Home | History | Annotate | Line # | Download | only in kern
vfs_wapbl.c revision 1.73
      1 /*	$NetBSD: vfs_wapbl.c,v 1.73 2016/05/07 20:39:33 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2008, 2009 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Wasabi Systems, Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * This implements file system independent write ahead filesystem logging.
     34  */
     35 
     36 #define WAPBL_INTERNAL
     37 
     38 #include <sys/cdefs.h>
     39 __KERNEL_RCSID(0, "$NetBSD: vfs_wapbl.c,v 1.73 2016/05/07 20:39:33 riastradh Exp $");
     40 
     41 #include <sys/param.h>
     42 #include <sys/bitops.h>
     43 #include <sys/time.h>
     44 #include <sys/wapbl.h>
     45 #include <sys/wapbl_replay.h>
     46 
     47 #ifdef _KERNEL
     48 
     49 #include <sys/atomic.h>
     50 #include <sys/conf.h>
     51 #include <sys/file.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/module.h>
     55 #include <sys/mount.h>
     56 #include <sys/mutex.h>
     57 #include <sys/namei.h>
     58 #include <sys/proc.h>
     59 #include <sys/resourcevar.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/uio.h>
     62 #include <sys/vnode.h>
     63 
     64 #include <miscfs/specfs/specdev.h>
     65 
     66 #define	wapbl_alloc(s) kmem_alloc((s), KM_SLEEP)
     67 #define	wapbl_free(a, s) kmem_free((a), (s))
     68 #define	wapbl_calloc(n, s) kmem_zalloc((n)*(s), KM_SLEEP)
     69 
     70 static struct sysctllog *wapbl_sysctl;
     71 static int wapbl_flush_disk_cache = 1;
     72 static int wapbl_verbose_commit = 0;
     73 
     74 static inline size_t wapbl_space_free(size_t, off_t, off_t);
     75 
     76 #else /* !_KERNEL */
     77 
     78 #include <assert.h>
     79 #include <errno.h>
     80 #include <stdbool.h>
     81 #include <stdio.h>
     82 #include <stdlib.h>
     83 #include <string.h>
     84 
     85 #define	KDASSERT(x) assert(x)
     86 #define	KASSERT(x) assert(x)
     87 #define	wapbl_alloc(s) malloc(s)
     88 #define	wapbl_free(a, s) free(a)
     89 #define	wapbl_calloc(n, s) calloc((n), (s))
     90 
     91 #endif /* !_KERNEL */
     92 
     93 /*
     94  * INTERNAL DATA STRUCTURES
     95  */
     96 
     97 /*
     98  * This structure holds per-mount log information.
     99  *
    100  * Legend:	a = atomic access only
    101  *		r = read-only after init
    102  *		l = rwlock held
    103  *		m = mutex held
    104  *		lm = rwlock held writing or mutex held
    105  *		u = unlocked access ok
    106  *		b = bufcache_lock held
    107  */
    108 LIST_HEAD(wapbl_ino_head, wapbl_ino);
    109 struct wapbl {
    110 	struct vnode *wl_logvp;	/* r:	log here */
    111 	struct vnode *wl_devvp;	/* r:	log on this device */
    112 	struct mount *wl_mount;	/* r:	mountpoint wl is associated with */
    113 	daddr_t wl_logpbn;	/* r:	Physical block number of start of log */
    114 	int wl_log_dev_bshift;	/* r:	logarithm of device block size of log
    115 					device */
    116 	int wl_fs_dev_bshift;	/* r:	logarithm of device block size of
    117 					filesystem device */
    118 
    119 	unsigned wl_lock_count;	/* m:	Count of transactions in progress */
    120 
    121 	size_t wl_circ_size; 	/* r:	Number of bytes in buffer of log */
    122 	size_t wl_circ_off;	/* r:	Number of bytes reserved at start */
    123 
    124 	size_t wl_bufcount_max;	/* r:	Number of buffers reserved for log */
    125 	size_t wl_bufbytes_max;	/* r:	Number of buf bytes reserved for log */
    126 
    127 	off_t wl_head;		/* l:	Byte offset of log head */
    128 	off_t wl_tail;		/* l:	Byte offset of log tail */
    129 	/*
    130 	 * WAPBL log layout, stored on wl_devvp at wl_logpbn:
    131 	 *
    132 	 *  ___________________ wl_circ_size __________________
    133 	 * /                                                   \
    134 	 * +---------+---------+-------+--------------+--------+
    135 	 * [ commit0 | commit1 | CCWCW | EEEEEEEEEEEE | CCCWCW ]
    136 	 * +---------+---------+-------+--------------+--------+
    137 	 *       wl_circ_off --^       ^-- wl_head    ^-- wl_tail
    138 	 *
    139 	 * commit0 and commit1 are commit headers.  A commit header has
    140 	 * a generation number, indicating which of the two headers is
    141 	 * more recent, and an assignment of head and tail pointers.
    142 	 * The rest is a circular queue of log records, starting at
    143 	 * the byte offset wl_circ_off.
    144 	 *
    145 	 * E marks empty space for records.
    146 	 * W marks records for block writes issued but waiting.
    147 	 * C marks completed records.
    148 	 *
    149 	 * wapbl_flush writes new records to empty `E' spaces after
    150 	 * wl_head from the current transaction in memory.
    151 	 *
    152 	 * wapbl_truncate advances wl_tail past any completed `C'
    153 	 * records, freeing them up for use.
    154 	 *
    155 	 * head == tail == 0 means log is empty.
    156 	 * head == tail != 0 means log is full.
    157 	 *
    158 	 * See assertions in wapbl_advance() for other boundary
    159 	 * conditions.
    160 	 *
    161 	 * Only wapbl_flush moves the head, except when wapbl_truncate
    162 	 * sets it to 0 to indicate that the log is empty.
    163 	 *
    164 	 * Only wapbl_truncate moves the tail, except when wapbl_flush
    165 	 * sets it to wl_circ_off to indicate that the log is full.
    166 	 */
    167 
    168 	struct wapbl_wc_header *wl_wc_header;	/* l	*/
    169 	void *wl_wc_scratch;	/* l:	scratch space (XXX: por que?!?) */
    170 
    171 	kmutex_t wl_mtx;	/* u:	short-term lock */
    172 	krwlock_t wl_rwlock;	/* u:	File system transaction lock */
    173 
    174 	/*
    175 	 * Must be held while accessing
    176 	 * wl_count or wl_bufs or head or tail
    177 	 */
    178 
    179 	/*
    180 	 * Callback called from within the flush routine to flush any extra
    181 	 * bits.  Note that flush may be skipped without calling this if
    182 	 * there are no outstanding buffers in the transaction.
    183 	 */
    184 #if _KERNEL
    185 	wapbl_flush_fn_t wl_flush;	/* r	*/
    186 	wapbl_flush_fn_t wl_flush_abort;/* r	*/
    187 #endif
    188 
    189 	size_t wl_bufbytes;	/* m:	Byte count of pages in wl_bufs */
    190 	size_t wl_bufcount;	/* m:	Count of buffers in wl_bufs */
    191 	size_t wl_bcount;	/* m:	Total bcount of wl_bufs */
    192 
    193 	LIST_HEAD(, buf) wl_bufs; /* m:	Buffers in current transaction */
    194 
    195 	kcondvar_t wl_reclaimable_cv;	/* m (obviously) */
    196 	size_t wl_reclaimable_bytes; /* m:	Amount of space available for
    197 						reclamation by truncate */
    198 	int wl_error_count;	/* m:	# of wl_entries with errors */
    199 	size_t wl_reserved_bytes; /* never truncate log smaller than this */
    200 
    201 #ifdef WAPBL_DEBUG_BUFBYTES
    202 	size_t wl_unsynced_bufbytes; /* Byte count of unsynced buffers */
    203 #endif
    204 
    205 	daddr_t *wl_deallocblks;/* lm:	address of block */
    206 	int *wl_dealloclens;	/* lm:	size of block */
    207 	int wl_dealloccnt;	/* lm:	total count */
    208 	int wl_dealloclim;	/* l:	max count */
    209 
    210 	/* hashtable of inode numbers for allocated but unlinked inodes */
    211 	/* synch ??? */
    212 	struct wapbl_ino_head *wl_inohash;
    213 	u_long wl_inohashmask;
    214 	int wl_inohashcnt;
    215 
    216 	SIMPLEQ_HEAD(, wapbl_entry) wl_entries; /* On disk transaction
    217 						   accounting */
    218 
    219 	u_char *wl_buffer;	/* l:   buffer for wapbl_buffered_write() */
    220 	daddr_t wl_buffer_dblk;	/* l:   buffer disk block address */
    221 	size_t wl_buffer_used;	/* l:   buffer current use */
    222 };
    223 
    224 #ifdef WAPBL_DEBUG_PRINT
    225 int wapbl_debug_print = WAPBL_DEBUG_PRINT;
    226 #endif
    227 
    228 /****************************************************************/
    229 #ifdef _KERNEL
    230 
    231 #ifdef WAPBL_DEBUG
    232 struct wapbl *wapbl_debug_wl;
    233 #endif
    234 
    235 static int wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail);
    236 static int wapbl_write_blocks(struct wapbl *wl, off_t *offp);
    237 static int wapbl_write_revocations(struct wapbl *wl, off_t *offp);
    238 static int wapbl_write_inodes(struct wapbl *wl, off_t *offp);
    239 #endif /* _KERNEL */
    240 
    241 static int wapbl_replay_process(struct wapbl_replay *wr, off_t, off_t);
    242 
    243 static inline size_t wapbl_space_used(size_t avail, off_t head,
    244 	off_t tail);
    245 
    246 #ifdef _KERNEL
    247 
    248 static struct pool wapbl_entry_pool;
    249 
    250 #define	WAPBL_INODETRK_SIZE 83
    251 static int wapbl_ino_pool_refcount;
    252 static struct pool wapbl_ino_pool;
    253 struct wapbl_ino {
    254 	LIST_ENTRY(wapbl_ino) wi_hash;
    255 	ino_t wi_ino;
    256 	mode_t wi_mode;
    257 };
    258 
    259 static void wapbl_inodetrk_init(struct wapbl *wl, u_int size);
    260 static void wapbl_inodetrk_free(struct wapbl *wl);
    261 static struct wapbl_ino *wapbl_inodetrk_get(struct wapbl *wl, ino_t ino);
    262 
    263 static size_t wapbl_transaction_len(struct wapbl *wl);
    264 static inline size_t wapbl_transaction_inodes_len(struct wapbl *wl);
    265 
    266 #if 0
    267 int wapbl_replay_verify(struct wapbl_replay *, struct vnode *);
    268 #endif
    269 
    270 static int wapbl_replay_isopen1(struct wapbl_replay *);
    271 
    272 struct wapbl_ops wapbl_ops = {
    273 	.wo_wapbl_discard	= wapbl_discard,
    274 	.wo_wapbl_replay_isopen	= wapbl_replay_isopen1,
    275 	.wo_wapbl_replay_can_read = wapbl_replay_can_read,
    276 	.wo_wapbl_replay_read	= wapbl_replay_read,
    277 	.wo_wapbl_add_buf	= wapbl_add_buf,
    278 	.wo_wapbl_remove_buf	= wapbl_remove_buf,
    279 	.wo_wapbl_resize_buf	= wapbl_resize_buf,
    280 	.wo_wapbl_begin		= wapbl_begin,
    281 	.wo_wapbl_end		= wapbl_end,
    282 	.wo_wapbl_junlock_assert= wapbl_junlock_assert,
    283 
    284 	/* XXX: the following is only used to say "this is a wapbl buf" */
    285 	.wo_wapbl_biodone	= wapbl_biodone,
    286 };
    287 
    288 static int
    289 wapbl_sysctl_init(void)
    290 {
    291 	int rv;
    292 	const struct sysctlnode *rnode, *cnode;
    293 
    294 	wapbl_sysctl = NULL;
    295 
    296 	rv = sysctl_createv(&wapbl_sysctl, 0, NULL, &rnode,
    297 		       CTLFLAG_PERMANENT,
    298 		       CTLTYPE_NODE, "wapbl",
    299 		       SYSCTL_DESCR("WAPBL journaling options"),
    300 		       NULL, 0, NULL, 0,
    301 		       CTL_VFS, CTL_CREATE, CTL_EOL);
    302 	if (rv)
    303 		return rv;
    304 
    305 	rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode,
    306 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    307 		       CTLTYPE_INT, "flush_disk_cache",
    308 		       SYSCTL_DESCR("flush disk cache"),
    309 		       NULL, 0, &wapbl_flush_disk_cache, 0,
    310 		       CTL_CREATE, CTL_EOL);
    311 	if (rv)
    312 		return rv;
    313 
    314 	rv = sysctl_createv(&wapbl_sysctl, 0, &rnode, &cnode,
    315 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
    316 		       CTLTYPE_INT, "verbose_commit",
    317 		       SYSCTL_DESCR("show time and size of wapbl log commits"),
    318 		       NULL, 0, &wapbl_verbose_commit, 0,
    319 		       CTL_CREATE, CTL_EOL);
    320 	return rv;
    321 }
    322 
    323 static void
    324 wapbl_init(void)
    325 {
    326 
    327 	pool_init(&wapbl_entry_pool, sizeof(struct wapbl_entry), 0, 0, 0,
    328 	    "wapblentrypl", &pool_allocator_kmem, IPL_VM);
    329 
    330 	wapbl_sysctl_init();
    331 }
    332 
    333 static int
    334 wapbl_fini(bool interface)
    335 {
    336 
    337 	if (wapbl_sysctl != NULL)
    338 		 sysctl_teardown(&wapbl_sysctl);
    339 
    340 	pool_destroy(&wapbl_entry_pool);
    341 
    342 	return 0;
    343 }
    344 
    345 static int
    346 wapbl_start_flush_inodes(struct wapbl *wl, struct wapbl_replay *wr)
    347 {
    348 	int error, i;
    349 
    350 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
    351 	    ("wapbl_start: reusing log with %d inodes\n", wr->wr_inodescnt));
    352 
    353 	/*
    354 	 * Its only valid to reuse the replay log if its
    355 	 * the same as the new log we just opened.
    356 	 */
    357 	KDASSERT(!wapbl_replay_isopen(wr));
    358 	KASSERT(wl->wl_devvp->v_type == VBLK);
    359 	KASSERT(wr->wr_devvp->v_type == VBLK);
    360 	KASSERT(wl->wl_devvp->v_rdev == wr->wr_devvp->v_rdev);
    361 	KASSERT(wl->wl_logpbn == wr->wr_logpbn);
    362 	KASSERT(wl->wl_circ_size == wr->wr_circ_size);
    363 	KASSERT(wl->wl_circ_off == wr->wr_circ_off);
    364 	KASSERT(wl->wl_log_dev_bshift == wr->wr_log_dev_bshift);
    365 	KASSERT(wl->wl_fs_dev_bshift == wr->wr_fs_dev_bshift);
    366 
    367 	wl->wl_wc_header->wc_generation = wr->wr_generation + 1;
    368 
    369 	for (i = 0; i < wr->wr_inodescnt; i++)
    370 		wapbl_register_inode(wl, wr->wr_inodes[i].wr_inumber,
    371 		    wr->wr_inodes[i].wr_imode);
    372 
    373 	/* Make sure new transaction won't overwrite old inodes list */
    374 	KDASSERT(wapbl_transaction_len(wl) <=
    375 	    wapbl_space_free(wl->wl_circ_size, wr->wr_inodeshead,
    376 	    wr->wr_inodestail));
    377 
    378 	wl->wl_head = wl->wl_tail = wr->wr_inodeshead;
    379 	wl->wl_reclaimable_bytes = wl->wl_reserved_bytes =
    380 	    wapbl_transaction_len(wl);
    381 
    382 	error = wapbl_write_inodes(wl, &wl->wl_head);
    383 	if (error)
    384 		return error;
    385 
    386 	KASSERT(wl->wl_head != wl->wl_tail);
    387 	KASSERT(wl->wl_head != 0);
    388 
    389 	return 0;
    390 }
    391 
    392 int
    393 wapbl_start(struct wapbl ** wlp, struct mount *mp, struct vnode *vp,
    394 	daddr_t off, size_t count, size_t blksize, struct wapbl_replay *wr,
    395 	wapbl_flush_fn_t flushfn, wapbl_flush_fn_t flushabortfn)
    396 {
    397 	struct wapbl *wl;
    398 	struct vnode *devvp;
    399 	daddr_t logpbn;
    400 	int error;
    401 	int log_dev_bshift = ilog2(blksize);
    402 	int fs_dev_bshift = log_dev_bshift;
    403 	int run;
    404 
    405 	WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_start: vp=%p off=%" PRId64
    406 	    " count=%zu blksize=%zu\n", vp, off, count, blksize));
    407 
    408 	if (log_dev_bshift > fs_dev_bshift) {
    409 		WAPBL_PRINTF(WAPBL_PRINT_OPEN,
    410 			("wapbl: log device's block size cannot be larger "
    411 			 "than filesystem's\n"));
    412 		/*
    413 		 * Not currently implemented, although it could be if
    414 		 * needed someday.
