Home | History | Annotate | Line # | Download | only in libkern
softfloat-specialize.h revision 1.1
      1  1.1  ross /* $NetBSD: softfloat-specialize.h,v 1.1 2001/04/26 03:10:47 ross Exp $ */
      2  1.1  ross 
      3  1.1  ross /* This is a derivative work. */
      4  1.1  ross 
      5  1.1  ross /*-
      6  1.1  ross  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      7  1.1  ross  * All rights reserved.
      8  1.1  ross  *
      9  1.1  ross  * This code is derived from software contributed to The NetBSD Foundation
     10  1.1  ross  * by Ross Harvey.
     11  1.1  ross  *
     12  1.1  ross  * Redistribution and use in source and binary forms, with or without
     13  1.1  ross  * modification, are permitted provided that the following conditions
     14  1.1  ross  * are met:
     15  1.1  ross  * 1. Redistributions of source code must retain the above copyright
     16  1.1  ross  *    notice, this list of conditions and the following disclaimer.
     17  1.1  ross  * 2. Redistributions in binary form must reproduce the above copyright
     18  1.1  ross  *    notice, this list of conditions and the following disclaimer in the
     19  1.1  ross  *    documentation and/or other materials provided with the distribution.
     20  1.1  ross  * 3. All advertising materials mentioning features or use of this software
     21  1.1  ross  *    must display the following acknowledgement:
     22  1.1  ross  *        This product includes software developed by the NetBSD
     23  1.1  ross  *        Foundation, Inc. and its contributors.
     24  1.1  ross  * 4. Neither the name of The NetBSD Foundation nor the names of its
     25  1.1  ross  *    contributors may be used to endorse or promote products derived
     26  1.1  ross  *    from this software without specific prior written permission.
     27  1.1  ross  *
     28  1.1  ross  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     29  1.1  ross  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     30  1.1  ross  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     31  1.1  ross  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     32  1.1  ross  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     33  1.1  ross  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     34  1.1  ross  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     35  1.1  ross  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     36  1.1  ross  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     37  1.1  ross  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     38  1.1  ross  * POSSIBILITY OF SUCH DAMAGE.
     39  1.1  ross  */
     40  1.1  ross 
     41  1.1  ross /*
     42  1.1  ross ===============================================================================
     43  1.1  ross 
     44  1.1  ross This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
     45  1.1  ross Arithmetic Package, Release 2a.
     46  1.1  ross 
     47  1.1  ross Written by John R. Hauser.  This work was made possible in part by the
     48  1.1  ross International Computer Science Institute, located at Suite 600, 1947 Center
     49  1.1  ross Street, Berkeley, California 94704.  Funding was partially provided by the
     50  1.1  ross National Science Foundation under grant MIP-9311980.  The original version
     51  1.1  ross of this code was written as part of a project to build a fixed-point vector
     52  1.1  ross processor in collaboration with the University of California at Berkeley,
     53  1.1  ross overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     54  1.1  ross is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     55  1.1  ross arithmetic/SoftFloat.html'.
     56  1.1  ross 
     57  1.1  ross THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     58  1.1  ross has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     59  1.1  ross TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     60  1.1  ross PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     61  1.1  ross AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     62  1.1  ross 
     63  1.1  ross Derivative works are acceptable, even for commercial purposes, so long as
     64  1.1  ross (1) they include prominent notice that the work is derivative, and (2) they
     65  1.1  ross include prominent notice akin to these four paragraphs for those parts of
     66  1.1  ross this code that are retained.
     67  1.1  ross 
     68  1.1  ross ===============================================================================
     69  1.1  ross */
     70  1.1  ross 
     71  1.1  ross /*
     72  1.1  ross -------------------------------------------------------------------------------
     73  1.1  ross Underflow tininess-detection mode, statically initialized to default value.
     74  1.1  ross -------------------------------------------------------------------------------
     75  1.1  ross */
     76  1.1  ross 
     77  1.1  ross /* [ MP safe, does not change dynamically ] */
     78  1.1  ross int float_detect_tininess = float_tininess_after_rounding;
     79  1.1  ross 
     80  1.1  ross /*
     81  1.1  ross -------------------------------------------------------------------------------
     82  1.1  ross Internal canonical NaN format.
     83  1.1  ross -------------------------------------------------------------------------------
     84  1.1  ross */
     85  1.1  ross typedef struct {
     86  1.1  ross     flag sign;
     87  1.1  ross     bits64 high, low;
     88  1.1  ross } commonNaNT;
     89  1.1  ross 
     90  1.1  ross /*
     91  1.1  ross -------------------------------------------------------------------------------
     92  1.1  ross The pattern for a default generated single-precision NaN.
