Home | History | Annotate | Line # | Download | only in sparc
divrem.m4 revision 1.6.42.1
      1       1.1  deraadt /*
      2       1.1  deraadt  * Copyright (c) 1992, 1993
      3       1.1  deraadt  *	The Regents of the University of California.  All rights reserved.
      4       1.1  deraadt  *
      5       1.1  deraadt  * This software was developed by the Computer Systems Engineering group
      6       1.1  deraadt  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7       1.1  deraadt  * contributed to Berkeley.
      8       1.1  deraadt  *
      9       1.1  deraadt  * Redistribution and use in source and binary forms, with or without
     10       1.1  deraadt  * modification, are permitted provided that the following conditions
     11       1.1  deraadt  * are met:
     12       1.1  deraadt  * 1. Redistributions of source code must retain the above copyright
     13       1.1  deraadt  *    notice, this list of conditions and the following disclaimer.
     14       1.1  deraadt  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1  deraadt  *    notice, this list of conditions and the following disclaimer in the
     16       1.1  deraadt  *    documentation and/or other materials provided with the distribution.
     17  1.6.42.1    skrll  * 3. Neither the name of the University nor the names of its contributors
     18       1.1  deraadt  *    may be used to endorse or promote products derived from this software
     19       1.1  deraadt  *    without specific prior written permission.
     20       1.1  deraadt  *
     21       1.1  deraadt  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22       1.1  deraadt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23       1.1  deraadt  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24       1.1  deraadt  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25       1.1  deraadt  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26       1.1  deraadt  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27       1.1  deraadt  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28       1.1  deraadt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29       1.1  deraadt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30       1.1  deraadt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31       1.1  deraadt  * SUCH DAMAGE.
     32       1.1  deraadt  *
     33       1.4       pk  * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
     34  1.6.42.1    skrll  * $NetBSD: divrem.m4,v 1.6.42.1 2004/08/03 10:53:50 skrll Exp $
     35       1.1  deraadt  */
     36       1.1  deraadt 
     37       1.1  deraadt /*
     38       1.1  deraadt  * Division and remainder, from Appendix E of the Sparc Version 8
     39       1.1  deraadt  * Architecture Manual, with fixes from Gordon Irlam.
     40       1.1  deraadt  */
     41       1.1  deraadt 
     42       1.1  deraadt #if defined(LIBC_SCCS) && !defined(lint)
     43       1.1  deraadt 	.asciz "@(#)divrem.m4	8.1 (Berkeley) 6/4/93"
     44       1.1  deraadt #endif /* LIBC_SCCS and not lint */
     45       1.1  deraadt 
     46       1.1  deraadt /*
     47       1.1  deraadt  * Input: dividend and divisor in %o0 and %o1 respectively.
     48       1.1  deraadt  *
     49       1.1  deraadt  * m4 parameters:
     50       1.1  deraadt  *  NAME	name of function to generate
     51       1.1  deraadt  *  OP		OP=div => %o0 / %o1; OP=rem => %o0 % %o1
     52       1.1  deraadt  *  S		S=true => signed; S=false => unsigned
     53       1.1  deraadt  *
     54       1.1  deraadt  * Algorithm parameters:
     55       1.1  deraadt  *  N		how many bits per iteration we try to get (4)
     56       1.1  deraadt  *  WORDSIZE	total number of bits (32)
     57       1.1  deraadt  *
     58       1.1  deraadt  * Derived constants:
     59       1.1  deraadt  *  TWOSUPN	2^N, for label generation (m4 exponentiation currently broken)
     60       1.1  deraadt  *  TOPBITS	number of bits in the top `decade' of a number
     61       1.1  deraadt  *
     62       1.1  deraadt  * Important variables:
     63       1.1  deraadt  *  Q		the partial quotient under development (initially 0)
     64       1.1  deraadt  *  R		the remainder so far, initially the dividend
     65       1.1  deraadt  *  ITER	number of main division loop iterations required;
     66       1.1  deraadt  *		equal to ceil(log2(quotient) / N).  Note that this
     67       1.1  deraadt  *		is the log base (2^N) of the quotient.
