bcopy.S revision 1.11.2.1 1 /* $NetBSD: bcopy.S,v 1.11.2.1 2011/06/06 09:09:43 jruoho Exp $ */
2
3 /*
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matthew Fredette.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copy routines for NetBSD/hppa.
34 */
35
36 #undef _LOCORE
37 #define _LOCORE /* XXX fredette - unfortunate */
38
39 #if defined(SPCOPY) && !defined(_STANDALONE)
40
41 #include "opt_multiprocessor.h"
42
43 #include <machine/cpu.h>
44
45 #endif
46
47 #include <machine/asm.h>
48 #include <machine/frame.h>
49 #include <machine/reg.h>
50
51 #if defined(LIBC_SCCS) && !defined(lint)
52 RCSID("$NetBSD: bcopy.S,v 1.11.2.1 2011/06/06 09:09:43 jruoho Exp $")
53 #endif /* LIBC_SCCS and not lint */
54
55 /*
56 * The stbys instruction is a little asymmetric. When (%r2 & 3)
57 * is zero, stbys,b,m %r1, 4(%r2) works like stws,ma. You
58 * might then wish that when (%r2 & 3) == 0, stbys,e,m %r1, -4(%r2)
59 * worked like stws,mb. But it doesn't.
60 *
61 * This macro works around this problem. It requires that %t2
62 * hold the number of bytes that will be written by this store
63 * (meaning that it ranges from one to four).
64 *
65 * Watch the delay-slot trickery here. The comib is used to set
66 * up which instruction, either the stws or the stbys, is run
67 * in the delay slot of the b instruction.
68 */
69 #define _STBYS_E_M(r, dst_spc, dst_off) \
70 comib,<> 4, %t2, 4 ! \
71 b 4 ! \
72 stws,mb r, -4(dst_spc, dst_off) ! \
73 stbys,e,m r, 0(dst_spc, dst_off)
74
75 /*
76 * This macro does a bulk copy with no shifting. cmplt and m are
77 * the completer and displacement multiplier, respectively, for
78 * the load and store instructions.
79 */
80 #define _COPY(src_spc, src_off, dst_spc, dst_off, count, cmplt, m) \
81 ! \
82 /* ! \
83 * Loop storing 16 bytes at a time. Since count ! \
84 * may be > INT_MAX, we have to be careful and ! \
85 * avoid comparisons that treat it as a signed ! \
86 * quantity, until after this loop, when count ! \
87 * is guaranteed to be less than 16. ! \
88 */ ! \
89 comib,>>=,n 15, count, _LABEL(_skip16) ! \
90 .label _LABEL(_loop16) ! \
91 addi -16, count, count ! \
92 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
93 ldws,cmplt m*4(src_spc, src_off), %t2 ! \
94 ldws,cmplt m*4(src_spc, src_off), %t3 ! \
95 ldws,cmplt m*4(src_spc, src_off), %t4 ! \
96 stws,cmplt %t1, m*4(dst_spc, dst_off) ! \
97 stws,cmplt %t2, m*4(dst_spc, dst_off) ! \
98 stws,cmplt %t3, m*4(dst_spc, dst_off) ! \
99 comib,<< 15, count, _LABEL(_loop16) ! \
100 stws,cmplt %t4, m*4(dst_spc, dst_off) ! \
101 .label _LABEL(_skip16) ! \
102 ! \
103 /* Loop storing 4 bytes at a time. */ ! \
104 addib,<,n -4, count, _LABEL(_skip4) ! \
105 .label _LABEL(_loop4) ! \
106 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
107 addib,>= -4, count, _LABEL(_loop4) ! \
108 stws,cmplt %t1, m*4(dst_spc, dst_off) ! \
109 .label _LABEL(_skip4) ! \
110 /* Restore the correct count. */ ! \
111 addi 4, count, count ! \
112 ! \
113 .label _LABEL(_do1) ! \
114 ! \
115 /* Loop storing 1 byte at a time. */ ! \
116 addib,<,n -1, count, _LABEL(_skip1) ! \
117 .label _LABEL(_loop1) ! \
118 ldbs,cmplt m*1(src_spc, src_off), %t1 ! \
119 addib,>= -1, count, _LABEL(_loop1) ! \
120 stbs,cmplt %t1, m*1(dst_spc, dst_off) ! \
121 .label _LABEL(_skip1) ! \
122 /* Restore the correct count. */ ! \
123 b _LABEL(_done) ! \
124 addi 1, count, count
125
126 /*
127 * This macro is definitely strange. It exists purely to
128 * allow the _COPYS macro to be reused, but because it
129 * requires this long attempt to explain it, I'm starting
130 * to doubt the value of that.
