 * offset in *offp.
1148 *
1149 * If the starting linear byte offset precedes wl->wl_circ_off,
1150 * the write instead begins at wl->wl_circ_off. XXX WTF? This
1151 * should be a KASSERT, not a conditional.
1152 *
1153 * The write is buffered in wl and must be flushed with
1154 * wapbl_buffered_flush before it will be submitted to the disk.
1155 */
1156 static int
1157 wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp)
1158 {
1159 size_t slen;
1160 off_t off = *offp;
1161 int error;
1162 daddr_t pbn;
1163
1164 KDASSERT(((len >> wl->wl_log_dev_bshift) << wl->wl_log_dev_bshift) ==
1165 len);
1166
1167 if (off < wl->wl_circ_off)
1168 off = wl->wl_circ_off;
1169 slen = wl->wl_circ_off + wl->wl_circ_size - off;
1170 if (slen < len) {
1171 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
1172 #ifdef _KERNEL
1173 pbn = btodb(pbn << wl->wl_log_dev_bshift);
1174 #endif
1175 error = wapbl_buffered_write(data, slen, wl, pbn,
1176 WAPBL_JDATA_FLAGS(wl));
1177 if (error)
1178 return error;
1179 data = (uint8_t *)data + slen;
1180 len -= slen;
1181 off = wl->wl_circ_off;
1182 }
1183 pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
1184 #ifdef _KERNEL
1185 pbn = btodb(pbn << wl->wl_log_dev_bshift);
1186 #endif
1187 error = wapbl_buffered_write(data, len, wl, pbn,
1188 WAPBL_JDATA_FLAGS(wl));
1189 if (error)
1190 return error;
1191 off += len;
1192 if (off >= wl->wl_circ_off + wl->wl_circ_size)
1193 off = wl->wl_circ_off;
1194 *offp = off;
1195 return 0;
1196 }
1197
1198 /****************************************************************/
1199 /*
1200 * WAPBL transactions: entering, adding/removing bufs, and exiting
1201 */
1202
1203 int
1204 wapbl_begin(struct wapbl *wl, const char *file, int line)
1205 {
1206 int doflush;
1207 unsigned lockcount;
1208
1209 KDASSERT(wl);
1210
1211 /*
1212 * XXX this needs to be made much more sophisticated.
1213 * perhaps each wapbl_begin could reserve a specified
1214 * number of buffers and bytes.
1215 */
1216 mutex_enter(&wl->wl_mtx);
1217 lockcount = wl->wl_lock_count;
1218 doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) >
1219 wl->wl_bufbytes_max / 2) ||
1220 ((wl->wl_bufcount + (lockcount * 10)) >
1221 wl->wl_bufcount_max / 2) ||
1222 (wapbl_transaction_len(wl) > wl->wl_circ_size / 2) ||
1223 (wl->wl_dealloccnt >= (wl->wl_dealloclim / 2));
1224 mutex_exit(&wl->wl_mtx);
1225
1226 if (doflush) {
1227 WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1228 ("force flush lockcnt=%d bufbytes=%zu "
1229 "(max=%zu) bufcount=%zu (max=%zu) "
1230 "dealloccnt %d (lim=%d)\n",
1231 lockcount, wl->wl_bufbytes,
1232 wl->wl_bufbytes_max, wl->wl_bufcount,
1233 wl->wl_bufcount_max,
1234 wl->wl_dealloccnt, wl->wl_dealloclim));
1235 }
1236
1237 if (doflush) {
1238 int error = wapbl_flush(wl, 0);
1239 if (error)
1240 return error;
1241 }
1242
1243 rw_enter(&wl->wl_rwlock, RW_READER);
1244 mutex_enter(&wl->wl_mtx);
1245 wl->wl_lock_count++;
1246 mutex_exit(&wl->wl_mtx);
1247
1248 #if defined(WAPBL_DEBUG_PRINT)
1249 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
1250 ("wapbl_begin thread %d.%d with bufcount=%zu "
1251 "bufbytes=%zu bcount=%zu at %s:%d\n",
1252 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
1253 wl->wl_bufbytes, wl->wl_bcount, file, line));
1254 #endif
1255
1256 return 0;
1257 }
1258
1259 void
1260 wapbl_end(struct wapbl *wl)
1261 {
1262
1263 #if defined(WAPBL_DEBUG_PRINT)
1264 WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
1265 ("wapbl_end thread %d.%d with bufcount=%zu "
1266 "bufbytes=%zu bcount=%zu\n",
1267 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
1268 wl->wl_bufbytes, wl->wl_bcount));
1269 #endif
1270
1271 /*
1272 * XXX this could be handled more gracefully, perhaps place
1273 * only a partial transaction in the log and allow the
1274 * remaining to flush without the protection of the journal.
1275 */
1276 KASSERTMSG((wapbl_transaction_len(wl) <=
1277 (wl->wl_circ_size - wl->wl_reserved_bytes)),
1278 "wapbl_end: current transaction too big to flush");
1279
1280 mutex_enter(&wl->wl_mtx);
1281 KASSERT(wl->wl_lock_count > 0);
1282 wl->wl_lock_count--;
1283 mutex_exit(&wl->wl_mtx);
1284
1285 rw_exit(&wl->wl_rwlock);
1286 }
1287
1288 void
1289 wapbl_add_buf(struct wapbl *wl, struct buf * bp)
1290 {
1291
1292 KASSERT(bp->b_cflags & BC_BUSY);
1293 KASSERT(bp->b_vp);
1294
1295 wapbl_jlock_assert(wl);
1296
1297 #if 0
1298 /*
1299 * XXX this might be an issue for swapfiles.
1300 * see uvm_swap.c:1702
1301 *
1302 * XXX2 why require it then? leap of semantics?
1303 */
1304 KASSERT((bp->b_cflags & BC_NOCACHE) == 0);
1305 #endif
1306
1307 mutex_enter(&wl->wl_mtx);
1308 if (bp->b_flags & B_LOCKED) {
1309 TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
1310 WAPBL_PRINTF(WAPBL_PRINT_BUFFER2,
1311 ("wapbl_add_buf thread %d.%d re-adding buf %p "
1312 "with %d bytes %d bcount\n",
1313 curproc->p_pid, curlwp->l_lid, bp,
1314 bp->b_bufsize, bp->b_bcount));
1315 } else {
1316 /* unlocked by dirty buffers shouldn't exist */
1317 KASSERT(!(bp->b_oflags & BO_DELWRI));
1318 wl->wl_bufbytes += bp->b_bufsize;
1319 wl->wl_bcount += bp->b_bcount;
1320 wl->wl_bufcount++;
1321 WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
1322 ("wapbl_add_buf thread %d.%d adding buf %p "
1323 "with %d bytes %d bcount\n",
1324 curproc->p_pid, curlwp->l_lid, bp,
1325 bp->b_bufsize, bp->b_bcount));
1326 }
1327 TAILQ_INSERT_TAIL(&wl->wl_bufs, bp, b_wapbllist);
1328 mutex_exit(&wl->wl_mtx);
1329
1330 bp->b_flags |= B_LOCKED;
1331 }
1332
1333 static void
1334 wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp)
1335 {
1336
1337 KASSERT(mutex_owned(&wl->wl_mtx));
1338 KASSERT(bp->b_cflags & BC_BUSY);
1339 wapbl_jlock_assert(wl);
1340
1341 #if 0
1342 /*
1343 * XXX this might be an issue for swapfiles.
1344 * see uvm_swap.c:1725
1345 *
1346 * XXXdeux: see above
1347 */
1348 KASSERT((bp->b_flags & BC_NOCACHE) == 0);
1349 #endif
1350 KASSERT(bp->b_flags & B_LOCKED);
1351
1352 WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
1353 ("wapbl_remove_buf thread %d.%d removing buf %p with "
1354 "%d bytes %d bcount\n",
1355 curproc->p_pid, curlwp->l_lid, bp,
1356 bp->b_bufsize, bp->b_bcount));
1357
1358 KASSERT(wl->wl_bufbytes >= bp->b_bufsize);
1359 wl->wl_bufbytes -= bp->b_bufsize;
1360 KASSERT(wl->wl_bcount >= bp->b_bcount);
1361 wl->wl_bcount -= bp->b_bcount;
1362 KASSERT(wl->wl_bufcount > 0);
1363 wl->wl_bufcount--;
1364 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
1365 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
1366 TAILQ_REMOVE(&wl->wl_bufs, bp, b_wapbllist);
1367
1368 bp->b_flags &= ~B_LOCKED;
1369 }
1370
1371 /* called from brelsel() in vfs_bio among other places */
1372 void
1373 wapbl_remove_buf(struct wapbl * wl, struct buf *bp)
1374 {
1375
1376 mutex_enter(&wl->wl_mtx);
1377 wapbl_remove_buf_locked(wl, bp);
1378 mutex_exit(&wl->wl_mtx);
1379 }
1380
1381 void
1382 wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt)
1383 {
1384
1385 KASSERT(bp->b_cflags & BC_BUSY);
1386
1387 /*
1388 * XXX: why does this depend on B_LOCKED? otherwise the buf
1389 * is not for a transaction? if so, why is this called in the
1390 * first place?
1391 */
1392 if (bp->b_flags & B_LOCKED) {
1393 mutex_enter(&wl->wl_mtx);
1394 wl->wl_bufbytes += bp->b_bufsize - oldsz;
1395 wl->wl_bcount += bp->b_bcount - oldcnt;
1396 mutex_exit(&wl->wl_mtx);
1397 }
1398 }
1399
1400 #endif /* _KERNEL */
1401
1402 /****************************************************************/
1403 /* Some utility inlines */
1404
1405 /*
1406 * wapbl_space_used(avail, head, tail)
1407 *
1408 * Number of bytes used in a circular queue of avail total bytes,
1409 * from tail to head.
1410 */
1411 static inline size_t
1412 wapbl_space_used(size_t avail, off_t head, off_t tail)
1413 {
1414
1415 if (tail == 0) {
1416 KASSERT(head == 0);
1417 return 0;
1418 }
1419 return ((head + (avail - 1) - tail) % avail) + 1;
1420 }
1421
1422 #ifdef _KERNEL
1423 /*
1424 * wapbl_advance(size, off, oldoff, delta)
1425 *
1426 * Given a byte offset oldoff into a circular queue of size bytes
1427 * starting at off, return a new byte offset oldoff + delta into
1428 * the circular queue.
