divrem.m4 revision 1.6.42.1 1 1.1 deraadt /*
2 1.1 deraadt * Copyright (c) 1992, 1993
3 1.1 deraadt * The Regents of the University of California. All rights reserved.
4 1.1 deraadt *
5 1.1 deraadt * This software was developed by the Computer Systems Engineering group
6 1.1 deraadt * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7 1.1 deraadt * contributed to Berkeley.
8 1.1 deraadt *
9 1.1 deraadt * Redistribution and use in source and binary forms, with or without
10 1.1 deraadt * modification, are permitted provided that the following conditions
11 1.1 deraadt * are met:
12 1.1 deraadt * 1. Redistributions of source code must retain the above copyright
13 1.1 deraadt * notice, this list of conditions and the following disclaimer.
14 1.1 deraadt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 deraadt * notice, this list of conditions and the following disclaimer in the
16 1.1 deraadt * documentation and/or other materials provided with the distribution.
17 1.6.42.1 skrll * 3. Neither the name of the University nor the names of its contributors
18 1.1 deraadt * may be used to endorse or promote products derived from this software
19 1.1 deraadt * without specific prior written permission.
20 1.1 deraadt *
21 1.1 deraadt * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 1.1 deraadt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 1.1 deraadt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 1.1 deraadt * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 1.1 deraadt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.1 deraadt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 1.1 deraadt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 1.1 deraadt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 1.1 deraadt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 1.1 deraadt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 1.1 deraadt * SUCH DAMAGE.
32 1.1 deraadt *
33 1.4 pk * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
34 1.6.42.1 skrll * $NetBSD: divrem.m4,v 1.6.42.1 2004/08/03 10:53:50 skrll Exp $
35 1.1 deraadt */
36 1.1 deraadt
37 1.1 deraadt /*
38 1.1 deraadt * Division and remainder, from Appendix E of the Sparc Version 8
39 1.1 deraadt * Architecture Manual, with fixes from Gordon Irlam.
40 1.1 deraadt */
41 1.1 deraadt
42 1.1 deraadt #if defined(LIBC_SCCS) && !defined(lint)
43 1.1 deraadt .asciz "@(#)divrem.m4 8.1 (Berkeley) 6/4/93"
44 1.1 deraadt #endif /* LIBC_SCCS and not lint */
45 1.1 deraadt
46 1.1 deraadt /*
47 1.1 deraadt * Input: dividend and divisor in %o0 and %o1 respectively.
48 1.1 deraadt *
49 1.1 deraadt * m4 parameters:
50 1.1 deraadt * NAME name of function to generate
51 1.1 deraadt * OP OP=div => %o0 / %o1; OP=rem => %o0 % %o1
52 1.1 deraadt * S S=true => signed; S=false => unsigned
53 1.1 deraadt *
54 1.1 deraadt * Algorithm parameters:
55 1.1 deraadt * N how many bits per iteration we try to get (4)
56 1.1 deraadt * WORDSIZE total number of bits (32)
57 1.1 deraadt *
58 1.1 deraadt * Derived constants:
59 1.1 deraadt * TWOSUPN 2^N, for label generation (m4 exponentiation currently broken)
60 1.1 deraadt * TOPBITS number of bits in the top `decade' of a number
61 1.1 deraadt *
62 1.1 deraadt * Important variables:
63 1.1 deraadt * Q the partial quotient under development (initially 0)
64 1.1 deraadt * R the remainder so far, initially the dividend
65 1.1 deraadt * ITER number of main division loop iterations required;
66 1.1 deraadt * equal to ceil(log2(quotient) / N). Note that this
67 1.1 deraadt * is the log base (2^N) of the quotient.
68 1.1 deraadt * V the current comparand, initially divisor*2^(ITER*N-1)
69 1.1 deraadt *
70 1.1 deraadt * Cost:
71 1.1 deraadt * Current estimate for non-large dividend is
72 1.1 deraadt * ceil(log2(quotient) / N) * (10 + 7N/2) + C
73 1.1 deraadt * A large dividend is one greater than 2^(31-TOPBITS) and takes a
74 1.1 deraadt * different path, as the upper bits of the quotient must be developed
75 1.1 deraadt * one bit at a time.
76 1.1 deraadt */
77 1.1 deraadt
78 1.1 deraadt define(N, `4')
79 1.1 deraadt define(TWOSUPN, `16')
80 1.1 deraadt define(WORDSIZE, `32')
81 1.1 deraadt define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
82 1.1 deraadt
83 1.1 deraadt define(dividend, `%o0')
84 1.1 deraadt define(divisor, `%o1')
85 1.1 deraadt define(Q, `%o2')
86 1.1 deraadt define(R, `%o3')
87 1.1 deraadt define(ITER, `%o4')
88 1.1 deraadt define(V, `%o5')
89 1.1 deraadt
90 1.1 deraadt /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
91 1.1 deraadt define(T, `%g1')
92 1.1 deraadt define(SC, `%g7')
93 1.1 deraadt ifelse(S, `true', `define(SIGN, `%g6')')
94 1.1 deraadt
95 1.1 deraadt /*
96 1.1 deraadt * This is the recursive definition for developing quotient digits.