131 *
132 * Part of the expansion of the _COPYS macro below are loops
133 * that copy four words or one word at a time, performing shifts
134 * to get data to line up correctly in the destination buffer.
135 *
136 * The _COPYS macro is used when copying backwards, as well
137 * as forwards. The 4-word loop always loads into %t1, %t2, %t3,
138 * and %t4 in that order. This means that when copying forward,
139 * %t1 will have the word from the lowest address, and %t4 will
140 * have the word from the highest address. When copying
141 * backwards, the opposite is true.
142 *
143 * The shift instructions need pairs of registers with adjacent
144 * words, with the register containing the word from the lowest
145 * address *always* coming first. It is this assymetry that
146 * gives rise to this macro - depending on which direction
147 * we're copying in, these ordered pairs are different.
148 *
149 * Fortunately, we can compute those register numbers at compile
150 * time, and assemble them manually into a shift instruction.
151 * That's what this macro does.
152 *
153 * This macro takes two arguments. n ranges from 0 to 3 and
154 * is the "shift number", i.e., n = 0 means we're doing the
155 * shift for what will be the first store.
156 *
157 * m is the displacement multiplier from the _COPYS macro call.
158 * This is 1 for a forward copy and -1 for a backwards copy.
159 * So, the ((m + 1) / 2) term yields 0 for a backwards copy and
160 * 1 for a forward copy, and the ((m - 1) / 2) term yields
161 * 0 for a forward copy, and -1 for a backwards copy.
162 * These terms are used to discriminate the register computations
163 * below.
164 *
165 * When copying forward, then, the first register used with
166 * the first vshd will be 19 + (3 - ((0 - 1) & 3)), or %t4,
167 * which matches _COPYS' requirement that the word last loaded
168 * be in %t4. The first register used for the second vshd
169 * will then "wrap" around to 19 + (3 - ((1 - 1) & 3)), or %t1.
170 * And so on to %t2 and %t3.
171 *
172 * When copying forward, the second register used with the first
173 * vshd will be (19 + (3 - ((n + 0) & 3)), or %t1. It will
174 * continue to be %t2, then %t3, and finally %t4.
175 *
176 * When copying backwards, the values for the first and second
177 * register for each vshd are reversed from the forwards case.
178 * (Symmetry reclaimed!) Proving this is "left as an exercise
179 * for the reader" (remember the different discriminating values!)
180 */
181 #define _VSHD(n, m, t) \
182 .word (0xd0000000 | \
183 ((19 + (3 - ((n - 1 * ((m + 1) / 2)) & 3))) << 16) | \
184 ((19 + (3 - ((n + 1 * ((m - 1) / 2)) & 3))) << 21) | \
185 (t))
186
187 /*
188 * This macro does a bulk copy with shifting. cmplt and m are
189 * the completer and displacement multiplier, respectively, for
190 * the load and store instructions. It is assumed that the
191 * word last loaded is already in %t4.