1429 */
1430 static inline off_t
1431 wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta)
1432 {
1433 off_t newoff;
1434
1435 /* Define acceptable ranges for inputs. */
1436 KASSERT(delta <= (size_t)size);
1437 KASSERT(oldoff == 0 || (size_t)oldoff >= off);
1438 KASSERT(oldoff < (off_t)(size + off));
1439
1440 if (oldoff == 0 && delta != 0)
1441 newoff = off + delta;
1442 else if (oldoff + delta < size + off)
1443 newoff = oldoff + delta;
1444 else
1445 newoff = (oldoff + delta) - size;
1446
1447 /* Note some interesting axioms */
1448 KASSERT(delta != 0 || newoff == oldoff);
1449 KASSERT(delta == 0 || newoff != 0);
1450 KASSERT(delta != size || newoff == oldoff);
1451
1452 /* Define acceptable ranges for output. */
1453 KASSERT(newoff == 0 || (size_t)newoff >= off);
1454 KASSERT((size_t)newoff < size + off);
1455 return newoff;
1456 }
1457
1458 /*
1459 * wapbl_space_free(avail, head, tail)
1460 *
1461 * Number of bytes free in a circular queue of avail total bytes,
1462 * in which everything from tail to head is used.
1463 */
1464 static inline size_t
1465 wapbl_space_free(size_t avail, off_t head, off_t tail)
1466 {
1467
1468 return avail - wapbl_space_used(avail, head, tail);
1469 }
1470
1471 /*
1472 * wapbl_advance_head(size, off, delta, headp, tailp)
1473 *
1474 * In a circular queue of size bytes starting at off, given the
1475 * old head and tail offsets *headp and *tailp, store the new head
1476 * and tail offsets in *headp and *tailp resulting from adding
1477 * delta bytes of data to the head.
1478 */
1479 static inline void
1480 wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp,
1481 off_t *tailp)
1482 {
1483 off_t head = *headp;
1484 off_t tail = *tailp;
1485
1486 KASSERT(delta <= wapbl_space_free(size, head, tail));
1487 head = wapbl_advance(size, off, head, delta);
1488 if (tail == 0 && head != 0)
1489 tail = off;
1490 *headp = head;
1491 *tailp = tail;
1492 }
1493
1494 /*
1495 * wapbl_advance_tail(size, off, delta, headp, tailp)
1496 *
1497 * In a circular queue of size bytes starting at off, given the
1498 * old head and tail offsets *headp and *tailp, store the new head
1499 * and tail offsets in *headp and *tailp resulting from removing
1500 * delta bytes of data from the tail.
1501 */
1502 static inline void
1503 wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp,
1504 off_t *tailp)
1505 {
1506 off_t head = *headp;
1507 off_t tail = *tailp;
1508
1509 KASSERT(delta <= wapbl_space_used(size, head, tail));
1510 tail = wapbl_advance(size, off, tail, delta);
1511 if (head == tail) {
1512 head = tail = 0;
1513 }
1514 *headp = head;
1515 *tailp = tail;
1516 }
1517
1518
1519 /****************************************************************/
1520
1521 /*
1522 * wapbl_truncate(wl, minfree)
1523 *
1524 * Wait until at least minfree bytes are available in the log.
1525 *
1526 * If it was necessary to wait for writes to complete,
1527 * advance the circular queue tail to reflect the new write
1528 * completions and issue a write commit to the log.
1529 *
1530 * => Caller must hold wl->wl_rwlock writer lock.
1531 */
1532 static int
1533 wapbl_truncate(struct wapbl *wl, size_t minfree)
1534 {
1535 size_t delta;
1536 size_t avail;
1537 off_t head;
1538 off_t tail;
1539 int error = 0;
1540
1541 KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes));
1542 KASSERT(rw_write_held(&wl->wl_rwlock));
1543
1544 mutex_enter(&wl->wl_mtx);
1545
1546 /*
1547 * First check to see if we have to do a commit
1548 * at all.
1549 */
1550 avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail);
1551 if (minfree < avail) {
1552 mutex_exit(&wl->wl_mtx);
1553 return 0;
1554 }
1555 minfree -= avail;
1556 while (wl->wl_error_count == 0 &&
1557 wl->wl_reclaimable_bytes < minfree) {
1558 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
1559 ("wapbl_truncate: sleeping on %p"
1560 " wl=%p bytes=%zd minfree=%zd\n",
1561 &wl->wl_reclaimable_bytes,
1562 wl, wl->wl_reclaimable_bytes, minfree));
1563 cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx);
1564 }
1565 if (wl->wl_reclaimable_bytes < minfree) {
1566 KASSERT(wl->wl_error_count);
1567 /* XXX maybe get actual error from buffer instead someday? */
1568 error = SET_ERROR(EIO);
1569 }
1570 head = wl->wl_head;
1571 tail = wl->wl_tail;
1572 delta = wl->wl_reclaimable_bytes;
1573
1574 /* If all of the entries are flushed, then be sure to keep
1575 * the reserved bytes reserved. Watch out for discarded transactions,
1576 * which could leave more bytes reserved than are reclaimable.
1577 */
1578 if (SIMPLEQ_EMPTY(&wl->wl_entries) && delta >= wl->wl_reserved_bytes) {
1579 delta -= wl->wl_reserved_bytes;
1580 }
1581 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head,
1582 &tail);
1583 KDASSERT(wl->wl_reserved_bytes <=
1584 wapbl_space_used(wl->wl_circ_size, head, tail));
1585 mutex_exit(&wl->wl_mtx);
1586
1587 if (error)
1588 return error;
1589
1590 /*
1591 * This is where head, tail and delta are unprotected
1592 * from races against itself or flush. This is ok since
1593 * we only call this routine from inside flush itself.
1594 *
1595 * XXX: how can it race against itself when accessed only
1596 * from behind the write-locked rwlock?
1597 */
1598 error = wapbl_write_commit(wl, head, tail);
1599 if (error)
1600 return error;
1601
1602 wl->wl_head = head;
1603 wl->wl_tail = tail;
1604
1605 mutex_enter(&wl->wl_mtx);
1606 KASSERT(wl->wl_reclaimable_bytes >= delta);
1607 wl->wl_reclaimable_bytes -= delta;
1608 mutex_exit(&wl->wl_mtx);
1609 WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
1610 ("wapbl_truncate thread %d.%d truncating %zu bytes\n",
1611 curproc->p_pid, curlwp->l_lid, delta));
1612
1613 return 0;
1614 }
1615
1616 /****************************************************************/
1617
1618 void
1619 wapbl_biodone(struct buf *bp)
1620 {
1621 struct wapbl_entry *we = bp->b_private;
1622 struct wapbl *wl;
1623 #ifdef WAPBL_DEBUG_BUFBYTES
1624 const int bufsize = bp->b_bufsize;
1625 #endif
1626
1627 mutex_enter(&bufcache_lock);
1628 wl = we->we_wapbl;
1629 mutex_exit(&bufcache_lock);
1630
1631 /*
1632 * Handle possible flushing of buffers after log has been
1633 * decomissioned.
1634 */
1635 if (!wl) {
1636 KASSERT(we->we_bufcount > 0);
1637 we->we_bufcount--;
1638 #ifdef WAPBL_DEBUG_BUFBYTES
1639 KASSERT(we->we_unsynced_bufbytes >= bufsize);
1640 we->we_unsynced_bufbytes -= bufsize;
1641 #endif
1642
1643 if (we->we_bufcount == 0) {
1644 #ifdef WAPBL_DEBUG_BUFBYTES
1645 KASSERT(we->we_unsynced_bufbytes == 0);
1646 #endif
1647 pool_put(&wapbl_entry_pool, we);
1648 }
1649
1650 brelse(bp, 0);
1651 return;
1652 }
1653
1654 #ifdef ohbother
1655 KDASSERT(bp->b_oflags & BO_DONE);
1656 KDASSERT(!(bp->b_oflags & BO_DELWRI));
1657 KDASSERT(bp->b_flags & B_ASYNC);
1658 KDASSERT(bp->b_cflags & BC_BUSY);
1659 KDASSERT(!(bp->b_flags & B_LOCKED));
1660 KDASSERT(!(bp->b_flags & B_READ));
1661 KDASSERT(!(bp->b_cflags & BC_INVAL));
1662 KDASSERT(!(bp->b_cflags & BC_NOCACHE));
1663 #endif
1664
1665 if (bp->b_error) {
1666 /*
1667 * If an error occurs, it would be nice to leave the buffer
1668 * as a delayed write on the LRU queue so that we can retry
1669 * it later. But buffercache(9) can't handle dirty buffer
1670 * reuse, so just mark the log permanently errored out.
1671 */
1672 mutex_enter(&wl->wl_mtx);
1673 if (wl->wl_error_count == 0) {
1674 wl->wl_error_count++;
1675 cv_broadcast(&wl->wl_reclaimable_cv);
1676 }
1677 mutex_exit(&wl->wl_mtx);
1678 }
1679
1680 /*
1681 * Make sure that the buf doesn't retain the media flags, so that
1682 * e.g. wapbl_allow_fuadpo has immediate effect on any following I/O.
1683 * The flags will be set again if needed by another I/O.
1684 */
1685 bp->b_flags &= ~B_MEDIA_FLAGS;
1686
1687 /*
1688 * Release the buffer here. wapbl_flush() may wait for the
1689 * log to become empty and we better unbusy the buffer before
1690 * wapbl_flush() returns.