    415 		 */
    416 		return ENOSYS;
    417 	}
    418 
    419 	if (off < 0)
    420 		return EINVAL;
    421 
    422 	if (blksize < DEV_BSIZE)
    423 		return EINVAL;
    424 	if (blksize % DEV_BSIZE)
    425 		return EINVAL;
    426 
    427 	/* XXXTODO: verify that the full load is writable */
    428 
    429 	/*
    430 	 * XXX check for minimum log size
    431 	 * minimum is governed by minimum amount of space
    432 	 * to complete a transaction. (probably truncate)
    433 	 */
    434 	/* XXX for now pick something minimal */
    435 	if ((count * blksize) < MAXPHYS) {
    436 		return ENOSPC;
    437 	}
    438 
    439 	if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, &run)) != 0) {
    440 		return error;
    441 	}
    442 
    443 	wl = wapbl_calloc(1, sizeof(*wl));
    444 	rw_init(&wl->wl_rwlock);
    445 	mutex_init(&wl->wl_mtx, MUTEX_DEFAULT, IPL_NONE);
    446 	cv_init(&wl->wl_reclaimable_cv, "wapblrec");
    447 	LIST_INIT(&wl->wl_bufs);
    448 	SIMPLEQ_INIT(&wl->wl_entries);
    449 
    450 	wl->wl_logvp = vp;
    451 	wl->wl_devvp = devvp;
    452 	wl->wl_mount = mp;
    453 	wl->wl_logpbn = logpbn;
    454 	wl->wl_log_dev_bshift = log_dev_bshift;
    455 	wl->wl_fs_dev_bshift = fs_dev_bshift;
    456 
    457 	wl->wl_flush = flushfn;
    458 	wl->wl_flush_abort = flushabortfn;
    459 
    460 	/* Reserve two log device blocks for the commit headers */
    461 	wl->wl_circ_off = 2<<wl->wl_log_dev_bshift;
    462 	wl->wl_circ_size = ((count * blksize) - wl->wl_circ_off);
    463 	/* truncate the log usage to a multiple of log_dev_bshift */
    464 	wl->wl_circ_size >>= wl->wl_log_dev_bshift;
    465 	wl->wl_circ_size <<= wl->wl_log_dev_bshift;
    466 
    467 	/*
    468 	 * wl_bufbytes_max limits the size of the in memory transaction space.
    469 	 * - Since buffers are allocated and accounted for in units of
    470 	 *   PAGE_SIZE it is required to be a multiple of PAGE_SIZE
    471 	 *   (i.e. 1<<PAGE_SHIFT)
    472 	 * - Since the log device has to be written in units of
    473 	 *   1<<wl_log_dev_bshift it is required to be a mulitple of
    474 	 *   1<<wl_log_dev_bshift.
    475 	 * - Since filesystem will provide data in units of 1<<wl_fs_dev_bshift,
    476 	 *   it is convenient to be a multiple of 1<<wl_fs_dev_bshift.
    477 	 * Therefore it must be multiple of the least common multiple of those
    478 	 * three quantities.  Fortunately, all of those quantities are
    479 	 * guaranteed to be a power of two, and the least common multiple of
    480 	 * a set of numbers which are all powers of two is simply the maximum
    481 	 * of those numbers.  Finally, the maximum logarithm of a power of two
    482 	 * is the same as the log of the maximum power of two.  So we can do
    483 	 * the following operations to size wl_bufbytes_max:
    484 	 */
    485 
    486 	/* XXX fix actual number of pages reserved per filesystem. */
    487 	wl->wl_bufbytes_max = MIN(wl->wl_circ_size, buf_memcalc() / 2);
    488 
    489 	/* Round wl_bufbytes_max to the largest power of two constraint */
    490 	wl->wl_bufbytes_max >>= PAGE_SHIFT;
    491 	wl->wl_bufbytes_max <<= PAGE_SHIFT;
    492 	wl->wl_bufbytes_max >>= wl->wl_log_dev_bshift;
    493 	wl->wl_bufbytes_max <<= wl->wl_log_dev_bshift;
    494 	wl->wl_bufbytes_max >>= wl->wl_fs_dev_bshift;
    495 	wl->wl_bufbytes_max <<= wl->wl_fs_dev_bshift;
    496 
    497 	/* XXX maybe use filesystem fragment size instead of 1024 */
    498 	/* XXX fix actual number of buffers reserved per filesystem. */
    499 	wl->wl_bufcount_max = (nbuf / 2) * 1024;
    500 
    501 	/* XXX tie this into resource estimation */
    502 	wl->wl_dealloclim = wl->wl_bufbytes_max / mp->mnt_stat.f_bsize / 2;
    503 
    504 	wl->wl_deallocblks = wapbl_alloc(sizeof(*wl->wl_deallocblks) *
    505 	    wl->wl_dealloclim);
    506 	wl->wl_dealloclens = wapbl_alloc(sizeof(*wl->wl_dealloclens) *
    507 	    wl->wl_dealloclim);
    508 
    509 	wl->wl_buffer = wapbl_alloc(MAXPHYS);
    510 	wl->wl_buffer_used = 0;
    511 
    512 	wapbl_inodetrk_init(wl, WAPBL_INODETRK_SIZE);
    513 
    514 	/* Initialize the commit header */
    515 	{
    516 		struct wapbl_wc_header *wc;
    517 		size_t len = 1 << wl->wl_log_dev_bshift;
    518 		wc = wapbl_calloc(1, len);
    519 		wc->wc_type = WAPBL_WC_HEADER;
    520 		wc->wc_len = len;
    521 		wc->wc_circ_off = wl->wl_circ_off;
    522 		wc->wc_circ_size = wl->wl_circ_size;
    523 		/* XXX wc->wc_fsid */
    524 		wc->wc_log_dev_bshift = wl->wl_log_dev_bshift;
    525 		wc->wc_fs_dev_bshift = wl->wl_fs_dev_bshift;
    526 		wl->wl_wc_header = wc;
    527 		wl->wl_wc_scratch = wapbl_alloc(len);
    528 	}
    529 
    530 	/*
    531 	 * if there was an existing set of unlinked but
    532 	 * allocated inodes, preserve it in the new
    533 	 * log.
    534 	 */
    535 	if (wr && wr->wr_inodescnt) {
    536 		error = wapbl_start_flush_inodes(wl, wr);
    537 		if (error)
    538 			goto errout;
    539 	}
    540 
    541 	error = wapbl_write_commit(wl, wl->wl_head, wl->wl_tail);
    542 	if (error) {
    543 		goto errout;
    544 	}
    545 
    546 	*wlp = wl;
    547 #if defined(WAPBL_DEBUG)
    548 	wapbl_debug_wl = wl;
    549 #endif
    550 
    551 	return 0;
    552  errout:
    553 	wapbl_discard(wl);
    554 	wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
    555 	wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
    556 	wapbl_free(wl->wl_deallocblks,
    557 	    sizeof(*wl->wl_deallocblks) * wl->wl_dealloclim);
    558 	wapbl_free(wl->wl_dealloclens,
    559 	    sizeof(*wl->wl_dealloclens) * wl->wl_dealloclim);
    560 	wapbl_free(wl->wl_buffer, MAXPHYS);
    561 	wapbl_inodetrk_free(wl);
    562 	wapbl_free(wl, sizeof(*wl));
    563 
    564 	return error;
    565 }
    566 
    567 /*
    568  * Like wapbl_flush, only discards the transaction
    569  * completely
    570  */
    571 
    572 void
    573 wapbl_discard(struct wapbl *wl)
    574 {
    575 	struct wapbl_entry *we;
    576 	struct buf *bp;
    577 	int i;
    578 
    579 	/*
    580 	 * XXX we may consider using upgrade here
    581 	 * if we want to call flush from inside a transaction
    582 	 */
    583 	rw_enter(&wl->wl_rwlock, RW_WRITER);
    584 	wl->wl_flush(wl->wl_mount, wl->wl_deallocblks, wl->wl_dealloclens,
    585 	    wl->wl_dealloccnt);
    586 
    587 #ifdef WAPBL_DEBUG_PRINT
    588 	{
    589 		pid_t pid = -1;
    590 		lwpid_t lid = -1;
    591 		if (curproc)
    592 			pid = curproc->p_pid;
    593 		if (curlwp)
    594 			lid = curlwp->l_lid;
    595 #ifdef WAPBL_DEBUG_BUFBYTES
    596 		WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    597 		    ("wapbl_discard: thread %d.%d discarding "
    598 		    "transaction\n"
    599 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
    600 		    "deallocs=%d inodes=%d\n"
    601 		    "\terrcnt = %u, reclaimable=%zu reserved=%zu "
    602 		    "unsynced=%zu\n",
    603 		    pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
    604 		    wl->wl_bcount, wl->wl_dealloccnt,
    605 		    wl->wl_inohashcnt, wl->wl_error_count,
    606 		    wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
    607 		    wl->wl_unsynced_bufbytes));
    608 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
    609 			WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    610 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
    611 			     "error = %d, unsynced = %zu\n",
    612 			     we->we_bufcount, we->we_reclaimable_bytes,
    613 			     we->we_error, we->we_unsynced_bufbytes));
    614 		}
    615 #else /* !WAPBL_DEBUG_BUFBYTES */
    616 		WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    617 		    ("wapbl_discard: thread %d.%d discarding transaction\n"
    618 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
    619 		    "deallocs=%d inodes=%d\n"
    620 		    "\terrcnt = %u, reclaimable=%zu reserved=%zu\n",
    621 		    pid, lid, wl->wl_bufcount, wl->wl_bufbytes,
    622 		    wl->wl_bcount, wl->wl_dealloccnt,
    623 		    wl->wl_inohashcnt, wl->wl_error_count,
    624 		    wl->wl_reclaimable_bytes, wl->wl_reserved_bytes));
    625 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
    626 			WAPBL_PRINTF(WAPBL_PRINT_DISCARD,
    627 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
    628 			     "error = %d\n",
    629 			     we->we_bufcount, we->we_reclaimable_bytes,
    630 			     we->we_error));
    631 		}
    632 #endif /* !WAPBL_DEBUG_BUFBYTES */
    633 	}
    634 #endif /* WAPBL_DEBUG_PRINT */
    635 
    636 	for (i = 0; i <= wl->wl_inohashmask; i++) {
    637 		struct wapbl_ino_head *wih;
    638 		struct wapbl_ino *wi;
    639 
    640 		wih = &wl->wl_inohash[i];
    641 		while ((wi = LIST_FIRST(wih)) != NULL) {
    642 			LIST_REMOVE(wi, wi_hash);
    643 			pool_put(&wapbl_ino_pool, wi);
    644 			KASSERT(wl->wl_inohashcnt > 0);
    645 			wl->wl_inohashcnt--;
    646 		}
    647 	}
    648 
    649 	/*
    650 	 * clean buffer list
    651 	 */
    652 	mutex_enter(&bufcache_lock);
    653 	mutex_enter(&wl->wl_mtx);
    654 	while ((bp = LIST_FIRST(&wl->wl_bufs)) != NULL) {
    655 		if (bbusy(bp, 0, 0, &wl->wl_mtx) == 0) {
    656 			/*
    657 			 * The buffer will be unlocked and
    658 			 * removed from the transaction in brelse
    659 			 */
    660 			mutex_exit(&wl->wl_mtx);
    661 			brelsel(bp, 0);
    662 			mutex_enter(&wl->wl_mtx);
    663 		}
    664 	}
    665 	mutex_exit(&wl->wl_mtx);
    666 	mutex_exit(&bufcache_lock);
    667 
    668 	/*
    669 	 * Remove references to this wl from wl_entries, free any which
    670 	 * no longer have buffers, others will be freed in wapbl_biodone
    671 	 * when they no longer have any buffers.
    672 	 */
    673 	while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) != NULL) {
    674 		SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
    675 		/* XXX should we be accumulating wl_error_count
    676 		 * and increasing reclaimable bytes ? */
    677 		we->we_wapbl = NULL;
    678 		if (we->we_bufcount == 0) {
    679 #ifdef WAPBL_DEBUG_BUFBYTES
    680 			KASSERT(we->we_unsynced_bufbytes == 0);
    681 #endif
    682 			pool_put(&wapbl_entry_pool, we);
    683 		}
    684 	}
    685 
    686 	/* Discard list of deallocs */
    687 	wl->wl_dealloccnt = 0;
    688 	/* XXX should we clear wl_reserved_bytes? */
    689 
    690 	KASSERT(wl->wl_bufbytes == 0);
    691 	KASSERT(wl->wl_bcount == 0);
    692 	KASSERT(wl->wl_bufcount == 0);
    693 	KASSERT(LIST_EMPTY(&wl->wl_bufs));
    694 	KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
    695 	KASSERT(wl->wl_inohashcnt == 0);
    696 
    697 	rw_exit(&wl->wl_rwlock);
    698 }
    699 
    700 int
    701 wapbl_stop(struct wapbl *wl, int force)
    702 {
    703 	int error;
    704 
    705 	WAPBL_PRINTF(WAPBL_PRINT_OPEN, ("wapbl_stop called\n"));
    706 	error = wapbl_flush(wl, 1);
    707 	if (error) {
    708 		if (force)
    709 			wapbl_discard(wl);
    710 		else
    711 			return error;
    712 	}
    713 
    714 	/* Unlinked inodes persist after a flush */
    715 	if (wl->wl_inohashcnt) {
    716 		if (force) {
    717 			wapbl_discard(wl);
    718 		} else {
    719 			return EBUSY;
    720 		}
    721 	}
    722 
    723 	KASSERT(wl->wl_bufbytes == 0);
    724 	KASSERT(wl->wl_bcount == 0);
    725 	KASSERT(wl->wl_bufcount == 0);
    726 	KASSERT(LIST_EMPTY(&wl->wl_bufs));
    727 	KASSERT(wl->wl_dealloccnt == 0);
    728 	KASSERT(SIMPLEQ_EMPTY(&wl->wl_entries));
    729 	KASSERT(wl->wl_inohashcnt == 0);
    730 
    731 	wapbl_free(wl->wl_wc_scratch, wl->wl_wc_header->wc_len);
    732 	wapbl_free(wl->wl_wc_header, wl->wl_wc_header->wc_len);
    733 	wapbl_free(wl->wl_deallocblks,
    734 	    sizeof(*wl->wl_deallocblks) * wl->wl_dealloclim);
    735 	wapbl_free(wl->wl_dealloclens,
    736 	    sizeof(*wl->wl_dealloclens) * wl->wl_dealloclim);
    737 	wapbl_free(wl->wl_buffer, MAXPHYS);
    738 	wapbl_inodetrk_free(wl);
    739 
    740 	cv_destroy(&wl->wl_reclaimable_cv);
    741 	mutex_destroy(&wl->wl_mtx);
    742 	rw_destroy(&wl->wl_rwlock);
    743 	wapbl_free(wl, sizeof(*wl));
    744 
    745 	return 0;
    746 }
    747 
    748 /****************************************************************/
    749 /*
    750  * Unbuffered disk I/O
    751  */
    752 
    753 static int
    754 wapbl_doio(void *data, size_t len, struct vnode *devvp, daddr_t pbn, int flags)
    755 {
    756 	struct pstats *pstats = curlwp->l_proc->p_stats;
    757 	struct buf *bp;
    758 	int error;
    759 
    760 	KASSERT((flags & ~(B_WRITE | B_READ)) == 0);
    761 	KASSERT(devvp->v_type == VBLK);
    762 
    763 	if ((flags & (B_WRITE | B_READ)) == B_WRITE) {
    764 		mutex_enter(devvp->v_interlock);
    765 		devvp->v_numoutput++;
    766 		mutex_exit(devvp->v_interlock);
    767 		pstats->p_ru.ru_oublock++;
    768 	} else {
    769 		pstats->p_ru.ru_inblock++;
    770 	}
    771 
    772 	bp = getiobuf(devvp, true);
    773 	bp->b_flags = flags;
    774 	bp->b_cflags = BC_BUSY; /* silly & dubious */
    775 	bp->b_dev = devvp->v_rdev;
    776 	bp->b_data = data;
    777 	bp->b_bufsize = bp->b_resid = bp->b_bcount = len;
    778 	bp->b_blkno = pbn;
    779 	BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
    780 
    781 	WAPBL_PRINTF(WAPBL_PRINT_IO,
    782 	    ("wapbl_doio: %s %d bytes at block %"PRId64" on dev 0x%"PRIx64"\n",
    783 	    BUF_ISWRITE(bp) ? "write" : "read", bp->b_bcount,
    784 	    bp->b_blkno, bp->b_dev));
    785 
    786 	VOP_STRATEGY(devvp, bp);
    787 
    788 	error = biowait(bp);
    789 	putiobuf(bp);
    790 
    791 	if (error) {
    792 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
    793 		    ("wapbl_doio: %s %zu bytes at block %" PRId64
    794 		    " on dev 0x%"PRIx64" failed with error %d\n",
    795 		    (((flags & (B_WRITE | B_READ)) == B_WRITE) ?
