Home | History | Annotate | Line # | Download | only in sparc64
      1  1.5  christos /*	$NetBSD: divrem.m4,v 1.5 2005/12/11 12:24:45 christos Exp $	*/
      2  1.1       eeh 
      3  1.1       eeh /*
      4  1.1       eeh  * Copyright (c) 1992, 1993
      5  1.1       eeh  *	The Regents of the University of California.  All rights reserved.
      6  1.1       eeh  *
      7  1.1       eeh  * This software was developed by the Computer Systems Engineering group
      8  1.1       eeh  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9  1.1       eeh  * contributed to Berkeley.
     10  1.1       eeh  *
     11  1.1       eeh  * Redistribution and use in source and binary forms, with or without
     12  1.1       eeh  * modification, are permitted provided that the following conditions
     13  1.1       eeh  * are met:
     14  1.1       eeh  * 1. Redistributions of source code must retain the above copyright
     15  1.1       eeh  *    notice, this list of conditions and the following disclaimer.
     16  1.1       eeh  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1       eeh  *    notice, this list of conditions and the following disclaimer in the
     18  1.1       eeh  *    documentation and/or other materials provided with the distribution.
     19  1.4       agc  * 3. Neither the name of the University nor the names of its contributors
     20  1.1       eeh  *    may be used to endorse or promote products derived from this software
     21  1.1       eeh  *    without specific prior written permission.
     22  1.1       eeh  *
     23  1.1       eeh  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.1       eeh  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.1       eeh  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.1       eeh  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.1       eeh  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.1       eeh  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.1       eeh  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.1       eeh  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.1       eeh  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.1       eeh  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.1       eeh  * SUCH DAMAGE.
     34  1.1       eeh  *
     35  1.2       chs  * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
     36  1.1       eeh  */
     37  1.1       eeh 
     38  1.3       chs #include <machine/asm.h>
     39  1.3       chs #include <machine/trap.h>
     40  1.3       chs 
     41  1.1       eeh /*
     42  1.1       eeh  * Division and remainder, from Appendix E of the Sparc Version 8
     43  1.1       eeh  * Architecture Manual, with fixes from Gordon Irlam.
     44  1.1       eeh  */
     45  1.1       eeh 
     46  1.2       chs #if defined(LIBC_SCCS)
     47  1.5  christos 	RCSID("$NetBSD: divrem.m4,v 1.5 2005/12/11 12:24:45 christos Exp $")
     48  1.1       eeh #endif
     49  1.1       eeh 
     50  1.1       eeh /*
     51  1.1       eeh  * Input: dividend and divisor in %o0 and %o1 respectively.
     52  1.1       eeh  *
     53  1.1       eeh  * m4 parameters:
     54  1.1       eeh  *  NAME	name of function to generate
     55  1.1       eeh  *  OP		OP=div => %o0 / %o1; OP=rem => %o0 % %o1
     56  1.1       eeh  *  S		S=true => signed; S=false => unsigned
     57  1.1       eeh  *
     58  1.1       eeh  * Algorithm parameters:
     59  1.1       eeh  *  N		how many bits per iteration we try to get (4)
     60  1.1       eeh  *  WORDSIZE	total number of bits (32)
     61  1.1       eeh  *
     62  1.1       eeh  * Derived constants:
     63  1.1       eeh  *  TWOSUPN	2^N, for label generation (m4 exponentiation currently broken)
     64  1.1       eeh  *  TOPBITS	number of bits in the top `decade' of a number
     65  1.1       eeh  *
     66  1.1       eeh  * Important variables:
     67  1.1       eeh  *  Q		the partial quotient under development (initially 0)
     68  1.1       eeh  *  R		the remainder so far, initially the dividend
     69  1.1       eeh  *  ITER	number of main division loop iterations required;
     70  1.1       eeh  *		equal to ceil(log2(quotient) / N).  Note that this
     71  1.1       eeh  *		is the log base (2^N) of the quotient.
     72  1.1       eeh  *  V		the current comparand, initially divisor*2^(ITER*N-1)
     73  1.1       eeh  *
     74  1.1       eeh  * Cost:
     75  1.1       eeh  *  Current estimate for non-large dividend is
     76  1.1       eeh  *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
     77  1.1       eeh  *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
     78  1.1       eeh  *  different path, as the upper bits of the quotient must be developed
     79  1.1       eeh  *  one bit at a time.
     80  1.1       eeh  */
     81  1.1       eeh 
     82  1.1       eeh define(N, `4')
     83  1.1       eeh define(TWOSUPN, `16')
     84  1.1       eeh define(WORDSIZE, `32')
     85  1.1       eeh define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
     86  1.1       eeh 
     87  1.1       eeh define(dividend, `%o0')
     88  1.1       eeh define(divisor, `%o1')
     89  1.1       eeh define(Q, `%o2')
     90  1.1       eeh define(R, `%o3')
     91  1.1       eeh define(ITER, `%o4')
     92  1.1       eeh define(V, `%o5')
     93  1.1       eeh 
     94  1.1       eeh /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
     95  1.1       eeh define(T, `%g1')
     96  1.2       chs define(SC, `%g5')
     97  1.1       eeh ifelse(S, `true', `define(SIGN, `%g6')')
     98  1.1       eeh 
     99  1.1       eeh /*
    100  1.1       eeh  * This is the recursive definition for developing quotient digits.
