bcopy.S revision 1.3.10.1 1 /* $NetBSD: bcopy.S,v 1.3.10.1 2005/03/19 08:36:21 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matthew Fredette.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Copy routines for NetBSD/hppa.
41 */
42
43 #undef _LOCORE
44 #define _LOCORE /* XXX fredette - unfortunate */
45 #include <machine/asm.h>
46 #include <machine/frame.h>
47
48 #if defined(LIBC_SCCS) && !defined(lint)
49 RCSID("$NetBSD: bcopy.S,v 1.3.10.1 2005/03/19 08:36:21 yamt Exp $")
50 #endif /* LIBC_SCCS and not lint */
51
52 /*
53 * The stbys instruction is a little asymmetric. When (%r2 & 3)
54 * is zero, stbys,b,m %r1, 4(%r2) works like stws,ma. You
55 * might then wish that when (%r2 & 3) == 0, stbys,e,m %r1, -4(%r2)
56 * worked like stws,mb. But it doesn't.
57 *
58 * This macro works around this problem. It requires that %t2
59 * hold the number of bytes that will be written by this store
60 * (meaning that it ranges from one to four).
61 *
62 * Watch the delay-slot trickery here. The comib is used to set
63 * up which instruction, either the stws or the stbys, is run
64 * in the delay slot of the b instruction.
65 */
66 #define _STBYS_E_M(r, dst_spc, dst_off) \
67 comib,<> 4, %t2, 4 ! \
68 b 4 ! \
69 stws,mb r, -4(dst_spc, dst_off) ! \
70 stbys,e,m r, 0(dst_spc, dst_off)
71
72 /*
73 * This macro does a bulk copy with no shifting. cmplt and m are
74 * the completer and displacement multiplier, respectively, for
75 * the load and store instructions.
76 */
77 #define _COPY(src_spc, src_off, dst_spc, dst_off, count, cmplt, m) \
78 ! \
79 /* ! \
80 * Loop storing 16 bytes at a time. Since count ! \
81 * may be > INT_MAX, we have to be careful and ! \
82 * avoid comparisons that treat it as a signed ! \
83 * quantity, until after this loop, when count ! \
84 * is guaranteed to be less than 16. ! \
85 */ ! \
86 comib,>>=,n 15, count, _LABEL(_skip16) ! \
87 .label _LABEL(_loop16) ! \
88 addi -16, count, count ! \
89 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
90 ldws,cmplt m*4(src_spc, src_off), %t2 ! \
91 ldws,cmplt m*4(src_spc, src_off), %t3 ! \
92 ldws,cmplt m*4(src_spc, src_off), %t4 ! \
93 stws,cmplt %t1, m*4(dst_spc, dst_off) ! \
94 stws,cmplt %t2, m*4(dst_spc, dst_off) ! \
95 stws,cmplt %t3, m*4(dst_spc, dst_off) ! \
96 comib,<< 15, count, _LABEL(_loop16) ! \
97 stws,cmplt %t4, m*4(dst_spc, dst_off) ! \
98 .label _LABEL(_skip16) ! \
99 ! \
100 /* Loop storing 4 bytes at a time. */ ! \
101 addib,<,n -4, count, _LABEL(_skip4) ! \
102 .label _LABEL(_loop4) ! \
103 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
104 addib,>= -4, count, _LABEL(_loop4) ! \
105 stws,cmplt %t1, m*4(dst_spc, dst_off) ! \
106 .label _LABEL(_skip4) ! \
107 /* Restore the correct count. */ ! \
108 addi 4, count, count ! \
109 ! \
110 .label _LABEL(_do1) ! \
111 ! \
112 /* Loop storing 1 byte at a time. */ ! \
113 addib,<,n -1, count, _LABEL(_skip1) ! \
114 .label _LABEL(_loop1) ! \
115 ldbs,cmplt m*1(src_spc, src_off), %t1 ! \
116 addib,>= -1, count, _LABEL(_loop1) ! \
117 stbs,cmplt %t1, m*1(dst_spc, dst_off) ! \
118 .label _LABEL(_skip1) ! \
119 /* Restore the correct count. */ ! \
120 b _LABEL(_done) ! \
121 addi 1, count, count
122
123 /*
124 * This macro is definitely strange. It exists purely to
125 * allow the _COPYS macro to be reused, but because it
126 * requires this long attempt to explain it, I'm starting
127 * to doubt the value of that.