    796 		     "write" : "read"),
    797 		    len, pbn, devvp->v_rdev, error));
    798 	}
    799 
    800 	return error;
    801 }
    802 
    803 /*
    804  * wapbl_write(data, len, devvp, pbn)
    805  *
    806  *	Synchronously write len bytes from data to physical block pbn
    807  *	on devvp.
    808  */
    809 int
    810 wapbl_write(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
    811 {
    812 
    813 	return wapbl_doio(data, len, devvp, pbn, B_WRITE);
    814 }
    815 
    816 /*
    817  * wapbl_read(data, len, devvp, pbn)
    818  *
    819  *	Synchronously read len bytes into data from physical block pbn
    820  *	on devvp.
    821  */
    822 int
    823 wapbl_read(void *data, size_t len, struct vnode *devvp, daddr_t pbn)
    824 {
    825 
    826 	return wapbl_doio(data, len, devvp, pbn, B_READ);
    827 }
    828 
    829 /****************************************************************/
    830 /*
    831  * Buffered disk writes -- try to coalesce writes and emit
    832  * MAXPHYS-aligned blocks.
    833  */
    834 
    835 /*
    836  * wapbl_buffered_flush(wl)
    837  *
    838  *	Flush any buffered writes from wapbl_buffered_write.
    839  */
    840 static int
    841 wapbl_buffered_flush(struct wapbl *wl)
    842 {
    843 	int error;
    844 
    845 	if (wl->wl_buffer_used == 0)
    846 		return 0;
    847 
    848 	error = wapbl_doio(wl->wl_buffer, wl->wl_buffer_used,
    849 	    wl->wl_devvp, wl->wl_buffer_dblk, B_WRITE);
    850 	wl->wl_buffer_used = 0;
    851 
    852 	return error;
    853 }
    854 
    855 /*
    856  * wapbl_buffered_write(data, len, wl, pbn)
    857  *
    858  *	Write len bytes from data to physical block pbn on
    859  *	wl->wl_devvp.  The write may not complete until
    860  *	wapbl_buffered_flush.
    861  */
    862 static int
    863 wapbl_buffered_write(void *data, size_t len, struct wapbl *wl, daddr_t pbn)
    864 {
    865 	int error;
    866 	size_t resid;
    867 
    868 	/*
    869 	 * If not adjacent to buffered data flush first.  Disk block
    870 	 * address is always valid for non-empty buffer.
    871 	 */
    872 	if (wl->wl_buffer_used > 0 &&
    873 	    pbn != wl->wl_buffer_dblk + btodb(wl->wl_buffer_used)) {
    874 		error = wapbl_buffered_flush(wl);
    875 		if (error)
    876 			return error;
    877 	}
    878 	/*
    879 	 * If this write goes to an empty buffer we have to
    880 	 * save the disk block address first.
    881 	 */
    882 	if (wl->wl_buffer_used == 0)
    883 		wl->wl_buffer_dblk = pbn;
    884 	/*
    885 	 * Remaining space so this buffer ends on a MAXPHYS boundary.
    886 	 *
    887 	 * Cannot become less or equal zero as the buffer would have been
    888 	 * flushed on the last call then.
    889 	 */
    890 	resid = MAXPHYS - dbtob(wl->wl_buffer_dblk % btodb(MAXPHYS)) -
    891 	    wl->wl_buffer_used;
    892 	KASSERT(resid > 0);
    893 	KASSERT(dbtob(btodb(resid)) == resid);
    894 	if (len >= resid) {
    895 		memcpy(wl->wl_buffer + wl->wl_buffer_used, data, resid);
    896 		wl->wl_buffer_used += resid;
    897 		error = wapbl_doio(wl->wl_buffer, wl->wl_buffer_used,
    898 		    wl->wl_devvp, wl->wl_buffer_dblk, B_WRITE);
    899 		data = (uint8_t *)data + resid;
    900 		len -= resid;
    901 		wl->wl_buffer_dblk = pbn + btodb(resid);
    902 		wl->wl_buffer_used = 0;
    903 		if (error)
    904 			return error;
    905 	}
    906 	KASSERT(len < MAXPHYS);
    907 	if (len > 0) {
    908 		memcpy(wl->wl_buffer + wl->wl_buffer_used, data, len);
    909 		wl->wl_buffer_used += len;
    910 	}
    911 
    912 	return 0;
    913 }
    914 
    915 /*
    916  * wapbl_circ_write(wl, data, len, offp)
    917  *
    918  *	Write len bytes from data to the circular queue of wl, starting
    919  *	at linear byte offset *offp, and returning the new linear byte
    920  *	offset in *offp.
    921  *
    922  *	If the starting linear byte offset precedes wl->wl_circ_off,
    923  *	the write instead begins at wl->wl_circ_off.  XXX WTF?  This
    924  *	should be a KASSERT, not a conditional.
    925  *
    926  *	The write is buffered in wl and must be flushed with
    927  *	wapbl_buffered_flush before it will be submitted to the disk.
    928  */
    929 static int
    930 wapbl_circ_write(struct wapbl *wl, void *data, size_t len, off_t *offp)
    931 {
    932 	size_t slen;
    933 	off_t off = *offp;
    934 	int error;
    935 	daddr_t pbn;
    936 
    937 	KDASSERT(((len >> wl->wl_log_dev_bshift) <<
    938 	    wl->wl_log_dev_bshift) == len);
    939 
    940 	if (off < wl->wl_circ_off)
    941 		off = wl->wl_circ_off;
    942 	slen = wl->wl_circ_off + wl->wl_circ_size - off;
    943 	if (slen < len) {
    944 		pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
    945 #ifdef _KERNEL
    946 		pbn = btodb(pbn << wl->wl_log_dev_bshift);
    947 #endif
    948 		error = wapbl_buffered_write(data, slen, wl, pbn);
    949 		if (error)
    950 			return error;
    951 		data = (uint8_t *)data + slen;
    952 		len -= slen;
    953 		off = wl->wl_circ_off;
    954 	}
    955 	pbn = wl->wl_logpbn + (off >> wl->wl_log_dev_bshift);
    956 #ifdef _KERNEL
    957 	pbn = btodb(pbn << wl->wl_log_dev_bshift);
    958 #endif
    959 	error = wapbl_buffered_write(data, len, wl, pbn);
    960 	if (error)
    961 		return error;
    962 	off += len;
    963 	if (off >= wl->wl_circ_off + wl->wl_circ_size)
    964 		off = wl->wl_circ_off;
    965 	*offp = off;
    966 	return 0;
    967 }
    968 
    969 /****************************************************************/
    970 /*
    971  * WAPBL transactions: entering, adding/removing bufs, and exiting
    972  */
    973 
    974 int
    975 wapbl_begin(struct wapbl *wl, const char *file, int line)
    976 {
    977 	int doflush;
    978 	unsigned lockcount;
    979 
    980 	KDASSERT(wl);
    981 
    982 	/*
    983 	 * XXX this needs to be made much more sophisticated.
    984 	 * perhaps each wapbl_begin could reserve a specified
    985 	 * number of buffers and bytes.
    986 	 */
    987 	mutex_enter(&wl->wl_mtx);
    988 	lockcount = wl->wl_lock_count;
    989 	doflush = ((wl->wl_bufbytes + (lockcount * MAXPHYS)) >
    990 		   wl->wl_bufbytes_max / 2) ||
    991 		  ((wl->wl_bufcount + (lockcount * 10)) >
    992 		   wl->wl_bufcount_max / 2) ||
    993 		  (wapbl_transaction_len(wl) > wl->wl_circ_size / 2) ||
    994 		  (wl->wl_dealloccnt >= (wl->wl_dealloclim / 2));
    995 	mutex_exit(&wl->wl_mtx);
    996 
    997 	if (doflush) {
    998 		WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
    999 		    ("force flush lockcnt=%d bufbytes=%zu "
   1000 		    "(max=%zu) bufcount=%zu (max=%zu) "
   1001 		    "dealloccnt %d (lim=%d)\n",
   1002 		    lockcount, wl->wl_bufbytes,
   1003 		    wl->wl_bufbytes_max, wl->wl_bufcount,
   1004 		    wl->wl_bufcount_max,
   1005 		    wl->wl_dealloccnt, wl->wl_dealloclim));
   1006 	}
   1007 
   1008 	if (doflush) {
   1009 		int error = wapbl_flush(wl, 0);
   1010 		if (error)
   1011 			return error;
   1012 	}
   1013 
   1014 	rw_enter(&wl->wl_rwlock, RW_READER);
   1015 	mutex_enter(&wl->wl_mtx);
   1016 	wl->wl_lock_count++;
   1017 	mutex_exit(&wl->wl_mtx);
   1018 
   1019 #if defined(WAPBL_DEBUG_PRINT)
   1020 	WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
   1021 	    ("wapbl_begin thread %d.%d with bufcount=%zu "
   1022 	    "bufbytes=%zu bcount=%zu at %s:%d\n",
   1023 	    curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
   1024 	    wl->wl_bufbytes, wl->wl_bcount, file, line));
   1025 #endif
   1026 
   1027 	return 0;
   1028 }
   1029 
   1030 void
   1031 wapbl_end(struct wapbl *wl)
   1032 {
   1033 
   1034 #if defined(WAPBL_DEBUG_PRINT)
   1035 	WAPBL_PRINTF(WAPBL_PRINT_TRANSACTION,
   1036 	     ("wapbl_end thread %d.%d with bufcount=%zu "
   1037 	      "bufbytes=%zu bcount=%zu\n",
   1038 	      curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
   1039 	      wl->wl_bufbytes, wl->wl_bcount));
   1040 #endif
   1041 
   1042 	/*
   1043 	 * XXX this could be handled more gracefully, perhaps place
   1044 	 * only a partial transaction in the log and allow the
   1045 	 * remaining to flush without the protection of the journal.
   1046 	 */
   1047 	KASSERTMSG((wapbl_transaction_len(wl) <=
   1048 		(wl->wl_circ_size - wl->wl_reserved_bytes)),
   1049 	    "wapbl_end: current transaction too big to flush");
   1050 
   1051 	mutex_enter(&wl->wl_mtx);
   1052 	KASSERT(wl->wl_lock_count > 0);
   1053 	wl->wl_lock_count--;
   1054 	mutex_exit(&wl->wl_mtx);
   1055 
   1056 	rw_exit(&wl->wl_rwlock);
   1057 }
   1058 
   1059 void
   1060 wapbl_add_buf(struct wapbl *wl, struct buf * bp)
   1061 {
   1062 
   1063 	KASSERT(bp->b_cflags & BC_BUSY);
   1064 	KASSERT(bp->b_vp);
   1065 
   1066 	wapbl_jlock_assert(wl);
   1067 
   1068 #if 0
   1069 	/*
   1070 	 * XXX this might be an issue for swapfiles.
   1071 	 * see uvm_swap.c:1702
   1072 	 *
   1073 	 * XXX2 why require it then?  leap of semantics?
   1074 	 */
   1075 	KASSERT((bp->b_cflags & BC_NOCACHE) == 0);
   1076 #endif
   1077 
   1078 	mutex_enter(&wl->wl_mtx);
   1079 	if (bp->b_flags & B_LOCKED) {
   1080 		LIST_REMOVE(bp, b_wapbllist);
   1081 		WAPBL_PRINTF(WAPBL_PRINT_BUFFER2,
   1082 		   ("wapbl_add_buf thread %d.%d re-adding buf %p "
   1083 		    "with %d bytes %d bcount\n",
   1084 		    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
   1085 		    bp->b_bcount));
   1086 	} else {
   1087 		/* unlocked by dirty buffers shouldn't exist */
   1088 		KASSERT(!(bp->b_oflags & BO_DELWRI));
   1089 		wl->wl_bufbytes += bp->b_bufsize;
   1090 		wl->wl_bcount += bp->b_bcount;
   1091 		wl->wl_bufcount++;
   1092 		WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
   1093 		   ("wapbl_add_buf thread %d.%d adding buf %p "
   1094 		    "with %d bytes %d bcount\n",
   1095 		    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize,
   1096 		    bp->b_bcount));
   1097 	}
   1098 	LIST_INSERT_HEAD(&wl->wl_bufs, bp, b_wapbllist);
   1099 	mutex_exit(&wl->wl_mtx);
   1100 
   1101 	bp->b_flags |= B_LOCKED;
   1102 }
   1103 
   1104 static void
   1105 wapbl_remove_buf_locked(struct wapbl * wl, struct buf *bp)
   1106 {
   1107 
   1108 	KASSERT(mutex_owned(&wl->wl_mtx));
   1109 	KASSERT(bp->b_cflags & BC_BUSY);
   1110 	wapbl_jlock_assert(wl);
   1111 
   1112 #if 0
   1113 	/*
   1114 	 * XXX this might be an issue for swapfiles.
   1115 	 * see uvm_swap.c:1725
   1116 	 *
   1117 	 * XXXdeux: see above
   1118 	 */
   1119 	KASSERT((bp->b_flags & BC_NOCACHE) == 0);
   1120 #endif
   1121 	KASSERT(bp->b_flags & B_LOCKED);
   1122 
   1123 	WAPBL_PRINTF(WAPBL_PRINT_BUFFER,
   1124 	   ("wapbl_remove_buf thread %d.%d removing buf %p with "
   1125 	    "%d bytes %d bcount\n",
   1126 	    curproc->p_pid, curlwp->l_lid, bp, bp->b_bufsize, bp->b_bcount));
   1127 
   1128 	KASSERT(wl->wl_bufbytes >= bp->b_bufsize);
   1129 	wl->wl_bufbytes -= bp->b_bufsize;
   1130 	KASSERT(wl->wl_bcount >= bp->b_bcount);
   1131 	wl->wl_bcount -= bp->b_bcount;
   1132 	KASSERT(wl->wl_bufcount > 0);
   1133 	wl->wl_bufcount--;
   1134 	KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
   1135 	KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
   1136 	LIST_REMOVE(bp, b_wapbllist);
   1137 
   1138 	bp->b_flags &= ~B_LOCKED;
   1139 }
   1140 
   1141 /* called from brelsel() in vfs_bio among other places */
   1142 void
   1143 wapbl_remove_buf(struct wapbl * wl, struct buf *bp)
   1144 {
   1145 
   1146 	mutex_enter(&wl->wl_mtx);
   1147 	wapbl_remove_buf_locked(wl, bp);
   1148 	mutex_exit(&wl->wl_mtx);
   1149 }
   1150 
   1151 void
   1152 wapbl_resize_buf(struct wapbl *wl, struct buf *bp, long oldsz, long oldcnt)
   1153 {
   1154 
   1155 	KASSERT(bp->b_cflags & BC_BUSY);
   1156 
   1157 	/*
   1158 	 * XXX: why does this depend on B_LOCKED?  otherwise the buf
   1159 	 * is not for a transaction?  if so, why is this called in the
   1160 	 * first place?
   1161 	 */
   1162 	if (bp->b_flags & B_LOCKED) {
   1163 		mutex_enter(&wl->wl_mtx);
   1164 		wl->wl_bufbytes += bp->b_bufsize - oldsz;
   1165 		wl->wl_bcount += bp->b_bcount - oldcnt;
   1166 		mutex_exit(&wl->wl_mtx);
   1167 	}
   1168 }
   1169 
   1170 #endif /* _KERNEL */
   1171 
   1172 /****************************************************************/
   1173 /* Some utility inlines */
   1174 
   1175 /*
   1176  * wapbl_space_used(avail, head, tail)
   1177  *
   1178  *	Number of bytes used in a circular queue of avail total bytes,
   1179  *	from tail to head.