    101  1.1       eeh  *
    102  1.1       eeh  * Parameters:
    103  1.1       eeh  *  $1	the current depth, 1 <= $1 <= N
    104  1.1       eeh  *  $2	the current accumulation of quotient bits
    105  1.1       eeh  *  N	max depth
    106  1.1       eeh  *
    107  1.1       eeh  * We add a new bit to $2 and either recurse or insert the bits in
    108  1.1       eeh  * the quotient.  R, Q, and V are inputs and outputs as defined above;
    109  1.1       eeh  * the condition codes are expected to reflect the input R, and are
    110  1.1       eeh  * modified to reflect the output R.
    111  1.1       eeh  */
    112  1.1       eeh define(DEVELOP_QUOTIENT_BITS,
    113  1.1       eeh `	! depth $1, accumulated bits $2
    114  1.1       eeh 	bl	L.$1.eval(TWOSUPN+$2)
    115  1.1       eeh 	srl	V,1,V
    116  1.1       eeh 	! remainder is positive
    117  1.1       eeh 	subcc	R,V,R
    118  1.1       eeh 	ifelse($1, N,
    119  1.1       eeh 	`	b	9f
    120  1.1       eeh 		add	Q, ($2*2+1), Q
    121  1.1       eeh 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
    122  1.1       eeh L.$1.eval(TWOSUPN+$2):
    123  1.1       eeh 	! remainder is negative
    124  1.1       eeh 	addcc	R,V,R
    125  1.1       eeh 	ifelse($1, N,
    126  1.1       eeh 	`	b	9f
    127  1.1       eeh 		add	Q, ($2*2-1), Q
    128  1.1       eeh 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
    129  1.1       eeh 	ifelse($1, 1, `9:')')
    130  1.1       eeh 
    131  1.1       eeh FUNC(NAME)
    132  1.1       eeh ifelse(S, `true',
    133  1.1       eeh `	! compute sign of result; if neither is negative, no problem
    134  1.1       eeh 	orcc	divisor, dividend, %g0	! either negative?
    135  1.1       eeh 	bge	2f			! no, go do the divide
    136  1.1       eeh 	ifelse(OP, `div',
    137  1.1       eeh 		`xor	divisor, dividend, SIGN',
    138  1.1       eeh 		`mov	dividend, SIGN')	! compute sign in any case
    139  1.1       eeh 	tst	divisor
    140  1.1       eeh 	bge	1f
    141  1.1       eeh 	tst	dividend
    142  1.1       eeh 	! divisor is definitely negative; dividend might also be negative
    143  1.1       eeh 	bge	2f			! if dividend not negative...
    144  1.1       eeh 	neg	divisor			! in any case, make divisor nonneg
    145  1.1       eeh 1:	! dividend is negative, divisor is nonnegative
    146  1.1       eeh 	neg	dividend		! make dividend nonnegative
    147  1.1       eeh 2:
    148  1.1       eeh ')
    149  1.1       eeh 	! Ready to divide.  Compute size of quotient; scale comparand.
    150  1.1       eeh 	orcc	divisor, %g0, V
    151  1.1       eeh 	bnz	1f
    152  1.1       eeh 	mov	dividend, R
    153  1.1       eeh 
    154  1.1       eeh 		! Divide by zero trap.  If it returns, return 0 (about as
    155  1.1       eeh 		! wrong as possible, but that is what SunOS does...).
    156  1.1       eeh 		t	ST_DIV0
    157  1.1       eeh 		retl
    158  1.1       eeh 		clr	%o0
    159  1.1       eeh 
    160  1.1       eeh 1:
    161  1.1       eeh 	cmp	R, V			! if divisor exceeds dividend, done
    162  1.1       eeh 	blu	Lgot_result		! (and algorithm fails otherwise)
    163  1.1       eeh 	clr	Q
    164  1.1       eeh 	sethi	%hi(1 << (WORDSIZE - TOPBITS - 1)), T
    165  1.1       eeh 	cmp	R, T
    166  1.1       eeh 	blu	Lnot_really_big
    167  1.1       eeh 	clr	ITER
    168  1.1       eeh 
    169  1.1       eeh 	! `Here the dividend is >= 2^(31-N) or so.  We must be careful here,
    170  1.1       eeh 	! as our usual N-at-a-shot divide step will cause overflow and havoc.
    171  1.1       eeh 	! The number of bits in the result here is N*ITER+SC, where SC <= N.
    172  1.1       eeh 	! Compute ITER in an unorthodox manner: know we need to shift V into
    173  1.1       eeh 	! the top decade: so do not even bother to compare to R.'
    174  1.1       eeh 	1:
    175  1.1       eeh 		cmp	V, T
    176  1.1       eeh 		bgeu	3f
    177  1.1       eeh 		mov	1, SC
    178  1.1       eeh 		sll	V, N, V
    179  1.1       eeh 		b	1b
    180  1.1       eeh 		inc	ITER
    181  1.1       eeh 
    182  1.1       eeh 	! Now compute SC.
