Home | History | Annotate | Line # | Download | only in sparc64
divrem.m4 revision 1.3.6.1
      1  1.3.6.1  skrll /*	$NetBSD: divrem.m4,v 1.3.6.1 2004/08/03 10:53:50 skrll Exp $	*/
      2      1.1    eeh 
      3      1.1    eeh /*
      4      1.1    eeh  * Copyright (c) 1992, 1993
      5      1.1    eeh  *	The Regents of the University of California.  All rights reserved.
      6      1.1    eeh  *
      7      1.1    eeh  * This software was developed by the Computer Systems Engineering group
      8      1.1    eeh  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
      9      1.1    eeh  * contributed to Berkeley.
     10      1.1    eeh  *
     11      1.1    eeh  * Redistribution and use in source and binary forms, with or without
     12      1.1    eeh  * modification, are permitted provided that the following conditions
     13      1.1    eeh  * are met:
     14      1.1    eeh  * 1. Redistributions of source code must retain the above copyright
     15      1.1    eeh  *    notice, this list of conditions and the following disclaimer.
     16      1.1    eeh  * 2. Redistributions in binary form must reproduce the above copyright
     17      1.1    eeh  *    notice, this list of conditions and the following disclaimer in the
     18      1.1    eeh  *    documentation and/or other materials provided with the distribution.
     19  1.3.6.1  skrll  * 3. Neither the name of the University nor the names of its contributors
     20      1.1    eeh  *    may be used to endorse or promote products derived from this software
     21      1.1    eeh  *    without specific prior written permission.
     22      1.1    eeh  *
     23      1.1    eeh  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24      1.1    eeh  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25      1.1    eeh  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26      1.1    eeh  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27      1.1    eeh  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28      1.1    eeh  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29      1.1    eeh  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30      1.1    eeh  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31      1.1    eeh  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32      1.1    eeh  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33      1.1    eeh  * SUCH DAMAGE.
     34      1.1    eeh  *
     35      1.2    chs  * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
     36      1.1    eeh  */
     37      1.1    eeh 
     38      1.3    chs #include <machine/asm.h>
     39      1.3    chs #include <machine/trap.h>
     40      1.3    chs 
     41      1.1    eeh /*
     42      1.1    eeh  * Division and remainder, from Appendix E of the Sparc Version 8
     43      1.1    eeh  * Architecture Manual, with fixes from Gordon Irlam.
     44      1.1    eeh  */
     45      1.1    eeh 
     46      1.2    chs #if defined(LIBC_SCCS)
     47  1.3.6.1  skrll 	RCSID("$NetBSD: divrem.m4,v 1.3.6.1 2004/08/03 10:53:50 skrll Exp $")
     48      1.1    eeh #endif
     49      1.1    eeh 
     50      1.1    eeh /*
     51      1.1    eeh  * Input: dividend and divisor in %o0 and %o1 respectively.
     52      1.1    eeh  *
     53      1.1    eeh  * m4 parameters:
     54      1.1    eeh  *  NAME	name of function to generate
     55      1.1    eeh  *  OP		OP=div => %o0 / %o1; OP=rem => %o0 % %o1
     56      1.1    eeh  *  S		S=true => signed; S=false => unsigned
     57      1.1    eeh  *
     58      1.1    eeh  * Algorithm parameters:
     59      1.1    eeh  *  N		how many bits per iteration we try to get (4)
     60      1.1    eeh  *  WORDSIZE	total number of bits (32)
     61      1.1    eeh  *
     62      1.1    eeh  * Derived constants:
     63      1.1    eeh  *  TWOSUPN	2^N, for label generation (m4 exponentiation currently broken)
     64      1.1    eeh  *  TOPBITS	number of bits in the top `decade' of a number
     65      1.1    eeh  *
     66      1.1    eeh  * Important variables:
     67      1.1    eeh  *  Q		the partial quotient under development (initially 0)
     68      1.1    eeh  *  R		the remainder so far, initially the dividend
     69      1.1    eeh  *  ITER	number of main division loop iterations required;
     70      1.1    eeh  *		equal to ceil(log2(quotient) / N).  Note that this
     71      1.1    eeh  *		is the log base (2^N) of the quotient.