192 */
193 #define _COPYS(src_spc, src_off, dst_spc, dst_off, count, cmplt, m) \
194 ! \
195 /* ! \
196 * Loop storing 16 bytes at a time. Since count ! \
197 * may be > INT_MAX, we have to be careful and ! \
198 * avoid comparisons that treat it as a signed ! \
199 * quantity, until after this loop, when count ! \
200 * is guaranteed to be less than 16. ! \
201 */ ! \
202 comib,>>=,n 15, count, _LABEL(S_skip16) ! \
203 .label _LABEL(S_loop16) ! \
204 addi -16, count, count ! \
205 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
206 ldws,cmplt m*4(src_spc, src_off), %t2 ! \
207 ldws,cmplt m*4(src_spc, src_off), %t3 ! \
208 _VSHD(0, m, 1) /* vshd %t4, %t1, %r1 */ ! \
209 ldws,cmplt m*4(src_spc, src_off), %t4 ! \
210 _VSHD(1, m, 22) /* vshd %t1, %t2, %t1 */ ! \
211 _VSHD(2, m, 21) /* vshd %t2, %t3, %t2 */ ! \
212 _VSHD(3, m, 20) /* vshd %t3, %t4, %t3 */ ! \
213 stws,cmplt %r1, m*4(dst_spc, dst_off) ! \
214 stws,cmplt %t1, m*4(dst_spc, dst_off) ! \
215 stws,cmplt %t2, m*4(dst_spc, dst_off) ! \
216 comib,<< 15, count, _LABEL(S_loop16) ! \
217 stws,cmplt %t3, m*4(dst_spc, dst_off) ! \
218 .label _LABEL(S_skip16) ! \
219 ! \
220 /* Loop storing 4 bytes at a time. */ ! \
221 addib,<,n -4, count, _LABEL(S_skip4) ! \
222 .label _LABEL(S_loop4) ! \
223 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
224 _VSHD(0, m, 1) /* into %r1 (1) */ ! \
225 copy %t1, %t4 ! \
226 addib,>= -4, count, _LABEL(S_loop4) ! \
227 stws,cmplt %r1, m*4(dst_spc, dst_off) ! \
228 .label _LABEL(S_skip4) ! \
229 ! \
230 /* ! \
231 * We now need to "back up" src_off by the ! \
232 * number of bytes remaining in the FIFO ! \
233 * (i.e., the number of bytes remaining in %t4), ! \
234 * because (the correct) count still includes ! \
235 * these bytes, and we intent to keep it that ! \
236 * way, and finish with the single-byte copier. ! \
237 * ! \
238 * The number of bytes remaining in the FIFO is ! \
239 * related to the shift count, so recover it, ! \
240 * restoring the correct count at the same time. ! \
241 */ ! \
242 mfctl %cr11, %t1 ! \
243 addi 4, count, count ! \
244 shd %r0, %t1, 3, %t1 ! \
245 ! \
246 /* ! \
247 * If we're copying forward, the shift count ! \
248 * is the number of bytes remaining in the ! \
249 * FIFO, and we want to subtract it from src_off. ! \
250 * If we're copying backwards, (4 - shift count) ! \
251 * is the number of bytes remaining in the FIFO, ! \
252 * and we want to add it to src_off. ! \
253 * ! \
254 * We observe that x + (4 - y) = x - (y - 4), ! \
255 * and introduce this instruction to add -4 when ! \
256 * m is -1, although this does mean one extra ! \
257 * instruction in the forward case. ! \
258 */ ! \
259 addi 4*((m - 1) / 2), %t1, %t1 ! \
260 ! \
261 /* Now branch to the byte-at-a-time loop. */ ! \
262 b _LABEL(_do1) ! \
263 sub src_off, %t1, src_off
264
265 /*
266 * This macro copies a region in the forward direction.
267 */
268 #define _COPY_FORWARD(src_spc, src_off, dst_spc, dst_off, count) \
269 ! \
270 /* ! \
271 * Since in the shifting-left case we will ! \
272 * load 8 bytes before checking count, to ! \
273 * keep things simple, branch to the byte ! \
274 * copier unless we're copying at least 8. ! \
275 */ ! \
276 comib,>>,n 8, count, _LABEL(_do1) ! \
277 ! \
278 /* ! \
279 * Once we 4-byte align the source offset, ! \
280 * figure out how many bytes from the region ! \
281 * will be in the first 4-byte word we read. ! \
282 * Ditto for writing the destination offset. ! \
283 */ ! \
284 extru src_off, 31, 2, %t1 ! \
285 extru dst_off, 31, 2, %t2 ! \
286 subi 4, %t1, %t1 ! \
287 subi 4, %t2, %t2 ! \
288 ! \
289 /* ! \
290 * Calculate the byte shift required. A ! \
291 * positive value means a source 4-byte word ! \