1691 */
1692 brelse(bp, 0);
1693
1694 mutex_enter(&wl->wl_mtx);
1695
1696 KASSERT(we->we_bufcount > 0);
1697 we->we_bufcount--;
1698 #ifdef WAPBL_DEBUG_BUFBYTES
1699 KASSERT(we->we_unsynced_bufbytes >= bufsize);
1700 we->we_unsynced_bufbytes -= bufsize;
1701 KASSERT(wl->wl_unsynced_bufbytes >= bufsize);
1702 wl->wl_unsynced_bufbytes -= bufsize;
1703 #endif
1704 wl->wl_ev_metawrite.ev_count++;
1705
1706 /*
1707 * If the current transaction can be reclaimed, start
1708 * at the beginning and reclaim any consecutive reclaimable
1709 * transactions. If we successfully reclaim anything,
1710 * then wakeup anyone waiting for the reclaim.
1711 */
1712 if (we->we_bufcount == 0) {
1713 size_t delta = 0;
1714 int errcnt = 0;
1715 #ifdef WAPBL_DEBUG_BUFBYTES
1716 KDASSERT(we->we_unsynced_bufbytes == 0);
1717 #endif
1718 /*
1719 * clear any posted error, since the buffer it came from
1720 * has successfully flushed by now
1721 */
1722 while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) &&
1723 we->we_bufcount == 0) {
1724 delta += we->we_reclaimable_bytes;
1725 if (we->we_error)
1726 errcnt++;
1727 SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
1728 pool_put(&wapbl_entry_pool, we);
1729 }
1730
1731 if (delta) {
1732 wl->wl_reclaimable_bytes += delta;
1733 KASSERT(wl->wl_error_count >= errcnt);
1734 wl->wl_error_count -= errcnt;
1735 cv_broadcast(&wl->wl_reclaimable_cv);
1736 }
1737 }
1738
1739 mutex_exit(&wl->wl_mtx);
1740 }
1741
1742 /*
1743 * wapbl_flush(wl, wait)
1744 *
1745 * Flush pending block writes, deallocations, and inodes from
1746 * the current transaction in memory to the log on disk:
1747 *
1748 * 1. Call the file system's wl_flush callback to flush any
1749 * per-file-system pending updates.
1750 * 2. Wait for enough space in the log for the current transaction.
1751 * 3. Synchronously write the new log records, advancing the
1752 * circular queue head.
1753 * 4. Issue the pending block writes asynchronously, now that they
1754 * are recorded in the log and can be replayed after crash.
1755 * 5. If wait is true, wait for all writes to complete and for the
1756 * log to become empty.
1757 *
1758 * On failure, call the file system's wl_flush_abort callback.
1759 */
1760 int
1761 wapbl_flush(struct wapbl *wl, int waitfor)
1762 {
1763 struct buf *bp;
1764 struct wapbl_entry *we;
1765 off_t off;
1766 off_t head;
1767 off_t tail;
1768 size_t delta = 0;
1769 size_t flushsize;
1770 size_t reserved;
1771 int error = 0;
1772
1773 /*
1774 * Do a quick check to see if a full flush can be skipped
1775 * This assumes that the flush callback does not need to be called
1776 * unless there are other outstanding bufs.
1777 */
1778 if (!waitfor) {
1779 size_t nbufs;
1780 mutex_enter(&wl->wl_mtx); /* XXX need mutex here to
1781 protect the KASSERTS */
1782 nbufs = wl->wl_bufcount;
1783 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
1784 KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
1785 mutex_exit(&wl->wl_mtx);
1786 if (nbufs == 0)
1787 return 0;
1788 }
1789
1790 /*
1791 * XXX we may consider using LK_UPGRADE here
1792 * if we want to call flush from inside a transaction
1793 */
1794 rw_enter(&wl->wl_rwlock, RW_WRITER);
1795 wl->wl_flush(wl->wl_mount, TAILQ_FIRST(&wl->wl_dealloclist));
1796
1797 /*
1798 * Now that we are exclusively locked and the file system has
1799 * issued any deferred block writes for this transaction, check
1800 * whether there are any blocks to write to the log. If not,
1801 * skip waiting for space or writing any log entries.
1802 *
1803 * XXX Shouldn't this also check wl_dealloccnt and
1804 * wl_inohashcnt? Perhaps wl_dealloccnt doesn't matter if the
1805 * file system didn't produce any blocks as a consequence of
1806 * it, but the same does not seem to be so of wl_inohashcnt.
1807 */
1808 if (wl->wl_bufcount == 0) {
1809 goto wait_out;
1810 }
1811
1812 #if 0
1813 WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1814 ("wapbl_flush thread %d.%d flushing entries with "
1815 "bufcount=%zu bufbytes=%zu\n",
1816 curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
1817 wl->wl_bufbytes));
1818 #endif
1819
1820 /* Calculate amount of space needed to flush */
1821 flushsize = wapbl_transaction_len(wl);
1822 if (wapbl_verbose_commit) {
1823 struct timespec ts;
1824 getnanotime(&ts);
1825 printf("%s: %lld.%09ld this transaction = %zu bytes\n",
1826 __func__, (long long)ts.tv_sec,
1827 (long)ts.tv_nsec, flushsize);
1828 }
1829
1830 if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) {
1831 /*
1832 * XXX this could be handled more gracefully, perhaps place
1833 * only a partial transaction in the log and allow the
1834 * remaining to flush without the protection of the journal.
1835 */
1836 panic("wapbl_flush: current transaction too big to flush");
1837 }
1838
1839 error = wapbl_truncate(wl, flushsize);
1840 if (error)
1841 goto out;
1842
1843 off = wl->wl_head;
1844 KASSERT(off == 0 || off >= wl->wl_circ_off);
1845 KASSERT(off == 0 || off < wl->wl_circ_off + wl->wl_circ_size);
1846 error = wapbl_write_blocks(wl, &off);
1847 if (error)
1848 goto out;
1849 error = wapbl_write_revocations(wl, &off);
1850 if (error)
1851 goto out;
1852 error = wapbl_write_inodes(wl, &off);
1853 if (error)
1854 goto out;
1855
1856 reserved = 0;
1857 if (wl->wl_inohashcnt)
1858 reserved = wapbl_transaction_inodes_len(wl);
1859
1860 head = wl->wl_head;
1861 tail = wl->wl_tail;
1862
1863 wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize,
1864 &head, &tail);
1865
1866 KASSERTMSG(head == off,
1867 "lost head! head=%"PRIdMAX" tail=%" PRIdMAX
1868 " off=%"PRIdMAX" flush=%zu",
1869 (intmax_t)head, (intmax_t)tail, (intmax_t)off,
1870 flushsize);
1871
1872 /* Opportunistically move the tail forward if we can */
1873 mutex_enter(&wl->wl_mtx);
1874 delta = wl->wl_reclaimable_bytes;
1875 mutex_exit(&wl->wl_mtx);
1876 wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta,
1877 &head, &tail);
1878
1879 error = wapbl_write_commit(wl, head, tail);
1880 if (error)
1881 goto out;
1882
1883 we = pool_get(&wapbl_entry_pool, PR_WAITOK);
1884
1885 #ifdef WAPBL_DEBUG_BUFBYTES
1886 WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1887 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
1888 " unsynced=%zu"
1889 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
1890 "inodes=%d\n",
1891 curproc->p_pid, curlwp->l_lid, flushsize, delta,
1892 wapbl_space_used(wl->wl_circ_size, head, tail),
1893 wl->wl_unsynced_bufbytes, wl->wl_bufcount,
1894 wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt,
1895 wl->wl_inohashcnt));
1896 #else
1897 WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1898 ("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
1899 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
1900 "inodes=%d\n",
1901 curproc->p_pid, curlwp->l_lid, flushsize, delta,
1902 wapbl_space_used(wl->wl_circ_size, head, tail),
1903 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
1904 wl->wl_dealloccnt, wl->wl_inohashcnt));
1905 #endif
1906
1907
1908 mutex_enter(&bufcache_lock);
1909 mutex_enter(&wl->wl_mtx);
1910
1911 wl->wl_reserved_bytes = reserved;
1912 wl->wl_head = head;
1913 wl->wl_tail = tail;
1914 KASSERT(wl->wl_reclaimable_bytes >= delta);
1915 wl->wl_reclaimable_bytes -= delta;
1916 KDASSERT(wl->wl_dealloccnt == 0);
1917 #ifdef WAPBL_DEBUG_BUFBYTES
1918 wl->wl_unsynced_bufbytes += wl->wl_bufbytes;
1919 #endif
1920
1921 we->we_wapbl = wl;
1922 we->we_bufcount = wl->wl_bufcount;
1923 #ifdef WAPBL_DEBUG_BUFBYTES
1924 we->we_unsynced_bufbytes = wl->wl_bufbytes;
1925 #endif
1926 we->we_reclaimable_bytes = flushsize;
1927 we->we_error = 0;
1928 SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries);
1929
1930 /*
1931 * This flushes bufs in order than they were queued, so the LRU
1932 * order is preserved.
1933 */
1934 while ((bp = TAILQ_FIRST(&wl->wl_bufs)) != NULL) {
1935 if (bbusy(bp, 0, 0, &wl->wl_mtx)) {
1936 continue;
1937 }
1938 bp->b_iodone = wapbl_biodone;
1939 bp->b_private = we;
1940
1941 bremfree(bp);
1942 wapbl_remove_buf_locked(wl, bp);
1943 mutex_exit(&wl->wl_mtx);
1944 mutex_exit(&bufcache_lock);
1945 bawrite(bp);
1946 mutex_enter(&bufcache_lock);
1947 mutex_enter(&wl->wl_mtx);
1948 }
1949 mutex_exit(&wl->wl_mtx);
1950 mutex_exit(&bufcache_lock);
1951
1952 #if 0
1953 WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
1954 ("wapbl_flush thread %d.%d done flushing entries...\n",
1955 curproc->p_pid, curlwp->l_lid));
1956 #endif
1957
1958 wait_out:
1959
1960 /*
1961 * If the waitfor flag is set, don't return until everything is
1962 * fully flushed and the on disk log is empty.