128 *
129 * Part of the expansion of the _COPYS macro below are loops
130 * that copy four words or one word at a time, performing shifts
131 * to get data to line up correctly in the destination buffer.
132 *
133 * The _COPYS macro is used when copying backwards, as well
134 * as forwards. The 4-word loop always loads into %t1, %t2, %t3,
135 * and %t4 in that order. This means that when copying forward,
136 * %t1 will have the word from the lowest address, and %t4 will
137 * have the word from the highest address. When copying
138 * backwards, the opposite is true.
139 *
140 * The shift instructions need pairs of registers with adjacent
141 * words, with the register containing the word from the lowest
142 * address *always* coming first. It is this assymetry that
143 * gives rise to this macro - depending on which direction
144 * we're copying in, these ordered pairs are different.
145 *
146 * Fortunately, we can compute those register numbers at compile
147 * time, and assemble them manually into a shift instruction.
148 * That's what this macro does.
149 *
150 * This macro takes two arguments. n ranges from 0 to 3 and
151 * is the "shift number", i.e., n = 0 means we're doing the
152 * shift for what will be the first store.
153 *
154 * m is the displacement multiplier from the _COPYS macro call.
155 * This is 1 for a forward copy and -1 for a backwards copy.
156 * So, the ((m + 1) / 2) term yields 0 for a backwards copy and
157 * 1 for a forward copy, and the ((m - 1) / 2) term yields
158 * 0 for a forward copy, and -1 for a backwards copy.
159 * These terms are used to discriminate the register computations
160 * below.
161 *
162 * When copying forward, then, the first register used with
163 * the first vshd will be 19 + (3 - ((0 - 1) & 3)), or %t4,
164 * which matches _COPYS' requirement that the word last loaded
165 * be in %t4. The first register used for the second vshd
166 * will then "wrap" around to 19 + (3 - ((1 - 1) & 3)), or %t1.
167 * And so on to %t2 and %t3.
168 *
169 * When copying forward, the second register used with the first
170 * vshd will be (19 + (3 - ((n + 0) & 3)), or %t1. It will
171 * continue to be %t2, then %t3, and finally %t4.
172 *
173 * When copying backwards, the values for the first and second
174 * register for each vshd are reversed from the forwards case.
175 * (Symmetry reclaimed!) Proving this is "left as an exercise
176 * for the reader" (remember the different discriminating values!)
177 */
178 #define _VSHD(n, m, t) \
179 .word (0xd0000000 | \
180 ((19 + (3 - ((n - 1 * ((m + 1) / 2)) & 3))) << 16) | \
181 ((19 + (3 - ((n + 1 * ((m - 1) / 2)) & 3))) << 21) | \
182 (t))
183
184 /*
185 * This macro does a bulk copy with shifting. cmplt and m are
186 * the completer and displacement multiplier, respectively, for
187 * the load and store instructions. It is assumed that the
188 * word last loaded is already in %t4.
189 */
190 #define _COPYS(src_spc, src_off, dst_spc, dst_off, count, cmplt, m) \
191 ! \
192 /* ! \
193 * Loop storing 16 bytes at a time. Since count ! \
194 * may be > INT_MAX, we have to be careful and ! \
195 * avoid comparisons that treat it as a signed ! \
196 * quantity, until after this loop, when count ! \
197 * is guaranteed to be less than 16. ! \
198 */ ! \
199 comib,>>=,n 15, count, _LABEL(S_skip16) ! \
200 .label _LABEL(S_loop16) ! \
201 addi -16, count, count ! \
202 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
203 ldws,cmplt m*4(src_spc, src_off), %t2 ! \