   1180  */
   1181 static inline size_t
   1182 wapbl_space_used(size_t avail, off_t head, off_t tail)
   1183 {
   1184 
   1185 	if (tail == 0) {
   1186 		KASSERT(head == 0);
   1187 		return 0;
   1188 	}
   1189 	return ((head + (avail - 1) - tail) % avail) + 1;
   1190 }
   1191 
   1192 #ifdef _KERNEL
   1193 /*
   1194  * wapbl_advance(size, off, oldoff, delta)
   1195  *
   1196  *	Given a byte offset oldoff into a circular queue of size bytes
   1197  *	starting at off, return a new byte offset oldoff + delta into
   1198  *	the circular queue.
   1199  */
   1200 static inline off_t
   1201 wapbl_advance(size_t size, size_t off, off_t oldoff, size_t delta)
   1202 {
   1203 	off_t newoff;
   1204 
   1205 	/* Define acceptable ranges for inputs. */
   1206 	KASSERT(delta <= (size_t)size);
   1207 	KASSERT((oldoff == 0) || ((size_t)oldoff >= off));
   1208 	KASSERT(oldoff < (off_t)(size + off));
   1209 
   1210 	if ((oldoff == 0) && (delta != 0))
   1211 		newoff = off + delta;
   1212 	else if ((oldoff + delta) < (size + off))
   1213 		newoff = oldoff + delta;
   1214 	else
   1215 		newoff = (oldoff + delta) - size;
   1216 
   1217 	/* Note some interesting axioms */
   1218 	KASSERT((delta != 0) || (newoff == oldoff));
   1219 	KASSERT((delta == 0) || (newoff != 0));
   1220 	KASSERT((delta != (size)) || (newoff == oldoff));
   1221 
   1222 	/* Define acceptable ranges for output. */
   1223 	KASSERT((newoff == 0) || ((size_t)newoff >= off));
   1224 	KASSERT((size_t)newoff < (size + off));
   1225 	return newoff;
   1226 }
   1227 
   1228 /*
   1229  * wapbl_space_free(avail, head, tail)
   1230  *
   1231  *	Number of bytes free in a circular queue of avail total bytes,
   1232  *	in which everything from tail to head is used.
   1233  */
   1234 static inline size_t
   1235 wapbl_space_free(size_t avail, off_t head, off_t tail)
   1236 {
   1237 
   1238 	return avail - wapbl_space_used(avail, head, tail);
   1239 }
   1240 
   1241 /*
   1242  * wapbl_advance_head(size, off, delta, headp, tailp)
   1243  *
   1244  *	In a circular queue of size bytes starting at off, given the
   1245  *	old head and tail offsets *headp and *tailp, store the new head
   1246  *	and tail offsets in *headp and *tailp resulting from adding
   1247  *	delta bytes of data to the head.
   1248  */
   1249 static inline void
   1250 wapbl_advance_head(size_t size, size_t off, size_t delta, off_t *headp,
   1251 		   off_t *tailp)
   1252 {
   1253 	off_t head = *headp;
   1254 	off_t tail = *tailp;
   1255 
   1256 	KASSERT(delta <= wapbl_space_free(size, head, tail));
   1257 	head = wapbl_advance(size, off, head, delta);
   1258 	if ((tail == 0) && (head != 0))
   1259 		tail = off;
   1260 	*headp = head;
   1261 	*tailp = tail;
   1262 }
   1263 
   1264 /*
   1265  * wapbl_advance_tail(size, off, delta, headp, tailp)
   1266  *
   1267  *	In a circular queue of size bytes starting at off, given the
   1268  *	old head and tail offsets *headp and *tailp, store the new head
   1269  *	and tail offsets in *headp and *tailp resulting from removing
   1270  *	delta bytes of data from the tail.
   1271  */
   1272 static inline void
   1273 wapbl_advance_tail(size_t size, size_t off, size_t delta, off_t *headp,
   1274 		   off_t *tailp)
   1275 {
   1276 	off_t head = *headp;
   1277 	off_t tail = *tailp;
   1278 
   1279 	KASSERT(delta <= wapbl_space_used(size, head, tail));
   1280 	tail = wapbl_advance(size, off, tail, delta);
   1281 	if (head == tail) {
   1282 		head = tail = 0;
   1283 	}
   1284 	*headp = head;
   1285 	*tailp = tail;
   1286 }
   1287 
   1288 
   1289 /****************************************************************/
   1290 
   1291 /*
   1292  * wapbl_truncate(wl, minfree)
   1293  *
   1294  *	Wait until at least minfree bytes are available in the log.
   1295  *
   1296  *	If it was necessary to wait for writes to complete,
   1297  *	advance the circular queue tail to reflect the new write
   1298  *	completions and issue a write commit to the log.
   1299  *
   1300  *	=> Caller must hold wl->wl_rwlock writer lock.
   1301  */
   1302 static int
   1303 wapbl_truncate(struct wapbl *wl, size_t minfree)
   1304 {
   1305 	size_t delta;
   1306 	size_t avail;
   1307 	off_t head;
   1308 	off_t tail;
   1309 	int error = 0;
   1310 
   1311 	KASSERT(minfree <= (wl->wl_circ_size - wl->wl_reserved_bytes));
   1312 	KASSERT(rw_write_held(&wl->wl_rwlock));
   1313 
   1314 	mutex_enter(&wl->wl_mtx);
   1315 
   1316 	/*
   1317 	 * First check to see if we have to do a commit
   1318 	 * at all.
   1319 	 */
   1320 	avail = wapbl_space_free(wl->wl_circ_size, wl->wl_head, wl->wl_tail);
   1321 	if (minfree < avail) {
   1322 		mutex_exit(&wl->wl_mtx);
   1323 		return 0;
   1324 	}
   1325 	minfree -= avail;
   1326 	while ((wl->wl_error_count == 0) &&
   1327 	    (wl->wl_reclaimable_bytes < minfree)) {
   1328         	WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
   1329                    ("wapbl_truncate: sleeping on %p wl=%p bytes=%zd "
   1330 		    "minfree=%zd\n",
   1331                     &wl->wl_reclaimable_bytes, wl, wl->wl_reclaimable_bytes,
   1332 		    minfree));
   1333 
   1334 		cv_wait(&wl->wl_reclaimable_cv, &wl->wl_mtx);
   1335 	}
   1336 	if (wl->wl_reclaimable_bytes < minfree) {
   1337 		KASSERT(wl->wl_error_count);
   1338 		/* XXX maybe get actual error from buffer instead someday? */
   1339 		error = EIO;
   1340 	}
   1341 	head = wl->wl_head;
   1342 	tail = wl->wl_tail;
   1343 	delta = wl->wl_reclaimable_bytes;
   1344 
   1345 	/* If all of of the entries are flushed, then be sure to keep
   1346 	 * the reserved bytes reserved.  Watch out for discarded transactions,
   1347 	 * which could leave more bytes reserved than are reclaimable.
   1348 	 */
   1349 	if (SIMPLEQ_EMPTY(&wl->wl_entries) &&
   1350 	    (delta >= wl->wl_reserved_bytes)) {
   1351 		delta -= wl->wl_reserved_bytes;
   1352 	}
   1353 	wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta, &head,
   1354 			   &tail);
   1355 	KDASSERT(wl->wl_reserved_bytes <=
   1356 		wapbl_space_used(wl->wl_circ_size, head, tail));
   1357 	mutex_exit(&wl->wl_mtx);
   1358 
   1359 	if (error)
   1360 		return error;
   1361 
   1362 	/*
   1363 	 * This is where head, tail and delta are unprotected
   1364 	 * from races against itself or flush.  This is ok since
   1365 	 * we only call this routine from inside flush itself.
   1366 	 *
   1367 	 * XXX: how can it race against itself when accessed only
   1368 	 * from behind the write-locked rwlock?
   1369 	 */
   1370 	error = wapbl_write_commit(wl, head, tail);
   1371 	if (error)
   1372 		return error;
   1373 
   1374 	wl->wl_head = head;
   1375 	wl->wl_tail = tail;
   1376 
   1377 	mutex_enter(&wl->wl_mtx);
   1378 	KASSERT(wl->wl_reclaimable_bytes >= delta);
   1379 	wl->wl_reclaimable_bytes -= delta;
   1380 	mutex_exit(&wl->wl_mtx);
   1381 	WAPBL_PRINTF(WAPBL_PRINT_TRUNCATE,
   1382 	    ("wapbl_truncate thread %d.%d truncating %zu bytes\n",
   1383 	    curproc->p_pid, curlwp->l_lid, delta));
   1384 
   1385 	return 0;
   1386 }
   1387 
   1388 /****************************************************************/
   1389 
   1390 void
   1391 wapbl_biodone(struct buf *bp)
   1392 {
   1393 	struct wapbl_entry *we = bp->b_private;
   1394 	struct wapbl *wl = we->we_wapbl;
   1395 #ifdef WAPBL_DEBUG_BUFBYTES
   1396 	const int bufsize = bp->b_bufsize;
   1397 #endif
   1398 
   1399 	/*
   1400 	 * Handle possible flushing of buffers after log has been
   1401 	 * decomissioned.
   1402 	 */
   1403 	if (!wl) {
   1404 		KASSERT(we->we_bufcount > 0);
   1405 		we->we_bufcount--;
   1406 #ifdef WAPBL_DEBUG_BUFBYTES
   1407 		KASSERT(we->we_unsynced_bufbytes >= bufsize);
   1408 		we->we_unsynced_bufbytes -= bufsize;
   1409 #endif
   1410 
   1411 		if (we->we_bufcount == 0) {
   1412 #ifdef WAPBL_DEBUG_BUFBYTES
   1413 			KASSERT(we->we_unsynced_bufbytes == 0);
   1414 #endif
   1415 			pool_put(&wapbl_entry_pool, we);
   1416 		}
   1417 
   1418 		brelse(bp, 0);
   1419 		return;
   1420 	}
   1421 
   1422 #ifdef ohbother
   1423 	KDASSERT(bp->b_oflags & BO_DONE);
   1424 	KDASSERT(!(bp->b_oflags & BO_DELWRI));
   1425 	KDASSERT(bp->b_flags & B_ASYNC);
   1426 	KDASSERT(bp->b_cflags & BC_BUSY);
   1427 	KDASSERT(!(bp->b_flags & B_LOCKED));
   1428 	KDASSERT(!(bp->b_flags & B_READ));
   1429 	KDASSERT(!(bp->b_cflags & BC_INVAL));
   1430 	KDASSERT(!(bp->b_cflags & BC_NOCACHE));
   1431 #endif
   1432 
   1433 	if (bp->b_error) {
   1434 #ifdef notyet /* Can't currently handle possible dirty buffer reuse */
   1435 		/*
   1436 		 * XXXpooka: interfaces not fully updated
   1437 		 * Note: this was not enabled in the original patch
   1438 		 * against netbsd4 either.  I don't know if comment
   1439 		 * above is true or not.
   1440 		 */
   1441 
   1442 		/*
   1443 		 * If an error occurs, report the error and leave the
   1444 		 * buffer as a delayed write on the LRU queue.
   1445 		 * restarting the write would likely result in
   1446 		 * an error spinloop, so let it be done harmlessly
   1447 		 * by the syncer.
   1448 		 */
   1449 		bp->b_flags &= ~(B_DONE);
   1450 		simple_unlock(&bp->b_interlock);
   1451 
   1452 		if (we->we_error == 0) {
   1453 			mutex_enter(&wl->wl_mtx);
   1454 			wl->wl_error_count++;
   1455 			mutex_exit(&wl->wl_mtx);
   1456 			cv_broadcast(&wl->wl_reclaimable_cv);
   1457 		}
   1458 		we->we_error = bp->b_error;
   1459 		bp->b_error = 0;
   1460 		brelse(bp);
   1461 		return;
   1462 #else
   1463 		/* For now, just mark the log permanently errored out */
   1464 
   1465 		mutex_enter(&wl->wl_mtx);
   1466 		if (wl->wl_error_count == 0) {
   1467 			wl->wl_error_count++;
   1468 			cv_broadcast(&wl->wl_reclaimable_cv);
   1469 		}
   1470 		mutex_exit(&wl->wl_mtx);
   1471 #endif
   1472 	}
   1473 
   1474 	/*
   1475 	 * Release the buffer here. wapbl_flush() may wait for the
   1476 	 * log to become empty and we better unbusy the buffer before
   1477 	 * wapbl_flush() returns.
   1478 	 */
   1479 	brelse(bp, 0);
   1480 
   1481 	mutex_enter(&wl->wl_mtx);
   1482 
   1483 	KASSERT(we->we_bufcount > 0);
   1484 	we->we_bufcount--;
   1485 #ifdef WAPBL_DEBUG_BUFBYTES
   1486 	KASSERT(we->we_unsynced_bufbytes >= bufsize);
   1487 	we->we_unsynced_bufbytes -= bufsize;
   1488 	KASSERT(wl->wl_unsynced_bufbytes >= bufsize);
   1489 	wl->wl_unsynced_bufbytes -= bufsize;
   1490 #endif
   1491 
   1492 	/*
   1493 	 * If the current transaction can be reclaimed, start
   1494 	 * at the beginning and reclaim any consecutive reclaimable
   1495 	 * transactions.  If we successfully reclaim anything,
   1496 	 * then wakeup anyone waiting for the reclaim.
   1497 	 */
   1498 	if (we->we_bufcount == 0) {
   1499 		size_t delta = 0;
   1500 		int errcnt = 0;
   1501 #ifdef WAPBL_DEBUG_BUFBYTES
   1502 		KDASSERT(we->we_unsynced_bufbytes == 0);
   1503 #endif
   1504 		/*
   1505 		 * clear any posted error, since the buffer it came from
   1506 		 * has successfully flushed by now
   1507 		 */
   1508 		while ((we = SIMPLEQ_FIRST(&wl->wl_entries)) &&
   1509 		       (we->we_bufcount == 0)) {
   1510 			delta += we->we_reclaimable_bytes;
   1511 			if (we->we_error)
   1512 				errcnt++;
   1513 			SIMPLEQ_REMOVE_HEAD(&wl->wl_entries, we_entries);
   1514 			pool_put(&wapbl_entry_pool, we);
   1515 		}
   1516 
   1517 		if (delta) {
   1518 			wl->wl_reclaimable_bytes += delta;
   1519 			KASSERT(wl->wl_error_count >= errcnt);
   1520 			wl->wl_error_count -= errcnt;
   1521 			cv_broadcast(&wl->wl_reclaimable_cv);
   1522 		}
   1523 	}
   1524 
   1525 	mutex_exit(&wl->wl_mtx);
   1526 }
   1527 
   1528 /*
   1529  * wapbl_flush(wl, wait)
   1530  *
   1531  *	Flush pending block writes, deallocations, and inodes from
   1532  *	the current transaction in memory to the log on disk:
   1533  *
   1534  *	1. Call the file system's wl_flush callback to flush any
   1535  *	   per-file-system pending updates.
   1536  *	2. Wait for enough space in the log for the current transaction.
   1537  *	3. Synchronously write the new log records, advancing the
   1538  *	   circular queue head.
   1539  *	4. If wait is true, also wait for all the logged writes to
   1540  *	   complete so that the log is empty on return.
   1541  *
   1542  *	On failure, call the file system's wl_flush_abort callback.
   1543  */
   1544 int
   1545 wapbl_flush(struct wapbl *wl, int waitfor)
   1546 {
   1547 	struct buf *bp;
   1548 	struct wapbl_entry *we;
   1549 	off_t off;
   1550 	off_t head;
   1551 	off_t tail;
   1552 	size_t delta = 0;
   1553 	size_t flushsize;
   1554 	size_t reserved;
   1555 	int error = 0;
   1556 
   1557 	/*
   1558 	 * Do a quick check to see if a full flush can be skipped
   1559 	 * This assumes that the flush callback does not need to be called
   1560 	 * unless there are other outstanding bufs.
   1561 	 */
   1562 	if (!waitfor) {
   1563 		size_t nbufs;
   1564 		mutex_enter(&wl->wl_mtx);	/* XXX need mutex here to
   1565 						   protect the KASSERTS */
   1566 		nbufs = wl->wl_bufcount;
   1567 		KASSERT((wl->wl_bufcount == 0) == (wl->wl_bufbytes == 0));
   1568 		KASSERT((wl->wl_bufcount == 0) == (wl->wl_bcount == 0));
   1569 		mutex_exit(&wl->wl_mtx);
   1570 		if (nbufs == 0)
   1571 			return 0;
   1572 	}
   1573 
   1574 	/*
   1575 	 * XXX we may consider using LK_UPGRADE here
   1576 	 * if we want to call flush from inside a transaction
   1577 	 */
   1578 	rw_enter(&wl->wl_rwlock, RW_WRITER);
   1579 	wl->wl_flush(wl->wl_mount, wl->wl_deallocblks, wl->wl_dealloclens,
   1580 	    wl->wl_dealloccnt);
   1581 
   1582 	/*
   1583 	 * Now that we are fully locked and flushed,
   1584 	 * do another check for nothing to do.