     93  1.1  ross -------------------------------------------------------------------------------
     94  1.1  ross */
     95  1.1  ross #define float32_default_nan 0xFFC00000
     96  1.1  ross 
     97  1.1  ross /*
     98  1.1  ross -------------------------------------------------------------------------------
     99  1.1  ross Returns 1 if the single-precision floating-point value `a' is a NaN;
    100  1.1  ross otherwise returns 0.
    101  1.1  ross -------------------------------------------------------------------------------
    102  1.1  ross */
    103  1.1  ross static flag float32_is_nan( float32 a )
    104  1.1  ross {
    105  1.1  ross 
    106  1.1  ross     return ( 0xFF000000 < (bits32) ( a<<1 ) );
    107  1.1  ross 
    108  1.1  ross }
    109  1.1  ross 
    110  1.1  ross /*
    111  1.1  ross -------------------------------------------------------------------------------
    112  1.1  ross Returns 1 if the single-precision floating-point value `a' is a signaling
    113  1.1  ross NaN; otherwise returns 0.
    114  1.1  ross -------------------------------------------------------------------------------
    115  1.1  ross */
    116  1.1  ross flag float32_is_signaling_nan( float32 a )
    117  1.1  ross {
    118  1.1  ross 
    119  1.1  ross     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
    120  1.1  ross 
    121  1.1  ross }
    122  1.1  ross 
    123  1.1  ross /*
    124  1.1  ross -------------------------------------------------------------------------------
    125  1.1  ross Returns the result of converting the single-precision floating-point NaN
    126  1.1  ross `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    127  1.1  ross exception is raised.
    128  1.1  ross -------------------------------------------------------------------------------
    129  1.1  ross */
    130  1.1  ross static commonNaNT float32ToCommonNaN( float32 a )
    131  1.1  ross {
    132  1.1  ross     commonNaNT z;
    133  1.1  ross 
    134  1.1  ross     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    135  1.1  ross     z.sign = a>>31;
    136  1.1  ross     z.low = 0;
    137  1.1  ross     z.high = ( (bits64) a )<<41;
    138  1.1  ross     return z;
    139  1.1  ross 
    140  1.1  ross }
    141  1.1  ross 
    142  1.1  ross /*
    143  1.1  ross -------------------------------------------------------------------------------
    144  1.1  ross Returns the result of converting the canonical NaN `a' to the single-
    145  1.1  ross precision floating-point format.
    146  1.1  ross -------------------------------------------------------------------------------
    147  1.1  ross */
    148  1.1  ross static float32 commonNaNToFloat32( commonNaNT a )
    149  1.1  ross {
    150  1.1  ross 
    151  1.1  ross     return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
    152  1.1  ross 
    153  1.1  ross }
    154  1.1  ross 
    155  1.1  ross /*
    156  1.1  ross -------------------------------------------------------------------------------
    157  1.1  ross Takes two single-precision floating-point values `a' and `b', one of which
    158  1.1  ross is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    159  1.1  ross signaling NaN, the invalid exception is raised.
    160  1.1  ross -------------------------------------------------------------------------------
    161  1.1  ross */
    162  1.1  ross static float32 propagateFloat32NaN( float32 a, float32 b )
    163  1.1  ross {
    164  1.1  ross     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    165  1.1  ross 
    166  1.1  ross     aIsNaN = float32_is_nan( a );
    167  1.1  ross     aIsSignalingNaN = float32_is_signaling_nan( a );
    168  1.1  ross     bIsNaN = float32_is_nan( b );
    169  1.1  ross     bIsSignalingNaN = float32_is_signaling_nan( b );
    170  1.1  ross     a |= 0x00400000;
    171  1.1  ross     b |= 0x00400000;
    172  1.1  ross     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    173  1.1  ross     if ( aIsSignalingNaN ) {
    174  1.1  ross         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    175  1.1  ross         return bIsNaN ? b : a;
    176  1.1  ross     }
    177  1.1  ross     else if ( aIsNaN ) {
    178  1.1  ross         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    179  1.1  ross  returnLargerSignificand:
    180  1.1  ross         if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
    181  1.1  ross         if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
    182  1.1  ross         return ( a < b ) ? a : b;
    183  1.1  ross     }
    184  1.1  ross     else {
    185  1.1  ross         return b;
    186  1.1  ross     }
    187  1.1  ross 
    188  1.1  ross }
    189  1.1  ross 
    190  1.1  ross 
    191  1.1  ross /*
    192  1.1  ross -------------------------------------------------------------------------------
    193  1.1  ross Returns the result of converting the double-precision floating-point NaN
    194  1.1  ross `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    195  1.1  ross exception is raised.