204 ldws,cmplt m*4(src_spc, src_off), %t3 ! \
205 _VSHD(0, m, 1) /* vshd %t4, %t1, %r1 */ ! \
206 ldws,cmplt m*4(src_spc, src_off), %t4 ! \
207 _VSHD(1, m, 22) /* vshd %t1, %t2, %t1 */ ! \
208 _VSHD(2, m, 21) /* vshd %t2, %t3, %t2 */ ! \
209 _VSHD(3, m, 20) /* vshd %t3, %t4, %t3 */ ! \
210 stws,cmplt %r1, m*4(dst_spc, dst_off) ! \
211 stws,cmplt %t1, m*4(dst_spc, dst_off) ! \
212 stws,cmplt %t2, m*4(dst_spc, dst_off) ! \
213 comib,<< 15, count, _LABEL(S_loop16) ! \
214 stws,cmplt %t3, m*4(dst_spc, dst_off) ! \
215 .label _LABEL(S_skip16) ! \
216 ! \
217 /* Loop storing 4 bytes at a time. */ ! \
218 addib,<,n -4, count, _LABEL(S_skip4) ! \
219 .label _LABEL(S_loop4) ! \
220 ldws,cmplt m*4(src_spc, src_off), %t1 ! \
221 _VSHD(0, m, 1) /* into %r1 (1) */ ! \
222 copy %t1, %t4 ! \
223 addib,>= -4, count, _LABEL(S_loop4) ! \
224 stws,cmplt %r1, m*4(dst_spc, dst_off) ! \
225 .label _LABEL(S_skip4) ! \
226 ! \
227 /* ! \
228 * We now need to "back up" src_off by the ! \
229 * number of bytes remaining in the FIFO ! \
230 * (i.e., the number of bytes remaining in %t4), ! \
231 * because (the correct) count still includes ! \
232 * these bytes, and we intent to keep it that ! \
233 * way, and finish with the single-byte copier. ! \
234 * ! \
235 * The number of bytes remaining in the FIFO is ! \
236 * related to the shift count, so recover it, ! \
237 * restoring the correct count at the same time. ! \
238 */ ! \
239 mfctl %cr11, %t1 ! \
240 addi 4, count, count ! \
241 shd %r0, %t1, 3, %t1 ! \
242 ! \
243 /* ! \
244 * If we're copying forward, the shift count ! \
245 * is the number of bytes remaining in the ! \
246 * FIFO, and we want to subtract it from src_off. ! \
247 * If we're copying backwards, (4 - shift count) ! \
248 * is the number of bytes remaining in the FIFO, ! \
249 * and we want to add it to src_off. ! \
250 * ! \
251 * We observe that x + (4 - y) = x - (y - 4), ! \
252 * and introduce this instruction to add -4 when ! \
253 * m is -1, although this does mean one extra ! \
254 * instruction in the forward case. ! \
255 */ ! \
256 addi 4*((m - 1) / 2), %t1, %t1 ! \
257 ! \
258 /* Now branch to the byte-at-a-time loop. */ ! \
259 b _LABEL(_do1) ! \
260 sub src_off, %t1, src_off
261
262 /*
263 * This macro copies a region in the forward direction.
264 */
265 #define _COPY_FORWARD(src_spc, src_off, dst_spc, dst_off, count) \
266 ! \
267 /* ! \
268 * Since in the shifting-left case we will ! \
269 * load 8 bytes before checking count, to ! \
270 * keep things simple, branch to the byte ! \
271 * copier unless we're copying at least 8. ! \
272 */ ! \
273 comib,>>,n 8, count, _LABEL(_do1) ! \
274 ! \
275 /* ! \
276 * Once we 4-byte align the source offset, ! \
277 * figure out how many bytes from the region ! \
278 * will be in the first 4-byte word we read. ! \
279 * Ditto for writing the destination offset. ! \
280 */ ! \
281 extru src_off, 31, 2, %t1 ! \
282 extru dst_off, 31, 2, %t2 ! \
283 subi 4, %t1, %t1 ! \
284 subi 4, %t2, %t2 ! \
285 ! \
286 /* ! \
287 * Calculate the byte shift required. A ! \
288 * positive value means a source 4-byte word ! \
289 * has to be shifted to the right to line up ! \
290 * as a destination 4-byte word. ! \
291 */ ! \
292 sub %t1, %t2, %t1 ! \
293 ! \
294 /* 4-byte align src_off. */ ! \
295 depi 0, 31, 2, src_off ! \
296 ! \
297 /* ! \
298 * It's somewhat important to note that this ! \
299 * code thinks of count as "the number of bytes ! \
300 * that haven't been stored yet", as opposed to ! \
301 * "the number of bytes that haven't been copied ! \