   1585 	 */
   1586 	if (wl->wl_bufcount == 0) {
   1587 		goto wait_out;
   1588 	}
   1589 
   1590 #if 0
   1591 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1592 		     ("wapbl_flush thread %d.%d flushing entries with "
   1593 		      "bufcount=%zu bufbytes=%zu\n",
   1594 		      curproc->p_pid, curlwp->l_lid, wl->wl_bufcount,
   1595 		      wl->wl_bufbytes));
   1596 #endif
   1597 
   1598 	/* Calculate amount of space needed to flush */
   1599 	flushsize = wapbl_transaction_len(wl);
   1600 	if (wapbl_verbose_commit) {
   1601 		struct timespec ts;
   1602 		getnanotime(&ts);
   1603 		printf("%s: %lld.%09ld this transaction = %zu bytes\n",
   1604 		    __func__, (long long)ts.tv_sec,
   1605 		    (long)ts.tv_nsec, flushsize);
   1606 	}
   1607 
   1608 	if (flushsize > (wl->wl_circ_size - wl->wl_reserved_bytes)) {
   1609 		/*
   1610 		 * XXX this could be handled more gracefully, perhaps place
   1611 		 * only a partial transaction in the log and allow the
   1612 		 * remaining to flush without the protection of the journal.
   1613 		 */
   1614 		panic("wapbl_flush: current transaction too big to flush");
   1615 	}
   1616 
   1617 	error = wapbl_truncate(wl, flushsize);
   1618 	if (error)
   1619 		goto out;
   1620 
   1621 	off = wl->wl_head;
   1622 	KASSERT((off == 0) || (off >= wl->wl_circ_off));
   1623 	KASSERT((off == 0) || (off < wl->wl_circ_off + wl->wl_circ_size));
   1624 	error = wapbl_write_blocks(wl, &off);
   1625 	if (error)
   1626 		goto out;
   1627 	error = wapbl_write_revocations(wl, &off);
   1628 	if (error)
   1629 		goto out;
   1630 	error = wapbl_write_inodes(wl, &off);
   1631 	if (error)
   1632 		goto out;
   1633 
   1634 	reserved = 0;
   1635 	if (wl->wl_inohashcnt)
   1636 		reserved = wapbl_transaction_inodes_len(wl);
   1637 
   1638 	head = wl->wl_head;
   1639 	tail = wl->wl_tail;
   1640 
   1641 	wapbl_advance_head(wl->wl_circ_size, wl->wl_circ_off, flushsize,
   1642 	    &head, &tail);
   1643 
   1644 	KASSERTMSG(head == off,
   1645 	    "lost head! head=%"PRIdMAX" tail=%" PRIdMAX
   1646 	    " off=%"PRIdMAX" flush=%zu",
   1647 	    (intmax_t)head, (intmax_t)tail, (intmax_t)off,
   1648 	    flushsize);
   1649 
   1650 	/* Opportunistically move the tail forward if we can */
   1651 	mutex_enter(&wl->wl_mtx);
   1652 	delta = wl->wl_reclaimable_bytes;
   1653 	mutex_exit(&wl->wl_mtx);
   1654 	wapbl_advance_tail(wl->wl_circ_size, wl->wl_circ_off, delta,
   1655 	    &head, &tail);
   1656 
   1657 	error = wapbl_write_commit(wl, head, tail);
   1658 	if (error)
   1659 		goto out;
   1660 
   1661 	we = pool_get(&wapbl_entry_pool, PR_WAITOK);
   1662 
   1663 #ifdef WAPBL_DEBUG_BUFBYTES
   1664 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1665 		("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
   1666 		 " unsynced=%zu"
   1667 		 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
   1668 		 "inodes=%d\n",
   1669 		 curproc->p_pid, curlwp->l_lid, flushsize, delta,
   1670 		 wapbl_space_used(wl->wl_circ_size, head, tail),
   1671 		 wl->wl_unsynced_bufbytes, wl->wl_bufcount,
   1672 		 wl->wl_bufbytes, wl->wl_bcount, wl->wl_dealloccnt,
   1673 		 wl->wl_inohashcnt));
   1674 #else
   1675 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1676 		("wapbl_flush: thread %d.%d head+=%zu tail+=%zu used=%zu"
   1677 		 "\n\tbufcount=%zu bufbytes=%zu bcount=%zu deallocs=%d "
   1678 		 "inodes=%d\n",
   1679 		 curproc->p_pid, curlwp->l_lid, flushsize, delta,
   1680 		 wapbl_space_used(wl->wl_circ_size, head, tail),
   1681 		 wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
   1682 		 wl->wl_dealloccnt, wl->wl_inohashcnt));
   1683 #endif
   1684 
   1685 
   1686 	mutex_enter(&bufcache_lock);
   1687 	mutex_enter(&wl->wl_mtx);
   1688 
   1689 	wl->wl_reserved_bytes = reserved;
   1690 	wl->wl_head = head;
   1691 	wl->wl_tail = tail;
   1692 	KASSERT(wl->wl_reclaimable_bytes >= delta);
   1693 	wl->wl_reclaimable_bytes -= delta;
   1694 	wl->wl_dealloccnt = 0;
   1695 #ifdef WAPBL_DEBUG_BUFBYTES
   1696 	wl->wl_unsynced_bufbytes += wl->wl_bufbytes;
   1697 #endif
   1698 
   1699 	we->we_wapbl = wl;
   1700 	we->we_bufcount = wl->wl_bufcount;
   1701 #ifdef WAPBL_DEBUG_BUFBYTES
   1702 	we->we_unsynced_bufbytes = wl->wl_bufbytes;
   1703 #endif
   1704 	we->we_reclaimable_bytes = flushsize;
   1705 	we->we_error = 0;
   1706 	SIMPLEQ_INSERT_TAIL(&wl->wl_entries, we, we_entries);
   1707 
   1708 	/*
   1709 	 * this flushes bufs in reverse order than they were queued
   1710 	 * it shouldn't matter, but if we care we could use TAILQ instead.
   1711 	 * XXX Note they will get put on the lru queue when they flush
   1712 	 * so we might actually want to change this to preserve order.
   1713 	 */
   1714 	while ((bp = LIST_FIRST(&wl->wl_bufs)) != NULL) {
   1715 		if (bbusy(bp, 0, 0, &wl->wl_mtx)) {
   1716 			continue;
   1717 		}
   1718 		bp->b_iodone = wapbl_biodone;
   1719 		bp->b_private = we;
   1720 		bremfree(bp);
   1721 		wapbl_remove_buf_locked(wl, bp);
   1722 		mutex_exit(&wl->wl_mtx);
   1723 		mutex_exit(&bufcache_lock);
   1724 		bawrite(bp);
   1725 		mutex_enter(&bufcache_lock);
   1726 		mutex_enter(&wl->wl_mtx);
   1727 	}
   1728 	mutex_exit(&wl->wl_mtx);
   1729 	mutex_exit(&bufcache_lock);
   1730 
   1731 #if 0
   1732 	WAPBL_PRINTF(WAPBL_PRINT_FLUSH,
   1733 		     ("wapbl_flush thread %d.%d done flushing entries...\n",
   1734 		     curproc->p_pid, curlwp->l_lid));
   1735 #endif
   1736 
   1737  wait_out:
   1738 
   1739 	/*
   1740 	 * If the waitfor flag is set, don't return until everything is
   1741 	 * fully flushed and the on disk log is empty.
   1742 	 */
   1743 	if (waitfor) {
   1744 		error = wapbl_truncate(wl, wl->wl_circ_size -
   1745 			wl->wl_reserved_bytes);
   1746 	}
   1747 
   1748  out:
   1749 	if (error) {
   1750 		wl->wl_flush_abort(wl->wl_mount, wl->wl_deallocblks,
   1751 		    wl->wl_dealloclens, wl->wl_dealloccnt);
   1752 	}
   1753 
   1754 #ifdef WAPBL_DEBUG_PRINT
   1755 	if (error) {
   1756 		pid_t pid = -1;
   1757 		lwpid_t lid = -1;
   1758 		if (curproc)
   1759 			pid = curproc->p_pid;
   1760 		if (curlwp)
   1761 			lid = curlwp->l_lid;
   1762 		mutex_enter(&wl->wl_mtx);
   1763 #ifdef WAPBL_DEBUG_BUFBYTES
   1764 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   1765 		    ("wapbl_flush: thread %d.%d aborted flush: "
   1766 		    "error = %d\n"
   1767 		    "\tbufcount=%zu bufbytes=%zu bcount=%zu "
   1768 		    "deallocs=%d inodes=%d\n"
   1769 		    "\terrcnt = %d, reclaimable=%zu reserved=%zu "
   1770 		    "unsynced=%zu\n",
   1771 		    pid, lid, error, wl->wl_bufcount,
   1772 		    wl->wl_bufbytes, wl->wl_bcount,
   1773 		    wl->wl_dealloccnt, wl->wl_inohashcnt,
   1774 		    wl->wl_error_count, wl->wl_reclaimable_bytes,
   1775 		    wl->wl_reserved_bytes, wl->wl_unsynced_bufbytes));
   1776 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
   1777 			WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   1778 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
   1779 			     "error = %d, unsynced = %zu\n",
   1780 			     we->we_bufcount, we->we_reclaimable_bytes,
   1781 			     we->we_error, we->we_unsynced_bufbytes));
   1782 		}
   1783 #else
   1784 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   1785 		    ("wapbl_flush: thread %d.%d aborted flush: "
   1786 		     "error = %d\n"
   1787 		     "\tbufcount=%zu bufbytes=%zu bcount=%zu "
   1788 		     "deallocs=%d inodes=%d\n"
   1789 		     "\terrcnt = %d, reclaimable=%zu reserved=%zu\n",
   1790 		     pid, lid, error, wl->wl_bufcount,
   1791 		     wl->wl_bufbytes, wl->wl_bcount,
   1792 		     wl->wl_dealloccnt, wl->wl_inohashcnt,
   1793 		     wl->wl_error_count, wl->wl_reclaimable_bytes,
   1794 		     wl->wl_reserved_bytes));
   1795 		SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
   1796 			WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   1797 			    ("\tentry: bufcount = %zu, reclaimable = %zu, "
   1798 			     "error = %d\n", we->we_bufcount,
   1799 			     we->we_reclaimable_bytes, we->we_error));
   1800 		}
   1801 #endif
   1802 		mutex_exit(&wl->wl_mtx);
   1803 	}
   1804 #endif
   1805 
   1806 	rw_exit(&wl->wl_rwlock);
   1807 	return error;
   1808 }
   1809 
   1810 /****************************************************************/
   1811 
   1812 void
   1813 wapbl_jlock_assert(struct wapbl *wl)
   1814 {
   1815 
   1816 	KASSERT(rw_lock_held(&wl->wl_rwlock));
   1817 }
   1818 
   1819 void
   1820 wapbl_junlock_assert(struct wapbl *wl)
   1821 {
   1822 
   1823 	KASSERT(!rw_write_held(&wl->wl_rwlock));
   1824 }
   1825 
   1826 /****************************************************************/
   1827 
   1828 /* locks missing */
   1829 void
   1830 wapbl_print(struct wapbl *wl,
   1831 		int full,
   1832 		void (*pr)(const char *, ...))
   1833 {
   1834 	struct buf *bp;
   1835 	struct wapbl_entry *we;
   1836 	(*pr)("wapbl %p", wl);
   1837 	(*pr)("\nlogvp = %p, devvp = %p, logpbn = %"PRId64"\n",
   1838 	      wl->wl_logvp, wl->wl_devvp, wl->wl_logpbn);
   1839 	(*pr)("circ = %zu, header = %zu, head = %"PRIdMAX" tail = %"PRIdMAX"\n",
   1840 	      wl->wl_circ_size, wl->wl_circ_off,
   1841 	      (intmax_t)wl->wl_head, (intmax_t)wl->wl_tail);
   1842 	(*pr)("fs_dev_bshift = %d, log_dev_bshift = %d\n",
   1843 	      wl->wl_log_dev_bshift, wl->wl_fs_dev_bshift);
   1844 #ifdef WAPBL_DEBUG_BUFBYTES
   1845 	(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
   1846 	      "reserved = %zu errcnt = %d unsynced = %zu\n",
   1847 	      wl->wl_bufcount, wl->wl_bufbytes, wl->wl_bcount,
   1848 	      wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
   1849 				wl->wl_error_count, wl->wl_unsynced_bufbytes);
   1850 #else
   1851 	(*pr)("bufcount = %zu, bufbytes = %zu bcount = %zu reclaimable = %zu "
   1852 	      "reserved = %zu errcnt = %d\n", wl->wl_bufcount, wl->wl_bufbytes,
   1853 	      wl->wl_bcount, wl->wl_reclaimable_bytes, wl->wl_reserved_bytes,
   1854 				wl->wl_error_count);
   1855 #endif
   1856 	(*pr)("\tdealloccnt = %d, dealloclim = %d\n",
   1857 	      wl->wl_dealloccnt, wl->wl_dealloclim);
   1858 	(*pr)("\tinohashcnt = %d, inohashmask = 0x%08x\n",
   1859 	      wl->wl_inohashcnt, wl->wl_inohashmask);
   1860 	(*pr)("entries:\n");
   1861 	SIMPLEQ_FOREACH(we, &wl->wl_entries, we_entries) {
   1862 #ifdef WAPBL_DEBUG_BUFBYTES
   1863 		(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d, "
   1864 		      "unsynced = %zu\n",
   1865 		      we->we_bufcount, we->we_reclaimable_bytes,
   1866 		      we->we_error, we->we_unsynced_bufbytes);
   1867 #else
   1868 		(*pr)("\tbufcount = %zu, reclaimable = %zu, error = %d\n",
   1869 		      we->we_bufcount, we->we_reclaimable_bytes, we->we_error);
   1870 #endif
   1871 	}
   1872 	if (full) {
   1873 		int cnt = 0;
   1874 		(*pr)("bufs =");
   1875 		LIST_FOREACH(bp, &wl->wl_bufs, b_wapbllist) {
   1876 			if (!LIST_NEXT(bp, b_wapbllist)) {
   1877 				(*pr)(" %p", bp);
   1878 			} else if ((++cnt % 6) == 0) {
   1879 				(*pr)(" %p,\n\t", bp);
   1880 			} else {
   1881 				(*pr)(" %p,", bp);
   1882 			}
   1883 		}
   1884 		(*pr)("\n");
   1885 
   1886 		(*pr)("dealloced blks = ");
   1887 		{
   1888 			int i;
   1889 			cnt = 0;
   1890 			for (i = 0; i < wl->wl_dealloccnt; i++) {
   1891 				(*pr)(" %"PRId64":%d,",
   1892 				      wl->wl_deallocblks[i],
   1893 				      wl->wl_dealloclens[i]);
   1894 				if ((++cnt % 4) == 0) {
   1895 					(*pr)("\n\t");
   1896 				}
   1897 			}
   1898 		}
   1899 		(*pr)("\n");
   1900 
   1901 		(*pr)("registered inodes = ");
   1902 		{
   1903 			int i;
   1904 			cnt = 0;
   1905 			for (i = 0; i <= wl->wl_inohashmask; i++) {
   1906 				struct wapbl_ino_head *wih;
   1907 				struct wapbl_ino *wi;
   1908 
   1909 				wih = &wl->wl_inohash[i];
   1910 				LIST_FOREACH(wi, wih, wi_hash) {
   1911 					if (wi->wi_ino == 0)
   1912 						continue;
   1913 					(*pr)(" %"PRIu64"/0%06"PRIo32",",
   1914 					    wi->wi_ino, wi->wi_mode);
   1915 					if ((++cnt % 4) == 0) {
   1916 						(*pr)("\n\t");
   1917 					}
   1918 				}
   1919 			}
   1920 			(*pr)("\n");
   1921 		}
   1922 	}
   1923 }
   1924 
   1925 #if defined(WAPBL_DEBUG) || defined(DDB)
   1926 void
   1927 wapbl_dump(struct wapbl *wl)
   1928 {
   1929 #if defined(WAPBL_DEBUG)
   1930 	if (!wl)
   1931 		wl = wapbl_debug_wl;
   1932 #endif
   1933 	if (!wl)
   1934 		return;
   1935 	wapbl_print(wl, 1, printf);
   1936 }
   1937 #endif
   1938 
   1939 /****************************************************************/
   1940 
   1941 void
   1942 wapbl_register_deallocation(struct wapbl *wl, daddr_t blk, int len)
   1943 {
   1944 
   1945 	wapbl_jlock_assert(wl);
   1946 
   1947 	mutex_enter(&wl->wl_mtx);
   1948 	/* XXX should eventually instead tie this into resource estimation */
   1949 	/*
   1950 	 * XXX this panic needs locking/mutex analysis and the
   1951 	 * ability to cope with the failure.