292 * has to be shifted to the right to line up ! \
293 * as a destination 4-byte word. ! \
294 */ ! \
295 sub %t1, %t2, %t1 ! \
296 ! \
297 /* 4-byte align src_off. */ ! \
298 depi 0, 31, 2, src_off ! \
299 ! \
300 /* ! \
301 * It's somewhat important to note that this ! \
302 * code thinks of count as "the number of bytes ! \
303 * that haven't been stored yet", as opposed to ! \
304 * "the number of bytes that haven't been copied ! \
305 * yet". The distinction is subtle, but becomes ! \
306 * apparent at the end of the shifting code, where ! \
307 * we "back up" src_off to correspond to count, ! \
308 * as opposed to flushing the FIFO. ! \
309 * ! \
310 * We calculated above how many bytes our first ! \
311 * store will store, so update count now. ! \
312 * ! \
313 * If the shift is zero, strictly as an optimization ! \
314 * we use a copy loop that does no shifting. ! \
315 */ ! \
316 comb,<> %r0, %t1, _LABEL(_shifting) ! \
317 sub count, %t2, count ! \
318 ! \
319 /* Load and store the first word. */ ! \
320 ldws,ma 4(src_spc, src_off), %t4 ! \
321 stbys,b,m %t4, 4(dst_spc, dst_off) ! \
322 ! \
323 /* Do the rest of the copy. */ ! \
324 _COPY(src_spc,src_off,dst_spc,dst_off,count,ma,1) ! \
325 ! \
326 .label _LABEL(_shifting) ! \
327 ! \
328 /* ! \
329 * If shift < 0, we need to shift words to the ! \
330 * left. Since we can't do this directly, we ! \
331 * adjust the shift so it's a shift to the right ! \
332 * and load the first word into the high word of ! \
333 * the FIFO. Otherwise, we load a zero into the ! \
334 * high word of the FIFO. ! \
335 */ ! \
336 comb,<= %r0, %t1, _LABEL(_shiftingrt) ! \
337 copy %r0, %t3 ! \
338 addi 4, %t1, %t1 ! \
339 ldws,ma 4(src_spc, src_off), %t3 ! \
340 .label _LABEL(_shiftingrt) ! \
341 ! \
342 /* ! \
343 * Turn the shift byte count into a bit count, ! \
344 * load the next word, set the Shift Amount ! \
345 * Register, and form and store the first word. ! \
346 */ ! \
347 sh3add %t1, %r0, %t1 ! \
348 ldws,ma 4(src_spc, src_off), %t4 ! \
349 mtctl %t1, %cr11 ! \
350 vshd %t3, %t4, %r1 ! \
351 stbys,b,m %r1, 4(dst_spc, dst_off) ! \
352 ! \
353 /* Do the rest of the copy. */ ! \
354 _COPYS(src_spc,src_off,dst_spc,dst_off,count,ma,1)
355
356 /* This macro copies a region in the reverse direction. */
357 #define _COPY_REVERSE(src_spc, src_off, dst_spc, dst_off, count) \
358 ! \
359 /* Immediately add count to both offsets. */ ! \
360 add src_off, count, src_off ! \
361 add dst_off, count, dst_off ! \
362 ! \
363 /* ! \
364 * Since in the shifting-right case we ! \
365 * will load 8 bytes before checking ! \
366 * count, to keep things simple, branch ! \
367 * to the byte copier unless we're ! \
368 * copying at least 8 bytes. ! \
369 */ ! \
370 comib,>>,n 8, count, _LABEL(_do1) ! \
371 ! \
372 /* ! \
373 * Once we 4-byte align the source offset, ! \
374 * figure out how many bytes from the region ! \
375 * will be in the first 4-byte word we read. ! \
376 * Ditto for writing the destination offset. ! \
377 */ ! \
378 extru,<> src_off, 31, 2, %t1 ! \
379 ldi 4, %t1 ! \
380 extru,<> dst_off, 31, 2, %t2 ! \
381 ldi 4, %t2 ! \
382 ! \
383 /* ! \
384 * Calculate the byte shift required. A ! \
385 * positive value means a source 4-byte ! \
386 * word has to be shifted to the right to ! \
387 * line up as a destination 4-byte word. ! \
388 */ ! \
389 sub %t2, %t1, %t1 ! \
390 ! \
391 /* ! \
392 * 4-byte align src_off, leaving it pointing ! \
393 * to the 4-byte word *after* the next word ! \
394 * we intend to load. ! \
395 * ! \
396 * It's somewhat important to note that this ! \
397 * code thinks of count as "the number of bytes ! \
398 * that haven't been stored yet", as opposed to ! \
399 * "the number of bytes that haven't been copied ! \