302 * yet". The distinction is subtle, but becomes ! \
303 * apparent at the end of the shifting code, where ! \
304 * we "back up" src_off to correspond to count, ! \
305 * as opposed to flushing the FIFO. ! \
306 * ! \
307 * We calculated above how many bytes our first ! \
308 * store will store, so update count now. ! \
309 * ! \
310 * If the shift is zero, strictly as an optimization ! \
311 * we use a copy loop that does no shifting. ! \
312 */ ! \
313 comb,<> %r0, %t1, _LABEL(_shifting) ! \
314 sub count, %t2, count ! \
315 ! \
316 /* Load and store the first word. */ ! \
317 ldws,ma 4(src_spc, src_off), %t4 ! \
318 stbys,b,m %t4, 4(dst_spc, dst_off) ! \
319 ! \
320 /* Do the rest of the copy. */ ! \
321 _COPY(src_spc,src_off,dst_spc,dst_off,count,ma,1) ! \
322 ! \
323 .label _LABEL(_shifting) ! \
324 ! \
325 /* ! \
326 * If shift < 0, we need to shift words to the ! \
327 * left. Since we can't do this directly, we ! \
328 * adjust the shift so it's a shift to the right ! \
329 * and load the first word into the high word of ! \
330 * the FIFO. Otherwise, we load a zero into the ! \
331 * high word of the FIFO. ! \
332 */ ! \
333 comb,<= %r0, %t1, _LABEL(_shiftingrt) ! \
334 copy %r0, %t3 ! \
335 addi 4, %t1, %t1 ! \
336 ldws,ma 4(src_spc, src_off), %t3 ! \
337 .label _LABEL(_shiftingrt) ! \
338 ! \
339 /* ! \
340 * Turn the shift byte count into a bit count, ! \
341 * load the next word, set the Shift Amount ! \
342 * Register, and form and store the first word. ! \
343 */ ! \
344 sh3add %t1, %r0, %t1 ! \
345 ldws,ma 4(src_spc, src_off), %t4 ! \
346 mtctl %t1, %cr11 ! \
347 vshd %t3, %t4, %r1 ! \
348 stbys,b,m %r1, 4(dst_spc, dst_off) ! \
349 ! \
350 /* Do the rest of the copy. */ ! \
351 _COPYS(src_spc,src_off,dst_spc,dst_off,count,ma,1)
352
353 /* This macro copies a region in the reverse direction. */
354 #define _COPY_REVERSE(src_spc, src_off, dst_spc, dst_off, count) \
355 ! \
356 /* Immediately add count to both offsets. */ ! \
357 add src_off, count, src_off ! \
358 add dst_off, count, dst_off ! \
359 ! \
360 /* ! \
361 * Since in the shifting-right case we ! \
362 * will load 8 bytes before checking ! \
363 * count, to keep things simple, branch ! \
364 * to the byte copier unless we're ! \
365 * copying at least 8 bytes. ! \
366 */ ! \
367 comib,>>,n 8, count, _LABEL(_do1) ! \
368 ! \
369 /* ! \
370 * Once we 4-byte align the source offset, ! \
371 * figure out how many bytes from the region ! \
372 * will be in the first 4-byte word we read. ! \
373 * Ditto for writing the destination offset. ! \
374 */ ! \
375 extru,<> src_off, 31, 2, %t1 ! \
376 ldi 4, %t1 ! \
377 extru,<> dst_off, 31, 2, %t2 ! \
378 ldi 4, %t2 ! \
379 ! \
380 /* ! \
381 * Calculate the byte shift required. A ! \
382 * positive value means a source 4-byte ! \
383 * word has to be shifted to the right to ! \
384 * line up as a destination 4-byte word. ! \
385 */ ! \
386 sub %t2, %t1, %t1 ! \
387 ! \
388 /* ! \
389 * 4-byte align src_off, leaving it pointing ! \
390 * to the 4-byte word *after* the next word ! \
391 * we intend to load. ! \
392 * ! \
393 * It's somewhat important to note that this ! \
394 * code thinks of count as "the number of bytes ! \
395 * that haven't been stored yet", as opposed to ! \
396 * "the number of bytes that haven't been copied ! \
397 * yet". The distinction is subtle, but becomes ! \
398 * apparent at the end of the shifting code, where ! \
399 * we "back up" src_off to correspond to count, ! \
400 * as opposed to flushing the FIFO. ! \
