Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.1.10.2
      1 /*	$NetBSD: genfs_io.c,v 1.1.10.2 2007/10/27 11:35:53 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.1.10.2 2007/10/27 11:35:53 yamt Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 
     51 #include <miscfs/genfs/genfs.h>
     52 #include <miscfs/genfs/genfs_node.h>
     53 #include <miscfs/specfs/specdev.h>
     54 
     55 #include <uvm/uvm.h>
     56 #include <uvm/uvm_pager.h>
     57 
     58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     59     off_t, enum uio_rw);
     60 static void genfs_dio_iodone(struct buf *);
     61 
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static inline void genfs_rel_pages(struct vm_page **, int);
     65 
     66 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
     67 
     68 int genfs_maxdio = MAXPHYS;
     69 
     70 static inline void
     71 genfs_rel_pages(struct vm_page **pgs, int npages)
     72 {
     73 	int i;
     74 
     75 	for (i = 0; i < npages; i++) {
     76 		struct vm_page *pg = pgs[i];
     77 
     78 		if (pg == NULL || pg == PGO_DONTCARE)
     79 			continue;
     80 		if (pg->flags & PG_FAKE) {
     81 			pg->flags |= PG_RELEASED;
     82 		}
     83 	}
     84 	uvm_lock_pageq();
     85 	uvm_page_unbusy(pgs, npages);
     86 	uvm_unlock_pageq();
     87 }
     88 
     89 /*
     90  * generic VM getpages routine.
     91  * Return PG_BUSY pages for the given range,
     92  * reading from backing store if necessary.
     93  */
     94 
     95 int
     96 genfs_getpages(void *v)
     97 {
     98 	struct vop_getpages_args /* {
     99 		struct vnode *a_vp;
    100 		voff_t a_offset;
    101 		struct vm_page **a_m;
    102 		int *a_count;
    103 		int a_centeridx;
    104 		vm_prot_t a_access_type;
    105 		int a_advice;
    106 		int a_flags;
    107 	} */ *ap = v;
    108 
    109 	off_t newsize, diskeof, memeof;
    110 	off_t offset, origoffset, startoffset, endoffset;
    111 	daddr_t lbn, blkno;
    112 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    113 	int fs_bshift, fs_bsize, dev_bshift;
    114 	int flags = ap->a_flags;
    115 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    116 	vaddr_t kva;
    117 	struct buf *bp, *mbp;
    118 	struct vnode *vp = ap->a_vp;
    119 	struct vnode *devvp;
    120 	struct genfs_node *gp = VTOG(vp);
    121 	struct uvm_object *uobj = &vp->v_uobj;
    122 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
    123 	int pgs_size;
    124 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    125 	bool async = (flags & PGO_SYNCIO) == 0;
    126 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    127 	bool sawhole = false;
    128 	bool has_trans = false;
    129 	bool overwrite = (flags & PGO_OVERWRITE) != 0;
    130 	bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    131 	voff_t origvsize;
    132 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    133 
    134 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    135 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    136 
    137 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    138 	    vp->v_type == VLNK || vp->v_type == VBLK);
    139 
    140 	/* XXXUBC temp limit */
    141 	if (*ap->a_count > MAX_READ_PAGES) {
    142 		panic("genfs_getpages: too many pages");
    143 	}
    144 
    145 	pgs = pgs_onstack;
    146 	pgs_size = sizeof(pgs_onstack);
    147 
    148 startover:
    149 	error = 0;
    150 	origvsize = vp->v_size;
    151 	origoffset = ap->a_offset;
    152 	orignpages = *ap->a_count;
    153 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    154 	if (flags & PGO_PASTEOF) {
    155 #if defined(DIAGNOSTIC)
    156 		off_t writeeof;
    157 #endif /* defined(DIAGNOSTIC) */
    158 
    159 		newsize = MAX(origvsize,
    160 		    origoffset + (orignpages << PAGE_SHIFT));
    161 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    162 #if defined(DIAGNOSTIC)
    163 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    164 		if (newsize > round_page(writeeof)) {
    165 			panic("%s: past eof", __func__);
    166 		}
    167 #endif /* defined(DIAGNOSTIC) */
    168 	} else {
    169 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    170 	}
    171 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    172 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    173 	KASSERT(orignpages > 0);
    174 
    175 	/*
    176 	 * Bounds-check the request.
