Home | History | Annotate | Line # | Download | only in alpha
divrem.m4 revision 1.6.16.1
      1  1.6.16.1  skrll /*	$NetBSD: divrem.m4,v 1.6.16.1 2005/03/04 16:52:29 skrll Exp $	*/
      2       1.1    cgd 
      3       1.1    cgd /*
      4       1.1    cgd  * Copyright (c) 1994, 1995 Carnegie-Mellon University.
      5       1.1    cgd  * All rights reserved.
      6       1.1    cgd  *
      7       1.1    cgd  * Author: Chris G. Demetriou
      8  1.6.16.1  skrll  *
      9       1.1    cgd  * Permission to use, copy, modify and distribute this software and
     10       1.1    cgd  * its documentation is hereby granted, provided that both the copyright
     11       1.1    cgd  * notice and this permission notice appear in all copies of the
     12       1.1    cgd  * software, derivative works or modified versions, and any portions
     13       1.1    cgd  * thereof, and that both notices appear in supporting documentation.
     14  1.6.16.1  skrll  *
     15  1.6.16.1  skrll  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     16  1.6.16.1  skrll  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     17       1.1    cgd  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     18  1.6.16.1  skrll  *
     19       1.1    cgd  * Carnegie Mellon requests users of this software to return to
     20       1.1    cgd  *
     21       1.1    cgd  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     22       1.1    cgd  *  School of Computer Science
     23       1.1    cgd  *  Carnegie Mellon University
     24       1.1    cgd  *  Pittsburgh PA 15213-3890
     25       1.1    cgd  *
     26       1.1    cgd  * any improvements or extensions that they make and grant Carnegie the
     27       1.1    cgd  * rights to redistribute these changes.
     28       1.1    cgd  */
     29       1.1    cgd 
     30       1.1    cgd /*
     31       1.1    cgd  * Division and remainder.
     32       1.1    cgd  *
     33       1.1    cgd  * The use of m4 is modeled after the sparc code, but the algorithm is
     34       1.1    cgd  * simple binary long division.
     35       1.1    cgd  *
     36       1.1    cgd  * Note that the loops could probably benefit from unrolling.
     37       1.1    cgd  */
     38       1.1    cgd 
     39       1.1    cgd /*
     40       1.1    cgd  * M4 Parameters
     41       1.1    cgd  * NAME		name of function to generate
     42       1.1    cgd  * OP		OP=div: t10 / t11 -> t12; OP=rem: t10 % t11 -> t12
     43       1.3    cgd  * S		S=true: signed; S=false: unsigned
     44       1.1    cgd  * WORDSIZE	total number of bits
     45       1.1    cgd  */
     46       1.1    cgd 
     47       1.1    cgd define(A, `t10')
     48       1.1    cgd define(B, `t11')
     49       1.1    cgd define(RESULT, `t12')
     50       1.1    cgd 
     51       1.1    cgd define(BIT, `t0')
     52       1.1    cgd define(I, `t1')
     53       1.1    cgd define(CC, `t2')
     54       1.1    cgd define(T_0, `t3')
     55       1.3    cgd ifelse(S, `true', `define(NEG, `t4')')
     56       1.1    cgd 
     57       1.5    cgd #include <machine/asm.h>
     58       1.1    cgd 
     59       1.1    cgd LEAF(NAME, 0)					/* XXX */