    183  1.1       eeh 	2:	addcc	V, V, V
    184  1.1       eeh 		bcc	Lnot_too_big
    185  1.1       eeh 		inc	SC
    186  1.1       eeh 
    187  1.1       eeh 		! We get here if the divisor overflowed while shifting.
    188  1.1       eeh 		! This means that R has the high-order bit set.
    189  1.1       eeh 		! Restore V and subtract from R.
    190  1.1       eeh 		sll	T, TOPBITS, T	! high order bit
    191  1.1       eeh 		srl	V, 1, V		! rest of V
    192  1.1       eeh 		add	V, T, V
    193  1.1       eeh 		b	Ldo_single_div
    194  1.1       eeh 		dec	SC
    195  1.1       eeh 
    196  1.1       eeh 	Lnot_too_big:
    197  1.1       eeh 	3:	cmp	V, R
    198  1.1       eeh 		blu	2b
    199  1.1       eeh 		nop
    200  1.1       eeh 		be	Ldo_single_div
    201  1.1       eeh 		nop
    202  1.1       eeh 	/* NB: these are commented out in the V8-Sparc manual as well */
    203  1.1       eeh 	/* (I do not understand this) */
    204  1.1       eeh 	! V > R: went too far: back up 1 step
    205  1.1       eeh 	!	srl	V, 1, V
    206  1.1       eeh 	!	dec	SC
    207  1.1       eeh 	! do single-bit divide steps
    208  1.1       eeh 	!
    209  1.1       eeh 	! We have to be careful here.  We know that R >= V, so we can do the
    210  1.1       eeh 	! first divide step without thinking.  BUT, the others are conditional,
    211  1.1       eeh 	! and are only done if R >= 0.  Because both R and V may have the high-
    212  1.1       eeh 	! order bit set in the first step, just falling into the regular
    213  1.1       eeh 	! division loop will mess up the first time around.
    214  1.1       eeh 	! So we unroll slightly...
    215  1.1       eeh 	Ldo_single_div:
    216  1.1       eeh 		deccc	SC
    217  1.1       eeh 		bl	Lend_regular_divide
    218  1.1       eeh 		nop
    219  1.1       eeh 		sub	R, V, R
    220  1.1       eeh 		mov	1, Q
    221  1.1       eeh 		b	Lend_single_divloop
    222  1.1       eeh 		nop
    223  1.1       eeh 	Lsingle_divloop:
    224  1.1       eeh 		sll	Q, 1, Q
    225  1.1       eeh 		bl	1f
    226  1.1       eeh 		srl	V, 1, V
    227  1.1       eeh 		! R >= 0
    228  1.1       eeh 		sub	R, V, R
    229  1.1       eeh 		b	2f
    230  1.1       eeh 		inc	Q
    231  1.1       eeh 	1:	! R < 0
    232  1.1       eeh 		add	R, V, R
    233  1.1       eeh 		dec	Q
    234  1.1       eeh 	2:
    235  1.1       eeh 	Lend_single_divloop:
    236  1.1       eeh 		deccc	SC
    237  1.1       eeh 		bge	Lsingle_divloop
    238  1.1       eeh 		tst	R
    239  1.1       eeh 		b,a	Lend_regular_divide
    240  1.1       eeh 
    241  1.1       eeh Lnot_really_big:
    242  1.1       eeh 1:
    243  1.1       eeh 	sll	V, N, V
    244  1.1       eeh 	cmp	V, R
    245  1.1       eeh 	bleu	1b
    246  1.1       eeh 	inccc	ITER
    247  1.1       eeh 	be	Lgot_result
    248  1.1       eeh 	dec	ITER
    249  1.1       eeh 
    250  1.1       eeh 	tst	R	! set up for initial iteration
    251  1.1       eeh Ldivloop:
    252  1.1       eeh 	sll	Q, N, Q
    253  1.1       eeh 	DEVELOP_QUOTIENT_BITS(1, 0)
    254  1.1       eeh Lend_regular_divide:
    255  1.1       eeh 	deccc	ITER
    256  1.1       eeh 	bge	Ldivloop
    257  1.1       eeh 	tst	R
    258  1.1       eeh 	bl,a	Lgot_result
    259  1.1       eeh 	! non-restoring fixup here (one instruction only!)
    260  1.1       eeh ifelse(OP, `div',
    261  1.1       eeh `	dec	Q
    262  1.1       eeh ', `	add	R, divisor, R
    263  1.1       eeh ')
    264  1.1       eeh 
    265  1.1       eeh Lgot_result:
    266  1.1       eeh ifelse(S, `true',
    267  1.1       eeh `	! check to see if answer should be < 0
    268  1.1       eeh 	tst	SIGN
    269  1.1       eeh 	bl,a	1f
    270  1.1       eeh 	ifelse(OP, `div', `neg Q', `neg R')
    271  1.1       eeh 1:')
    272  1.1       eeh 	retl
    273  1.1       eeh 	ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
    274