    196  1.1  ross -------------------------------------------------------------------------------
    197  1.1  ross */
    198  1.1  ross static commonNaNT float64ToCommonNaN( float64 a )
    199  1.1  ross {
    200  1.1  ross     commonNaNT z;
    201  1.1  ross 
    202  1.1  ross     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    203  1.1  ross     z.sign = a>>63;
    204  1.1  ross     z.low = 0;
    205  1.1  ross     z.high = a<<12;
    206  1.1  ross     return z;
    207  1.1  ross 
    208  1.1  ross }
    209  1.1  ross 
    210  1.1  ross /*
    211  1.1  ross -------------------------------------------------------------------------------
    212  1.1  ross Returns the result of converting the canonical NaN `a' to the double-
    213  1.1  ross precision floating-point format.
    214  1.1  ross -------------------------------------------------------------------------------
    215  1.1  ross */
    216  1.1  ross static float64 commonNaNToFloat64( commonNaNT a )
    217  1.1  ross {
    218  1.1  ross 
    219  1.1  ross     return
    220  1.1  ross           ( ( (bits64) a.sign )<<63 )
    221  1.1  ross         | LIT64( 0x7FF8000000000000 )
    222  1.1  ross         | ( a.high>>12 );
    223  1.1  ross 
    224  1.1  ross }
    225  1.1  ross 
    226  1.1  ross /*
    227  1.1  ross -------------------------------------------------------------------------------
    228  1.1  ross Takes two double-precision floating-point values `a' and `b', one of which
    229  1.1  ross is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    230  1.1  ross signaling NaN, the invalid exception is raised.
    231  1.1  ross -------------------------------------------------------------------------------
    232  1.1  ross */
    233  1.1  ross static float64 propagateFloat64NaN( float64 a, float64 b )
    234  1.1  ross {
    235  1.1  ross     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    236  1.1  ross 
    237  1.1  ross     aIsNaN = float64_is_nan( a );
    238  1.1  ross     aIsSignalingNaN = float64_is_signaling_nan( a );
    239  1.1  ross     bIsNaN = float64_is_nan( b );
    240  1.1  ross     bIsSignalingNaN = float64_is_signaling_nan( b );
    241  1.1  ross     a |= LIT64( 0x0008000000000000 );
    242  1.1  ross     b |= LIT64( 0x0008000000000000 );
    243  1.1  ross     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    244  1.1  ross     if ( aIsSignalingNaN ) {
    245  1.1  ross         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    246  1.1  ross         return bIsNaN ? b : a;
    247  1.1  ross     }
    248  1.1  ross     else if ( aIsNaN ) {
    249  1.1  ross         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    250  1.1  ross  returnLargerSignificand:
    251  1.1  ross         if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
    252  1.1  ross         if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
    253  1.1  ross         return ( a < b ) ? a : b;
    254  1.1  ross     }
    255  1.1  ross     else {
    256  1.1  ross         return b;
    257  1.1  ross     }
    258  1.1  ross 
    259  1.1  ross }
    260  1.1  ross 
    261  1.1  ross #ifdef FLOATX80
    262  1.1  ross 
    263  1.1  ross /*
    264  1.1  ross -------------------------------------------------------------------------------
    265  1.1  ross The pattern for a default generated extended double-precision NaN.  The
    266  1.1  ross `high' and `low' values hold the most- and least-significant bits,
    267  1.1  ross respectively.
    268  1.1  ross -------------------------------------------------------------------------------
    269  1.1  ross */
    270  1.1  ross #define floatx80_default_nan_high 0xFFFF
    271  1.1  ross #define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
    272  1.1  ross 
    273  1.1  ross /*
    274  1.1  ross -------------------------------------------------------------------------------
    275  1.1  ross Returns 1 if the extended double-precision floating-point value `a' is a
    276  1.1  ross NaN; otherwise returns 0.
    277  1.1  ross -------------------------------------------------------------------------------
    278  1.1  ross */
    279  1.1  ross static flag floatx80_is_nan( floatx80 a )
    280  1.1  ross {
    281  1.1  ross 
    282  1.1  ross     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
    283  1.1  ross 
    284  1.1  ross }
    285  1.1  ross 
    286  1.1  ross /*
    287  1.1  ross -------------------------------------------------------------------------------
    288  1.1  ross Returns 1 if the extended double-precision floating-point value `a' is a
    289  1.1  ross signaling NaN; otherwise returns 0.