     60       1.3    cgd 	lda	sp, -64(sp)
     61       1.1    cgd 	stq	BIT, 0(sp)
     62       1.1    cgd 	stq	I, 8(sp)
     63       1.1    cgd 	stq	CC, 16(sp)
     64       1.1    cgd 	stq	T_0, 24(sp)
     65       1.1    cgd ifelse(S, `true',
     66       1.3    cgd `	stq	NEG, 32(sp)')
     67       1.3    cgd 	stq	A, 40(sp)
     68       1.3    cgd 	stq	B, 48(sp)
     69       1.1    cgd 	mov	zero, RESULT			/* Initialize result to zero */
     70       1.1    cgd 
     71       1.1    cgd ifelse(S, `true',
     72       1.1    cgd `
     73       1.1    cgd 	/* Compute sign of result.  If either is negative, this is easy.  */
     74       1.3    cgd 	or	A, B, NEG			/* not the sign, but... */
     75       1.3    cgd 	srl	NEG, WORDSIZE - 1, NEG		/* rather, or of high bits */
     76       1.3    cgd 	blbc	NEG, Ldoit			/* neither negative? do it! */
     77       1.1    cgd 
     78       1.1    cgd ifelse(OP, `div',
     79       1.3    cgd `	xor	A, B, NEG			/* THIS is the sign! */
     80       1.3    cgd ', `	mov	A, NEG				/* sign follows A. */
     81       1.1    cgd ')
     82       1.3    cgd 	srl	NEG, WORDSIZE - 1, NEG		/* make negation the low bit. */
     83       1.3    cgd 
     84       1.3    cgd 	srl	A, WORDSIZE - 1, I		/* is A negative? */
     85       1.3    cgd 	blbc	I, LnegB			/* no. */
     86       1.1    cgd 	/* A is negative; flip it. */
     87       1.3    cgd ifelse(WORDSIZE, `32', `
     88       1.3    cgd 	/* top 32 bits may be random junk */
     89       1.3    cgd 	zap	A, 0xf0, A
     90       1.3    cgd ')
     91       1.1    cgd 	subq	zero, A, A
     92       1.3    cgd 	srl	B, WORDSIZE - 1, I		/* is B negative? */
     93       1.3    cgd 	blbc	I, Ldoit			/* no. */
     94       1.1    cgd LnegB:
     95       1.1    cgd 	/* B is definitely negative, no matter how we got here. */
     96       1.3    cgd ifelse(WORDSIZE, `32', `
     97       1.3    cgd 	/* top 32 bits may be random junk */
     98       1.3    cgd 	zap	B, 0xf0, B
     99       1.3    cgd ')
    100       1.1    cgd 	subq	zero, B, B
    101       1.1    cgd Ldoit:
    102       1.3    cgd ')
    103       1.2    cgd ifelse(WORDSIZE, `32', `
    104       1.2    cgd 	/*
    105       1.3    cgd 	 * Clear the top 32 bits of each operand, as they may
    106       1.3    cgd 	 * sign extension (if negated above), or random junk.
    107       1.2    cgd 	 */
    108       1.2    cgd 	zap	A, 0xf0, A
    109       1.2    cgd 	zap	B, 0xf0, B
    110       1.3    cgd ')
    111       1.1    cgd 
    112       1.1    cgd 	/* kill the special cases. */
    113       1.3    cgd 	beq	B, Ldotrap			/* division by zero! */
    114       1.1    cgd 
    115       1.4    cgd 	cmpult	A, B, CC			/* A < B? */
    116       1.1    cgd 	/* RESULT is already zero, from above.  A is untouched. */
    117       1.1    cgd 	bne	CC, Lret_result
    118       1.1    cgd 
    119       1.1    cgd 	cmpeq	A, B, CC			/* A == B? */
    120       1.1    cgd 	cmovne	CC, 1, RESULT
    121       1.1    cgd 	cmovne	CC, zero, A
    122       1.1    cgd 	bne	CC, Lret_result
    123       1.1    cgd 
    124       1.1    cgd 	/*
    125       1.1    cgd 	 * Find out how many bits of zeros are at the beginning of the divisor.