401 * ! \
402 * We calculated above how many bytes our first ! \
403 * store will store, so update count now. ! \
404 * ! \
405 * If the shift is zero, we use a copy loop that ! \
406 * does no shifting. NB: unlike the forward case, ! \
407 * this is NOT strictly an optimization. If the ! \
408 * SAR is zero the vshds do NOT do the right thing. ! \
409 * This is another assymetry more or less the "fault" ! \
410 * of vshd. ! \
411 */ ! \
412 addi 3, src_off, src_off ! \
413 sub count, %t2, count ! \
414 comb,<> %r0, %t1, _LABEL(_shifting) ! \
415 depi 0, 31, 2, src_off ! \
416 ! \
417 /* Load and store the first word. */ ! \
418 ldws,mb -4(src_spc, src_off), %t4 ! \
419 _STBYS_E_M(%t4, dst_spc, dst_off) ! \
420 ! \
421 /* Do the rest of the copy. */ ! \
422 _COPY(src_spc,src_off,dst_spc,dst_off,count,mb,-1) ! \
423 ! \
424 .label _LABEL(_shifting) ! \
425 ! \
426 /* ! \
427 * If shift < 0, we need to shift words to the ! \
428 * left. Since we can't do this directly, we ! \
429 * adjust the shift so it's a shift to the right ! \
430 * and load a zero in to the low word of the FIFO. ! \
431 * Otherwise, we load the first word into the ! \
432 * low word of the FIFO. ! \
433 * ! \
434 * Note the nullification trickery here. We ! \
435 * assume that we're shifting to the left, and ! \
436 * load zero into the low word of the FIFO. Then ! \
437 * we nullify the addi if we're shifting to the ! \
438 * right. If the addi is not nullified, we are ! \
439 * shifting to the left, so we nullify the load. ! \
440 * we branch if we're shifting to the ! \
441 */ ! \
442 copy %r0, %t3 ! \
443 comb,<=,n %r0, %t1, 0 ! \
444 addi,tr 4, %t1, %t1 ! \
445 ldws,mb -4(src_spc, src_off), %t3 ! \
446 ! \
447 /* ! \
448 * Turn the shift byte count into a bit count, ! \
449 * load the next word, set the Shift Amount ! \
450 * Register, and form and store the first word. ! \
451 */ ! \
452 sh3add %t1, %r0, %t1 ! \
453 ldws,mb -4(src_spc, src_off), %t4 ! \
454 mtctl %t1, %cr11 ! \
455 vshd %t4, %t3, %r1 ! \
456 _STBYS_E_M(%r1, dst_spc, dst_off) ! \
457 ! \
458 /* Do the rest of the copy. */ ! \
459 _COPYS(src_spc,src_off,dst_spc,dst_off,count,mb,-1)
460
461 /*
462 * For paranoia, when things aren't going well, enable this
463 * code to assemble byte-at-a-time-only copying.
464 */
465 #if 1
466 #undef _COPY_FORWARD
467 #define _COPY_FORWARD(src_spc, src_off, dst_spc, dst_off, count) \
468 comb,=,n %r0, count, _LABEL(_done) ! \
469 ldbs,ma 1(src_spc, src_off), %r1 ! \
470 addib,<> -1, count, -12 ! \
471 stbs,ma %r1, 1(dst_spc, dst_off) ! \
472 b,n _LABEL(_done)
473 #undef _COPY_REVERSE
474 #define _COPY_REVERSE(src_spc, src_off, dst_spc, dst_off, count) \
475 comb,= %r0, count, _LABEL(_done) ! \
476 add src_off, count, src_off ! \
477 add dst_off, count, dst_off ! \
478 ldbs,mb -1(src_spc, src_off), %r1 ! \
479 addib,<> -1, count, -12 ! \
480 stbs,mb %r1, -1(dst_spc, dst_off) ! \
481 b,n _LABEL(_done)
482 #endif
483
484 /*
485 * If none of the following are defined, define BCOPY.
486 */
487 #if !(defined(SPCOPY) || defined(MEMCPY) || defined(MEMMOVE))
488 #define BCOPY
489 #endif
490
491 #if defined(SPCOPY) && !defined(_STANDALONE)
492 #include <sys/errno.h>
493 #include "assym.h"
494
495 /*
496 * int spcopy(pa_space_t ssp, const void *src, pa_space_t dsp, void *dst,
497 * size_t len)
498 *
499 * We assume that the regions do not overlap.
500 */
501 LEAF_ENTRY(spcopy)
502
503 /*
504 * Setup the fault handler, and load %ret0
505 * with EFAULT, assuming the copy will fail.