400 * yet". The distinction is subtle, but becomes ! \
401 * apparent at the end of the shifting code, where ! \
402 * we "back up" src_off to correspond to count, ! \
403 * as opposed to flushing the FIFO. ! \
404 * ! \
405 * We calculated above how many bytes our first ! \
406 * store will store, so update count now. ! \
407 * ! \
408 * If the shift is zero, we use a copy loop that ! \
409 * does no shifting. NB: unlike the forward case, ! \
410 * this is NOT strictly an optimization. If the ! \
411 * SAR is zero the vshds do NOT do the right thing. ! \
412 * This is another assymetry more or less the "fault" ! \
413 * of vshd. ! \
414 */ ! \
415 addi 3, src_off, src_off ! \
416 sub count, %t2, count ! \
417 comb,<> %r0, %t1, _LABEL(_shifting) ! \
418 depi 0, 31, 2, src_off ! \
419 ! \
420 /* Load and store the first word. */ ! \
421 ldws,mb -4(src_spc, src_off), %t4 ! \
422 _STBYS_E_M(%t4, dst_spc, dst_off) ! \
423 ! \
424 /* Do the rest of the copy. */ ! \
425 _COPY(src_spc,src_off,dst_spc,dst_off,count,mb,-1) ! \
426 ! \
427 .label _LABEL(_shifting) ! \
428 ! \
429 /* ! \
430 * If shift < 0, we need to shift words to the ! \
431 * left. Since we can't do this directly, we ! \
432 * adjust the shift so it's a shift to the right ! \
433 * and load a zero in to the low word of the FIFO. ! \
434 * Otherwise, we load the first word into the ! \
435 * low word of the FIFO. ! \
436 * ! \
437 * Note the nullification trickery here. We ! \
438 * assume that we're shifting to the left, and ! \
439 * load zero into the low word of the FIFO. Then ! \
440 * we nullify the addi if we're shifting to the ! \
441 * right. If the addi is not nullified, we are ! \
442 * shifting to the left, so we nullify the load. ! \
443 * we branch if we're shifting to the ! \
444 */ ! \
445 copy %r0, %t3 ! \
446 comb,<=,n %r0, %t1, 0 ! \
447 addi,tr 4, %t1, %t1 ! \
448 ldws,mb -4(src_spc, src_off), %t3 ! \
449 ! \
450 /* ! \
451 * Turn the shift byte count into a bit count, ! \
452 * load the next word, set the Shift Amount ! \
453 * Register, and form and store the first word. ! \
454 */ ! \
455 sh3add %t1, %r0, %t1 ! \
456 ldws,mb -4(src_spc, src_off), %t4 ! \
457 mtctl %t1, %cr11 ! \
458 vshd %t4, %t3, %r1 ! \
459 _STBYS_E_M(%r1, dst_spc, dst_off) ! \
460 ! \
461 /* Do the rest of the copy. */ ! \
462 _COPYS(src_spc,src_off,dst_spc,dst_off,count,mb,-1)
463
464 /*
465 * For paranoia, when things aren't going well, enable this
466 * code to assemble byte-at-a-time-only copying.
467 */
468 #if 1
469 #undef _COPY_FORWARD
470 #define _COPY_FORWARD(src_spc, src_off, dst_spc, dst_off, count) \
471 comb,=,n %r0, count, _LABEL(_done) ! \
472 ldbs,ma 1(src_spc, src_off), %r1 ! \
473 addib,<> -1, count, -12 ! \
474 stbs,ma %r1, 1(dst_spc, dst_off) ! \
475 b,n _LABEL(_done)
476 #undef _COPY_REVERSE
477 #define _COPY_REVERSE(src_spc, src_off, dst_spc, dst_off, count) \
478 comb,= %r0, count, _LABEL(_done) ! \
479 add src_off, count, src_off ! \
480 add dst_off, count, dst_off ! \
481 ldbs,mb -1(src_spc, src_off), %r1 ! \
482 addib,<> -1, count, -12 ! \
483 stbs,mb %r1, -1(dst_spc, dst_off) ! \
484 b,n _LABEL(_done)
485 #endif
486
487 /*
488 * If none of the following are defined, define BCOPY.
489 */
490 #if !(defined(SPCOPY) || defined(MEMCPY) || defined(MEMMOVE))
491 #define BCOPY
492 #endif
493
494 #if defined(SPCOPY) && !defined(_STANDALONE)
495
496 #include <sys/errno.h>
497 #include "assym.h"
498
499 /*
500 * int spcopy(pa_space_t ssp, const void *src, pa_space_t dsp, void *dst,
501 * size_t len)
502 *
503 * We assume that the regions do not overlap.
504 */
505 LEAF_ENTRY(spcopy)
506
507 /*
508 * Setup the fault handler, which will fill in %ret0 if triggered.
