Home | History | Annotate | Line # | Download | only in sparc
divrem.m4 revision 1.5
      1 /*
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This software was developed by the Computer Systems Engineering group
      6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  * contributed to Berkeley.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed by the University of
     20  *	California, Berkeley and its contributors.
     21  * 4. Neither the name of the University nor the names of its contributors
     22  *    may be used to endorse or promote products derived from this software
     23  *    without specific prior written permission.
     24  *
     25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     35  * SUCH DAMAGE.
     36  *
     37  * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
     38  * $NetBSD: divrem.m4,v 1.5 1997/10/13 11:57:46 lukem Exp $
     39  */
     40 
     41 /*
     42  * Division and remainder, from Appendix E of the Sparc Version 8
     43  * Architecture Manual, with fixes from Gordon Irlam.
     44  */
     45 
     46 #if defined(LIBC_SCCS) && !defined(lint)
     47 	.asciz "@(#)divrem.m4	8.1 (Berkeley) 6/4/93"
     48 #endif /* LIBC_SCCS and not lint */
     49 
     50 /*
     51  * Input: dividend and divisor in %o0 and %o1 respectively.
     52  *
     53  * m4 parameters:
     54  *  NAME	name of function to generate
     55  *  OP		OP=div => %o0 / %o1; OP=rem => %o0 % %o1
     56  *  S		S=true => signed; S=false => unsigned
     57  *
     58  * Algorithm parameters:
     59  *  N		how many bits per iteration we try to get (4)
     60  *  WORDSIZE	total number of bits (32)
     61  *
     62  * Derived constants:
     63  *  TWOSUPN	2^N, for label generation (m4 exponentiation currently broken)
     64  *  TOPBITS	number of bits in the top `decade' of a number
     65  *
     66  * Important variables:
     67  *  Q		the partial quotient under development (initially 0)
     68  *  R		the remainder so far, initially the dividend
     69  *  ITER	number of main division loop iterations required;
     70  *		equal to ceil(log2(quotient) / N).  Note that this
     71  *		is the log base (2^N) of the quotient.
     72  *  V		the current comparand, initially divisor*2^(ITER*N-1)
     73  *
     74  * Cost:
     75  *  Current estimate for non-large dividend is
     76  *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
     77  *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
     78  *  different path, as the upper bits of the quotient must be developed
     79  *  one bit at a time.
     80  */
     81 
     82 define(N, `4')
     83 define(TWOSUPN, `16')
     84 define(WORDSIZE, `32')
     85 define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
     86 
     87 define(dividend, `%o0')
     88 define(divisor, `%o1')
     89 define(Q, `%o2')
     90 define(R, `%o3')
     91 define(ITER, `%o4')
     92 define(V, `%o5')
     93 
     94 /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
     95 define(T, `%g1')
     96 define(SC, `%g7')
     97 ifelse(S, `true', `define(SIGN, `%g6')')
     98 
     99 /*
    100  * This is the recursive definition for developing quotient digits.
    101  *
    102  * Parameters:
    103  *  $1	the current depth, 1 <= $1 <= N
    104  *  $2	the current accumulation of quotient bits
    105  *  N	max depth
    106  *
    107  * We add a new bit to $2 and either recurse or insert the bits in
    108  * the quotient.  R, Q, and V are inputs and outputs as defined above;
    109  * the condition codes are expected to reflect the input R, and are
    110  * modified to reflect the output R.
    111  */
    112 define(DEVELOP_QUOTIENT_BITS,
    113 `	! depth $1, accumulated bits $2
    114 	bl	L.$1.eval(TWOSUPN+$2)
    115 	srl	V,1,V
    116 	! remainder is positive
    117 	subcc	R,V,R
    118 	ifelse($1, N,
    119 	`	b	9f
    120 		add	Q, ($2*2+1), Q
    121 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
    122 L.$1.eval(TWOSUPN+$2):
    123 	! remainder is negative
    124 	addcc	R,V,R
    125 	ifelse($1, N,
    126 	`	b	9f
    127 		add	Q, ($2*2-1), Q
    128 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
    129 	ifelse($1, 1, `9:')')
    130 
    131 #include <machine/asm.h>
    132 #include <machine/trap.h>
    133 
    134 FUNC(NAME)
    135 ifelse(S, `true',
    136 `	! compute sign of result; if neither is negative, no problem
    137 	orcc	divisor, dividend, %g0	! either negative?
    138 	bge	2f			! no, go do the divide
    139 	ifelse(OP, `div',
    140 		`xor	divisor, dividend, SIGN',
    141 		`mov	dividend, SIGN')	! compute sign in any case
    142 	tst	divisor
    143 	bge	1f
    144 	tst	dividend
    145 	! divisor is definitely negative; dividend might also be negative
    146 	bge	2f			! if dividend not negative...
