1 1.5 christos /* $NetBSD: divrem.m4,v 1.5 2005/12/11 12:24:45 christos Exp $ */ 2 1.1 eeh 3 1.1 eeh /* 4 1.1 eeh * Copyright (c) 1992, 1993 5 1.1 eeh * The Regents of the University of California. All rights reserved. 6 1.1 eeh * 7 1.1 eeh * This software was developed by the Computer Systems Engineering group 8 1.1 eeh * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 1.1 eeh * contributed to Berkeley. 10 1.1 eeh * 11 1.1 eeh * Redistribution and use in source and binary forms, with or without 12 1.1 eeh * modification, are permitted provided that the following conditions 13 1.1 eeh * are met: 14 1.1 eeh * 1. Redistributions of source code must retain the above copyright 15 1.1 eeh * notice, this list of conditions and the following disclaimer. 16 1.1 eeh * 2. Redistributions in binary form must reproduce the above copyright 17 1.1 eeh * notice, this list of conditions and the following disclaimer in the 18 1.1 eeh * documentation and/or other materials provided with the distribution. 19 1.4 agc * 3. Neither the name of the University nor the names of its contributors 20 1.1 eeh * may be used to endorse or promote products derived from this software 21 1.1 eeh * without specific prior written permission. 22 1.1 eeh * 23 1.1 eeh * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 1.1 eeh * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 1.1 eeh * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 1.1 eeh * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 1.1 eeh * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 1.1 eeh * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 1.1 eeh * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 1.1 eeh * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 1.1 eeh * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 1.1 eeh * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 1.1 eeh * SUCH DAMAGE. 34 1.1 eeh * 35 1.2 chs * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp 36 1.1 eeh */ 37 1.1 eeh 38 1.3 chs #include <machine/asm.h> 39 1.3 chs #include <machine/trap.h> 40 1.3 chs 41 1.1 eeh /* 42 1.1 eeh * Division and remainder, from Appendix E of the Sparc Version 8 43 1.1 eeh * Architecture Manual, with fixes from Gordon Irlam. 44 1.1 eeh */ 45 1.1 eeh 46 1.2 chs #if defined(LIBC_SCCS) 47 1.5 christos RCSID("$NetBSD: divrem.m4,v 1.5 2005/12/11 12:24:45 christos Exp $") 48 1.1 eeh #endif 49 1.1 eeh 50 1.1 eeh /* 51 1.1 eeh * Input: dividend and divisor in %o0 and %o1 respectively. 52 1.1 eeh * 53 1.1 eeh * m4 parameters: 54 1.1 eeh * NAME name of function to generate 55 1.1 eeh * OP OP=div => %o0 / %o1; OP=rem => %o0 % %o1 56 1.1 eeh * S S=true => signed; S=false => unsigned 57 1.1 eeh * 58 1.1 eeh * Algorithm parameters: 59 1.1 eeh * N how many bits per iteration we try to get (4) 60 1.1 eeh * WORDSIZE total number of bits (32) 61 1.1 eeh * 62 1.1 eeh * Derived constants: 63 1.1 eeh * TWOSUPN 2^N, for label generation (m4 exponentiation currently broken) 64 1.1 eeh * TOPBITS number of bits in the top `decade' of a number 65 1.1 eeh * 66 1.1 eeh * Important variables: 67 1.1 eeh * Q the partial quotient under development (initially 0) 68 1.1 eeh * R the remainder so far, initially the dividend 69 1.1 eeh * ITER number of main division loop iterations required; 70 1.1 eeh * equal to ceil(log2(quotient) / N). Note that this 71 1.1 eeh * is the log base (2^N) of the quotient. 