1963 */
1964 if (waitfor) {
1965 error = wapbl_truncate(wl, wl->wl_circ_size -
1966 wl->wl_reserved_bytes);
1967 }
1968
1969 out:
1970 if (error) {
1971 wl->wl_flush_abort(wl->wl_mount,
1972 TAILQ_FIRST(&wl->wl_dealloclist));
1973 }
1974
1975 #ifdef WAPBL_DEBUG_PRINT
1976 if (error) {
1977 pid_t pid = -1;
1978 lwpid_t lid = -1;
1979 if (curproc)
1980 pid = curproc->p_pid;
1981 if (curlwp)
1982 lid = curlwp->l_lid;
1983 mutex_enter(&wl->wl_mtx);
1984 #ifdef WAPBL_DEBUG_BUFBYTES
1985 WAPBL_PRINTF(WAPBL_PRINT_ERROR,
1986 ("wapbl_flush: thread %d.%d aborted flush: "
1987 "error = %d\n"
1988 "\tbufcount=%zu bufbytes=%zu bcount=%zu "
1989 "deallocs=%d inodes=%d\n"
1990 "\terrcnt = %d, reclaimable=%zu reserved=%zu "
1991 "unsynced=%zu\n",
1992 pid, lid, error, wl->wl_bufcount,
1993 wl->wl_bufbytes, wl->wl_bcount,
1994 wl->wl_dealloccnt, wl->wl_inohashcnt,
1995 wl->wl_error_count, wl->wl_reclaimable_bytes,
1996 wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes));
1997 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
1998 WAPBL_PRINTF(WAPBL_PRINT_ERROR,
1999 ("\tentry: bufcount = %zu, reclaimable = %zu, "
2000 "error = %d, unsynced = %zu\n",
2001 we->we_bufcount, we->we_reclaimable_bytes,
2002 we->we_error, we->we_unsynced_bufbytes));
2003 }
2004 #else
2005 WAPBL_PRINTF(WAPBL_PRINT_ERROR,
2006 ("wapbl_flush: thread %d.%d aborted flush: "
2007 "error = %d\n"
2008 "\tbufcount=%zu bufbytes=%zu bcount=%zu "
2009 "deallocs=%d inodes=%d\n"
2010 "\terrcnt = %d, reclaimable=%zu reserved=%zu\n",
2011 pid, lid, error, wl->wl_bufcount,
2012 wl->wl_bufbytes, wl->wl_bcount,
2013 wl->wl_dealloccnt, wl->wl_inohashcnt,
2014 wl->wl_error_count, wl->wl_reclaimable_bytes,
2015 wl->wl_reserved_bytes));
2016 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
2017 WAPBL_PRINTF(WAPBL_PRINT_ERROR,
2018 ("\tentry: bufcount = %zu, reclaimable = %zu, "
2019 "error = %d\n", we->we_bufcount,
2020 we->we_reclaimable_bytes, we->we_error));
2021 }
2022 #endif
2023 mutex_exit(&wl->wl_mtx);
2024 }
2025 #endif
2026
2027 rw_exit(&wl->wl_rwlock);
2028 return error;
2029 }
2030
2031 /****************************************************************/
2032
2033 void
2034 wapbl_jlock_assert(struct wapbl *wl)
2035 {
2036
2037 KASSERT(rw_lock_held(&wl->wl_rwlock));
2038 }
2039
2040 void
2041 wapbl_junlock_assert(struct wapbl *wl)
2042 {
2043
2044 KASSERT(!rw_write_held(&wl->wl_rwlock));
2045 }
2046
2047 /****************************************************************/
2048
2049 /* locks missing */
2050 void
2051 wapbl_print(struct wapbl *wl, int full, void (*pr)(const char *, ...))
2052 {
2053 struct buf *bp;
2054 struct wapbl_entry *we;
2055 (*pr)("wapbl %p", wl);
2056 (*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n",
2057 wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn);
2058 (*pr)("circ = %zu, header = %zu,"
2059 " head = %"PRIdMAX" tail = %"PRIdMAX"\n",
2060 wl->wl_circ_size, wl->wl_circ_off,
2061 (intmax_t)wl->wl_head, (intmax_t)wl->wl_tail);
2062 (*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n",
2063 wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift);
2064 #ifdef WAPBL_DEBUG_BUFBYTES
2065 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
2066 "reserved = %zu errcnt = %d unsynced = %zu\n",
2067 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
2068 wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
2069 wl->wl_error_count, wl->wl_unsynced_bufbytes);
2070 #else
2071 (*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
2072 "reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes,
2073 wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
2074 wl->wl_error_count);
2075 #endif
2076 (*pr)("\tdealloccnt = %d, dealloclim = %d\n",
2077 wl->wl_dealloccnt, wl->wl_dealloclim);
2078 (*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n",
2079 wl->wl_inohashcnt, wl->wl_inohashmask);
2080 (*pr)("entries:\n");
2081 SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
2082 #ifdef WAPBL_DEBUG_BUFBYTES
2083 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, "
2084 "unsynced = %zu\n",
2085 we->we_bufcount, we->we_reclaimable_bytes,
2086 we->we_error, we->we_unsynced_bufbytes);
2087 #else
2088 (*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n",
2089 we->we_bufcount, we->we_reclaimable_bytes, we->we_error);
2090 #endif
2091 }
2092 if (full) {
2093 int cnt = 0;
2094 (*pr)("bufs =");
2095 TAILQ_FOREACH(bp, &wl->wl_bufs, b_wapbllist) {
2096 if (!TAILQ_NEXT(bp, b_wapbllist)) {
2097 (*pr)(" %p", bp);
2098 } else if ((++cnt % 6) == 0) {
2099 (*pr)(" %p,\n\t", bp);
2100 } else {
2101 (*pr)(" %p,", bp);
2102 }
2103 }
2104 (*pr)("\n");
2105
2106 (*pr)("dealloced blks = ");
2107 {
2108 struct wapbl_dealloc *wd;
2109 cnt = 0;
2110 TAILQ_FOREACH(wd, &wl->wl_dealloclist, wd_entries) {
2111 (*pr)(" %"PRId64":%d,",
2112 wd->wd_blkno,
2113 wd->wd_len);
2114 if ((++cnt % 4) == 0) {
2115 (*pr)("\n\t");
2116 }
2117 }
2118 }
2119 (*pr)("\n");
2120
2121 (*pr)("registered inodes = ");
2122 {
2123 int i;
2124 cnt = 0;
2125 for (i = 0; i <= wl->wl_inohashmask; i++) {
2126 struct wapbl_ino_head *wih;
2127 struct wapbl_ino *wi;
2128
2129 wih = &wl->wl_inohash[i];
2130 LIST_FOREACH(wi, wih, wi_hash) {
2131 if (wi->wi_ino == 0)
2132 continue;
2133 (*pr)(" %"PRIu64"/0%06"PRIo32",",
2134 wi->wi_ino, wi->wi_mode);
2135 if ((++cnt % 4) == 0) {
2136 (*pr)("\n\t");
2137 }
2138 }
2139 }
2140 (*pr)("\n");
2141 }
2142
2143 (*pr)("iobufs free =");
2144 TAILQ_FOREACH(bp, &wl->wl_iobufs, b_wapbllist) {
2145 if (!TAILQ_NEXT(bp, b_wapbllist)) {
2146 (*pr)(" %p", bp);
2147 } else if ((++cnt % 6) == 0) {
2148 (*pr)(" %p,\n\t", bp);
2149 } else {
2150 (*pr)(" %p,", bp);
2151 }
2152 }
2153 (*pr)("\n");
2154
2155 (*pr)("iobufs busy =");
2156 TAILQ_FOREACH(bp, &wl->wl_iobufs_busy, b_wapbllist) {
2157 if (!TAILQ_NEXT(bp, b_wapbllist)) {
2158 (*pr)(" %p", bp);
2159 } else if ((++cnt % 6) == 0) {
2160 (*pr)(" %p,\n\t", bp);
2161 } else {
2162 (*pr)(" %p,", bp);
2163 }
2164 }
2165 (*pr)("\n");
2166 }
2167 }
2168
2169 #if defined(WAPBL_DEBUG) || defined(DDB)
2170 void
2171 wapbl_dump(struct wapbl *wl)
2172 {
2173 #if defined(WAPBL_DEBUG)
2174 if (!wl)
2175 wl = wapbl_debug_wl;
2176 #endif
2177 if (!wl)
2178 return;
2179 wapbl_print(wl, 1, printf);
2180 }
2181 #endif
2182
2183 /****************************************************************/
2184
2185 int
2186 wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len, bool force,
2187 void **cookiep)
2188 {
2189 struct wapbl_dealloc *wd;
2190 int error = 0;
2191
2192 wapbl_jlock_assert(wl);
2193
2194 mutex_enter(&wl->wl_mtx);
2195
2196 if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim)) {
2197 if (!force) {
2198 error = SET_ERROR(EAGAIN);
2199 goto out;
2200 }
2201
2202 /*
2203 * Forced registration can only be used when:
2204 * 1) the caller can't cope with failure
2205 * 2) the path can be triggered only bounded, small
2206 * times per transaction
2207 * If this is not fullfilled, and the path would be triggered
2208 * many times, this could overflow maximum transaction size
2209 * and panic later.