97 1.1 deraadt *
98 1.1 deraadt * Parameters:
99 1.1 deraadt * $1 the current depth, 1 <= $1 <= N
100 1.1 deraadt * $2 the current accumulation of quotient bits
101 1.1 deraadt * N max depth
102 1.1 deraadt *
103 1.1 deraadt * We add a new bit to $2 and either recurse or insert the bits in
104 1.1 deraadt * the quotient. R, Q, and V are inputs and outputs as defined above;
105 1.1 deraadt * the condition codes are expected to reflect the input R, and are
106 1.1 deraadt * modified to reflect the output R.
107 1.1 deraadt */
108 1.1 deraadt define(DEVELOP_QUOTIENT_BITS,
109 1.1 deraadt ` ! depth $1, accumulated bits $2
110 1.1 deraadt bl L.$1.eval(TWOSUPN+$2)
111 1.1 deraadt srl V,1,V
112 1.1 deraadt ! remainder is positive
113 1.1 deraadt subcc R,V,R
114 1.1 deraadt ifelse($1, N,
115 1.1 deraadt ` b 9f
116 1.1 deraadt add Q, ($2*2+1), Q
117 1.1 deraadt ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
118 1.1 deraadt L.$1.eval(TWOSUPN+$2):
119 1.1 deraadt ! remainder is negative
120 1.1 deraadt addcc R,V,R
121 1.1 deraadt ifelse($1, N,
122 1.1 deraadt ` b 9f
123 1.1 deraadt add Q, ($2*2-1), Q
124 1.1 deraadt ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
125 1.1 deraadt ifelse($1, 1, `9:')')
126 1.1 deraadt
127 1.4 pk #include <machine/asm.h>
128 1.1 deraadt #include <machine/trap.h>
129 1.1 deraadt
130 1.1 deraadt FUNC(NAME)
131 1.1 deraadt ifelse(S, `true',
132 1.1 deraadt ` ! compute sign of result; if neither is negative, no problem
133 1.1 deraadt orcc divisor, dividend, %g0 ! either negative?
134 1.1 deraadt bge 2f ! no, go do the divide
135 1.3 pk ifelse(OP, `div',
136 1.3 pk `xor divisor, dividend, SIGN',
137 1.3 pk `mov dividend, SIGN') ! compute sign in any case
138 1.1 deraadt tst divisor
139 1.1 deraadt bge 1f
140 1.1 deraadt tst dividend
141 1.1 deraadt ! divisor is definitely negative; dividend might also be negative
142 1.1 deraadt bge 2f ! if dividend not negative...
143 1.1 deraadt neg divisor ! in any case, make divisor nonneg
144 1.1 deraadt 1: ! dividend is negative, divisor is nonnegative
145 1.1 deraadt neg dividend ! make dividend nonnegative
146 1.1 deraadt 2:
147 1.1 deraadt ')
148 1.1 deraadt ! Ready to divide. Compute size of quotient; scale comparand.
149 1.1 deraadt orcc divisor, %g0, V
150 1.1 deraadt bnz 1f
151 1.1 deraadt mov dividend, R
152 1.1 deraadt
153 1.1 deraadt ! Divide by zero trap. If it returns, return 0 (about as
154 1.1 deraadt ! wrong as possible, but that is what SunOS does...).
155 1.1 deraadt t ST_DIV0
156 1.1 deraadt retl
157 1.1 deraadt clr %o0
158 1.1 deraadt
159 1.1 deraadt 1:
160 1.1 deraadt cmp R, V ! if divisor exceeds dividend, done
161 1.1 deraadt blu Lgot_result ! (and algorithm fails otherwise)
162 1.1 deraadt clr Q
163 1.1 deraadt sethi %hi(1 << (WORDSIZE - TOPBITS - 1)), T
164 1.1 deraadt cmp R, T
165 1.1 deraadt blu Lnot_really_big
166 1.1 deraadt clr ITER
167 1.1 deraadt
168 1.1 deraadt ! `Here the dividend is >= 2^(31-N) or so. We must be careful here,
169 1.1 deraadt ! as our usual N-at-a-shot divide step will cause overflow and havoc.
170 1.1 deraadt ! The number of bits in the result here is N*ITER+SC, where SC <= N.
171 1.1 deraadt ! Compute ITER in an unorthodox manner: know we need to shift V into
172 1.1 deraadt ! the top decade: so do not even bother to compare to R.'