72 1.1 eeh * V the current comparand, initially divisor*2^(ITER*N-1) 73 1.1 eeh * 74 1.1 eeh * Cost: 75 1.1 eeh * Current estimate for non-large dividend is 76 1.1 eeh * ceil(log2(quotient) / N) * (10 + 7N/2) + C 77 1.1 eeh * A large dividend is one greater than 2^(31-TOPBITS) and takes a 78 1.1 eeh * different path, as the upper bits of the quotient must be developed 79 1.1 eeh * one bit at a time. 80 1.1 eeh */ 81 1.1 eeh 82 1.1 eeh define(N, `4') 83 1.1 eeh define(TWOSUPN, `16') 84 1.1 eeh define(WORDSIZE, `32') 85 1.1 eeh define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N))) 86 1.1 eeh 87 1.1 eeh define(dividend, `%o0') 88 1.1 eeh define(divisor, `%o1') 89 1.1 eeh define(Q, `%o2') 90 1.1 eeh define(R, `%o3') 91 1.1 eeh define(ITER, `%o4') 92 1.1 eeh define(V, `%o5') 93 1.1 eeh 94 1.1 eeh /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */ 95 1.1 eeh define(T, `%g1') 96 1.2 chs define(SC, `%g5') 97 1.1 eeh ifelse(S, `true', `define(SIGN, `%g6')') 98 1.1 eeh 99 1.1 eeh /* 100 1.1 eeh * This is the recursive definition for developing quotient digits. 101 1.1 eeh * 102 1.1 eeh * Parameters: 103 1.1 eeh * $1 the current depth, 1 <= $1 <= N 104 1.1 eeh * $2 the current accumulation of quotient bits 105 1.1 eeh * N max depth 106 1.1 eeh * 107 1.1 eeh * We add a new bit to $2 and either recurse or insert the bits in 108 1.1 eeh * the quotient. R, Q, and V are inputs and outputs as defined above; 109 1.1 eeh * the condition codes are expected to reflect the input R, and are 110 1.1 eeh * modified to reflect the output R. 111 1.1 eeh */ 112 1.1 eeh define(DEVELOP_QUOTIENT_BITS, 113 1.1 eeh ` ! depth $1, accumulated bits $2 114 1.1 eeh bl L.$1.eval(TWOSUPN+$2) 115 1.1 eeh srl V,1,V 116 1.1 eeh ! remainder is positive 117 1.1 eeh subcc R,V,R 118 1.1 eeh ifelse($1, N, 119 1.1 eeh ` b 9f 120 1.1 eeh add Q, ($2*2+1), Q 121 1.1 eeh ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')') 122 1.1 eeh L.$1.eval(TWOSUPN+$2): 123 1.1 eeh ! remainder is negative 124 1.1 eeh addcc R,V,R 125 1.1 eeh ifelse($1, N, 126 1.1 eeh ` b 9f 127 1.1 eeh add Q, ($2*2-1), Q 128 1.1 eeh ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')') 129 1.1 eeh ifelse($1, 1, `9:')') 130 1.1 eeh 131 1.1 eeh FUNC(NAME) 132 1.1 eeh ifelse(S, `true', 133 1.1 eeh ` ! compute sign of result; if neither is negative, no problem 134 1.1 eeh orcc divisor, dividend, %g0 ! either negative? 135 1.1 eeh bge 2f ! no, go do the divide 136 1.1 eeh ifelse(OP, `div', 137 1.1 eeh `xor divisor, dividend, SIGN', 138 1.1 eeh `mov dividend, SIGN') ! compute sign in any case 139 1.1 eeh tst divisor 140 1.1 eeh bge 1f 141 1.1 eeh tst dividend 142 1.1 eeh ! divisor is definitely negative; dividend might also be negative 143 1.1 eeh bge 2f ! if dividend not negative... 144 1.1 eeh neg divisor ! in any case, make divisor nonneg 145 1.1 eeh 1: ! dividend is negative, divisor is nonnegative 146 1.1 eeh neg dividend ! make dividend nonnegative 147 1.1 eeh 2: 148 1.1 eeh ') 149 1.1 eeh ! Ready to divide. Compute size of quotient; scale comparand. 150 1.1 eeh orcc divisor, %g0, V 151 1.1 eeh bnz 1f 152 1.1 eeh mov dividend, R 153 1.1 eeh 154 1.1 eeh ! Divide by zero trap. If it returns, return 0 (about as 155 1.1 eeh ! wrong as possible, but that is what SunOS does...). 