509 */
510 GET_CURLWP(%r31)
511 #ifdef DIAGNOSTIC
512 comb,<>,n %r0, %r31, Lspcopy_curlwp_ok
513 ldil L%panic, %r1
514 ldil L%Lspcopy_curlwp_bad, %arg0
515 ldo R%panic(%r1), %r1
516 ldo R%Lspcopy_curlwp_bad(%arg0), %arg0
517 .call
518 bv,n %r0(%r1)
519 nop
520 Lspcopy_curlwp_bad:
521 .asciz "spcopy: curlwp == NULL\n"
522 .align 8
523 Lspcopy_curlwp_ok:
524 #endif /* DIAGNOSTIC */
525 ldil L%spcopy_fault, %r1
526 ldw L_PCB(%r31), %r31
527 ldo R%spcopy_fault(%r1), %r1
528 stw %r1, PCB_ONFAULT(%r31)
529
530 /* Setup the space registers. */
531 mfsp %sr2, %ret1
532 mtsp %arg0, %sr1
533 mtsp %arg2, %sr2
534
535 /* Get the len argument and do the copy. */
536 ldw HPPA_FRAME_ARG(4)(%sp), %arg0
537 #define _LABEL(l) __CONCAT(spcopy,l)
538 _COPY_FORWARD(%sr1,%arg1,%sr2,%arg3,%arg0)
539 _LABEL(_done):
540
541 /* Return. */
542 copy %r0, %ret0
543 ALTENTRY(spcopy_fault)
544 stw %r0, PCB_ONFAULT(%r31)
545 bv %r0(%rp)
546 mtsp %ret1, %sr2
547 EXIT(spcopy)
548 #endif /* SPCOPY && !_STANDALONE */
549
550 #ifdef MEMCPY
551 /*
552 * void *memcpy(void *restrict dst, const void *restrict src, size_t len);
553 *
554 * memcpy is specifically restricted to working on
555 * non-overlapping regions, so we can just copy forward.
556 */
557 LEAF_ENTRY(memcpy)
558 copy %arg0, %ret0
559 #define _LABEL(l) __CONCAT(memcpy,l)
560 _COPY_FORWARD(%sr0,%arg1,%sr0,%arg0,%arg2)
561 _LABEL(_done):
562 bv,n %r0(%rp)
563 nop
564 EXIT(memcpy)
565 #endif /* MEMCPY */
566
567 #ifdef BCOPY
568 /*
569 * void bcopy(const void *src, void *dst, size_t len);
570 */
571 LEAF_ENTRY(bcopy)
572 copy %arg0, %r1
573 copy %arg1, %arg0
574 copy %r1, %arg1
575 /* FALLTHROUGH */
576 #define _LABEL_F(l) __CONCAT(bcopy_F,l)
577 #define _LABEL_R(l) __CONCAT(bcopy_R,l)
578 #endif
579
580 #ifdef MEMMOVE
581 /*
582 * void *memmove(void *dst, const void *src, size_t len);
583 */
584 LEAF_ENTRY(memmove)
585 #define _LABEL_F(l) __CONCAT(memmove_F,l)
586 #define _LABEL_R(l) __CONCAT(memmove_R,l)
587 copy %arg0, %ret0
588 #endif /* MEMMOVE */
589
590 #if defined(BCOPY) || defined(MEMMOVE)
591
592 /*
593 * If src >= dst or src + len <= dst, we copy
594 * forward, else we copy in reverse.
595 */
596 add %arg1, %arg2, %r1
597 comb,>>=,n %arg1, %arg0, 0
598 comb,>>,n %r1, %arg0, _LABEL_R(_go)
599
600 #define _LABEL _LABEL_F
601 _COPY_FORWARD(%sr0,%arg1,%sr0,%arg0,%arg2)
602 #undef _LABEL
603
604 _LABEL_R(_go):
605 #define _LABEL _LABEL_R
606 _COPY_REVERSE(%sr0,%arg1,%sr0,%arg0,%arg2)
607 #undef _LABEL
608
609 _LABEL_F(_done):
610 _LABEL_R(_done):
611 bv,n %r0(%rp)
612 nop
613 #ifdef BCOPY
614 EXIT(bcopy)
615 #else
616 EXIT(memmove)
617 #endif
618 #endif /* BCOPY || MEMMOVE */
619