Home | History | Annotate | Line # | Download | only in sparc
divrem.m4 revision 1.7
      1 /*
      2  * Copyright (c) 1992, 1993
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This software was developed by the Computer Systems Engineering group
      6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      7  * contributed to Berkeley.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
     34  * $NetBSD: divrem.m4,v 1.7 2003/08/07 16:32:20 agc Exp $
     35  */
     36 
     37 /*
     38  * Division and remainder, from Appendix E of the Sparc Version 8
     39  * Architecture Manual, with fixes from Gordon Irlam.
     40  */
     41 
     42 #if defined(LIBC_SCCS) && !defined(lint)
     43 	.asciz "@(#)divrem.m4	8.1 (Berkeley) 6/4/93"
     44 #endif /* LIBC_SCCS and not lint */
     45 
     46 /*
     47  * Input: dividend and divisor in %o0 and %o1 respectively.
     48  *
     49  * m4 parameters:
     50  *  NAME	name of function to generate
     51  *  OP		OP=div => %o0 / %o1; OP=rem => %o0 % %o1
     52  *  S		S=true => signed; S=false => unsigned
     53  *
     54  * Algorithm parameters:
     55  *  N		how many bits per iteration we try to get (4)
     56  *  WORDSIZE	total number of bits (32)
     57  *
     58  * Derived constants:
     59  *  TWOSUPN	2^N, for label generation (m4 exponentiation currently broken)
     60  *  TOPBITS	number of bits in the top `decade' of a number
     61  *
     62  * Important variables:
     63  *  Q		the partial quotient under development (initially 0)
     64  *  R		the remainder so far, initially the dividend
     65  *  ITER	number of main division loop iterations required;
     66  *		equal to ceil(log2(quotient) / N).  Note that this
     67  *		is the log base (2^N) of the quotient.
     68  *  V		the current comparand, initially divisor*2^(ITER*N-1)
     69  *
     70  * Cost:
     71  *  Current estimate for non-large dividend is
     72  *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
     73  *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
     74  *  different path, as the upper bits of the quotient must be developed
     75  *  one bit at a time.
     76  */
     77 
     78 define(N, `4')
     79 define(TWOSUPN, `16')
     80 define(WORDSIZE, `32')
     81 define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
     82 
     83 define(dividend, `%o0')
     84 define(divisor, `%o1')
     85 define(Q, `%o2')
     86 define(R, `%o3')
     87 define(ITER, `%o4')
     88 define(V, `%o5')
     89 
     90 /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
     91 define(T, `%g1')
     92 define(SC, `%g7')
     93 ifelse(S, `true', `define(SIGN, `%g6')')
     94 
     95 /*
     96  * This is the recursive definition for developing quotient digits.
     97  *
     98  * Parameters:
     99  *  $1	the current depth, 1 <= $1 <= N
    100  *  $2	the current accumulation of quotient bits
    101  *  N	max depth
    102  *
    103  * We add a new bit to $2 and either recurse or insert the bits in
    104  * the quotient.  R, Q, and V are inputs and outputs as defined above;
    105  * the condition codes are expected to reflect the input R, and are
    106  * modified to reflect the output R.
    107  */
    108 define(DEVELOP_QUOTIENT_BITS,
    109 `	! depth $1, accumulated bits $2
    110 	bl	L.$1.eval(TWOSUPN+$2)
    111 	srl	V,1,V
    112 	! remainder is positive
    113 	subcc	R,V,R
    114 	ifelse($1, N,
    115 	`	b	9f
    116 		add	Q, ($2*2+1), Q
    117 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
    118 L.$1.eval(TWOSUPN+$2):
    119 	! remainder is negative
    120 	addcc	R,V,R
    121 	ifelse($1, N,
    122 	`	b	9f
    123 		add	Q, ($2*2-1), Q
    124 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
    125 	ifelse($1, 1, `9:')')
    126 
    127 #include <machine/asm.h>
    128 #include <machine/trap.h>
    129 
    130 FUNC(NAME)
    131 ifelse(S, `true',
    132 `	! compute sign of result; if neither is negative, no problem
    133 	orcc	divisor, dividend, %g0	! either negative?
    134 	bge	2f			! no, go do the divide
    135 	ifelse(OP, `div',
    136 		`xor	divisor, dividend, SIGN',
    137 		`mov	dividend, SIGN')	! compute sign in any case
    138 	tst	divisor
    139 	bge	1f
    140 	tst	dividend
    141 	! divisor is definitely negative; dividend might also be negative
    142 	bge	2f			! if dividend not negative...