     68       1.1  deraadt  *  V		the current comparand, initially divisor*2^(ITER*N-1)
     69       1.1  deraadt  *
     70       1.1  deraadt  * Cost:
     71       1.1  deraadt  *  Current estimate for non-large dividend is
     72       1.1  deraadt  *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
     73       1.1  deraadt  *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
     74       1.1  deraadt  *  different path, as the upper bits of the quotient must be developed
     75       1.1  deraadt  *  one bit at a time.
     76       1.1  deraadt  */
     77       1.1  deraadt 
     78       1.1  deraadt define(N, `4')
     79       1.1  deraadt define(TWOSUPN, `16')
     80       1.1  deraadt define(WORDSIZE, `32')
     81       1.1  deraadt define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
     82       1.1  deraadt 
     83       1.1  deraadt define(dividend, `%o0')
     84       1.1  deraadt define(divisor, `%o1')
     85       1.1  deraadt define(Q, `%o2')
     86       1.1  deraadt define(R, `%o3')
     87       1.1  deraadt define(ITER, `%o4')
     88       1.1  deraadt define(V, `%o5')
     89       1.1  deraadt 
     90       1.1  deraadt /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
     91       1.1  deraadt define(T, `%g1')
     92       1.1  deraadt define(SC, `%g7')
     93       1.1  deraadt ifelse(S, `true', `define(SIGN, `%g6')')
     94       1.1  deraadt 
     95       1.1  deraadt /*
     96       1.1  deraadt  * This is the recursive definition for developing quotient digits.
     97       1.1  deraadt  *
     98       1.1  deraadt  * Parameters:
     99       1.1  deraadt  *  $1	the current depth, 1 <= $1 <= N
    100       1.1  deraadt  *  $2	the current accumulation of quotient bits
    101       1.1  deraadt  *  N	max depth
    102       1.1  deraadt  *
    103       1.1  deraadt  * We add a new bit to $2 and either recurse or insert the bits in
    104       1.1  deraadt  * the quotient.  R, Q, and V are inputs and outputs as defined above;
    105       1.1  deraadt  * the condition codes are expected to reflect the input R, and are
    106       1.1  deraadt  * modified to reflect the output R.
    107       1.1  deraadt  */
    108       1.1  deraadt define(DEVELOP_QUOTIENT_BITS,
    109       1.1  deraadt `	! depth $1, accumulated bits $2
    110       1.1  deraadt 	bl	L.$1.eval(TWOSUPN+$2)
    111       1.1  deraadt 	srl	V,1,V
    112       1.1  deraadt 	! remainder is positive
    113       1.1  deraadt 	subcc	R,V,R
    114       1.1  deraadt 	ifelse($1, N,
    115       1.1  deraadt 	`	b	9f
    116       1.1  deraadt 		add	Q, ($2*2+1), Q
    117       1.1  deraadt 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
    118       1.1  deraadt L.$1.eval(TWOSUPN+$2):
    119       1.1  deraadt 	! remainder is negative
    120       1.1  deraadt 	addcc	R,V,R
    121       1.1  deraadt 	ifelse($1, N,
    122       1.1  deraadt 	`	b	9f
    123       1.1  deraadt 		add	Q, ($2*2-1), Q
    124       1.1  deraadt 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
    125       1.1  deraadt 	ifelse($1, 1, `9:')')
    126       1.1  deraadt 
    127       1.4       pk #include <machine/asm.h>
    128       1.1  deraadt #include <machine/trap.h>
    129       1.1  deraadt 
    130       1.1  deraadt FUNC(NAME)
    131       1.1  deraadt ifelse(S, `true',
    132       1.1  deraadt `	! compute sign of result; if neither is negative, no problem
    133       1.1  deraadt 	orcc	divisor, dividend, %g0	! either negative?