156 1.1 eeh t ST_DIV0 157 1.1 eeh retl 158 1.1 eeh clr %o0 159 1.1 eeh 160 1.1 eeh 1: 161 1.1 eeh cmp R, V ! if divisor exceeds dividend, done 162 1.1 eeh blu Lgot_result ! (and algorithm fails otherwise) 163 1.1 eeh clr Q 164 1.1 eeh sethi %hi(1 << (WORDSIZE - TOPBITS - 1)), T 165 1.1 eeh cmp R, T 166 1.1 eeh blu Lnot_really_big 167 1.1 eeh clr ITER 168 1.1 eeh 169 1.1 eeh ! `Here the dividend is >= 2^(31-N) or so. We must be careful here, 170 1.1 eeh ! as our usual N-at-a-shot divide step will cause overflow and havoc. 171 1.1 eeh ! The number of bits in the result here is N*ITER+SC, where SC <= N. 172 1.1 eeh ! Compute ITER in an unorthodox manner: know we need to shift V into 173 1.1 eeh ! the top decade: so do not even bother to compare to R.' 174 1.1 eeh 1: 175 1.1 eeh cmp V, T 176 1.1 eeh bgeu 3f 177 1.1 eeh mov 1, SC 178 1.1 eeh sll V, N, V 179 1.1 eeh b 1b 180 1.1 eeh inc ITER 181 1.1 eeh 182 1.1 eeh ! Now compute SC. 183 1.1 eeh 2: addcc V, V, V 184 1.1 eeh bcc Lnot_too_big 185 1.1 eeh inc SC 186 1.1 eeh 187 1.1 eeh ! We get here if the divisor overflowed while shifting. 188 1.1 eeh ! This means that R has the high-order bit set. 189 1.1 eeh ! Restore V and subtract from R. 190 1.1 eeh sll T, TOPBITS, T ! high order bit 191 1.1 eeh srl V, 1, V ! rest of V 192 1.1 eeh add V, T, V 193 1.1 eeh b Ldo_single_div 194 1.1 eeh dec SC 195 1.1 eeh 196 1.1 eeh Lnot_too_big: 197 1.1 eeh 3: cmp V, R 198 1.1 eeh blu 2b 199 1.1 eeh nop 200 1.1 eeh be Ldo_single_div 201 1.1 eeh nop 202 1.1 eeh /* NB: these are commented out in the V8-Sparc manual as well */ 203 1.1 eeh /* (I do not understand this) */ 204 1.1 eeh ! V > R: went too far: back up 1 step 205 1.1 eeh ! srl V, 1, V 206 1.1 eeh ! dec SC 207 1.1 eeh ! do single-bit divide steps 208 1.1 eeh ! 209 1.1 eeh ! We have to be careful here. We know that R >= V, so we can do the 210 1.1 eeh ! first divide step without thinking. BUT, the others are conditional, 211 1.1 eeh ! and are only done if R >= 0. Because both R and V may have the high- 212 1.1 eeh ! order bit set in the first step, just falling into the regular 213 1.1 eeh ! division loop will mess up the first time around. 214 1.1 eeh ! So we unroll slightly... 215 1.1 eeh Ldo_single_div: 216 1.1 eeh deccc SC 217 1.1 eeh bl Lend_regular_divide 218 1.1 eeh nop 219 1.1 eeh sub R, V, R 220 1.1 eeh mov 1, Q 221 1.1 eeh b Lend_single_divloop 222 1.1 eeh nop 223 1.1 eeh Lsingle_divloop: 224 1.1 eeh sll Q, 1, Q 225 1.1 eeh bl 1f 226 1.1 eeh srl V, 1, V 227 1.1 eeh ! R >= 0 228 1.1 eeh sub R, V, R 229 1.1 eeh b 2f 230 1.1 eeh inc Q 231 1.1 eeh 1: ! R < 0 232 1.1 eeh add R, V, R 233 1.1 eeh dec Q 234 1.1 eeh 2: 235 1.1 eeh Lend_single_divloop: 236 1.1 eeh deccc SC 237 1.1 eeh bge Lsingle_divloop 238 1.1 eeh tst R 239 1.1 eeh b,a Lend_regular_divide 240 1.1 eeh 241 1.1 eeh Lnot_really_big: 242 1.1 eeh 1: 243 1.1 eeh sll V, N, V 244 1.1 eeh cmp V, R 245 1.1 eeh bleu 1b 246 1.1 eeh inccc ITER 247 1.1 eeh be Lgot_result 248 1.1 eeh dec ITER 249 1.1 eeh 250 1.1 eeh tst R ! set up for initial iteration 251 1.1 eeh Ldivloop: 252 1.1 eeh sll Q, N, Q 253 1.1 eeh DEVELOP_QUOTIENT_BITS(1, 0) 254 1.1 eeh Lend_regular_divide: 255 1.1 eeh deccc ITER 256 1.1 eeh bge Ldivloop 257 1.1 eeh tst R 258 1.1 eeh bl,a Lgot_result 259 1.1 eeh ! non-restoring fixup here (one instruction only!) 260 1.1 eeh ifelse(OP, `div', 261 1.1 eeh ` dec Q 262 1.1 eeh ', ` add R, divisor, R 263 1.1 eeh ') 264 1.1 eeh 265 1.1 eeh Lgot_result: 266 1.1 eeh ifelse(S, `true', 267 1.1 eeh ` ! check to see if answer should be < 0 268 1.1 eeh tst SIGN 269 1.1 eeh bl,a 1f 270 1.1 eeh ifelse(OP, `div', `neg Q', `neg R') 271 1.1 eeh 1:') 272 1.1 eeh retl 273 1.1 eeh ifelse(OP, `div', `mov Q, %o0', `mov R, %o0') 274