    126       1.1    cgd 	 */
    127       1.1    cgd LBbits:
    128       1.5    cgd 	ldiq	T_0, 1				/* I = 0; BIT = 1<<WORDSIZE-1 */
    129       1.1    cgd 	mov	zero, I
    130       1.1    cgd 	sll	T_0, WORDSIZE-1, BIT
    131       1.1    cgd LBloop:
    132       1.1    cgd 	and	B, BIT, CC			/* if bit in B is set, done. */
    133       1.1    cgd 	bne	CC, LAbits
    134       1.1    cgd 	addq	I, 1, I				/* increment I, shift bit */
    135       1.1    cgd 	srl	BIT, 1, BIT
    136       1.1    cgd 	cmplt	I, WORDSIZE-1, CC		/* if I leaves one bit, done. */
    137       1.1    cgd 	bne	CC, LBloop
    138       1.1    cgd 
    139       1.1    cgd LAbits:
    140       1.1    cgd 	beq	I, Ldodiv			/* If I = 0, divide now.  */
    141       1.5    cgd 	ldiq	T_0, 1				/* BIT = 1<<WORDSIZE-1 */
    142       1.1    cgd 	sll	T_0, WORDSIZE-1, BIT
    143       1.1    cgd 
    144       1.1    cgd LAloop:
    145       1.1    cgd 	and	A, BIT, CC			/* if bit in A is set, done. */
    146       1.1    cgd 	bne	CC, Ldodiv
    147       1.1    cgd 	subq	I, 1, I				/* decrement I, shift bit */
    148  1.6.16.1  skrll 	srl     BIT, 1, BIT
    149       1.1    cgd 	bne	I, LAloop			/* If I != 0, loop again */
    150       1.1    cgd 
    151       1.1    cgd Ldodiv:
    152       1.1    cgd 	sll	B, I, B				/* B <<= i */
    153       1.5    cgd 	ldiq	T_0, 1
    154       1.1    cgd 	sll	T_0, I, BIT
    155       1.1    cgd 
    156       1.1    cgd Ldivloop:
    157       1.1    cgd 	cmpult	A, B, CC
    158       1.1    cgd 	or	RESULT, BIT, T_0
    159       1.1    cgd 	cmoveq	CC, T_0, RESULT
    160       1.1    cgd 	subq	A, B, T_0
    161       1.1    cgd 	cmoveq	CC, T_0, A
    162  1.6.16.1  skrll 	srl	BIT, 1, BIT
    163       1.1    cgd 	srl	B, 1, B
    164       1.1    cgd 	beq	A, Lret_result
    165       1.1    cgd 	bne	BIT, Ldivloop
    166       1.1    cgd 
    167       1.1    cgd Lret_result:
    168       1.1    cgd ifelse(OP, `div',
    169       1.1    cgd `', `	mov	A, RESULT
    170       1.1    cgd ')
    171       1.1    cgd ifelse(S, `true',
    172       1.1    cgd `
    173       1.1    cgd 	/* Check to see if we should negate it. */
    174       1.6   ross 	subq	zero, RESULT, T_0
    175       1.3    cgd 	cmovlbs	NEG, T_0, RESULT
    176       1.1    cgd ')
    177       1.1    cgd 
    178       1.1    cgd 	ldq	BIT, 0(sp)
    179       1.1    cgd 	ldq	I, 8(sp)
    180       1.1    cgd 	ldq	CC, 16(sp)
    181       1.1    cgd 	ldq	T_0, 24(sp)
    182       1.1    cgd ifelse(S, `true',
    183       1.3    cgd `	ldq	NEG, 32(sp)')
    184       1.3    cgd 	ldq	A, 40(sp)
    185       1.3    cgd 	ldq	B, 48(sp)
    186       1.3    cgd 	lda	sp, 64(sp)
    187       1.1    cgd 	ret	zero, (t9), 1
    188       1.1    cgd 
    189       1.1    cgd Ldotrap:
    190       1.5    cgd 	ldiq	a0, -2			/* This is the signal to SIGFPE! */
    191       1.1    cgd 	call_pal PAL_gentrap
    192       1.2    cgd ifelse(OP, `div',
    193       1.2    cgd `', `	mov	zero, A			/* so that zero will be returned */
    194       1.2    cgd ')
    195       1.1    cgd 	br	zero, Lret_result
    196       1.1    cgd 
    197       1.1    cgd END(NAME)
    198