   1952 	 */
   1953 	/* XXX this XXX doesn't have enough XXX */
   1954 	if (__predict_false(wl->wl_dealloccnt >= wl->wl_dealloclim))
   1955 		panic("wapbl_register_deallocation: out of resources");
   1956 
   1957 	wl->wl_deallocblks[wl->wl_dealloccnt] = blk;
   1958 	wl->wl_dealloclens[wl->wl_dealloccnt] = len;
   1959 	wl->wl_dealloccnt++;
   1960 	WAPBL_PRINTF(WAPBL_PRINT_ALLOC,
   1961 	    ("wapbl_register_deallocation: blk=%"PRId64" len=%d\n", blk, len));
   1962 	mutex_exit(&wl->wl_mtx);
   1963 }
   1964 
   1965 /****************************************************************/
   1966 
   1967 static void
   1968 wapbl_inodetrk_init(struct wapbl *wl, u_int size)
   1969 {
   1970 
   1971 	wl->wl_inohash = hashinit(size, HASH_LIST, true, &wl->wl_inohashmask);
   1972 	if (atomic_inc_uint_nv(&wapbl_ino_pool_refcount) == 1) {
   1973 		pool_init(&wapbl_ino_pool, sizeof(struct wapbl_ino), 0, 0, 0,
   1974 		    "wapblinopl", &pool_allocator_nointr, IPL_NONE);
   1975 	}
   1976 }
   1977 
   1978 static void
   1979 wapbl_inodetrk_free(struct wapbl *wl)
   1980 {
   1981 
   1982 	/* XXX this KASSERT needs locking/mutex analysis */
   1983 	KASSERT(wl->wl_inohashcnt == 0);
   1984 	hashdone(wl->wl_inohash, HASH_LIST, wl->wl_inohashmask);
   1985 	if (atomic_dec_uint_nv(&wapbl_ino_pool_refcount) == 0) {
   1986 		pool_destroy(&wapbl_ino_pool);
   1987 	}
   1988 }
   1989 
   1990 static struct wapbl_ino *
   1991 wapbl_inodetrk_get(struct wapbl *wl, ino_t ino)
   1992 {
   1993 	struct wapbl_ino_head *wih;
   1994 	struct wapbl_ino *wi;
   1995 
   1996 	KASSERT(mutex_owned(&wl->wl_mtx));
   1997 
   1998 	wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
   1999 	LIST_FOREACH(wi, wih, wi_hash) {
   2000 		if (ino == wi->wi_ino)
   2001 			return wi;
   2002 	}
   2003 	return 0;
   2004 }
   2005 
   2006 void
   2007 wapbl_register_inode(struct wapbl *wl, ino_t ino, mode_t mode)
   2008 {
   2009 	struct wapbl_ino_head *wih;
   2010 	struct wapbl_ino *wi;
   2011 
   2012 	wi = pool_get(&wapbl_ino_pool, PR_WAITOK);
   2013 
   2014 	mutex_enter(&wl->wl_mtx);
   2015 	if (wapbl_inodetrk_get(wl, ino) == NULL) {
   2016 		wi->wi_ino = ino;
   2017 		wi->wi_mode = mode;
   2018 		wih = &wl->wl_inohash[ino & wl->wl_inohashmask];
   2019 		LIST_INSERT_HEAD(wih, wi, wi_hash);
   2020 		wl->wl_inohashcnt++;
   2021 		WAPBL_PRINTF(WAPBL_PRINT_INODE,
   2022 		    ("wapbl_register_inode: ino=%"PRId64"\n", ino));
   2023 		mutex_exit(&wl->wl_mtx);
   2024 	} else {
   2025 		mutex_exit(&wl->wl_mtx);
   2026 		pool_put(&wapbl_ino_pool, wi);
   2027 	}
   2028 }
   2029 
   2030 void
   2031 wapbl_unregister_inode(struct wapbl *wl, ino_t ino, mode_t mode)
   2032 {
   2033 	struct wapbl_ino *wi;
   2034 
   2035 	mutex_enter(&wl->wl_mtx);
   2036 	wi = wapbl_inodetrk_get(wl, ino);
   2037 	if (wi) {
   2038 		WAPBL_PRINTF(WAPBL_PRINT_INODE,
   2039 		    ("wapbl_unregister_inode: ino=%"PRId64"\n", ino));
   2040 		KASSERT(wl->wl_inohashcnt > 0);
   2041 		wl->wl_inohashcnt--;
   2042 		LIST_REMOVE(wi, wi_hash);
   2043 		mutex_exit(&wl->wl_mtx);
   2044 
   2045 		pool_put(&wapbl_ino_pool, wi);
   2046 	} else {
   2047 		mutex_exit(&wl->wl_mtx);
   2048 	}
   2049 }
   2050 
   2051 /****************************************************************/
   2052 
   2053 /*
   2054  * wapbl_transaction_inodes_len(wl)
   2055  *
   2056  *	Calculate the number of bytes required for inode registration
   2057  *	log records in wl.
   2058  */
   2059 static inline size_t
   2060 wapbl_transaction_inodes_len(struct wapbl *wl)
   2061 {
   2062 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2063 	int iph;
   2064 
   2065 	/* Calculate number of inodes described in a inodelist header */
   2066 	iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
   2067 	    sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
   2068 
   2069 	KASSERT(iph > 0);
   2070 
   2071 	return MAX(1, howmany(wl->wl_inohashcnt, iph)) * blocklen;
   2072 }
   2073 
   2074 
   2075 /*
   2076  * wapbl_transaction_len(wl)
   2077  *
   2078  *	Calculate number of bytes required for all log records in wl.
   2079  */
   2080 static size_t
   2081 wapbl_transaction_len(struct wapbl *wl)
   2082 {
   2083 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2084 	size_t len;
   2085 	int bph;
   2086 
   2087 	/* Calculate number of blocks described in a blocklist header */
   2088 	bph = (blocklen - offsetof(struct wapbl_wc_blocklist, wc_blocks)) /
   2089 	    sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]);
   2090 
   2091 	KASSERT(bph > 0);
   2092 
   2093 	len = wl->wl_bcount;
   2094 	len += howmany(wl->wl_bufcount, bph) * blocklen;
   2095 	len += howmany(wl->wl_dealloccnt, bph) * blocklen;
   2096 	len += wapbl_transaction_inodes_len(wl);
   2097 
   2098 	return len;
   2099 }
   2100 
   2101 /*
   2102  * wapbl_cache_sync(wl, msg)
   2103  *
   2104  *	Issue DIOCCACHESYNC to wl->wl_devvp.
   2105  *
   2106  *	If sysctl(vfs.wapbl.verbose_commit) >= 2, print a message
   2107  *	including msg about the duration of the cache sync.
   2108  */
   2109 static int
   2110 wapbl_cache_sync(struct wapbl *wl, const char *msg)
   2111 {
   2112 	const bool verbose = wapbl_verbose_commit >= 2;
   2113 	struct bintime start_time;
   2114 	int force = 1;
   2115 	int error;
   2116 
   2117 	if (!wapbl_flush_disk_cache) {
   2118 		return 0;
   2119 	}
   2120 	if (verbose) {
   2121 		bintime(&start_time);
   2122 	}
   2123 	error = VOP_IOCTL(wl->wl_devvp, DIOCCACHESYNC, &force,
   2124 	    FWRITE, FSCRED);
   2125 	if (error) {
   2126 		WAPBL_PRINTF(WAPBL_PRINT_ERROR,
   2127 		    ("wapbl_cache_sync: DIOCCACHESYNC on dev 0x%x "
   2128 		    "returned %d\n", wl->wl_devvp->v_rdev, error));
   2129 	}
   2130 	if (verbose) {
   2131 		struct bintime d;
   2132 		struct timespec ts;
   2133 
   2134 		bintime(&d);
   2135 		bintime_sub(&d, &start_time);
   2136 		bintime2timespec(&d, &ts);
   2137 		printf("wapbl_cache_sync: %s: dev 0x%jx %ju.%09lu\n",
   2138 		    msg, (uintmax_t)wl->wl_devvp->v_rdev,
   2139 		    (uintmax_t)ts.tv_sec, ts.tv_nsec);
   2140 	}
   2141 	return error;
   2142 }
   2143 
   2144 /*
   2145  * wapbl_write_commit(wl, head, tail)
   2146  *
   2147  *	Issue a disk cache sync to wait for all pending writes to the
   2148  *	log to complete, and then synchronously commit the current
   2149  *	circular queue head and tail to the log, in the next of two
   2150  *	locations for commit headers on disk.
   2151  *
   2152  *	Increment the generation number.  If the generation number
   2153  *	rolls over to zero, then a subsequent commit would appear to
   2154  *	have an older generation than this one -- in that case, issue a
   2155  *	duplicate commit to avoid this.
   2156  *
   2157  *	=> Caller must have exclusive access to wl, either by holding
   2158  *	wl->wl_rwlock for writer or by being wapbl_start before anyone
   2159  *	else has seen wl.
   2160  */
   2161 static int
   2162 wapbl_write_commit(struct wapbl *wl, off_t head, off_t tail)
   2163 {
   2164 	struct wapbl_wc_header *wc = wl->wl_wc_header;
   2165 	struct timespec ts;
   2166 	int error;
   2167 	daddr_t pbn;
   2168 
   2169 	error = wapbl_buffered_flush(wl);
   2170 	if (error)
   2171 		return error;
   2172 	/*
   2173 	 * flush disk cache to ensure that blocks we've written are actually
   2174 	 * written to the stable storage before the commit header.
   2175 	 *
   2176 	 * XXX Calc checksum here, instead we do this for now
   2177 	 */
   2178 	wapbl_cache_sync(wl, "1");
   2179 
   2180 	wc->wc_head = head;
   2181 	wc->wc_tail = tail;
   2182 	wc->wc_checksum = 0;
   2183 	wc->wc_version = 1;
   2184 	getnanotime(&ts);
   2185 	wc->wc_time = ts.tv_sec;
   2186 	wc->wc_timensec = ts.tv_nsec;
   2187 
   2188 	WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2189 	    ("wapbl_write_commit: head = %"PRIdMAX "tail = %"PRIdMAX"\n",
   2190 	    (intmax_t)head, (intmax_t)tail));
   2191 
   2192 	/*
   2193 	 * write the commit header.
   2194 	 *
   2195 	 * XXX if generation will rollover, then first zero
   2196 	 * over second commit header before trying to write both headers.
   2197 	 */
   2198 
   2199 	pbn = wl->wl_logpbn + (wc->wc_generation % 2);
   2200 #ifdef _KERNEL
   2201 	pbn = btodb(pbn << wc->wc_log_dev_bshift);
   2202 #endif
   2203 	error = wapbl_buffered_write(wc, wc->wc_len, wl, pbn);
   2204 	if (error)
   2205 		return error;
   2206 	error = wapbl_buffered_flush(wl);
   2207 	if (error)
   2208 		return error;
   2209 
   2210 	/*
   2211 	 * flush disk cache to ensure that the commit header is actually
   2212 	 * written before meta data blocks.
   2213 	 */
   2214 	wapbl_cache_sync(wl, "2");
   2215 
   2216 	/*
   2217 	 * If the generation number was zero, write it out a second time.
   2218 	 * This handles initialization and generation number rollover
   2219 	 */
   2220 	if (wc->wc_generation++ == 0) {
   2221 		error = wapbl_write_commit(wl, head, tail);
   2222 		/*
   2223 		 * This panic should be able to be removed if we do the
   2224 		 * zero'ing mentioned above, and we are certain to roll
   2225 		 * back generation number on failure.
   2226 		 */
   2227 		if (error)
   2228 			panic("wapbl_write_commit: error writing duplicate "
   2229 			      "log header: %d", error);
   2230 	}
   2231 	return 0;
   2232 }
   2233 
   2234 /*
   2235  * wapbl_write_blocks(wl, offp)
   2236  *
   2237  *	Write all pending physical blocks in the current transaction
   2238  *	from wapbl_add_buf to the log on disk, adding to the circular
   2239  *	queue head at byte offset *offp, and returning the new head's
   2240  *	byte offset in *offp.
   2241  */
   2242 static int
   2243 wapbl_write_blocks(struct wapbl *wl, off_t *offp)
   2244 {
   2245 	struct wapbl_wc_blocklist *wc =
   2246 	    (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
   2247 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2248 	int bph;
   2249 	struct buf *bp;
   2250 	off_t off = *offp;
   2251 	int error;
   2252 	size_t padding;
   2253 
   2254 	KASSERT(rw_write_held(&wl->wl_rwlock));
   2255 
   2256 	bph = (blocklen - offsetof(struct wapbl_wc_blocklist, wc_blocks)) /
   2257 	    sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]);
   2258 
   2259 	bp = LIST_FIRST(&wl->wl_bufs);
   2260 
   2261 	while (bp) {
   2262 		int cnt;
   2263 		struct buf *obp = bp;
   2264 
   2265 		KASSERT(bp->b_flags & B_LOCKED);
   2266 
   2267 		wc->wc_type = WAPBL_WC_BLOCKS;
   2268 		wc->wc_len = blocklen;
   2269 		wc->wc_blkcount = 0;
   2270 		while (bp && (wc->wc_blkcount < bph)) {
   2271 			/*
   2272 			 * Make sure all the physical block numbers are up to
   2273 			 * date.  If this is not always true on a given
   2274 			 * filesystem, then VOP_BMAP must be called.  We
   2275 			 * could call VOP_BMAP here, or else in the filesystem
   2276 			 * specific flush callback, although neither of those
   2277 			 * solutions allow us to take the vnode lock.  If a
   2278 			 * filesystem requires that we must take the vnode lock
   2279 			 * to call VOP_BMAP, then we can probably do it in
   2280 			 * bwrite when the vnode lock should already be held
   2281 			 * by the invoking code.
   2282 			 */
   2283 			KASSERT((bp->b_vp->v_type == VBLK) ||
   2284 				 (bp->b_blkno != bp->b_lblkno));
   2285 			KASSERT(bp->b_blkno > 0);
   2286 
   2287 			wc->wc_blocks[wc->wc_blkcount].wc_daddr = bp->b_blkno;
   2288 			wc->wc_blocks[wc->wc_blkcount].wc_dlen = bp->b_bcount;
   2289 			wc->wc_len += bp->b_bcount;
   2290 			wc->wc_blkcount++;
   2291 			bp = LIST_NEXT(bp, b_wapbllist);
   2292 		}
   2293 		if (wc->wc_len % blocklen != 0) {
   2294 			padding = blocklen - wc->wc_len % blocklen;
   2295 			wc->wc_len += padding;
   2296 		} else {
   2297 			padding = 0;
   2298 		}
   2299 
   2300 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2301 		    ("wapbl_write_blocks: len = %u (padding %zu) off = %"PRIdMAX"\n",
   2302 		    wc->wc_len, padding, (intmax_t)off));
   2303 
   2304 		error = wapbl_circ_write(wl, wc, blocklen, &off);
   2305 		if (error)
   2306 			return error;
   2307 		bp = obp;
   2308 		cnt = 0;
   2309 		while (bp && (cnt++ < bph)) {
   2310 			error = wapbl_circ_write(wl, bp->b_data,
   2311 			    bp->b_bcount, &off);
   2312 			if (error)
   2313 				return error;
   2314 			bp = LIST_NEXT(bp, b_wapbllist);
   2315 		}
   2316 		if (padding) {
   2317 			void *zero;
   2318 
   2319 			zero = wapbl_alloc(padding);
   2320 			memset(zero, 0, padding);
   2321 			error = wapbl_circ_write(wl, zero, padding, &off);
   2322 			wapbl_free(zero, padding);
   2323 			if (error)
   2324 				return error;
   2325 		}
   2326 	}
   2327 	*offp = off;
   2328 	return 0;
   2329 }
   2330 
   2331 /*
   2332  * wapbl_write_revocations(wl, offp)
   2333  *
   2334  *	Write all pending deallocations in the current transaction from
   2335  *	wapbl_register_deallocation to the log on disk, adding to the
   2336  *	circular queue's head at byte offset *offp, and returning the
   2337  *	new head's byte offset in *offp.
