divrem.m4 revision 1.4 1 /* $NetBSD: divrem.m4,v 1.4 2003/08/07 16:32:22 agc Exp $ */
2
3 /*
4 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This software was developed by the Computer Systems Engineering group
8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 * contributed to Berkeley.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * from: Header: divrem.m4,v 1.4 92/06/25 13:23:57 torek Exp
36 */
37
38 #include <machine/asm.h>
39 #include <machine/trap.h>
40
41 /*
42 * Division and remainder, from Appendix E of the Sparc Version 8
43 * Architecture Manual, with fixes from Gordon Irlam.
44 */
45
46 #if defined(LIBC_SCCS)
47 RCSID("$NetBSD: divrem.m4,v 1.4 2003/08/07 16:32:22 agc Exp $")
48 #endif
49
50 /*
51 * Input: dividend and divisor in %o0 and %o1 respectively.
52 *
53 * m4 parameters:
54 * NAME name of function to generate
55 * OP OP=div => %o0 / %o1; OP=rem => %o0 % %o1
56 * S S=true => signed; S=false => unsigned
57 *
58 * Algorithm parameters:
59 * N how many bits per iteration we try to get (4)
60 * WORDSIZE total number of bits (32)
61 *
62 * Derived constants:
63 * TWOSUPN 2^N, for label generation (m4 exponentiation currently broken)
64 * TOPBITS number of bits in the top `decade' of a number
65 *
66 * Important variables:
67 * Q the partial quotient under development (initially 0)
68 * R the remainder so far, initially the dividend
69 * ITER number of main division loop iterations required;
70 * equal to ceil(log2(quotient) / N). Note that this
71 * is the log base (2^N) of the quotient.
72 * V the current comparand, initially divisor*2^(ITER*N-1)
73 *
74 * Cost:
75 * Current estimate for non-large dividend is
76 * ceil(log2(quotient) / N) * (10 + 7N/2) + C
77 * A large dividend is one greater than 2^(31-TOPBITS) and takes a
78 * different path, as the upper bits of the quotient must be developed
79 * one bit at a time.
80 */
81
82 define(N, `4')
83 define(TWOSUPN, `16')
84 define(WORDSIZE, `32')
85 define(TOPBITS, eval(WORDSIZE - N*((WORDSIZE-1)/N)))
86
87 define(dividend, `%o0')
88 define(divisor, `%o1')
89 define(Q, `%o2')
90 define(R, `%o3')
91 define(ITER, `%o4')
92 define(V, `%o5')
93
94 /* m4 reminder: ifelse(a,b,c,d) => if a is b, then c, else d */
95 define(T, `%g1')
96 define(SC, `%g5')
97 ifelse(S, `true', `define(SIGN, `%g6')')
98
99 /*
100 * This is the recursive definition for developing quotient digits.
101 *
102 * Parameters:
103 * $1 the current depth, 1 <= $1 <= N
104 * $2 the current accumulation of quotient bits
105 * N max depth
106 *
107 * We add a new bit to $2 and either recurse or insert the bits in
108 * the quotient. R, Q, and V are inputs and outputs as defined above;
109 * the condition codes are expected to reflect the input R, and are
110 * modified to reflect the output R.
111 */
112 define(DEVELOP_QUOTIENT_BITS,
113 ` ! depth $1, accumulated bits $2
114 bl L.$1.eval(TWOSUPN+$2)
115 srl V,1,V
116 ! remainder is positive
117 subcc R,V,R
118 ifelse($1, N,
119 ` b 9f
120 add Q, ($2*2+1), Q
121 ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2+1)')')
122 L.$1.eval(TWOSUPN+$2):
123 ! remainder is negative
124 addcc R,V,R
125 ifelse($1, N,
126 ` b 9f
127 add Q, ($2*2-1), Q
128 ', ` DEVELOP_QUOTIENT_BITS(incr($1), `eval(2*$2-1)')')
129 ifelse($1, 1, `9:')')
130
131 FUNC(NAME)
132 ifelse(S, `true',
133 ` ! compute sign of result; if neither is negative, no problem
134 orcc divisor, dividend, %g0 ! either negative?