    177 	 */
    178 
    179 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    180 		if ((flags & PGO_LOCKED) == 0) {
    181 			simple_unlock(&uobj->vmobjlock);
    182 		}
    183 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    184 		    origoffset, *ap->a_count, memeof,0);
    185 		error = EINVAL;
    186 		goto out_err;
    187 	}
    188 
    189 	/* uobj is locked */
    190 
    191 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    192 	    (vp->v_type != VBLK ||
    193 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    194 		int updflags = 0;
    195 
    196 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    197 			updflags = GOP_UPDATE_ACCESSED;
    198 		}
    199 		if (write) {
    200 			updflags |= GOP_UPDATE_MODIFIED;
    201 		}
    202 		if (updflags != 0) {
    203 			GOP_MARKUPDATE(vp, updflags);
    204 		}
    205 	}
    206 
    207 	if (write) {
    208 		gp->g_dirtygen++;
    209 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    210 			vn_syncer_add_to_worklist(vp, filedelay);
    211 		}
    212 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    213 			vp->v_iflag |= VI_WRMAPDIRTY;
    214 		}
    215 	}
    216 
    217 	/*
    218 	 * For PGO_LOCKED requests, just return whatever's in memory.
    219 	 */
    220 
    221 	if (flags & PGO_LOCKED) {
    222 		int nfound;
    223 
    224 		npages = *ap->a_count;
    225 #if defined(DEBUG)
    226 		for (i = 0; i < npages; i++) {
    227 			pg = ap->a_m[i];
    228 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    229 		}
    230 #endif /* defined(DEBUG) */
    231 		nfound = uvn_findpages(uobj, origoffset, &npages,
    232 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    233 		KASSERT(npages == *ap->a_count);
    234 		if (nfound == 0) {
    235 			error = EBUSY;
    236 			goto out_err;
    237 		}
    238 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
    239 			genfs_rel_pages(ap->a_m, npages);
    240 
    241 			/*
    242 			 * restore the array.
    243 			 */
    244 
    245 			for (i = 0; i < npages; i++) {
    246 				pg = ap->a_m[i];
    247 
    248 				if (pg != NULL || pg != PGO_DONTCARE) {
    249 					ap->a_m[i] = NULL;
    250 				}
    251 			}
    252 		} else {
    253 			rw_exit(&gp->g_glock);
    254 		}
    255 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    256 		goto out_err;
    257 	}
    258 	simple_unlock(&uobj->vmobjlock);
    259 
    260 	/*
    261 	 * find the requested pages and make some simple checks.
    262 	 * leave space in the page array for a whole block.
    263 	 */
    264 
    265 	if (vp->v_type != VBLK) {
    266 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    267 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    268 	} else {
    269 		fs_bshift = DEV_BSHIFT;
    270 		dev_bshift = DEV_BSHIFT;
    271 	}
    272 	fs_bsize = 1 << fs_bshift;
    273 
    274 	orignpages = MIN(orignpages,
    275 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    276 	npages = orignpages;
    277 	startoffset = origoffset & ~(fs_bsize - 1);
    278 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    279 	    fs_bsize - 1) & ~(fs_bsize - 1));
    280 	endoffset = MIN(endoffset, round_page(memeof));
    281 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    282 
    283 	pgs_size = sizeof(struct vm_page *) *
    284 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    285 	if (pgs_size > sizeof(pgs_onstack)) {
    286 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    287 		if (pgs == NULL) {
    288 			pgs = pgs_onstack;
    289 			error = ENOMEM;
    290 			goto out_err;
    291 		}
    292 	} else {
    293 		/* pgs == pgs_onstack */
    294 		memset(pgs, 0, pgs_size);
    295 	}
    296 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    297 	    ridx, npages, startoffset, endoffset);
    298 
    299 	if (!has_trans) {
    300 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    301 		has_trans = true;
    302 	}
    303 
    304 	/*
    305 	 * hold g_glock to prevent a race with truncate.
    306 	 *
    307 	 * check if our idea of v_size is still valid.
    308 	 */
    309 
    310 	if (blockalloc) {
    311 		rw_enter(&gp->g_glock, RW_WRITER);
    312 	} else {
    313 		rw_enter(&gp->g_glock, RW_READER);
    314 	}
    315 	simple_lock(&uobj->vmobjlock);
    316 	if (vp->v_size < origvsize) {
    317 		rw_exit(&gp->g_glock);
    318 		if (pgs != pgs_onstack)
    319 			kmem_free(pgs, pgs_size);
    320 		goto startover;
    321 	}
    322 
    323 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    324 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    325 		rw_exit(&gp->g_glock);
    326 		KASSERT(async != 0);
    327 		genfs_rel_pages(&pgs[ridx], orignpages);
    328 		simple_unlock(&uobj->vmobjlock);
    329 		error = EBUSY;
    330 		goto out_err;
    331 	}
    332 
    333 	/*
    334 	 * if the pages are already resident, just return them.