   2338  */
   2339 static int
   2340 wapbl_write_revocations(struct wapbl *wl, off_t *offp)
   2341 {
   2342 	struct wapbl_wc_blocklist *wc =
   2343 	    (struct wapbl_wc_blocklist *)wl->wl_wc_scratch;
   2344 	int i;
   2345 	int blocklen = 1<<wl->wl_log_dev_bshift;
   2346 	int bph;
   2347 	off_t off = *offp;
   2348 	int error;
   2349 
   2350 	if (wl->wl_dealloccnt == 0)
   2351 		return 0;
   2352 
   2353 	bph = (blocklen - offsetof(struct wapbl_wc_blocklist, wc_blocks)) /
   2354 	    sizeof(((struct wapbl_wc_blocklist *)0)->wc_blocks[0]);
   2355 
   2356 	i = 0;
   2357 	while (i < wl->wl_dealloccnt) {
   2358 		wc->wc_type = WAPBL_WC_REVOCATIONS;
   2359 		wc->wc_len = blocklen;
   2360 		wc->wc_blkcount = 0;
   2361 		while ((i < wl->wl_dealloccnt) && (wc->wc_blkcount < bph)) {
   2362 			wc->wc_blocks[wc->wc_blkcount].wc_daddr =
   2363 			    wl->wl_deallocblks[i];
   2364 			wc->wc_blocks[wc->wc_blkcount].wc_dlen =
   2365 			    wl->wl_dealloclens[i];
   2366 			wc->wc_blkcount++;
   2367 			i++;
   2368 		}
   2369 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2370 		    ("wapbl_write_revocations: len = %u off = %"PRIdMAX"\n",
   2371 		    wc->wc_len, (intmax_t)off));
   2372 		error = wapbl_circ_write(wl, wc, blocklen, &off);
   2373 		if (error)
   2374 			return error;
   2375 	}
   2376 	*offp = off;
   2377 	return 0;
   2378 }
   2379 
   2380 /*
   2381  * wapbl_write_inodes(wl, offp)
   2382  *
   2383  *	Write all pending inode allocations in the current transaction
   2384  *	from wapbl_register_inode to the log on disk, adding to the
   2385  *	circular queue's head at byte offset *offp and returning the
   2386  *	new head's byte offset in *offp.
   2387  */
   2388 static int
   2389 wapbl_write_inodes(struct wapbl *wl, off_t *offp)
   2390 {
   2391 	struct wapbl_wc_inodelist *wc =
   2392 	    (struct wapbl_wc_inodelist *)wl->wl_wc_scratch;
   2393 	int i;
   2394 	int blocklen = 1 << wl->wl_log_dev_bshift;
   2395 	off_t off = *offp;
   2396 	int error;
   2397 
   2398 	struct wapbl_ino_head *wih;
   2399 	struct wapbl_ino *wi;
   2400 	int iph;
   2401 
   2402 	iph = (blocklen - offsetof(struct wapbl_wc_inodelist, wc_inodes)) /
   2403 	    sizeof(((struct wapbl_wc_inodelist *)0)->wc_inodes[0]);
   2404 
   2405 	i = 0;
   2406 	wih = &wl->wl_inohash[0];
   2407 	wi = 0;
   2408 	do {
   2409 		wc->wc_type = WAPBL_WC_INODES;
   2410 		wc->wc_len = blocklen;
   2411 		wc->wc_inocnt = 0;
   2412 		wc->wc_clear = (i == 0);
   2413 		while ((i < wl->wl_inohashcnt) && (wc->wc_inocnt < iph)) {
   2414 			while (!wi) {
   2415 				KASSERT((wih - &wl->wl_inohash[0])
   2416 				    <= wl->wl_inohashmask);
   2417 				wi = LIST_FIRST(wih++);
   2418 			}
   2419 			wc->wc_inodes[wc->wc_inocnt].wc_inumber = wi->wi_ino;
   2420 			wc->wc_inodes[wc->wc_inocnt].wc_imode = wi->wi_mode;
   2421 			wc->wc_inocnt++;
   2422 			i++;
   2423 			wi = LIST_NEXT(wi, wi_hash);
   2424 		}
   2425 		WAPBL_PRINTF(WAPBL_PRINT_WRITE,
   2426 		    ("wapbl_write_inodes: len = %u off = %"PRIdMAX"\n",
   2427 		    wc->wc_len, (intmax_t)off));
   2428 		error = wapbl_circ_write(wl, wc, blocklen, &off);
   2429 		if (error)
   2430 			return error;
   2431 	} while (i < wl->wl_inohashcnt);
   2432 
   2433 	*offp = off;
   2434 	return 0;
   2435 }
   2436 
   2437 #endif /* _KERNEL */
   2438 
   2439 /****************************************************************/
   2440 
   2441 struct wapbl_blk {
   2442 	LIST_ENTRY(wapbl_blk) wb_hash;
   2443 	daddr_t wb_blk;
   2444 	off_t wb_off; /* Offset of this block in the log */
   2445 };
   2446 #define	WAPBL_BLKPOOL_MIN 83
   2447 
   2448 static void
   2449 wapbl_blkhash_init(struct wapbl_replay *wr, u_int size)
   2450 {
   2451 	if (size < WAPBL_BLKPOOL_MIN)
   2452 		size = WAPBL_BLKPOOL_MIN;
   2453 	KASSERT(wr->wr_blkhash == 0);
   2454 #ifdef _KERNEL
   2455 	wr->wr_blkhash = hashinit(size, HASH_LIST, true, &wr->wr_blkhashmask);
   2456 #else /* ! _KERNEL */
   2457 	/* Manually implement hashinit */
   2458 	{
   2459 		unsigned long i, hashsize;
   2460 		for (hashsize = 1; hashsize < size; hashsize <<= 1)
   2461 			continue;
   2462 		wr->wr_blkhash = wapbl_alloc(hashsize * sizeof(*wr->wr_blkhash));
   2463 		for (i = 0; i < hashsize; i++)
   2464 			LIST_INIT(&wr->wr_blkhash[i]);
   2465 		wr->wr_blkhashmask = hashsize - 1;
   2466 	}
   2467 #endif /* ! _KERNEL */
   2468 }
   2469 
   2470 static void
   2471 wapbl_blkhash_free(struct wapbl_replay *wr)
   2472 {
   2473 	KASSERT(wr->wr_blkhashcnt == 0);
   2474 #ifdef _KERNEL
   2475 	hashdone(wr->wr_blkhash, HASH_LIST, wr->wr_blkhashmask);
   2476 #else /* ! _KERNEL */
   2477 	wapbl_free(wr->wr_blkhash,
   2478 	    (wr->wr_blkhashmask + 1) * sizeof(*wr->wr_blkhash));
   2479 #endif /* ! _KERNEL */
   2480 }
   2481 
   2482 static struct wapbl_blk *
   2483 wapbl_blkhash_get(struct wapbl_replay *wr, daddr_t blk)
   2484 {
   2485 	struct wapbl_blk_head *wbh;
   2486 	struct wapbl_blk *wb;
   2487 	wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
   2488 	LIST_FOREACH(wb, wbh, wb_hash) {
   2489 		if (blk == wb->wb_blk)
   2490 			return wb;
   2491 	}
   2492 	return 0;
   2493 }
   2494 
   2495 static void
   2496 wapbl_blkhash_ins(struct wapbl_replay *wr, daddr_t blk, off_t off)
   2497 {
   2498 	struct wapbl_blk_head *wbh;
   2499 	struct wapbl_blk *wb;
   2500 	wb = wapbl_blkhash_get(wr, blk);
   2501 	if (wb) {
   2502 		KASSERT(wb->wb_blk == blk);
   2503 		wb->wb_off = off;
   2504 	} else {
   2505 		wb = wapbl_alloc(sizeof(*wb));
   2506 		wb->wb_blk = blk;
   2507 		wb->wb_off = off;
   2508 		wbh = &wr->wr_blkhash[blk & wr->wr_blkhashmask];
   2509 		LIST_INSERT_HEAD(wbh, wb, wb_hash);
   2510 		wr->wr_blkhashcnt++;
   2511 	}
   2512 }
   2513 
   2514 static void
   2515 wapbl_blkhash_rem(struct wapbl_replay *wr, daddr_t blk)
   2516 {
   2517 	struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
   2518 	if (wb) {
   2519 		KASSERT(wr->wr_blkhashcnt > 0);
   2520 		wr->wr_blkhashcnt--;
   2521 		LIST_REMOVE(wb, wb_hash);
   2522 		wapbl_free(wb, sizeof(*wb));
   2523 	}
   2524 }
   2525 
   2526 static void
   2527 wapbl_blkhash_clear(struct wapbl_replay *wr)
   2528 {
   2529 	unsigned long i;
   2530 	for (i = 0; i <= wr->wr_blkhashmask; i++) {
   2531 		struct wapbl_blk *wb;
   2532 
   2533 		while ((wb = LIST_FIRST(&wr->wr_blkhash[i]))) {
   2534 			KASSERT(wr->wr_blkhashcnt > 0);
   2535 			wr->wr_blkhashcnt--;
   2536 			LIST_REMOVE(wb, wb_hash);
   2537 			wapbl_free(wb, sizeof(*wb));
   2538 		}
   2539 	}
   2540 	KASSERT(wr->wr_blkhashcnt == 0);
   2541 }
   2542 
   2543 /****************************************************************/
   2544 
   2545 /*
   2546  * wapbl_circ_read(wr, data, len, offp)
   2547  *
   2548  *	Read len bytes into data from the circular queue of wr,
   2549  *	starting at the linear byte offset *offp, and returning the new
   2550  *	linear byte offset in *offp.
   2551  *
   2552  *	If the starting linear byte offset precedes wr->wr_circ_off,
   2553  *	the read instead begins at wr->wr_circ_off.  XXX WTF?  This
   2554  *	should be a KASSERT, not a conditional.
   2555  */
   2556 static int
   2557 wapbl_circ_read(struct wapbl_replay *wr, void *data, size_t len, off_t *offp)
   2558 {
   2559 	size_t slen;
   2560 	off_t off = *offp;
   2561 	int error;
   2562 	daddr_t pbn;
   2563 
   2564 	KASSERT(((len >> wr->wr_log_dev_bshift) <<
   2565 	    wr->wr_log_dev_bshift) == len);
   2566 
   2567 	if (off < wr->wr_circ_off)
   2568 		off = wr->wr_circ_off;
   2569 	slen = wr->wr_circ_off + wr->wr_circ_size - off;
   2570 	if (slen < len) {
   2571 		pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
   2572 #ifdef _KERNEL
   2573 		pbn = btodb(pbn << wr->wr_log_dev_bshift);
   2574 #endif
   2575 		error = wapbl_read(data, slen, wr->wr_devvp, pbn);
   2576 		if (error)
   2577 			return error;
   2578 		data = (uint8_t *)data + slen;
   2579 		len -= slen;
   2580 		off = wr->wr_circ_off;
   2581 	}
   2582 	pbn = wr->wr_logpbn + (off >> wr->wr_log_dev_bshift);
   2583 #ifdef _KERNEL
   2584 	pbn = btodb(pbn << wr->wr_log_dev_bshift);
   2585 #endif
   2586 	error = wapbl_read(data, len, wr->wr_devvp, pbn);
   2587 	if (error)
   2588 		return error;
   2589 	off += len;
   2590 	if (off >= wr->wr_circ_off + wr->wr_circ_size)
   2591 		off = wr->wr_circ_off;
   2592 	*offp = off;
   2593 	return 0;
   2594 }
   2595 
   2596 /*
   2597  * wapbl_circ_advance(wr, len, offp)
   2598  *
   2599  *	Compute the linear byte offset of the circular queue of wr that
   2600  *	is len bytes past *offp, and store it in *offp.
   2601  *
   2602  *	This is as if wapbl_circ_read, but without actually reading
   2603  *	anything.
   2604  *
   2605  *	If the starting linear byte offset precedes wr->wr_circ_off, it
   2606  *	is taken to be wr->wr_circ_off instead.  XXX WTF?  This should
   2607  *	be a KASSERT, not a conditional.
   2608  */
   2609 static void
   2610 wapbl_circ_advance(struct wapbl_replay *wr, size_t len, off_t *offp)
   2611 {
   2612 	size_t slen;
   2613 	off_t off = *offp;
   2614 
   2615 	KASSERT(((len >> wr->wr_log_dev_bshift) <<
   2616 	    wr->wr_log_dev_bshift) == len);
   2617 
   2618 	if (off < wr->wr_circ_off)
   2619 		off = wr->wr_circ_off;
   2620 	slen = wr->wr_circ_off + wr->wr_circ_size - off;
   2621 	if (slen < len) {
   2622 		len -= slen;
   2623 		off = wr->wr_circ_off;
   2624 	}
   2625 	off += len;
   2626 	if (off >= wr->wr_circ_off + wr->wr_circ_size)
   2627 		off = wr->wr_circ_off;
   2628 	*offp = off;
   2629 }
   2630 
   2631 /****************************************************************/
   2632 
   2633 int
   2634 wapbl_replay_start(struct wapbl_replay **wrp, struct vnode *vp,
   2635 	daddr_t off, size_t count, size_t blksize)
   2636 {
   2637 	struct wapbl_replay *wr;
   2638 	int error;
   2639 	struct vnode *devvp;
   2640 	daddr_t logpbn;
   2641 	uint8_t *scratch;
   2642 	struct wapbl_wc_header *wch;
   2643 	struct wapbl_wc_header *wch2;
   2644 	/* Use this until we read the actual log header */
   2645 	int log_dev_bshift = ilog2(blksize);
   2646 	size_t used;
   2647 	daddr_t pbn;
   2648 
   2649 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
   2650 	    ("wapbl_replay_start: vp=%p off=%"PRId64 " count=%zu blksize=%zu\n",
   2651 	    vp, off, count, blksize));
   2652 
   2653 	if (off < 0)
   2654 		return EINVAL;
   2655 
   2656 	if (blksize < DEV_BSIZE)
   2657 		return EINVAL;
   2658 	if (blksize % DEV_BSIZE)
   2659 		return EINVAL;
   2660 
   2661 #ifdef _KERNEL
   2662 #if 0
   2663 	/* XXX vp->v_size isn't reliably set for VBLK devices,
   2664 	 * especially root.  However, we might still want to verify
   2665 	 * that the full load is readable */
   2666 	if ((off + count) * blksize > vp->v_size)
   2667 		return EINVAL;
   2668 #endif
   2669 	if ((error = VOP_BMAP(vp, off, &devvp, &logpbn, 0)) != 0) {
   2670 		return error;
   2671 	}
   2672 #else /* ! _KERNEL */
   2673 	devvp = vp;
   2674 	logpbn = off;
   2675 #endif /* ! _KERNEL */
   2676 
   2677 	scratch = wapbl_alloc(MAXBSIZE);
   2678 
   2679 	pbn = logpbn;
   2680 #ifdef _KERNEL
   2681 	pbn = btodb(pbn << log_dev_bshift);
   2682 #endif
   2683 	error = wapbl_read(scratch, 2<<log_dev_bshift, devvp, pbn);
   2684 	if (error)
   2685 		goto errout;
   2686 
   2687 	wch = (struct wapbl_wc_header *)scratch;
   2688 	wch2 =
   2689 	    (struct wapbl_wc_header *)(scratch + (1<<log_dev_bshift));
   2690 	/* XXX verify checksums and magic numbers */
   2691 	if (wch->wc_type != WAPBL_WC_HEADER) {
   2692 		printf("Unrecognized wapbl magic: 0x%08x\n", wch->wc_type);
   2693 		error = EFTYPE;
   2694 		goto errout;
   2695 	}
   2696 
   2697 	if (wch2->wc_generation > wch->wc_generation)
   2698 		wch = wch2;
   2699 
   2700 	wr = wapbl_calloc(1, sizeof(*wr));
   2701 
   2702 	wr->wr_logvp = vp;
   2703 	wr->wr_devvp = devvp;
   2704 	wr->wr_logpbn = logpbn;
   2705 
   2706 	wr->wr_scratch = scratch;
   2707 
   2708 	wr->wr_log_dev_bshift = wch->wc_log_dev_bshift;
   2709 	wr->wr_fs_dev_bshift = wch->wc_fs_dev_bshift;
   2710 	wr->wr_circ_off = wch->wc_circ_off;
   2711 	wr->wr_circ_size = wch->wc_circ_size;
   2712 	wr->wr_generation = wch->wc_generation;
   2713 
   2714 	used = wapbl_space_used(wch->wc_circ_size, wch->wc_head, wch->wc_tail);
   2715 
   2716 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY,
   2717 	    ("wapbl_replay: head=%"PRId64" tail=%"PRId64" off=%"PRId64
   2718 	    " len=%"PRId64" used=%zu\n",
   2719 	    wch->wc_head, wch->wc_tail, wch->wc_circ_off,
   2720 	    wch->wc_circ_size, used));
   2721 
   2722 	wapbl_blkhash_init(wr, (used >> wch->wc_fs_dev_bshift));
   2723 
   2724 	error = wapbl_replay_process(wr, wch->wc_head, wch->wc_tail);
   2725 	if (error) {
   2726 		wapbl_replay_stop(wr);
   2727 		wapbl_replay_free(wr);
   2728 		return error;
   2729 	}
   2730 
   2731 	*wrp = wr;
   2732 	return 0;
   2733 
   2734  errout:
   2735 	wapbl_free(scratch, MAXBSIZE);
   2736 	return error;
   2737 }
   2738 
   2739 void
   2740 wapbl_replay_stop(struct wapbl_replay *wr)
   2741 {
   2742 
   2743 	if (!wapbl_replay_isopen(wr))
   2744 		return;
   2745 
   2746 	WAPBL_PRINTF(WAPBL_PRINT_REPLAY, ("wapbl_replay_stop called\n"));
   2747 
   2748 	wapbl_free(wr->wr_scratch, MAXBSIZE);
   2749 	wr->wr_scratch = NULL;
   2750 
   2751 	wr->wr_logvp = NULL;
   2752 
   2753 	wapbl_blkhash_clear(wr);
   2754 	wapbl_blkhash_free(wr);
   2755 }
   2756 
   2757 void
   2758 wapbl_replay_free(struct wapbl_replay *wr)
   2759 {
   2760 
   2761 	KDASSERT(!wapbl_replay_isopen(wr));
   2762 
   2763 	if (wr->wr_inodes)
   2764 		wapbl_free(wr->wr_inodes,
   2765 		    wr->wr_inodescnt * sizeof(wr->wr_inodes[0]));
   2766 	wapbl_free(wr, sizeof(*wr));
   2767 }
   2768 
   2769 #ifdef _KERNEL
   2770 int
   2771 wapbl_replay_isopen1(struct wapbl_replay *wr)
   2772 {
   2773 
   2774 	return wapbl_replay_isopen(wr);
   2775 }
   2776 #endif
   2777 
   2778 /*
   2779  * calculate the disk address for the i'th block in the wc_blockblist
   2780  * offset by j blocks of size blen.