    134       1.1  deraadt 	bge	2f			! no, go do the divide
    135       1.3       pk 	ifelse(OP, `div',
    136       1.3       pk 		`xor	divisor, dividend, SIGN',
    137       1.3       pk 		`mov	dividend, SIGN')	! compute sign in any case
    138       1.1  deraadt 	tst	divisor
    139       1.1  deraadt 	bge	1f
    140       1.1  deraadt 	tst	dividend
    141       1.1  deraadt 	! divisor is definitely negative; dividend might also be negative
    142       1.1  deraadt 	bge	2f			! if dividend not negative...
    143       1.1  deraadt 	neg	divisor			! in any case, make divisor nonneg
    144       1.1  deraadt 1:	! dividend is negative, divisor is nonnegative
    145       1.1  deraadt 	neg	dividend		! make dividend nonnegative
    146       1.1  deraadt 2:
    147       1.1  deraadt ')
    148       1.1  deraadt 	! Ready to divide.  Compute size of quotient; scale comparand.
    149       1.1  deraadt 	orcc	divisor, %g0, V
    150       1.1  deraadt 	bnz	1f
    151       1.1  deraadt 	mov	dividend, R
    152       1.1  deraadt 
    153       1.1  deraadt 		! Divide by zero trap.  If it returns, return 0 (about as
    154       1.1  deraadt 		! wrong as possible, but that is what SunOS does...).
    155       1.1  deraadt 		t	ST_DIV0
    156       1.1  deraadt 		retl
    157       1.1  deraadt 		clr	%o0
    158       1.1  deraadt 
    159       1.1  deraadt 1:
    160       1.1  deraadt 	cmp	R, V			! if divisor exceeds dividend, done
    161       1.1  deraadt 	blu	Lgot_result		! (and algorithm fails otherwise)
    162       1.1  deraadt 	clr	Q
    163       1.1  deraadt 	sethi	%hi(1 << (WORDSIZE - TOPBITS - 1)), T
    164       1.1  deraadt 	cmp	R, T
    165       1.1  deraadt 	blu	Lnot_really_big
    166       1.1  deraadt 	clr	ITER
    167       1.1  deraadt 
    168       1.1  deraadt 	! `Here the dividend is >= 2^(31-N) or so.  We must be careful here,
    169       1.1  deraadt 	! as our usual N-at-a-shot divide step will cause overflow and havoc.
    170       1.1  deraadt 	! The number of bits in the result here is N*ITER+SC, where SC <= N.
    171       1.1  deraadt 	! Compute ITER in an unorthodox manner: know we need to shift V into
    172       1.1  deraadt 	! the top decade: so do not even bother to compare to R.'
    173       1.1  deraadt 	1:
    174       1.1  deraadt 		cmp	V, T
    175       1.1  deraadt 		bgeu	3f
    176       1.1  deraadt 		mov	1, SC
    177       1.1  deraadt 		sll	V, N, V
    178       1.1  deraadt 		b	1b
    179       1.1  deraadt 		inc	ITER
    180       1.1  deraadt 
    181       1.1  deraadt 	! Now compute SC.
    182       1.1  deraadt 	2:	addcc	V, V, V
    183       1.1  deraadt 		bcc	Lnot_too_big
    184       1.1  deraadt 		inc	SC
    185       1.1  deraadt 
    186       1.1  deraadt 		! We get here if the divisor overflowed while shifting.
    187       1.1  deraadt 		! This means that R has the high-order bit set.
    188       1.1  deraadt 		! Restore V and subtract from R.
    189       1.1  deraadt 		sll	T, TOPBITS, T	! high order bit
    190       1.1  deraadt 		srl	V, 1, V		! rest of V
    191       1.1  deraadt 		add	V, T, V
    192       1.1  deraadt 		b	Ldo_single_div
    193       1.1  deraadt 		dec	SC
    194       1.1  deraadt 
    195       1.1  deraadt 	Lnot_too_big:
    196       1.1  deraadt 	3:	cmp	V, R
    197       1.1  deraadt 		blu	2b
    198       1.1  deraadt 		nop
    199       1.1  deraadt 		be	Ldo_single_div
    200       1.1  deraadt 		nop
    201       1.1  deraadt 	/* NB: these are commented out in the V8-Sparc manual as well */
    202       1.1  deraadt 	/* (I do not understand this) */
    203       1.1  deraadt 	! V > R: went too far: back up 1 step
    204       1.1  deraadt 	!	srl	V, 1, V
    205       1.1  deraadt 	!	dec	SC
    206       1.1  deraadt 	! do single-bit divide steps
    207       1.1  deraadt 	!