     72      1.1    eeh  *  V		the current comparand, initially divisor*2^(ITER*N-1)
     73      1.1    eeh  *
     74      1.1    eeh  * Cost:
     75      1.1    eeh  *  Current estimate for non-large dividend is
     76      1.1    eeh  *	ceil(log2(quotient) / N) * (10 + 7N/2) + C
     77      1.1    eeh  *  A large dividend is one greater than 2^(31-TOPBITS) and takes a
     78      1.1    eeh  *  different path, as the upper bits of the quotient must be developed
     79      1.1    eeh  *  one bit at a time.
     80      1.1    eeh  */
     81      1.1    eeh 
     82      1.1    eeh define(N, `4')
     83      1.1    eeh define(TWOSUPN, `16')
     84      1.1    eeh define(WORDSIZE, `32')
     85      1.1    eeh define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
     86      1.1    eeh 
     87      1.1    eeh define(dividend, `%o0')
     88      1.1    eeh define(divisor, `%o1')
     89      1.1    eeh define(Q, `%o2')
     90      1.1    eeh define(R, `%o3')
     91      1.1    eeh define(ITER, `%o4')
     92      1.1    eeh define(V, `%o5')
     93      1.1    eeh 
     94      1.1    eeh /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
     95      1.1    eeh define(T, `%g1')
     96      1.2    chs define(SC, `%g5')
     97      1.1    eeh ifelse(S, `true', `define(SIGN, `%g6')')
     98      1.1    eeh 
     99      1.1    eeh /*
    100      1.1    eeh  * This is the recursive definition for developing quotient digits.
    101      1.1    eeh  *
    102      1.1    eeh  * Parameters:
    103      1.1    eeh  *  $1	the current depth, 1 <= $1 <= N
    104      1.1    eeh  *  $2	the current accumulation of quotient bits
    105      1.1    eeh  *  N	max depth
    106      1.1    eeh  *
    107      1.1    eeh  * We add a new bit to $2 and either recurse or insert the bits in
    108      1.1    eeh  * the quotient.  R, Q, and V are inputs and outputs as defined above;
    109      1.1    eeh  * the condition codes are expected to reflect the input R, and are
    110      1.1    eeh  * modified to reflect the output R.
    111      1.1    eeh  */
    112      1.1    eeh define(DEVELOP_QUOTIENT_BITS,
    113      1.1    eeh `	! depth $1, accumulated bits $2
    114      1.1    eeh 	bl	L.$1.eval(TWOSUPN+$2)
    115      1.1    eeh 	srl	V,1,V
    116      1.1    eeh 	! remainder is positive
    117      1.1    eeh 	subcc	R,V,R
    118      1.1    eeh 	ifelse($1, N,
    119      1.1    eeh 	`	b	9f
    120      1.1    eeh 		add	Q, ($2*2+1), Q
    121      1.1    eeh 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
    122      1.1    eeh L.$1.eval(TWOSUPN+$2):
    123      1.1    eeh 	! remainder is negative
    124      1.1    eeh 	addcc	R,V,R
    125      1.1    eeh 	ifelse($1, N,
    126      1.1    eeh 	`	b	9f
    127      1.1    eeh 		add	Q, ($2*2-1), Q
    128      1.1    eeh 	', `	DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
    129      1.1    eeh 	ifelse($1, 1, `9:')')
    130      1.1    eeh 
    131      1.1    eeh FUNC(NAME)
    132      1.1    eeh ifelse(S, `true',
    133      1.1    eeh `	! compute sign of result; if neither is negative, no problem
    134      1.1    eeh 	orcc	divisor, dividend, %g0	! either negative?