   2781  *
   2782  * wc_daddr is always a kernel disk address in DEV_BSIZE units that
   2783  * was written to the journal.
   2784  *
   2785  * The kernel needs that address plus the offset in DEV_BSIZE units.
   2786  *
   2787  * Userland needs that address plus the offset in blen units.
   2788  *
   2789  */
   2790 static daddr_t
   2791 wapbl_block_daddr(struct wapbl_wc_blocklist *wc, int i, int j, int blen)
   2792 {
   2793 	daddr_t pbn;
   2794 
   2795 #ifdef _KERNEL
   2796 	pbn = wc->wc_blocks[i].wc_daddr + btodb(j * blen);
   2797 #else
   2798 	pbn = dbtob(wc->wc_blocks[i].wc_daddr) / blen + j;
   2799 #endif
   2800 
   2801 	return pbn;
   2802 }
   2803 
   2804 static void
   2805 wapbl_replay_process_blocks(struct wapbl_replay *wr, off_t *offp)
   2806 {
   2807 	struct wapbl_wc_blocklist *wc =
   2808 	    (struct wapbl_wc_blocklist *)wr->wr_scratch;
   2809 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   2810 	int i, j, n;
   2811 
   2812 	for (i = 0; i < wc->wc_blkcount; i++) {
   2813 		/*
   2814 		 * Enter each physical block into the hashtable independently.
   2815 		 */
   2816 		n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
   2817 		for (j = 0; j < n; j++) {
   2818 			wapbl_blkhash_ins(wr, wapbl_block_daddr(wc, i, j, fsblklen),
   2819 			    *offp);
   2820 			wapbl_circ_advance(wr, fsblklen, offp);
   2821 		}
   2822 	}
   2823 }
   2824 
   2825 static void
   2826 wapbl_replay_process_revocations(struct wapbl_replay *wr)
   2827 {
   2828 	struct wapbl_wc_blocklist *wc =
   2829 	    (struct wapbl_wc_blocklist *)wr->wr_scratch;
   2830 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   2831 	int i, j, n;
   2832 
   2833 	for (i = 0; i < wc->wc_blkcount; i++) {
   2834 		/*
   2835 		 * Remove any blocks found from the hashtable.
   2836 		 */
   2837 		n = wc->wc_blocks[i].wc_dlen >> wr->wr_fs_dev_bshift;
   2838 		for (j = 0; j < n; j++)
   2839 			wapbl_blkhash_rem(wr, wapbl_block_daddr(wc, i, j, fsblklen));
   2840 	}
   2841 }
   2842 
   2843 static void
   2844 wapbl_replay_process_inodes(struct wapbl_replay *wr, off_t oldoff, off_t newoff)
   2845 {
   2846 	struct wapbl_wc_inodelist *wc =
   2847 	    (struct wapbl_wc_inodelist *)wr->wr_scratch;
   2848 	void *new_inodes;
   2849 	const size_t oldsize = wr->wr_inodescnt * sizeof(wr->wr_inodes[0]);
   2850 
   2851 	KASSERT(sizeof(wr->wr_inodes[0]) == sizeof(wc->wc_inodes[0]));
   2852 
   2853 	/*
   2854 	 * Keep track of where we found this so location won't be
   2855 	 * overwritten.
   2856 	 */
   2857 	if (wc->wc_clear) {
   2858 		wr->wr_inodestail = oldoff;
   2859 		wr->wr_inodescnt = 0;
   2860 		if (wr->wr_inodes != NULL) {
   2861 			wapbl_free(wr->wr_inodes, oldsize);
   2862 			wr->wr_inodes = NULL;
   2863 		}
   2864 	}
   2865 	wr->wr_inodeshead = newoff;
   2866 	if (wc->wc_inocnt == 0)
   2867 		return;
   2868 
   2869 	new_inodes = wapbl_alloc((wr->wr_inodescnt + wc->wc_inocnt) *
   2870 	    sizeof(wr->wr_inodes[0]));
   2871 	if (wr->wr_inodes != NULL) {
   2872 		memcpy(new_inodes, wr->wr_inodes, oldsize);
   2873 		wapbl_free(wr->wr_inodes, oldsize);
   2874 	}
   2875 	wr->wr_inodes = new_inodes;
   2876 	memcpy(&wr->wr_inodes[wr->wr_inodescnt], wc->wc_inodes,
   2877 	    wc->wc_inocnt * sizeof(wr->wr_inodes[0]));
   2878 	wr->wr_inodescnt += wc->wc_inocnt;
   2879 }
   2880 
   2881 static int
   2882 wapbl_replay_process(struct wapbl_replay *wr, off_t head, off_t tail)
   2883 {
   2884 	off_t off;
   2885 	int error;
   2886 
   2887 	int logblklen = 1 << wr->wr_log_dev_bshift;
   2888 
   2889 	wapbl_blkhash_clear(wr);
   2890 
   2891 	off = tail;
   2892 	while (off != head) {
   2893 		struct wapbl_wc_null *wcn;
   2894 		off_t saveoff = off;
   2895 		error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
   2896 		if (error)
   2897 			goto errout;
   2898 		wcn = (struct wapbl_wc_null *)wr->wr_scratch;
   2899 		switch (wcn->wc_type) {
   2900 		case WAPBL_WC_BLOCKS:
   2901 			wapbl_replay_process_blocks(wr, &off);
   2902 			break;
   2903 
   2904 		case WAPBL_WC_REVOCATIONS:
   2905 			wapbl_replay_process_revocations(wr);
   2906 			break;
   2907 
   2908 		case WAPBL_WC_INODES:
   2909 			wapbl_replay_process_inodes(wr, saveoff, off);
   2910 			break;
   2911 
   2912 		default:
   2913 			printf("Unrecognized wapbl type: 0x%08x\n",
   2914 			       wcn->wc_type);
   2915  			error = EFTYPE;
   2916 			goto errout;
   2917 		}
   2918 		wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
   2919 		if (off != saveoff) {
   2920 			printf("wapbl_replay: corrupted records\n");
   2921 			error = EFTYPE;
   2922 			goto errout;
   2923 		}
   2924 	}
   2925 	return 0;
   2926 
   2927  errout:
   2928 	wapbl_blkhash_clear(wr);
   2929 	return error;
   2930 }
   2931 
   2932 #if 0
   2933 int
   2934 wapbl_replay_verify(struct wapbl_replay *wr, struct vnode *fsdevvp)
   2935 {
   2936 	off_t off;
   2937 	int mismatchcnt = 0;
   2938 	int logblklen = 1 << wr->wr_log_dev_bshift;
   2939 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   2940 	void *scratch1 = wapbl_alloc(MAXBSIZE);
   2941 	void *scratch2 = wapbl_alloc(MAXBSIZE);
   2942 	int error = 0;
   2943 
   2944 	KDASSERT(wapbl_replay_isopen(wr));
   2945 
   2946 	off = wch->wc_tail;
   2947 	while (off != wch->wc_head) {
   2948 		struct wapbl_wc_null *wcn;
   2949 #ifdef DEBUG
   2950 		off_t saveoff = off;
   2951 #endif
   2952 		error = wapbl_circ_read(wr, wr->wr_scratch, logblklen, &off);
   2953 		if (error)
   2954 			goto out;
   2955 		wcn = (struct wapbl_wc_null *)wr->wr_scratch;
   2956 		switch (wcn->wc_type) {
   2957 		case WAPBL_WC_BLOCKS:
   2958 			{
   2959 				struct wapbl_wc_blocklist *wc =
   2960 				    (struct wapbl_wc_blocklist *)wr->wr_scratch;
   2961 				int i;
   2962 				for (i = 0; i < wc->wc_blkcount; i++) {
   2963 					int foundcnt = 0;
   2964 					int dirtycnt = 0;
   2965 					int j, n;
   2966 					/*
   2967 					 * Check each physical block into the
   2968 					 * hashtable independently
   2969 					 */
   2970 					n = wc->wc_blocks[i].wc_dlen >>
   2971 					    wch->wc_fs_dev_bshift;
   2972 					for (j = 0; j < n; j++) {
   2973 						struct wapbl_blk *wb =
   2974 						   wapbl_blkhash_get(wr,
   2975 						   wapbl_block_daddr(wc, i, j, fsblklen));
   2976 						if (wb && (wb->wb_off == off)) {
   2977 							foundcnt++;
   2978 							error =
   2979 							    wapbl_circ_read(wr,
   2980 							    scratch1, fsblklen,
   2981 							    &off);
   2982 							if (error)
   2983 								goto out;
   2984 							error =
   2985 							    wapbl_read(scratch2,
   2986 							    fsblklen, fsdevvp,
   2987 							    wb->wb_blk);
   2988 							if (error)
   2989 								goto out;
   2990 							if (memcmp(scratch1,
   2991 								   scratch2,
   2992 								   fsblklen)) {
   2993 								printf(
   2994 		"wapbl_verify: mismatch block %"PRId64" at off %"PRIdMAX"\n",
   2995 		wb->wb_blk, (intmax_t)off);
   2996 								dirtycnt++;
   2997 								mismatchcnt++;
   2998 							}
   2999 						} else {
   3000 							wapbl_circ_advance(wr,
   3001 							    fsblklen, &off);
   3002 						}
   3003 					}
   3004 #if 0
   3005 					/*
   3006 					 * If all of the blocks in an entry
   3007 					 * are clean, then remove all of its
   3008 					 * blocks from the hashtable since they
   3009 					 * never will need replay.
   3010 					 */
   3011 					if ((foundcnt != 0) &&
   3012 					    (dirtycnt == 0)) {
   3013 						off = saveoff;
   3014 						wapbl_circ_advance(wr,
   3015 						    logblklen, &off);
   3016 						for (j = 0; j < n; j++) {
   3017 							struct wapbl_blk *wb =
   3018 							   wapbl_blkhash_get(wr,
   3019 							   wapbl_block_daddr(wc, i, j, fsblklen));
   3020 							if (wb &&
   3021 							  (wb->wb_off == off)) {
   3022 								wapbl_blkhash_rem(wr, wb->wb_blk);
   3023 							}
   3024 							wapbl_circ_advance(wr,
   3025 							    fsblklen, &off);
   3026 						}
   3027 					}
   3028 #endif
   3029 				}
   3030 			}
   3031 			break;
   3032 		case WAPBL_WC_REVOCATIONS:
   3033 		case WAPBL_WC_INODES:
   3034 			break;
   3035 		default:
   3036 			KASSERT(0);
   3037 		}
   3038 #ifdef DEBUG
   3039 		wapbl_circ_advance(wr, wcn->wc_len, &saveoff);
   3040 		KASSERT(off == saveoff);
   3041 #endif
   3042 	}
   3043  out:
   3044 	wapbl_free(scratch1, MAXBSIZE);
   3045 	wapbl_free(scratch2, MAXBSIZE);
   3046 	if (!error && mismatchcnt)
   3047 		error = EFTYPE;
   3048 	return error;
   3049 }
   3050 #endif
   3051 
   3052 int
   3053 wapbl_replay_write(struct wapbl_replay *wr, struct vnode *fsdevvp)
   3054 {
   3055 	struct wapbl_blk *wb;
   3056 	size_t i;
   3057 	off_t off;
   3058 	void *scratch;
   3059 	int error = 0;
   3060 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3061 
   3062 	KDASSERT(wapbl_replay_isopen(wr));
   3063 
   3064 	scratch = wapbl_alloc(MAXBSIZE);
   3065 
   3066 	for (i = 0; i <= wr->wr_blkhashmask; ++i) {
   3067 		LIST_FOREACH(wb, &wr->wr_blkhash[i], wb_hash) {
   3068 			off = wb->wb_off;
   3069 			error = wapbl_circ_read(wr, scratch, fsblklen, &off);
   3070 			if (error)
   3071 				break;
   3072 			error = wapbl_write(scratch, fsblklen, fsdevvp,
   3073 			    wb->wb_blk);
   3074 			if (error)
   3075 				break;
   3076 		}
   3077 	}
   3078 
   3079 	wapbl_free(scratch, MAXBSIZE);
   3080 	return error;
   3081 }
   3082 
   3083 int
   3084 wapbl_replay_can_read(struct wapbl_replay *wr, daddr_t blk, long len)
   3085 {
   3086 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3087 
   3088 	KDASSERT(wapbl_replay_isopen(wr));
   3089 	KASSERT((len % fsblklen) == 0);
   3090 
   3091 	while (len != 0) {
   3092 		struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
   3093 		if (wb)
   3094 			return 1;
   3095 		len -= fsblklen;
   3096 	}
   3097 	return 0;
   3098 }
   3099 
   3100 int
   3101 wapbl_replay_read(struct wapbl_replay *wr, void *data, daddr_t blk, long len)
   3102 {
   3103 	int fsblklen = 1 << wr->wr_fs_dev_bshift;
   3104 
   3105 	KDASSERT(wapbl_replay_isopen(wr));
   3106 
   3107 	KASSERT((len % fsblklen) == 0);
   3108 
   3109 	while (len != 0) {
   3110 		struct wapbl_blk *wb = wapbl_blkhash_get(wr, blk);
   3111 		if (wb) {
   3112 			off_t off = wb->wb_off;
   3113 			int error;
   3114 			error = wapbl_circ_read(wr, data, fsblklen, &off);
   3115 			if (error)
   3116 				return error;
   3117 		}
   3118 		data = (uint8_t *)data + fsblklen;
   3119 		len -= fsblklen;
   3120 		blk++;
   3121 	}
   3122 	return 0;
   3123 }
   3124 
   3125 #ifdef _KERNEL
   3126 
   3127 MODULE(MODULE_CLASS_VFS, wapbl, NULL);
   3128 
   3129 static int
   3130 wapbl_modcmd(modcmd_t cmd, void *arg)
   3131 {
   3132 
   3133 	switch (cmd) {
   3134 	case MODULE_CMD_INIT:
   3135 		wapbl_init();
   3136 		return 0;
   3137 	case MODULE_CMD_FINI:
   3138 		return wapbl_fini(true);
   3139 	default:
   3140 		return ENOTTY;
   3141 	}
   3142 }
   3143 #endif /* _KERNEL */
   3144