173 1.1 deraadt 1:
174 1.1 deraadt cmp V, T
175 1.1 deraadt bgeu 3f
176 1.1 deraadt mov 1, SC
177 1.1 deraadt sll V, N, V
178 1.1 deraadt b 1b
179 1.1 deraadt inc ITER
180 1.1 deraadt
181 1.1 deraadt ! Now compute SC.
182 1.1 deraadt 2: addcc V, V, V
183 1.1 deraadt bcc Lnot_too_big
184 1.1 deraadt inc SC
185 1.1 deraadt
186 1.1 deraadt ! We get here if the divisor overflowed while shifting.
187 1.1 deraadt ! This means that R has the high-order bit set.
188 1.1 deraadt ! Restore V and subtract from R.
189 1.1 deraadt sll T, TOPBITS, T ! high order bit
190 1.1 deraadt srl V, 1, V ! rest of V
191 1.1 deraadt add V, T, V
192 1.1 deraadt b Ldo_single_div
193 1.1 deraadt dec SC
194 1.1 deraadt
195 1.1 deraadt Lnot_too_big:
196 1.1 deraadt 3: cmp V, R
197 1.1 deraadt blu 2b
198 1.1 deraadt nop
199 1.1 deraadt be Ldo_single_div
200 1.1 deraadt nop
201 1.1 deraadt /* NB: these are commented out in the V8-Sparc manual as well */
202 1.1 deraadt /* (I do not understand this) */
203 1.1 deraadt ! V > R: went too far: back up 1 step
204 1.1 deraadt ! srl V, 1, V
205 1.1 deraadt ! dec SC
206 1.1 deraadt ! do single-bit divide steps
207 1.1 deraadt !
208 1.1 deraadt ! We have to be careful here. We know that R >= V, so we can do the
209 1.1 deraadt ! first divide step without thinking. BUT, the others are conditional,
210 1.1 deraadt ! and are only done if R >= 0. Because both R and V may have the high-
211 1.1 deraadt ! order bit set in the first step, just falling into the regular
212 1.1 deraadt ! division loop will mess up the first time around.
213 1.1 deraadt ! So we unroll slightly...
214 1.1 deraadt Ldo_single_div:
215 1.1 deraadt deccc SC
216 1.1 deraadt bl Lend_regular_divide
217 1.1 deraadt nop
218 1.1 deraadt sub R, V, R
219 1.1 deraadt mov 1, Q
220 1.1 deraadt b Lend_single_divloop
221 1.1 deraadt nop
222 1.1 deraadt Lsingle_divloop:
223 1.1 deraadt sll Q, 1, Q
224 1.1 deraadt bl 1f
225 1.1 deraadt srl V, 1, V
226 1.1 deraadt ! R >= 0
227 1.1 deraadt sub R, V, R
228 1.1 deraadt b 2f
229 1.1 deraadt inc Q
230 1.1 deraadt 1: ! R < 0
231 1.1 deraadt add R, V, R
232 1.1 deraadt dec Q
233 1.1 deraadt 2:
234 1.1 deraadt Lend_single_divloop:
235 1.1 deraadt deccc SC
236 1.1 deraadt bge Lsingle_divloop
237 1.1 deraadt tst R
238 1.1 deraadt b,a Lend_regular_divide
239 1.1 deraadt
240 1.1 deraadt Lnot_really_big:
241 1.1 deraadt 1:
242 1.1 deraadt sll V, N, V
243 1.1 deraadt cmp V, R
244 1.1 deraadt bleu 1b
245 1.1 deraadt inccc ITER
246 1.1 deraadt be Lgot_result
247 1.1 deraadt dec ITER
248 1.1 deraadt
249 1.1 deraadt tst R ! set up for initial iteration
250 1.1 deraadt Ldivloop:
251 1.1 deraadt sll Q, N, Q
252 1.1 deraadt DEVELOP_QUOTIENT_BITS(1, 0)
253 1.1 deraadt Lend_regular_divide:
254 1.1 deraadt deccc ITER
255 1.1 deraadt bge Ldivloop
256 1.1 deraadt tst R
257 1.1 deraadt bl,a Lgot_result
258 1.1 deraadt ! non-restoring fixup here (one instruction only!)
259 1.1 deraadt ifelse(OP, `div',
260 1.1 deraadt ` dec Q
261 1.1 deraadt ', ` add R, divisor, R
262 1.1 deraadt ')
263 1.1 deraadt
264 1.1 deraadt Lgot_result:
265 1.1 deraadt ifelse(S, `true',
266 1.1 deraadt ` ! check to see if answer should be < 0
267 1.1 deraadt tst SIGN
268 1.1 deraadt bl,a 1f
269 1.1 deraadt ifelse(OP, `div', `neg Q', `neg R')
270 1.1 deraadt 1:')
271 1.1 deraadt retl
272 1.1 deraadt ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
273