    143 	neg	divisor			! in any case, make divisor nonneg
    144 1:	! dividend is negative, divisor is nonnegative
    145 	neg	dividend		! make dividend nonnegative
    146 2:
    147 ')
    148 	! Ready to divide.  Compute size of quotient; scale comparand.
    149 	orcc	divisor, %g0, V
    150 	bnz	1f
    151 	mov	dividend, R
    152 
    153 		! Divide by zero trap.  If it returns, return 0 (about as
    154 		! wrong as possible, but that is what SunOS does...).
    155 		t	ST_DIV0
    156 		retl
    157 		clr	%o0
    158 
    159 1:
    160 	cmp	R, V			! if divisor exceeds dividend, done
    161 	blu	Lgot_result		! (and algorithm fails otherwise)
    162 	clr	Q
    163 	sethi	%hi(1 << (WORDSIZE - TOPBITS - 1)), T
    164 	cmp	R, T
    165 	blu	Lnot_really_big
    166 	clr	ITER
    167 
    168 	! `Here the dividend is >= 2^(31-N) or so.  We must be careful here,
    169 	! as our usual N-at-a-shot divide step will cause overflow and havoc.
    170 	! The number of bits in the result here is N*ITER+SC, where SC <= N.
    171 	! Compute ITER in an unorthodox manner: know we need to shift V into
    172 	! the top decade: so do not even bother to compare to R.'
    173 	1:
    174 		cmp	V, T
    175 		bgeu	3f
    176 		mov	1, SC
    177 		sll	V, N, V
    178 		b	1b
    179 		inc	ITER
    180 
    181 	! Now compute SC.
    182 	2:	addcc	V, V, V
    183 		bcc	Lnot_too_big
    184 		inc	SC
    185 
    186 		! We get here if the divisor overflowed while shifting.
    187 		! This means that R has the high-order bit set.
    188 		! Restore V and subtract from R.
    189 		sll	T, TOPBITS, T	! high order bit
    190 		srl	V, 1, V		! rest of V
    191 		add	V, T, V
    192 		b	Ldo_single_div
    193 		dec	SC
    194 
    195 	Lnot_too_big:
    196 	3:	cmp	V, R
    197 		blu	2b
    198 		nop
    199 		be	Ldo_single_div
    200 		nop
    201 	/* NB: these are commented out in the V8-Sparc manual as well */
    202 	/* (I do not understand this) */
    203 	! V > R: went too far: back up 1 step
    204 	!	srl	V, 1, V
    205 	!	dec	SC
    206 	! do single-bit divide steps
    207 	!
    208 	! We have to be careful here.  We know that R >= V, so we can do the
    209 	! first divide step without thinking.  BUT, the others are conditional,
    210 	! and are only done if R >= 0.  Because both R and V may have the high-
    211 	! order bit set in the first step, just falling into the regular
    212 	! division loop will mess up the first time around.
    213 	! So we unroll slightly...
    214 	Ldo_single_div:
    215 		deccc	SC
    216 		bl	Lend_regular_divide
    217 		nop
    218 		sub	R, V, R
    219 		mov	1, Q
    220 		b	Lend_single_divloop
    221 		nop
    222 	Lsingle_divloop:
    223 		sll	Q, 1, Q
    224 		bl	1f
    225 		srl	V, 1, V
    226 		! R >= 0
    227 		sub	R, V, R
    228 		b	2f
    229 		inc	Q
    230 	1:	! R < 0
    231 		add	R, V, R
    232 		dec	Q
    233 	2:
    234 	Lend_single_divloop:
    235 		deccc	SC
    236 		bge	Lsingle_divloop
    237 		tst	R
    238 		b,a	Lend_regular_divide
    239 
    240 Lnot_really_big:
    241 1:
    242 	sll	V, N, V
    243 	cmp	V, R
    244 	bleu	1b
    245 	inccc	ITER
    246 	be	Lgot_result
    247 	dec	ITER
    248 
    249 	tst	R	! set up for initial iteration
    250 Ldivloop:
    251 	sll	Q, N, Q
    252 	DEVELOP_QUOTIENT_BITS(1, 0)
    253 Lend_regular_divide:
    254 	deccc	ITER
    255 	bge	Ldivloop
    256 	tst	R
    257 	bl,a	Lgot_result
    258 	! non-restoring fixup here (one instruction only!)
    259 ifelse(OP, `div',
    260 `	dec	Q
    261 ', `	add	R, divisor, R
    262 ')
    263 
    264 Lgot_result:
    265 ifelse(S, `true',
    266 `	! check to see if answer should be < 0
    267 	tst	SIGN
    268 	bl,a	1f
    269 	ifelse(OP, `div', `neg Q', `neg R')
    270 1:')
    271 	retl
    272 	ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
    273