    290  1.1  ross -------------------------------------------------------------------------------
    291  1.1  ross */
    292  1.1  ross flag floatx80_is_signaling_nan( floatx80 a )
    293  1.1  ross {
    294  1.1  ross     bits64 aLow;
    295  1.1  ross 
    296  1.1  ross     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    297  1.1  ross     return
    298  1.1  ross            ( ( a.high & 0x7FFF ) == 0x7FFF )
    299  1.1  ross         && (bits64) ( aLow<<1 )
    300  1.1  ross         && ( a.low == aLow );
    301  1.1  ross 
    302  1.1  ross }
    303  1.1  ross 
    304  1.1  ross /*
    305  1.1  ross -------------------------------------------------------------------------------
    306  1.1  ross Returns the result of converting the extended double-precision floating-
    307  1.1  ross point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
    308  1.1  ross invalid exception is raised.
    309  1.1  ross -------------------------------------------------------------------------------
    310  1.1  ross */
    311  1.1  ross static commonNaNT floatx80ToCommonNaN( floatx80 a )
    312  1.1  ross {
    313  1.1  ross     commonNaNT z;
    314  1.1  ross 
    315  1.1  ross     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    316  1.1  ross     z.sign = a.high>>15;
    317  1.1  ross     z.low = 0;
    318  1.1  ross     z.high = a.low<<1;
    319  1.1  ross     return z;
    320  1.1  ross 
    321  1.1  ross }
    322  1.1  ross 
    323  1.1  ross /*
    324  1.1  ross -------------------------------------------------------------------------------
    325  1.1  ross Returns the result of converting the canonical NaN `a' to the extended
    326  1.1  ross double-precision floating-point format.
    327  1.1  ross -------------------------------------------------------------------------------
    328  1.1  ross */
    329  1.1  ross static floatx80 commonNaNToFloatx80( commonNaNT a )
    330  1.1  ross {
    331  1.1  ross     floatx80 z;
    332  1.1  ross 
    333  1.1  ross     z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
    334  1.1  ross     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    335  1.1  ross     return z;
    336  1.1  ross 
    337  1.1  ross }
    338  1.1  ross 
    339  1.1  ross /*
    340  1.1  ross -------------------------------------------------------------------------------
    341  1.1  ross Takes two extended double-precision floating-point values `a' and `b', one
    342  1.1  ross of which is a NaN, and returns the appropriate NaN result.  If either `a' or
    343  1.1  ross `b' is a signaling NaN, the invalid exception is raised.
    344  1.1  ross -------------------------------------------------------------------------------
    345  1.1  ross */
    346  1.1  ross static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
    347  1.1  ross {
    348  1.1  ross     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    349  1.1  ross 
    350  1.1  ross     aIsNaN = floatx80_is_nan( a );
    351  1.1  ross     aIsSignalingNaN = floatx80_is_signaling_nan( a );
    352  1.1  ross     bIsNaN = floatx80_is_nan( b );
    353  1.1  ross     bIsSignalingNaN = floatx80_is_signaling_nan( b );
    354  1.1  ross     a.low |= LIT64( 0xC000000000000000 );
    355  1.1  ross     b.low |= LIT64( 0xC000000000000000 );
    356  1.1  ross     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    357  1.1  ross     if ( aIsSignalingNaN ) {
    358  1.1  ross         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    359  1.1  ross         return bIsNaN ? b : a;
    360  1.1  ross     }
    361  1.1  ross     else if ( aIsNaN ) {
    362  1.1  ross         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    363  1.1  ross  returnLargerSignificand:
    364  1.1  ross         if ( a.low < b.low ) return b;
    365  1.1  ross         if ( b.low < a.low ) return a;
    366  1.1  ross         return ( a.high < b.high ) ? a : b;
    367  1.1  ross     }
    368  1.1  ross     else {
    369  1.1  ross         return b;
    370  1.1  ross     }
    371  1.1  ross 
    372  1.1  ross }
    373  1.1  ross 
    374  1.1  ross #endif
    375  1.1  ross 
    376  1.1  ross #ifdef FLOAT128
    377  1.1  ross 
    378  1.1  ross /*
    379  1.1  ross -------------------------------------------------------------------------------
    380  1.1  ross The pattern for a default generated quadruple-precision NaN.  The `high' and
    381  1.1  ross `low' values hold the most- and least-significant bits, respectively.