2210 */
2211 printf("%s: forced dealloc registration over limit:"
2212 " %d >= %d\n",
2213 wl->wl_mount->mnt_stat.f_mntonname,
2214 wl->wl_dealloccnt, wl->wl_dealloclim);
2215 }
2216
2217 wl->wl_dealloccnt++;
2218 mutex_exit(&wl->wl_mtx);
2219
2220 wd = pool_get(&wapbl_dealloc_pool, PR_WAITOK);
2221 wd->wd_blkno = blk;
2222 wd->wd_len = len;
2223
2224 mutex_enter(&wl->wl_mtx);
2225 TAILQ_INSERT_TAIL(&wl->wl_dealloclist, wd, wd_entries);
2226
2227 if (cookiep)
2228 *cookiep = wd;
2229
2230 out:
2231 mutex_exit(&wl->wl_mtx);
2232
2233 WAPBL_PRINTF(WAPBL_PRINT_ALLOC,
2234 ("wapbl_register_deallocation: blk=%"PRId64" len=%d error=%d\n",
2235 blk, len, error));
2236
2237 return error;
2238 }
2239
2240 static void
2241 wapbl_deallocation_free(struct wapbl *wl, struct wapbl_dealloc *wd,
2242 bool locked)
2243 {
2244
2245 KASSERT(!locked
2246 || rw_lock_held(&wl->wl_rwlock) || mutex_owned(&wl->wl_mtx));
2247
2248 if (!locked)
2249 mutex_enter(&wl->wl_mtx);
2250
2251 TAILQ_REMOVE(&wl->wl_dealloclist, wd, wd_entries);
2252 wl->wl_dealloccnt--;
2253
2254 if (!locked)
2255 mutex_exit(&wl->wl_mtx);
2256
2257 pool_put(&wapbl_dealloc_pool, wd);
2258 }
2259
2260 void
2261 wapbl_unregister_deallocation(struct wapbl *wl, void *cookie)
2262 {
2263
2264 KASSERT(cookie != NULL);
2265 wapbl_deallocation_free(wl, cookie, false);
2266 }
2267
2268 /****************************************************************/
2269
2270 static void
2271 wapbl_inodetrk_init(struct wapbl *wl, u_int size)
2272 {
2273
2274 wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask);
2275 if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) {
2276 pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0,
2277 "wapblinopl", &pool_allocator_nointr, IPL_NONE);
2278 }
2279 }
2280
2281 static void
2282 wapbl_inodetrk_free(struct wapbl *wl)
2283 {
2284
2285 /* XXX this KASSERT needs locking/mutex analysis */
2286 KASSERT(wl->wl_inohashcnt == 0);
2287 hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask);
2288 membar_release();
2289 if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) {
2290 membar_acquire();
2291 pool_destroy(&wapbl_ino_pool);
2292 }
2293 }
2294
2295 static struct wapbl_ino *
2296 wapbl_inodetrk_get(struct wapbl *wl, ino_t ino)
2297 {
2298 struct wapbl_ino_head *wih;
2299 struct wapbl_ino *wi;
2300
2301 KASSERT(mutex_owned(&wl->wl_mtx));
2302
2303 wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
2304 LIST_FOREACH(wi, wih, wi_hash) {
2305 if (ino == wi->wi_ino)
2306 return wi;
2307 }
2308 return 0;
2309 }
2310
2311 void
2312 wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode)
2313 {
2314 struct wapbl_ino_head *wih;
2315 struct wapbl_ino *wi;
2316
2317 wi = pool_get(&wapbl_ino_pool, PR_WAITOK);
2318
2319 mutex_enter(&wl->wl_mtx);
2320 if (wapbl_inodetrk_get(wl, ino) == NULL) {
2321 wi->wi_ino = ino;
2322 wi->wi_mode = mode;
2323 wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
2324 LIST_INSERT_HEAD(wih, wi, wi_hash);
2325 wl->wl_inohashcnt++;
2326 WAPBL_PRINTF(WAPBL_PRINT_INODE,
2327 ("wapbl_register_inode: ino=%"PRId64"\n", ino));
2328 mutex_exit(&wl->wl_mtx);
2329 } else {
2330 mutex_exit(&wl->wl_mtx);
2331 pool_put(&wapbl_ino_pool, wi);
2332 }
2333 }
2334
2335 void
2336 wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode)
2337 {
2338 struct wapbl_ino *wi;
2339
2340 mutex_enter(&wl->wl_mtx);
2341 wi = wapbl_inodetrk_get(wl, ino);
2342 if (wi) {
2343 WAPBL_PRINTF(WAPBL_PRINT_INODE,
2344 ("wapbl_unregister_inode: ino=%"PRId64"\n", ino));
2345 KASSERT(wl->wl_inohashcnt > 0);
2346 wl->wl_inohashcnt--;
2347 LIST_REMOVE(wi, wi_hash);
2348 mutex_exit(&wl->wl_mtx);
2349
2350 pool_put(&wapbl_ino_pool, wi);
2351 } else {
2352 mutex_exit(&wl->wl_mtx);
2353 }
2354 }
2355
2356 /****************************************************************/
2357
2358 /*
2359 * wapbl_transaction_inodes_len(wl)
2360 *
2361 * Calculate the number of bytes required for inode registration
2362 * log records in wl.
2363 */
2364 static inline size_t
2365 wapbl_transaction_inodes_len(struct wapbl *wl)
2366 {
2367 int blocklen = 1<<wl->wl_log_dev_bshift;
2368 int iph;
2369
2370 /* Calculate number of inodes described in a inodelist header */
2371 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
2372 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
2373
2374 KASSERT(iph > 0);
2375
2376 return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen;
2377 }
2378
2379
2380 /*
2381 * wapbl_transaction_len(wl)
2382 *
2383 * Calculate number of bytes required for all log records in wl.
2384 */
2385 static size_t
2386 wapbl_transaction_len(struct wapbl *wl)
2387 {
2388 int blocklen = 1<<wl->wl_log_dev_bshift;
2389 size_t len;
2390
2391 /* Calculate number of blocks described in a blocklist header */
2392 len = wl->wl_bcount;
2393 len += howmany(wl->wl_bufcount, wl->wl_brperjblock) * blocklen;
2394 len += howmany(wl->wl_dealloccnt, wl->wl_brperjblock) * blocklen;
2395 len += wapbl_transaction_inodes_len(wl);
2396
2397 return len;
2398 }
2399
2400 /*
2401 * wapbl_cache_sync(wl, msg)
2402 *
2403 * Issue DIOCCACHESYNC to wl->wl_devvp.
2404 *
2405 * If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message
2406 * including msg about the duration of the cache sync.
2407 */
2408 static int
2409 wapbl_cache_sync(struct wapbl *wl, const char *msg)
2410 {
2411 const bool verbose = wapbl_verbose_commit >= 2;
2412 struct bintime start_time;
2413 int force = 1;
2414 int error;
2415
2416 /* Skip full cache sync if disabled */
2417 if (!wapbl_flush_disk_cache) {
2418 return 0;
2419 }
2420 if (verbose) {
2421 bintime(&start_time);
2422 }
2423 error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force,
2424 FWRITE, FSCRED);
2425 if (error) {
2426 WAPBL_PRINTF(WAPBL_PRINT_ERROR,
2427 ("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%jx "
2428 "returned %d\n", (uintmax_t)wl->wl_devvp->v_rdev,
2429 error));
2430 }
2431 if (verbose) {
2432 struct bintime d;
2433 struct timespec ts;
2434
2435 bintime(&d);
2436 bintime_sub(&d, &start_time);
2437 bintime2timespec(&d, &ts);
2438 printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n",
2439 msg, (uintmax_t)wl->wl_devvp->v_rdev,
2440 (uintmax_t)ts.tv_sec, ts.tv_nsec);
2441 }
2442
2443 wl->wl_ev_cacheflush.ev_count++;
2444
2445 return error;
2446 }
2447
2448 /*
2449 * wapbl_write_commit(wl, head, tail)
2450 *
2451 * Issue a disk cache sync to wait for all pending writes to the
2452 * log to complete, and then synchronously commit the current
2453 * circular queue head and tail to the log, in the next of two
2454 * locations for commit headers on disk.
2455 *
2456 * Increment the generation number. If the generation number
2457 * rolls over to zero, then a subsequent commit would appear to
2458 * have an older generation than this one -- in that case, issue a
2459 * duplicate commit to avoid this.
2460 *
2461 * => Caller must have exclusive access to wl, either by holding
2462 * wl->wl_rwlock for writer or by being wapbl_start before anyone
2463 * else has seen wl.
2464 */
2465 static int
2466 wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail)
2467 {
2468 struct wapbl_wc_header *wc = wl->wl_wc_header;
2469 struct timespec ts;
2470 int error;
2471 daddr_t pbn;
2472
2473 error = wapbl_buffered_flush(wl, true);
2474 if (error)
2475 return error;
2476 /*
2477 * Flush disk cache to ensure that blocks we've written are actually
2478 * written to the stable storage before the commit header.
2479 * This flushes to disk not only journal blocks, but also all
2480 * metadata blocks, written asynchronously since previous commit.
2481 *
2482 * XXX Calc checksum here, instead we do this for now
2483 */
2484 wapbl_cache_sync(wl, "1");
2485
2486 wc->wc_head = head;
2487 wc->wc_tail = tail;
2488 wc->wc_checksum = 0;
2489 wc->wc_version = 1;
2490 getnanotime(&ts);
2491 wc->wc_time = ts.tv_sec;
2492 wc->wc_timensec = ts.tv_nsec;
2493
2494 WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2495 ("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n",
2496 (intmax_t)head, (intmax_t)tail));
2497
2498 /*
2499 * write the commit header.
2500 *
2501 * XXX if generation will rollover, then first zero
2502 * over second commit header before trying to write both headers.
2503 */
2504
2505 pbn = wl->wl_logpbn + (wc->wc_generation % 2);
2506 #ifdef _KERNEL
2507 pbn = btodb(pbn << wc->wc_log_dev_bshift);
2508 #endif
2509 error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn,
2510 WAPBL_JFLAGS(wl));
2511 if (error)
2512 return error;
2513 error = wapbl_buffered_flush(wl, true);
2514 if (error)
2515 return error;
2516
2517 /*
2518 * Flush disk cache to ensure that the commit header is actually
2519 * written before meta data blocks. Commit block is written using
2520 * FUA when enabled, in that case this flush is not needed.
2521 */
2522 if (!WAPBL_USE_FUA(wl))
2523 wapbl_cache_sync(wl, "2");
2524
2525 /*
2526 * If the generation number was zero, write it out a second time.
2527 * This handles initialization and generation number rollover
2528 */
2529 if (wc->wc_generation++ == 0) {
2530 error = wapbl_write_commit(wl, head, tail);
2531 /*
2532 * This panic should be able to be removed if we do the
2533 * zero'ing mentioned above, and we are certain to roll
2534 * back generation number on failure.
2535 */
2536 if (error) {
2537 panic("wapbl_write_commit: error writing duplicate "
2538 "log header: %d", error);
2539 }
2540 }
2541
2542 wl->wl_ev_commit.ev_count++;
2543
2544 return 0;
2545 }
2546
2547 /*
2548 * wapbl_write_blocks(wl, offp)
2549 *
2550 * Write all pending physical blocks in the current transaction
2551 * from wapbl_add_buf to the log on disk, adding to the circular
2552 * queue head at byte offset *offp, and returning the new head's
2553 * byte offset in *offp.