    135      1.1    eeh 	bge	2f			! no, go do the divide
    136      1.1    eeh 	ifelse(OP, `div',
    137      1.1    eeh 		`xor	divisor, dividend, SIGN',
    138      1.1    eeh 		`mov	dividend, SIGN')	! compute sign in any case
    139      1.1    eeh 	tst	divisor
    140      1.1    eeh 	bge	1f
    141      1.1    eeh 	tst	dividend
    142      1.1    eeh 	! divisor is definitely negative; dividend might also be negative
    143      1.1    eeh 	bge	2f			! if dividend not negative...
    144      1.1    eeh 	neg	divisor			! in any case, make divisor nonneg
    145      1.1    eeh 1:	! dividend is negative, divisor is nonnegative
    146      1.1    eeh 	neg	dividend		! make dividend nonnegative
    147      1.1    eeh 2:
    148      1.1    eeh ')
    149      1.1    eeh 	! Ready to divide.  Compute size of quotient; scale comparand.
    150      1.1    eeh 	orcc	divisor, %g0, V
    151      1.1    eeh 	bnz	1f
    152      1.1    eeh 	mov	dividend, R
    153      1.1    eeh 
    154      1.1    eeh 		! Divide by zero trap.  If it returns, return 0 (about as
    155      1.1    eeh 		! wrong as possible, but that is what SunOS does...).
    156      1.1    eeh 		t	ST_DIV0
    157      1.1    eeh 		retl
    158      1.1    eeh 		clr	%o0
    159      1.1    eeh 
    160      1.1    eeh 1:
    161      1.1    eeh 	cmp	R, V			! if divisor exceeds dividend, done
    162      1.1    eeh 	blu	Lgot_result		! (and algorithm fails otherwise)
    163      1.1    eeh 	clr	Q
    164      1.1    eeh 	sethi	%hi(1 << (WORDSIZE - TOPBITS - 1)), T
    165      1.1    eeh 	cmp	R, T
    166      1.1    eeh 	blu	Lnot_really_big
    167      1.1    eeh 	clr	ITER
    168      1.1    eeh 
    169      1.1    eeh 	! `Here the dividend is >= 2^(31-N) or so.  We must be careful here,
    170      1.1    eeh 	! as our usual N-at-a-shot divide step will cause overflow and havoc.
    171      1.1    eeh 	! The number of bits in the result here is N*ITER+SC, where SC <= N.
    172      1.1    eeh 	! Compute ITER in an unorthodox manner: know we need to shift V into
    173      1.1    eeh 	! the top decade: so do not even bother to compare to R.'
    174      1.1    eeh 	1:
    175      1.1    eeh 		cmp	V, T
    176      1.1    eeh 		bgeu	3f
    177      1.1    eeh 		mov	1, SC
    178      1.1    eeh 		sll	V, N, V
    179      1.1    eeh 		b	1b
    180      1.1    eeh 		inc	ITER
    181      1.1    eeh 
    182      1.1    eeh 	! Now compute SC.
    183      1.1    eeh 	2:	addcc	V, V, V
    184      1.1    eeh 		bcc	Lnot_too_big
    185      1.1    eeh 		inc	SC
    186      1.1    eeh 
    187      1.1    eeh 		! We get here if the divisor overflowed while shifting.
    188      1.1    eeh 		! This means that R has the high-order bit set.
    189      1.1    eeh 		! Restore V and subtract from R.
    190      1.1    eeh 		sll	T, TOPBITS, T	! high order bit
    191      1.1    eeh 		srl	V, 1, V		! rest of V
    192      1.1    eeh 		add	V, T, V
    193      1.1    eeh 		b	Ldo_single_div
    194      1.1    eeh 		dec	SC
    195      1.1    eeh 
    196      1.1    eeh 	Lnot_too_big:
    197      1.1    eeh 	3:	cmp	V, R
    198      1.1    eeh 		blu	2b
    199      1.1    eeh 		nop
    200      1.1    eeh 		be	Ldo_single_div
    201      1.1    eeh 		nop
    202      1.1    eeh 	/* NB: these are commented out in the V8-Sparc manual as well */
    203      1.1    eeh 	/* (I do not understand this) */
    204      1.1    eeh 	! V > R: went too far: back up 1 step
    205      1.1    eeh 	!	srl	V, 1, V
    206      1.1    eeh 	!	dec	SC
    207      1.1    eeh 	! do single-bit divide steps
    208      1.1    eeh 	!