    208       1.1  deraadt 	! We have to be careful here.  We know that R >= V, so we can do the
    209       1.1  deraadt 	! first divide step without thinking.  BUT, the others are conditional,
    210       1.1  deraadt 	! and are only done if R >= 0.  Because both R and V may have the high-
    211       1.1  deraadt 	! order bit set in the first step, just falling into the regular
    212       1.1  deraadt 	! division loop will mess up the first time around.
    213       1.1  deraadt 	! So we unroll slightly...
    214       1.1  deraadt 	Ldo_single_div:
    215       1.1  deraadt 		deccc	SC
    216       1.1  deraadt 		bl	Lend_regular_divide
    217       1.1  deraadt 		nop
    218       1.1  deraadt 		sub	R, V, R
    219       1.1  deraadt 		mov	1, Q
    220       1.1  deraadt 		b	Lend_single_divloop
    221       1.1  deraadt 		nop
    222       1.1  deraadt 	Lsingle_divloop:
    223       1.1  deraadt 		sll	Q, 1, Q
    224       1.1  deraadt 		bl	1f
    225       1.1  deraadt 		srl	V, 1, V
    226       1.1  deraadt 		! R >= 0
    227       1.1  deraadt 		sub	R, V, R
    228       1.1  deraadt 		b	2f
    229       1.1  deraadt 		inc	Q
    230       1.1  deraadt 	1:	! R < 0
    231       1.1  deraadt 		add	R, V, R
    232       1.1  deraadt 		dec	Q
    233       1.1  deraadt 	2:
    234       1.1  deraadt 	Lend_single_divloop:
    235       1.1  deraadt 		deccc	SC
    236       1.1  deraadt 		bge	Lsingle_divloop
    237       1.1  deraadt 		tst	R
    238       1.1  deraadt 		b,a	Lend_regular_divide
    239       1.1  deraadt 
    240       1.1  deraadt Lnot_really_big:
    241       1.1  deraadt 1:
    242       1.1  deraadt 	sll	V, N, V
    243       1.1  deraadt 	cmp	V, R
    244       1.1  deraadt 	bleu	1b
    245       1.1  deraadt 	inccc	ITER
    246       1.1  deraadt 	be	Lgot_result
    247       1.1  deraadt 	dec	ITER
    248       1.1  deraadt 
    249       1.1  deraadt 	tst	R	! set up for initial iteration
    250       1.1  deraadt Ldivloop:
    251       1.1  deraadt 	sll	Q, N, Q
    252       1.1  deraadt 	DEVELOP_QUOTIENT_BITS(1, 0)
    253       1.1  deraadt Lend_regular_divide:
    254       1.1  deraadt 	deccc	ITER
    255       1.1  deraadt 	bge	Ldivloop
    256       1.1  deraadt 	tst	R
    257       1.1  deraadt 	bl,a	Lgot_result
    258       1.1  deraadt 	! non-restoring fixup here (one instruction only!)
    259       1.1  deraadt ifelse(OP, `div',
    260       1.1  deraadt `	dec	Q
    261       1.1  deraadt ', `	add	R, divisor, R
    262       1.1  deraadt ')
    263       1.1  deraadt 
    264       1.1  deraadt Lgot_result:
    265       1.1  deraadt ifelse(S, `true',
    266       1.1  deraadt `	! check to see if answer should be < 0
    267       1.1  deraadt 	tst	SIGN
    268       1.1  deraadt 	bl,a	1f
    269       1.1  deraadt 	ifelse(OP, `div', `neg Q', `neg R')
    270       1.1  deraadt 1:')
    271       1.1  deraadt 	retl
    272       1.1  deraadt 	ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
    273