2554 */
2555 static int
2556 wapbl_write_blocks(struct wapbl *wl, off_t *offp)
2557 {
2558 struct wapbl_wc_blocklist *wc =
2559 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
2560 int blocklen = 1<<wl->wl_log_dev_bshift;
2561 struct buf *bp;
2562 off_t off = *offp;
2563 int error;
2564 size_t padding;
2565
2566 KASSERT(rw_write_held(&wl->wl_rwlock));
2567
2568 bp = TAILQ_FIRST(&wl->wl_bufs);
2569
2570 while (bp) {
2571 int cnt;
2572 struct buf *obp = bp;
2573
2574 KASSERT(bp->b_flags & B_LOCKED);
2575
2576 wc->wc_type = WAPBL_WC_BLOCKS;
2577 wc->wc_len = blocklen;
2578 wc->wc_blkcount = 0;
2579 wc->wc_unused = 0;
2580 while (bp && wc->wc_blkcount < wl->wl_brperjblock) {
2581 /*
2582 * Make sure all the physical block numbers are up to
2583 * date. If this is not always true on a given
2584 * filesystem, then VOP_BMAP must be called. We
2585 * could call VOP_BMAP here, or else in the filesystem
2586 * specific flush callback, although neither of those
2587 * solutions allow us to take the vnode lock. If a
2588 * filesystem requires that we must take the vnode lock
2589 * to call VOP_BMAP, then we can probably do it in
2590 * bwrite when the vnode lock should already be held
2591 * by the invoking code.
2592 */
2593 KASSERT(bp->b_vp->v_type == VBLK ||
2594 bp->b_blkno != bp->b_lblkno);
2595 KASSERT(bp->b_blkno > 0);
2596
2597 wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno;
2598 wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount;
2599 wc->wc_len += bp->b_bcount;
2600 wc->wc_blkcount++;
2601 bp = TAILQ_NEXT(bp, b_wapbllist);
2602 }
2603 if (wc->wc_len % blocklen != 0) {
2604 padding = blocklen - wc->wc_len % blocklen;
2605 wc->wc_len += padding;
2606 } else {
2607 padding = 0;
2608 }
2609
2610 WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2611 ("wapbl_write_blocks:"
2612 " len = %u (padding %zu) off = %"PRIdMAX"\n",
2613 wc->wc_len, padding, (intmax_t)off));
2614
2615 error = wapbl_circ_write(wl, wc, blocklen, &off);
2616 if (error)
2617 return error;
2618 bp = obp;
2619 cnt = 0;
2620 while (bp && cnt++ < wl->wl_brperjblock) {
2621 error = wapbl_circ_write(wl, bp->b_data,
2622 bp->b_bcount, &off);
2623 if (error)
2624 return error;
2625 bp = TAILQ_NEXT(bp, b_wapbllist);
2626 }
2627 if (padding) {
2628 void *zero;
2629
2630 zero = wapbl_alloc(padding);
2631 memset(zero, 0, padding);
2632 error = wapbl_circ_write(wl, zero, padding, &off);
2633 wapbl_free(zero, padding);
2634 if (error)
2635 return error;
2636 }
2637 }
2638 *offp = off;
2639 return 0;
2640 }
2641
2642 /*
2643 * wapbl_write_revocations(wl, offp)
2644 *
2645 * Write all pending deallocations in the current transaction from
2646 * wapbl_register_deallocation to the log on disk, adding to the
2647 * circular queue's head at byte offset *offp, and returning the
2648 * new head's byte offset in *offp.
2649 */
2650 static int
2651 wapbl_write_revocations(struct wapbl *wl, off_t *offp)
2652 {
2653 struct wapbl_wc_blocklist *wc =
2654 (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
2655 struct wapbl_dealloc *wd, *lwd;
2656 int blocklen = 1<<wl->wl_log_dev_bshift;
2657 off_t off = *offp;
2658 int error;
2659
2660 KASSERT(rw_write_held(&wl->wl_rwlock));
2661
2662 if (wl->wl_dealloccnt == 0)
2663 return 0;
2664
2665 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
2666 wc->wc_type = WAPBL_WC_REVOCATIONS;
2667 wc->wc_len = blocklen;
2668 wc->wc_blkcount = 0;
2669 wc->wc_unused = 0;
2670 while (wd && wc->wc_blkcount < wl->wl_brperjblock) {
2671 wc->wc_blocks[wc->wc_blkcount].wc_daddr =
2672 wd->wd_blkno;
2673 wc->wc_blocks[wc->wc_blkcount].wc_dlen =
2674 wd->wd_len;
2675 wc->wc_blkcount++;
2676
2677 wd = TAILQ_NEXT(wd, wd_entries);
2678 }
2679 WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2680 ("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n",
2681 wc->wc_len, (intmax_t)off));
2682 error = wapbl_circ_write(wl, wc, blocklen, &off);
2683 if (error)
2684 return error;
2685
2686 /* free all successfully written deallocs */
2687 lwd = wd;
2688 while ((wd = TAILQ_FIRST(&wl->wl_dealloclist)) != NULL) {
2689 if (wd == lwd)
2690 break;
2691 wapbl_deallocation_free(wl, wd, true);
2692 }
2693 }
2694 *offp = off;
2695 return 0;
2696 }
2697
2698 /*
2699 * wapbl_write_inodes(wl, offp)
2700 *
2701 * Write all pending inode allocations in the current transaction
2702 * from wapbl_register_inode to the log on disk, adding to the
2703 * circular queue's head at byte offset *offp and returning the
2704 * new head's byte offset in *offp.
2705 */
2706 static int
2707 wapbl_write_inodes(struct wapbl *wl, off_t *offp)
2708 {
2709 struct wapbl_wc_inodelist *wc =
2710 (struct wapbl_wc_inodelist *)wl->wl_wc_scratch;
2711 int i;
2712 int blocklen = 1 << wl->wl_log_dev_bshift;
2713 off_t off = *offp;
2714 int error;
2715
2716 struct wapbl_ino_head *wih;
2717 struct wapbl_ino *wi;
2718 int iph;
2719
2720 iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
2721 sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
2722
2723 i = 0;
2724 wih = &wl->wl_inohash[0];
2725 wi = 0;
2726 do {
2727 wc->wc_type = WAPBL_WC_INODES;
2728 wc->wc_len = blocklen;
2729 wc->wc_inocnt = 0;
2730 wc->wc_clear = (i == 0);
2731 while (i < wl->wl_inohashcnt && wc->wc_inocnt < iph) {
2732 while (!wi) {
2733 KASSERT((wih - &wl->wl_inohash[0])
2734 <= wl->wl_inohashmask);
2735 wi = LIST_FIRST(wih++);
2736 }
2737 wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino;
2738 wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode;
2739 wc->wc_inocnt++;
2740 i++;
2741 wi = LIST_NEXT(wi, wi_hash);
2742 }
2743 WAPBL_PRINTF(WAPBL_PRINT_WRITE,
2744 ("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n",
2745 wc->wc_len, (intmax_t)off));
2746 error = wapbl_circ_write(wl, wc, blocklen, &off);
2747 if (error)
2748 return error;
2749 } while (i < wl->wl_inohashcnt);
2750
2751 *offp = off;
2752 return 0;
2753 }
2754
2755 #endif /* _KERNEL */
2756
2757 /****************************************************************/
2758
2759 struct wapbl_blk {
2760 LIST_ENTRY(wapbl_blk) wb_hash;
2761 daddr_t wb_blk;
2762 off_t wb_off; /* Offset of this block in the log */
2763 };
2764 #define WAPBL_BLKPOOL_MIN 83
2765
2766 static void
2767 wapbl_blkhash_init(struct wapbl_replay *wr, u_int size)
2768 {
2769
2770 if (size < WAPBL_BLKPOOL_MIN)
2771 size = WAPBL_BLKPOOL_MIN;
2772 KASSERT(wr->wr_blkhash == 0);
2773 #ifdef _KERNEL
2774 wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask);
2775 #else /* ! _KERNEL */
2776 /* Manually implement hashinit */
2777 {
2778 unsigned long i, hashsize;
2779
2780 for (hashsize = 1; hashsize < size; hashsize <<= 1)
2781 continue;
2782 wr->wr_blkhash = wapbl_alloc(hashsize *
2783 sizeof(*wr->wr_blkhash));
2784 for (i = 0; i < hashsize; i++)
2785 LIST_INIT(&wr->wr_blkhash[i]);
2786 wr->wr_blkhashmask = hashsize - 1;
2787 }
2788 #endif /* ! _KERNEL */
2789 }
2790
2791 static void
2792 wapbl_blkhash_free(struct wapbl_replay *wr)
2793 {
2794
2795 KASSERT(wr->wr_blkhashcnt == 0);
2796 #ifdef _KERNEL
2797 hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask);
2798 #else /* ! _KERNEL */
2799 wapbl_free(wr->wr_blkhash,
2800 (wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash));
2801 #endif /* ! _KERNEL */
2802 }
2803
2804 static struct wapbl_blk *
2805 wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk)
2806 {
2807 struct wapbl_blk_head *wbh;
2808 struct wapbl_blk *wb;
2809
2810 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
2811 LIST_FOREACH(wb, wbh, wb_hash) {
2812 if (blk == wb->wb_blk)
2813 return wb;
2814 }
2815 return 0;
2816 }
2817
2818 static void
2819 wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off)
2820 {
2821 struct wapbl_blk_head *wbh;
2822 struct wapbl_blk *wb;
2823
2824 wb = wapbl_blkhash_get(wr, blk);
2825 if (wb) {
2826 KASSERT(wb->wb_blk == blk);
2827 wb->wb_off = off;
2828 } else {
2829 wb = wapbl_alloc(sizeof(*wb));
2830 wb->wb_blk = blk;
2831 wb->wb_off = off;
2832 wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
2833 LIST_INSERT_HEAD(wbh, wb, wb_hash);
2834 wr->wr_blkhashcnt++;
2835 }
2836 }
2837
2838 static void
2839 wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk)
2840 {
2841 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
2842
2843 if (wb) {
2844 KASSERT(wr->wr_blkhashcnt > 0);
2845 wr->wr_blkhashcnt--;
2846 LIST_REMOVE(wb, wb_hash);
2847 wapbl_free(wb, sizeof(*wb));
2848 }
2849 }
2850
2851 static void
2852 wapbl_blkhash_clear(struct wapbl_replay *wr)
2853 {
2854 unsigned long i;
2855
2856 for (i = 0; i <= wr->wr_blkhashmask; i++) {
2857 struct wapbl_blk *wb;
2858
2859 while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) {
2860 KASSERT(wr->wr_blkhashcnt > 0);
2861 wr->wr_blkhashcnt--;
2862 LIST_REMOVE(wb, wb_hash);
2863 wapbl_free(wb, sizeof(*wb));
2864 }
2865 }
2866 KASSERT(wr->wr_blkhashcnt == 0);
2867 }
2868
2869 /****************************************************************/
2870
2871 /*
2872 * wapbl_circ_read(wr, data, len, offp)
2873 *
2874 * Read len bytes into data from the circular queue of wr,
2875 * starting at the linear byte offset *offp, and returning the new
2876 * linear byte offset in *offp.