    382  1.1  ross -------------------------------------------------------------------------------
    383  1.1  ross */
    384  1.1  ross #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
    385  1.1  ross #define float128_default_nan_low  LIT64( 0x0000000000000000 )
    386  1.1  ross 
    387  1.1  ross /*
    388  1.1  ross -------------------------------------------------------------------------------
    389  1.1  ross Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
    390  1.1  ross otherwise returns 0.
    391  1.1  ross -------------------------------------------------------------------------------
    392  1.1  ross */
    393  1.1  ross flag float128_is_nan( float128 a )
    394  1.1  ross {
    395  1.1  ross 
    396  1.1  ross     return
    397  1.1  ross            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
    398  1.1  ross         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
    399  1.1  ross 
    400  1.1  ross }
    401  1.1  ross 
    402  1.1  ross /*
    403  1.1  ross -------------------------------------------------------------------------------
    404  1.1  ross Returns 1 if the quadruple-precision floating-point value `a' is a
    405  1.1  ross signaling NaN; otherwise returns 0.
    406  1.1  ross -------------------------------------------------------------------------------
    407  1.1  ross */
    408  1.1  ross flag float128_is_signaling_nan( float128 a )
    409  1.1  ross {
    410  1.1  ross 
    411  1.1  ross     return
    412  1.1  ross            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
    413  1.1  ross         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
    414  1.1  ross 
    415  1.1  ross }
    416  1.1  ross 
    417  1.1  ross /*
    418  1.1  ross -------------------------------------------------------------------------------
    419  1.1  ross Returns the result of converting the quadruple-precision floating-point NaN
    420  1.1  ross `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    421  1.1  ross exception is raised.
    422  1.1  ross -------------------------------------------------------------------------------
    423  1.1  ross */
    424  1.1  ross static commonNaNT float128ToCommonNaN( float128 a )
    425  1.1  ross {
    426  1.1  ross     commonNaNT z;
    427  1.1  ross 
    428  1.1  ross     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    429  1.1  ross     z.sign = a.high>>63;
    430  1.1  ross     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    431  1.1  ross     return z;
    432  1.1  ross 
    433  1.1  ross }
    434  1.1  ross 
    435  1.1  ross /*
    436  1.1  ross -------------------------------------------------------------------------------
    437  1.1  ross Returns the result of converting the canonical NaN `a' to the quadruple-
    438  1.1  ross precision floating-point format.
    439  1.1  ross -------------------------------------------------------------------------------
    440  1.1  ross */
    441  1.1  ross static float128 commonNaNToFloat128( commonNaNT a )
    442  1.1  ross {
    443  1.1  ross     float128 z;
    444  1.1  ross 
    445  1.1  ross     shift128Right( a.high, a.low, 16, &z.high, &z.low );
    446  1.1  ross     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
    447  1.1  ross     return z;
    448  1.1  ross 
    449  1.1  ross }
    450  1.1  ross 
    451  1.1  ross /*
    452  1.1  ross -------------------------------------------------------------------------------
    453  1.1  ross Takes two quadruple-precision floating-point values `a' and `b', one of
    454  1.1  ross which is a NaN, and returns the appropriate NaN result.  If either `a' or
    455  1.1  ross `b' is a signaling NaN, the invalid exception is raised.
    456  1.1  ross -------------------------------------------------------------------------------
    457  1.1  ross */
    458  1.1  ross static float128 propagateFloat128NaN( float128 a, float128 b )
    459  1.1  ross {
    460  1.1  ross     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    461  1.1  ross 
    462  1.1  ross     aIsNaN = float128_is_nan( a );
    463  1.1  ross     aIsSignalingNaN = float128_is_signaling_nan( a );
    464  1.1  ross     bIsNaN = float128_is_nan( b );
    465  1.1  ross     bIsSignalingNaN = float128_is_signaling_nan( b );
    466  1.1  ross     a.high |= LIT64( 0x0000800000000000 );
    467  1.1  ross     b.high |= LIT64( 0x0000800000000000 );
    468  1.1  ross     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    469  1.1  ross     if ( aIsSignalingNaN ) {
    470  1.1  ross         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    471  1.1  ross         return bIsNaN ? b : a;
    472  1.1  ross     }
    473  1.1  ross     else if ( aIsNaN ) {
    474  1.1  ross         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    475  1.1  ross  returnLargerSignificand:
    476  1.1  ross         if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
    477  1.1  ross         if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
    478  1.1  ross         return ( a.high < b.high ) ? a : b;
    479  1.1  ross     }
    480  1.1  ross     else {
    481  1.1  ross         return b;
    482  1.1  ross     }
    483  1.1  ross 
    484  1.1  ross }
    485  1.1  ross 
    486  1.1  ross #endif
    487  1.1  ross 
    488