    335 	 */
    336 
    337 	for (i = 0; i < npages; i++) {
    338 		struct vm_page *pg1 = pgs[ridx + i];
    339 
    340 		if ((pg1->flags & PG_FAKE) ||
    341 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    342 			break;
    343 		}
    344 	}
    345 	if (i == npages) {
    346 		rw_exit(&gp->g_glock);
    347 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    348 		npages += ridx;
    349 		goto out;
    350 	}
    351 
    352 	/*
    353 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    354 	 */
    355 
    356 	if (overwrite) {
    357 		rw_exit(&gp->g_glock);
    358 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    359 
    360 		for (i = 0; i < npages; i++) {
    361 			struct vm_page *pg1 = pgs[ridx + i];
    362 
    363 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    364 		}
    365 		npages += ridx;
    366 		goto out;
    367 	}
    368 
    369 	/*
    370 	 * the page wasn't resident and we're not overwriting,
    371 	 * so we're going to have to do some i/o.
    372 	 * find any additional pages needed to cover the expanded range.
    373 	 */
    374 
    375 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    376 	if (startoffset != origoffset || npages != orignpages) {
    377 
    378 		/*
    379 		 * we need to avoid deadlocks caused by locking
    380 		 * additional pages at lower offsets than pages we
    381 		 * already have locked.  unlock them all and start over.
    382 		 */
    383 
    384 		genfs_rel_pages(&pgs[ridx], orignpages);
    385 		memset(pgs, 0, pgs_size);
    386 
    387 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    388 		    startoffset, endoffset, 0,0);
    389 		npgs = npages;
    390 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    391 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    392 			rw_exit(&gp->g_glock);
    393 			KASSERT(async != 0);
    394 			genfs_rel_pages(pgs, npages);
    395 			simple_unlock(&uobj->vmobjlock);
    396 			error = EBUSY;
    397 			goto out_err;
    398 		}
    399 	}
    400 	simple_unlock(&uobj->vmobjlock);
    401 
    402 	/*
    403 	 * read the desired page(s).
    404 	 */
    405 
    406 	totalbytes = npages << PAGE_SHIFT;
    407 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    408 	tailbytes = totalbytes - bytes;
    409 	skipbytes = 0;
    410 
    411 	kva = uvm_pagermapin(pgs, npages,
    412 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    413 
    414 	mbp = getiobuf();
    415 	mbp->b_bufsize = totalbytes;
    416 	mbp->b_data = (void *)kva;
    417 	mbp->b_resid = mbp->b_bcount = bytes;
    418 	mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
    419 	mbp->b_iodone = (async ? uvm_aio_biodone : 0);
    420 	mbp->b_vp = vp;
    421 	if (async)
    422 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    423 	else
    424 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    425 
    426 	/*
    427 	 * if EOF is in the middle of the range, zero the part past EOF.
    428 	 * skip over pages which are not PG_FAKE since in that case they have
    429 	 * valid data that we need to preserve.
    430 	 */
    431 
    432 	tailstart = bytes;
    433 	while (tailbytes > 0) {
    434 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    435 
    436 		KASSERT(len <= tailbytes);
    437 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    438 			memset((void *)(kva + tailstart), 0, len);
    439 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    440 			    kva, tailstart, len, 0);
    441 		}
    442 		tailstart += len;
    443 		tailbytes -= len;
    444 	}
    445 
    446 	/*
    447 	 * now loop over the pages, reading as needed.
    448 	 */
    449 
    450 	bp = NULL;
    451 	for (offset = startoffset;
    452 	    bytes > 0;
    453 	    offset += iobytes, bytes -= iobytes) {
    454 
    455 		/*
    456 		 * skip pages which don't need to be read.
    457 		 */
    458 
    459 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    460 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    461 			size_t b;
    462 
    463 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    464 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    465 				sawhole = true;
    466 			}
    467 			b = MIN(PAGE_SIZE, bytes);
    468 			offset += b;
    469 			bytes -= b;
    470 			skipbytes += b;
    471 			pidx++;
    472 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    473 			    offset, 0,0,0);
    474 			if (bytes == 0) {
    475 				goto loopdone;
    476 			}
    477 		}
    478 
    479 		/*
    480 		 * bmap the file to find out the blkno to read from and
    481 		 * how much we can read in one i/o.  if bmap returns an error,
    482 		 * skip the rest of the top-level i/o.
    483 		 */
    484 
    485 		lbn = offset >> fs_bshift;
    486 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    487 		if (error) {
    488 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    489 			    lbn, error,0,0);
    490 			skipbytes += bytes;
    491 			goto loopdone;
    492 		}
    493 
    494 		/*
    495 		 * see how many pages can be read with this i/o.