2877 *
2878 * If the starting linear byte offset precedes wr->wr_circ_off,
2879 * the read instead begins at wr->wr_circ_off. XXX WTF? This
2880 * should be a KASSERT, not a conditional.
2881 */
2882 static int
2883 wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp)
2884 {
2885 size_t slen;
2886 off_t off = *offp;
2887 int error;
2888 daddr_t pbn;
2889
2890 KASSERT(((len >> wr->wr_log_dev_bshift) << wr->wr_log_dev_bshift) ==
2891 len);
2892
2893 if (off < wr->wr_circ_off)
2894 off = wr->wr_circ_off;
2895 slen = wr->wr_circ_off + wr->wr_circ_size - off;
2896 if (slen < len) {
2897 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
2898 #ifdef _KERNEL
2899 pbn = btodb(pbn << wr->wr_log_dev_bshift);
2900 #endif
2901 error = wapbl_read(data, slen, wr->wr_devvp, pbn);
2902 if (error)
2903 return error;
2904 data = (uint8_t *)data + slen;
2905 len -= slen;
2906 off = wr->wr_circ_off;
2907 }
2908 pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
2909 #ifdef _KERNEL
2910 pbn = btodb(pbn << wr->wr_log_dev_bshift);
2911 #endif
2912 error = wapbl_read(data, len, wr->wr_devvp, pbn);
2913 if (error)
2914 return error;
2915 off += len;
2916 if (off >= wr->wr_circ_off + wr->wr_circ_size)
2917 off = wr->wr_circ_off;
2918 *offp = off;
2919 return 0;
2920 }
2921
2922 /*
2923 * wapbl_circ_advance(wr, len, offp)
2924 *
2925 * Compute the linear byte offset of the circular queue of wr that
2926 * is len bytes past *offp, and store it in *offp.
2927 *
2928 * This is as if wapbl_circ_read, but without actually reading
2929 * anything.
2930 *
2931 * If the starting linear byte offset precedes wr->wr_circ_off, it
2932 * is taken to be wr->wr_circ_off instead. XXX WTF? This should
2933 * be a KASSERT, not a conditional.
2934 */
2935 static void
2936 wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp)
2937 {
2938 size_t slen;
2939 off_t off = *offp;
2940
2941 KASSERT(((len >> wr->wr_log_dev_bshift) << wr->wr_log_dev_bshift) ==
2942 len);
2943
2944 if (off < wr->wr_circ_off)
2945 off = wr->wr_circ_off;
2946 slen = wr->wr_circ_off + wr->wr_circ_size - off;
2947 if (slen < len) {
2948 len -= slen;
2949 off = wr->wr_circ_off;
2950 }
2951 off += len;
2952 if (off >= wr->wr_circ_off + wr->wr_circ_size)
2953 off = wr->wr_circ_off;
2954 *offp = off;
2955 }
2956
2957 /****************************************************************/
2958
2959 int
2960 wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp,
2961 daddr_t off, size_t count, size_t blksize)
2962 {
2963 struct wapbl_replay *wr;
2964 int error;
2965 struct vnode *devvp;
2966 daddr_t logpbn;
2967 uint8_t *scratch;
2968 struct wapbl_wc_header *wch;
2969 struct wapbl_wc_header *wch2;
2970 /* Use this until we read the actual log header */
2971 int log_dev_bshift = ilog2(blksize);
2972 size_t used;
2973 daddr_t pbn;
2974
2975 WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
2976 ("wapbl_replay_start: vp=%p off=%"PRId64" count=%zu blksize=%zu\n",
2977 vp, off, count, blksize));
2978
2979 if (off < 0)
2980 return SET_ERROR(EINVAL);
2981
2982 if (blksize < DEV_BSIZE)
2983 return SET_ERROR(EINVAL);
2984 if (blksize % DEV_BSIZE)
2985 return SET_ERROR(EINVAL);
2986
2987 #ifdef _KERNEL
2988 #if 0
2989 /* XXX vp->v_size isn't reliably set for VBLK devices,
2990 * especially root. However, we might still want to verify
2991 * that the full load is readable */
2992 if ((off + count) * blksize > vp->v_size)
2993 return SET_ERROR(EINVAL);
2994 #endif
2995 if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) {
2996 return error;
2997 }
2998 #else /* ! _KERNEL */
2999 devvp = vp;
3000 logpbn = off;
3001 #endif /* ! _KERNEL */
3002
3003 scratch = wapbl_alloc(MAXBSIZE);
3004
3005 pbn = logpbn;
3006 #ifdef _KERNEL
3007 pbn = btodb(pbn << log_dev_bshift);
3008 #endif
3009 error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn);
3010 if (error)
3011 goto errout;
3012
3013 wch = (struct wapbl_wc_header *)scratch;
3014 wch2 =
3015 (struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift));
3016 /* XXX verify checksums and magic numbers */
3017 if (wch->wc_type != WAPBL_WC_HEADER) {
3018 printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type);
3019 error = SET_ERROR(EFTYPE);
3020 goto errout;
3021 }
3022
3023 if (wch2->wc_generation > wch->wc_generation)
3024 wch = wch2;
3025
3026 wr = wapbl_calloc(1, sizeof(*wr));
3027
3028 wr->wr_logvp = vp;
3029 wr->wr_devvp = devvp;
3030 wr->wr_logpbn = logpbn;
3031
3032 wr->wr_scratch = scratch;
3033
3034 wr->wr_log_dev_bshift = wch->wc_log_dev_bshift;
3035 wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift;
3036 wr->wr_circ_off = wch->wc_circ_off;
3037 wr->wr_circ_size = wch->wc_circ_size;
3038 wr->wr_generation = wch->wc_generation;
3039
3040 used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail);
3041
3042 WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
3043 ("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64
3044 " len=%"PRId64" used=%zu\n",
3045 wch->wc_head, wch->wc_tail, wch->wc_circ_off,
3046 wch->wc_circ_size, used));
3047
3048 wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift));
3049
3050 error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail);
3051 if (error) {
3052 wapbl_replay_stop(wr);
3053 wapbl_replay_free(wr);
3054 return error;
3055 }
3056
3057 *wrp = wr;
3058 return 0;
3059
3060 errout:
3061 wapbl_free(scratch, MAXBSIZE);
3062 return error;
3063 }
3064
3065 void
3066 wapbl_replay_stop(struct wapbl_replay *wr)
3067 {
3068
3069 if (!wapbl_replay_isopen(wr))
3070 return;
3071
3072 WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n"));
3073
3074 wapbl_free(wr->wr_scratch, MAXBSIZE);
3075 wr->wr_scratch = NULL;
3076
3077 wr->wr_logvp = NULL;
3078
3079 wapbl_blkhash_clear(wr);
3080 wapbl_blkhash_free(wr);
3081 }
3082
3083 void
3084 wapbl_replay_free(struct wapbl_replay *wr)
3085 {
3086
3087 KDASSERT(!wapbl_replay_isopen(wr));
3088
3089 if (wr->wr_inodes) {
3090 wapbl_free(wr->wr_inodes,
3091 wr->wr_inodescnt * sizeof(wr->wr_inodes[0]));
3092 }
3093 wapbl_free(wr, sizeof(*wr));
3094 }
3095
3096 #ifdef _KERNEL
3097 int
3098 wapbl_replay_isopen1(struct wapbl_replay *wr)
3099 {
3100
3101 return wapbl_replay_isopen(wr);
3102 }
3103 #endif
3104
3105 /*
3106 * calculate the disk address for the i'th block in the wc_blockblist
3107 * offset by j blocks of size blen.
3108 *
3109 * wc_daddr is always a kernel disk address in DEV_BSIZE units that
3110 * was written to the journal.
3111 *
3112 * The kernel needs that address plus the offset in DEV_BSIZE units.
3113 *
3114 * Userland needs that address plus the offset in blen units.
3115 *
3116 */
3117 static daddr_t
3118 wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen)
3119 {
3120 daddr_t pbn;
3121
3122 #ifdef _KERNEL
3123 pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen);
3124 #else
3125 pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j;
3126 #endif
3127
3128 return pbn;
3129 }
3130
3131 static void
3132 wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp)
3133 {
3134 struct wapbl_wc_blocklist *wc =
3135 (struct wapbl_wc_blocklist *)wr->wr_scratch;
3136 int fsblklen = 1 << wr->wr_fs_dev_bshift;
3137 int i, j, n;
3138
3139 for (i = 0; i < wc->wc_blkcount; i++) {
3140 /*
3141 * Enter each physical block into the hashtable independently.