135 bge 2f ! no, go do the divide
136 ifelse(OP, `div',
137 `xor divisor, dividend, SIGN',
138 `mov dividend, SIGN') ! compute sign in any case
139 tst divisor
140 bge 1f
141 tst dividend
142 ! divisor is definitely negative; dividend might also be negative
143 bge 2f ! if dividend not negative...
144 neg divisor ! in any case, make divisor nonneg
145 1: ! dividend is negative, divisor is nonnegative
146 neg dividend ! make dividend nonnegative
147 2:
148 ')
149 ! Ready to divide. Compute size of quotient; scale comparand.
150 orcc divisor, %g0, V
151 bnz 1f
152 mov dividend, R
153
154 ! Divide by zero trap. If it returns, return 0 (about as
155 ! wrong as possible, but that is what SunOS does...).
156 t ST_DIV0
157 retl
158 clr %o0
159
160 1:
161 cmp R, V ! if divisor exceeds dividend, done
162 blu Lgot_result ! (and algorithm fails otherwise)
163 clr Q
164 sethi %hi(1 << (WORDSIZE - TOPBITS - 1)), T
165 cmp R, T
166 blu Lnot_really_big
167 clr ITER
168
169 ! `Here the dividend is >= 2^(31-N) or so. We must be careful here,
170 ! as our usual N-at-a-shot divide step will cause overflow and havoc.
171 ! The number of bits in the result here is N*ITER+SC, where SC <= N.
172 ! Compute ITER in an unorthodox manner: know we need to shift V into
173 ! the top decade: so do not even bother to compare to R.'
174 1:
175 cmp V, T
176 bgeu 3f
177 mov 1, SC
178 sll V, N, V
179 b 1b
180 inc ITER
181
182 ! Now compute SC.
183 2: addcc V, V, V
184 bcc Lnot_too_big
185 inc SC
186
187 ! We get here if the divisor overflowed while shifting.
188 ! This means that R has the high-order bit set.
189 ! Restore V and subtract from R.
190 sll T, TOPBITS, T ! high order bit
191 srl V, 1, V ! rest of V
192 add V, T, V
193 b Ldo_single_div
194 dec SC
195
196 Lnot_too_big:
197 3: cmp V, R
198 blu 2b
199 nop
200 be Ldo_single_div
201 nop
202 /* NB: these are commented out in the V8-Sparc manual as well */
203 /* (I do not understand this) */
204 ! V > R: went too far: back up 1 step
205 ! srl V, 1, V
206 ! dec SC
207 ! do single-bit divide steps
208 !
209 ! We have to be careful here. We know that R >= V, so we can do the
210 ! first divide step without thinking. BUT, the others are conditional,
211 ! and are only done if R >= 0. Because both R and V may have the high-
212 ! order bit set in the first step, just falling into the regular
213 ! division loop will mess up the first time around.
214 ! So we unroll slightly...
215 Ldo_single_div:
216 deccc SC
217 bl Lend_regular_divide
218 nop
219 sub R, V, R
220 mov 1, Q
221 b Lend_single_divloop
222 nop
223 Lsingle_divloop:
224 sll Q, 1, Q
225 bl 1f
226 srl V, 1, V
227 ! R >= 0
228 sub R, V, R
229 b 2f
230 inc Q
231 1: ! R < 0
232 add R, V, R
233 dec Q
234 2:
235 Lend_single_divloop:
236 deccc SC
237 bge Lsingle_divloop
238 tst R
239 b,a Lend_regular_divide
240
241 Lnot_really_big:
242 1:
243 sll V, N, V
244 cmp V, R
245 bleu 1b
246 inccc ITER
247 be Lgot_result
248 dec ITER
249
250 tst R ! set up for initial iteration
251 Ldivloop:
252 sll Q, N, Q
253 DEVELOP_QUOTIENT_BITS(1, 0)
254 Lend_regular_divide:
255 deccc ITER
256 bge Ldivloop
257 tst R
258 bl,a Lgot_result
259 ! non-restoring fixup here (one instruction only!)
260 ifelse(OP, `div',
261 ` dec Q
262 ', ` add R, divisor, R
263 ')
264
265 Lgot_result:
266 ifelse(S, `true',
267 ` ! check to see if answer should be < 0
268 tst SIGN
269 bl,a 1f
270 ifelse(OP, `div', `neg Q', `neg R')
271 1:')
272 retl
273 ifelse(OP, `div', `mov Q, %o0', `mov R, %o0')
274