506 */
507 .import curlwp, data
508 ldil L%curlwp, %r31
509 ldw R%curlwp(%r31), %r31
510 #ifdef DIAGNOSTIC
511 comb,<>,n %r0, %r31, Lspcopy_curlwp_ok
512 ldil L%panic, %r1
513 ldil L%Lspcopy_curlwp_bad, %arg0
514 ldo R%panic(%r1), %r1
515 ldo R%Lspcopy_curlwp_bad(%arg0), %arg0
516 .call
517 bv,n %r0(%r1)
518 nop
519 Lspcopy_curlwp_bad:
520 .asciz "spcopy: curlwp == NULL\n"
521 .align 8
522 Lspcopy_curlwp_ok:
523 #endif /* DIAGNOSTIC */
524 ldil L%spcopy_fault, %r1
525 ldw L_ADDR(%r31), %r31
526 ldo R%spcopy_fault(%r1), %r1
527 ldi EFAULT, %ret0
528 stw %r1, U_PCB+PCB_ONFAULT(%r31)
529
530 /* Setup the space registers. */
531 mfsp %sr2, %ret1
532 mtsp %arg0, %sr1
533 mtsp %arg2, %sr2
534
535 /* Get the len argument and do the copy. */
536 ldw HPPA_FRAME_ARG(4)(%sp), %arg0
537 #define _LABEL(l) __CONCAT(spcopy,l)
538 _COPY_FORWARD(%sr1,%arg1,%sr2,%arg3,%arg0)
539 _LABEL(_done):
540
541 /* Return. */
542 copy %r0, %ret0
543 ALTENTRY(spcopy_fault)
544 stw %r0, U_PCB+PCB_ONFAULT(%r31)
545 bv %r0(%rp)
546 mtsp %ret1, %sr2
547 EXIT(spcopy)
548 #endif /* SPCOPY && !_STANDALONE */
549
550 #ifdef MEMCPY
551 /*
552 * void *memcpy(void * restrict dst, const void * restrict src, size_t len);
553 *
554 * memcpy is specifically restricted to working on
555 * non-overlapping regions, so we can just copy forward.
556 */
557 LEAF_ENTRY(memcpy)
558 copy %arg0, %ret0
559 #define _LABEL(l) __CONCAT(memcpy,l)
560 _COPY_FORWARD(%sr0,%arg1,%sr0,%arg0,%arg2)
561 _LABEL(_done):
562 bv,n %r0(%rp)
563 nop
564 EXIT(memcpy)
565 #endif /* MEMCPY */
566
567 #ifdef BCOPY
568 /*
569 * void bcopy(const void *src, void *dst, size_t len);
570 */
571 LEAF_ENTRY(bcopy)
572 copy %arg0, %r1
573 copy %arg1, %arg0
574 copy %r1, %arg1
575 /* FALLTHROUGH */
576 #define _LABEL_F(l) __CONCAT(bcopy_F,l)
577 #define _LABEL_R(l) __CONCAT(bcopy_R,l)
578 #endif
579
580 #ifdef MEMMOVE
581 /*
582 * void *memmove(void *dst, const void *src, size_t len);
583 */
584 LEAF_ENTRY(memmove)
585 #define _LABEL_F(l) __CONCAT(memmove_F,l)
586 #define _LABEL_R(l) __CONCAT(memmove_R,l)
587 copy %arg0, %ret0
588 #endif /* MEMMOVE */
589
590 #if defined(BCOPY) || defined(MEMMOVE)
591
592 /*
593 * If src >= dst or src + len <= dst, we copy
594 * forward, else we copy in reverse.
595 */
596 add %arg1, %arg2, %r1
597 comb,>>=,n %arg1, %arg0, 0
598 comb,>>,n %r1, %arg0, _LABEL_R(_go)
599
600 #define _LABEL _LABEL_F
601 _COPY_FORWARD(%sr0,%arg1,%sr0,%arg0,%arg2)
602 #undef _LABEL
603
604 _LABEL_R(_go):
605 #define _LABEL _LABEL_R
606 _COPY_REVERSE(%sr0,%arg1,%sr0,%arg0,%arg2)
607 #undef _LABEL
608
609 _LABEL_F(_done):
610 _LABEL_R(_done):
611 bv,n %r0(%rp)
612 nop
613 #ifdef BCOPY
614 EXIT(bcopy)
615 #else
616 EXIT(memmove)
617 #endif
618 #endif /* BCOPY || MEMMOVE */
619