3142 */
3143 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
3144 for (j = 0; j < n; j++) {
3145 wapbl_blkhash_ins(wr,
3146 wapbl_block_daddr(wc, i, j, fsblklen),
3147 *offp);
3148 wapbl_circ_advance(wr, fsblklen, offp);
3149 }
3150 }
3151 }
3152
3153 static void
3154 wapbl_replay_process_revocations(struct wapbl_replay *wr)
3155 {
3156 struct wapbl_wc_blocklist *wc =
3157 (struct wapbl_wc_blocklist *)wr->wr_scratch;
3158 int fsblklen = 1 << wr->wr_fs_dev_bshift;
3159 int i, j, n;
3160
3161 for (i = 0; i < wc->wc_blkcount; i++) {
3162 /*
3163 * Remove any blocks found from the hashtable.
3164 */
3165 n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
3166 for (j = 0; j < n; j++) {
3167 wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j,
3168 fsblklen));
3169 }
3170 }
3171 }
3172
3173 static void
3174 wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff,
3175 off_t newoff)
3176 {
3177 struct wapbl_wc_inodelist *wc =
3178 (struct wapbl_wc_inodelist *)wr->wr_scratch;
3179 void *new_inodes;
3180 const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]);
3181
3182 KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0]));
3183
3184 /*
3185 * Keep track of where we found this so location won't be
3186 * overwritten.
3187 */
3188 if (wc->wc_clear) {
3189 wr->wr_inodestail = oldoff;
3190 wr->wr_inodescnt = 0;
3191 if (wr->wr_inodes != NULL) {
3192 wapbl_free(wr->wr_inodes, oldsize);
3193 wr->wr_inodes = NULL;
3194 }
3195 }
3196 wr->wr_inodeshead = newoff;
3197 if (wc->wc_inocnt == 0)
3198 return;
3199
3200 new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) *
3201 sizeof(wr->wr_inodes[0]));
3202 if (wr->wr_inodes != NULL) {
3203 memcpy(new_inodes, wr->wr_inodes, oldsize);
3204 wapbl_free(wr->wr_inodes, oldsize);
3205 }
3206 wr->wr_inodes = new_inodes;
3207 memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes,
3208 wc->wc_inocnt * sizeof(wr->wr_inodes[0]));
3209 wr->wr_inodescnt += wc->wc_inocnt;
3210 }
3211
3212 static int
3213 wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail)
3214 {
3215 off_t off;
3216 int error;
3217
3218 int logblklen = 1 << wr->wr_log_dev_bshift;
3219
3220 wapbl_blkhash_clear(wr);
3221
3222 off = tail;
3223 while (off != head) {
3224 struct wapbl_wc_null *wcn;
3225 off_t saveoff = off;
3226 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
3227 if (error)
3228 goto errout;
3229 wcn = (struct wapbl_wc_null *)wr->wr_scratch;
3230 switch (wcn->wc_type) {
3231 case WAPBL_WC_BLOCKS:
3232 wapbl_replay_process_blocks(wr, &off);
3233 break;
3234
3235 case WAPBL_WC_REVOCATIONS:
3236 wapbl_replay_process_revocations(wr);
3237 break;
3238
3239 case WAPBL_WC_INODES:
3240 wapbl_replay_process_inodes(wr, saveoff, off);
3241 break;
3242
3243 default:
3244 printf("Unrecognized wapbl type: 0x%08x\n",
3245 wcn->wc_type);
3246 error = SET_ERROR(EFTYPE);
3247 goto errout;
3248 }
3249 wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
3250 if (off != saveoff) {
3251 printf("wapbl_replay: corrupted records\n");
3252 error = SET_ERROR(EFTYPE);
3253 goto errout;
3254 }
3255 }
3256 return 0;
3257
3258 errout:
3259 wapbl_blkhash_clear(wr);
3260 return error;
3261 }
3262
3263 #if 0
3264 int
3265 wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp)
3266 {
3267 off_t off;
3268 int mismatchcnt = 0;
3269 int logblklen = 1 << wr->wr_log_dev_bshift;
3270 int fsblklen = 1 << wr->wr_fs_dev_bshift;
3271 void *scratch1 = wapbl_alloc(MAXBSIZE);
3272 void *scratch2 = wapbl_alloc(MAXBSIZE);
3273 int error = 0;
3274
3275 KDASSERT(wapbl_replay_isopen(wr));
3276
3277 off = wch->wc_tail;
3278 while (off != wch->wc_head) {
3279 struct wapbl_wc_null *wcn;
3280 #ifdef DEBUG
3281 off_t saveoff = off;
3282 #endif
3283 error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
3284 if (error)
3285 goto out;
3286 wcn = (struct wapbl_wc_null *)wr->wr_scratch;
3287 switch (wcn->wc_type) {
3288 case WAPBL_WC_BLOCKS: {
3289 struct wapbl_wc_blocklist *wc =
3290 (struct wapbl_wc_blocklist *)wr->wr_scratch;
3291 int i;
3292 for (i = 0; i < wc->wc_blkcount; i++) {
3293 int foundcnt = 0;
3294 int dirtycnt = 0;
3295 int j, n;
3296 /*
3297 * Check each physical block into the
3298 * hashtable independently
3299 */
3300 n = wc->wc_blocks[i].wc_dlen >>
3301 wch->wc_fs_dev_bshift;
3302 for (j = 0; j < n; j++) {
3303 struct wapbl_blk *wb =
3304 wapbl_blkhash_get(wr,
3305 wapbl_block_daddr(wc, i, j,
3306 fsblklen));
3307 if (wb && wb->wb_off == off) {
3308 foundcnt++;
3309 error =
3310 wapbl_circ_read(wr,
3311 scratch1, fsblklen,
3312 &off);
3313 if (error)
3314 goto out;
3315 error =
3316 wapbl_read(scratch2,
3317 fsblklen, fsdevvp,
3318 wb->wb_blk);
3319 if (error)
3320 goto out;
3321 if (memcmp(scratch1,
3322 scratch2,
3323 fsblklen)) {
3324 printf("wapbl_verify:"
3325 " mismatch block"
3326 " %"PRId64
3327 " at off"
3328 " %"PRIdMAX"\n",
3329 wb->wb_blk,
3330 (intmax_t)off);
3331 dirtycnt++;
3332 mismatchcnt++;
3333 }
3334 } else {
3335 wapbl_circ_advance(wr,
3336 fsblklen, &off);
3337 }
3338 }
3339 #if 0
3340 /*
3341 * If all of the blocks in an entry
3342 * are clean, then remove all of its
3343 * blocks from the hashtable since they
3344 * never will need replay.
3345 */
3346 if (foundcnt != 0 && dirtycnt == 0) {
3347 off = saveoff;
3348 wapbl_circ_advance(wr, logblklen,
3349 &off);
3350 for (j = 0; j < n; j++) {
3351 struct wapbl_blk *wb =
3352 wapbl_blkhash_get(wr,
3353 wapbl_block_daddr(wc,
3354 i, j, fsblklen));
3355 if (wb &&
3356 (wb->wb_off == off)) {
3357 wapbl_blkhash_rem(wr,
3358 wb->wb_blk);
3359 }
3360 wapbl_circ_advance(wr,
3361 fsblklen, &off);
3362 }
3363 }
3364 #endif
3365 }
3366 }
3367 break;
3368 case WAPBL_WC_REVOCATIONS:
3369 case WAPBL_WC_INODES:
3370 break;
3371 default:
3372 KASSERT(0);
3373 }
3374 #ifdef DEBUG
3375 wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
3376 KASSERT(off == saveoff);
3377 #endif
3378 }
3379 out:
3380 wapbl_free(scratch1, MAXBSIZE);
3381 wapbl_free(scratch2, MAXBSIZE);
3382 if (!error && mismatchcnt)
3383 error = SET_ERROR(EFTYPE);
3384 return error;
3385 }
3386 #endif
3387
3388 int
3389 wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp)
3390 {
3391 struct wapbl_blk *wb;
3392 size_t i;
3393 off_t off;
3394 void *scratch;
3395 int error = 0;
3396 int fsblklen = 1 << wr->wr_fs_dev_bshift;
3397
3398 KDASSERT(wapbl_replay_isopen(wr));
3399
3400 scratch = wapbl_alloc(MAXBSIZE);
3401
3402 for (i = 0; i <= wr->wr_blkhashmask; ++i) {
3403 LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) {
3404 off = wb->wb_off;
3405 error = wapbl_circ_read(wr, scratch, fsblklen, &off);
3406 if (error)
3407 break;
3408 error = wapbl_write(scratch, fsblklen, fsdevvp,
3409 wb->wb_blk);
3410 if (error)
3411 break;
3412 }
3413 }
3414
3415 wapbl_free(scratch, MAXBSIZE);
3416 return error;
3417 }
3418
3419 int
3420 wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len)
3421 {
3422 int fsblklen = 1 << wr->wr_fs_dev_bshift;
3423
3424 KDASSERT(wapbl_replay_isopen(wr));
3425 KASSERT((len % fsblklen) == 0);
3426
3427 while (len != 0) {
3428 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
3429 if (wb)
3430 return 1;
3431 len -= fsblklen;
3432 }
3433 return 0;
3434 }
3435
3436 int
3437 wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len)
3438 {
3439 int fsblklen = 1 << wr->wr_fs_dev_bshift;
3440
3441 KDASSERT(wapbl_replay_isopen(wr));
3442
3443 KASSERT((len % fsblklen) == 0);
3444
3445 while (len != 0) {
3446 struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
3447 if (wb) {
3448 off_t off = wb->wb_off;
3449 int error;
3450 error = wapbl_circ_read(wr, data, fsblklen, &off);
3451 if (error)
3452 return error;
3453 }
3454 data = (uint8_t *)data + fsblklen;
3455 len -= fsblklen;
3456 blk++;
3457 }
3458 return 0;
3459 }
3460
3461 #ifdef _KERNEL
3462
3463 MODULE(MODULE_CLASS_VFS, wapbl, NULL);
3464
3465 static int
3466 wapbl_modcmd(modcmd_t cmd, void *arg)
3467 {
3468
3469 switch (cmd) {
3470 case MODULE_CMD_INIT:
3471 wapbl_init();
3472 return 0;
3473 case MODULE_CMD_FINI:
3474 return wapbl_fini();
3475 default:
3476 return SET_ERROR(ENOTTY);
3477 }
3478 }
3479
3480 #endif /* _KERNEL */
3481