    209      1.1    eeh 	! We have to be careful here.  We know that R >= V, so we can do the
    210      1.1    eeh 	! first divide step without thinking.  BUT, the others are conditional,
    211      1.1    eeh 	! and are only done if R >= 0.  Because both R and V may have the high-
    212      1.1    eeh 	! order bit set in the first step, just falling into the regular
    213      1.1    eeh 	! division loop will mess up the first time around.
    214      1.1    eeh 	! So we unroll slightly...
    215      1.1    eeh 	Ldo_single_div:
    216      1.1    eeh 		deccc	SC
    217      1.1    eeh 		bl	Lend_regular_divide
    218      1.1    eeh 		nop
    219      1.1    eeh 		sub	R, V, R
    220      1.1    eeh 		mov	1, Q
    221      1.1    eeh 		b	Lend_single_divloop
    222      1.1    eeh 		nop
    223      1.1    eeh 	Lsingle_divloop:
    224      1.1    eeh 		sll	Q, 1, Q
    225      1.1    eeh 		bl	1f
    226      1.1    eeh 		srl	V, 1, V
    227      1.1    eeh 		! R >= 0
    228      1.1    eeh 		sub	R, V, R
    229      1.1    eeh 		b	2f
    230      1.1    eeh 		inc	Q
    231      1.1    eeh 	1:	! R < 0
    232      1.1    eeh 		add	R, V, R
    233      1.1    eeh 		dec	Q
    234      1.1    eeh 	2:
    235      1.1    eeh 	Lend_single_divloop:
    236      1.1    eeh 		deccc	SC
    237      1.1    eeh 		bge	Lsingle_divloop
    238      1.1    eeh 		tst	R
    239      1.1    eeh 		b,a	Lend_regular_divide
    240      1.1    eeh 
    241      1.1    eeh Lnot_really_big:
    242      1.1    eeh 1:
    243      1.1    eeh 	sll	V, N, V
    244      1.1    eeh 	cmp	V, R
    245      1.1    eeh 	bleu	1b
    246      1.1    eeh 	inccc	ITER
    247      1.1    eeh 	be	Lgot_result
    248      1.1    eeh 	dec	ITER
    249      1.1    eeh 
    250      1.1    eeh 	tst	R	! set up for initial iteration
    251      1.1    eeh Ldivloop:
    252      1.1    eeh 	sll	Q, N, Q
    253      1.1    eeh 	DEVELOP_QUOTIENT_BITS(1, 0)
    254      1.1    eeh Lend_regular_divide:
    255      1.1    eeh 	deccc	ITER
    256      1.1    eeh 	bge	Ldivloop
    257      1.1    eeh 	tst	R
    258      1.1    eeh 	bl,a	Lgot_result
    259      1.1    eeh 	! non-restoring fixup here (one instruction only!)
    260      1.1    eeh ifelse(OP, `div',
    261      1.1    eeh `	dec	Q
    262      1.1    eeh ', `	add	R, divisor, R
    263      1.1    eeh ')
    264      1.1    eeh 
    265      1.1    eeh Lgot_result:
    266      1.1    eeh ifelse(S, `true',
    267      1.1    eeh `	! check to see if answer should be < 0
    268      1.1    eeh 	tst	SIGN
    269      1.1    eeh 	bl,a	1f
    270      1.1    eeh 	ifelse(OP, `div', `neg Q', `neg R')
    271      1.1    eeh 1:')
    272      1.1    eeh 	retl
    273      1.1    eeh 	ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
    274