    147 	neg	divisor			! in any case, make divisor nonneg
    148 1:	! dividend is negative, divisor is nonnegative
    149 	neg	dividend		! make dividend nonnegative
    150 2:
    151 ')
    152 	! Ready to divide.  Compute size of quotient; scale comparand.
    153 	orcc	divisor, %g0, V
    154 	bnz	1f
    155 	mov	dividend, R
    156 
    157 		! Divide by zero trap.  If it returns, return 0 (about as
    158 		! wrong as possible, but that is what SunOS does...).
    159 		t	ST_DIV0
    160 		retl
    161 		clr	%o0
    162 
    163 1:
    164 	cmp	R, V			! if divisor exceeds dividend, done
    165 	blu	Lgot_result		! (and algorithm fails otherwise)
    166 	clr	Q
    167 	sethi	%hi(1 << (WORDSIZE - TOPBITS - 1)), T
    168 	cmp	R, T
    169 	blu	Lnot_really_big
    170 	clr	ITER
    171 
    172 	! `Here the dividend is >= 2^(31-N) or so.  We must be careful here,
    173 	! as our usual N-at-a-shot divide step will cause overflow and havoc.
    174 	! The number of bits in the result here is N*ITER+SC, where SC <= N.
    175 	! Compute ITER in an unorthodox manner: know we need to shift V into
    176 	! the top decade: so do not even bother to compare to R.'
    177 	1:
    178 		cmp	V, T
    179 		bgeu	3f
    180 		mov	1, SC
    181 		sll	V, N, V
    182 		b	1b
    183 		inc	ITER
    184 
    185 	! Now compute SC.
    186 	2:	addcc	V, V, V
    187 		bcc	Lnot_too_big
    188 		inc	SC
    189 
    190 		! We get here if the divisor overflowed while shifting.
    191 		! This means that R has the high-order bit set.
    192 		! Restore V and subtract from R.
    193 		sll	T, TOPBITS, T	! high order bit
    194 		srl	V, 1, V		! rest of V
    195 		add	V, T, V
    196 		b	Ldo_single_div
    197 		dec	SC
    198 
    199 	Lnot_too_big:
    200 	3:	cmp	V, R
    201 		blu	2b
    202 		nop
    203 		be	Ldo_single_div
    204 		nop
    205 	/* NB: these are commented out in the V8-Sparc manual as well */
    206 	/* (I do not understand this) */
    207 	! V > R: went too far: back up 1 step
    208 	!	srl	V, 1, V
    209 	!	dec	SC
    210 	! do single-bit divide steps
    211 	!
    212 	! We have to be careful here.  We know that R >= V, so we can do the
    213 	! first divide step without thinking.  BUT, the others are conditional,
    214 	! and are only done if R >= 0.  Because both R and V may have the high-
    215 	! order bit set in the first step, just falling into the regular
    216 	! division loop will mess up the first time around.
    217 	! So we unroll slightly...
    218 	Ldo_single_div:
    219 		deccc	SC
    220 		bl	Lend_regular_divide
    221 		nop
    222 		sub	R, V, R
    223 		mov	1, Q
    224 		b	Lend_single_divloop
    225 		nop
    226 	Lsingle_divloop:
    227 		sll	Q, 1, Q
    228 		bl	1f
    229 		srl	V, 1, V
    230 		! R >= 0
    231 		sub	R, V, R
    232 		b	2f
    233 		inc	Q
    234 	1:	! R < 0
    235 		add	R, V, R
    236 		dec	Q
    237 	2:
    238 	Lend_single_divloop:
    239 		deccc	SC
    240 		bge	Lsingle_divloop
    241 		tst	R
    242 		b,a	Lend_regular_divide
    243 
    244 Lnot_really_big:
    245 1:
    246 	sll	V, N, V
    247 	cmp	V, R
    248 	bleu	1b
    249 	inccc	ITER
    250 	be	Lgot_result
    251 	dec	ITER
    252 
    253 	tst	R	! set up for initial iteration
    254 Ldivloop:
    255 	sll	Q, N, Q
    256 	DEVELOP_QUOTIENT_BITS(1, 0)
    257 Lend_regular_divide:
    258 	deccc	ITER
    259 	bge	Ldivloop
    260 	tst	R
    261 	bl,a	Lgot_result
    262 	! non-restoring fixup here (one instruction only!)
    263 ifelse(OP, `div',
    264 `	dec	Q
    265 ', `	add	R, divisor, R
    266 ')
    267 
    268 Lgot_result:
    269 ifelse(S, `true',
    270 `	! check to see if answer should be < 0
    271 	tst	SIGN
    272 	bl,a	1f
    273 	ifelse(OP, `div', `neg Q', `neg R')
    274 1:')
    275 	retl
    276 	ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
    277