    496 		 * reduce the i/o size if necessary to avoid
    497 		 * overwriting pages with valid data.
    498 		 */
    499 
    500 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    501 		    bytes);
    502 		if (offset + iobytes > round_page(offset)) {
    503 			pcount = 1;
    504 			while (pidx + pcount < npages &&
    505 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    506 				pcount++;
    507 			}
    508 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    509 			    (offset - trunc_page(offset)));
    510 		}
    511 
    512 		/*
    513 		 * if this block isn't allocated, zero it instead of
    514 		 * reading it.  unless we are going to allocate blocks,
    515 		 * mark the pages we zeroed PG_RDONLY.
    516 		 */
    517 
    518 		if (blkno < 0) {
    519 			int holepages = (round_page(offset + iobytes) -
    520 			    trunc_page(offset)) >> PAGE_SHIFT;
    521 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    522 
    523 			sawhole = true;
    524 			memset((char *)kva + (offset - startoffset), 0,
    525 			    iobytes);
    526 			skipbytes += iobytes;
    527 
    528 			for (i = 0; i < holepages; i++) {
    529 				if (write) {
    530 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    531 				}
    532 				if (!blockalloc) {
    533 					pgs[pidx + i]->flags |= PG_RDONLY;
    534 				}
    535 			}
    536 			continue;
    537 		}
    538 
    539 		/*
    540 		 * allocate a sub-buf for this piece of the i/o
    541 		 * (or just use mbp if there's only 1 piece),
    542 		 * and start it going.
    543 		 */
    544 
    545 		if (offset == startoffset && iobytes == bytes) {
    546 			bp = mbp;
    547 		} else {
    548 			bp = getiobuf();
    549 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    550 		}
    551 		bp->b_lblkno = 0;
    552 
    553 		/* adjust physical blkno for partial blocks */
    554 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    555 		    dev_bshift);
    556 
    557 		UVMHIST_LOG(ubchist,
    558 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    559 		    bp, offset, iobytes, bp->b_blkno);
    560 
    561 		VOP_STRATEGY(devvp, bp);
    562 	}
    563 
    564 loopdone:
    565 	nestiobuf_done(mbp, skipbytes, error);
    566 	if (async) {
    567 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    568 		rw_exit(&gp->g_glock);
    569 		error = 0;
    570 		goto out_err;
    571 	}
    572 	if (bp != NULL) {
    573 		error = biowait(mbp);
    574 	}
    575 	putiobuf(mbp);
    576 	uvm_pagermapout(kva, npages);
    577 
    578 	/*
    579 	 * if this we encountered a hole then we have to do a little more work.
    580 	 * for read faults, we marked the page PG_RDONLY so that future
    581 	 * write accesses to the page will fault again.
    582 	 * for write faults, we must make sure that the backing store for
    583 	 * the page is completely allocated while the pages are locked.
    584 	 */
    585 
    586 	if (!error && sawhole && blockalloc) {
    587 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    588 		    cred);
    589 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    590 		    startoffset, npages << PAGE_SHIFT, error,0);
    591 		if (!error) {
    592 			for (i = 0; i < npages; i++) {
    593 				if (pgs[i] == NULL) {
    594 					continue;
    595 				}
    596 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    597 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    598 				    pgs[i],0,0,0);
    599 			}
    600 		}
    601 	}
    602 	rw_exit(&gp->g_glock);
    603 	simple_lock(&uobj->vmobjlock);
    604 
    605 	/*
    606 	 * we're almost done!  release the pages...
    607 	 * for errors, we free the pages.
    608 	 * otherwise we activate them and mark them as valid and clean.
    609 	 * also, unbusy pages that were not actually requested.
    610 	 */
    611 
    612 	if (error) {
    613 		for (i = 0; i < npages; i++) {
    614 			if (pgs[i] == NULL) {
    615 				continue;
    616 			}
    617 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    618 			    pgs[i], pgs[i]->flags, 0,0);
    619 			if (pgs[i]->flags & PG_FAKE) {
    620 				pgs[i]->flags |= PG_RELEASED;
    621 			}
    622 		}
    623 		uvm_lock_pageq();
    624 		uvm_page_unbusy(pgs, npages);
    625 		uvm_unlock_pageq();
    626 		simple_unlock(&uobj->vmobjlock);
    627 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    628 		goto out_err;
    629 	}
    630 
    631 out:
    632 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    633 	error = 0;
    634 	uvm_lock_pageq();
    635 	for (i = 0; i < npages; i++) {
    636 		pg = pgs[i];
    637 		if (pg == NULL) {
    638 			continue;
    639 		}
    640 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    641 		    pg, pg->flags, 0,0);
    642 		if (pg->flags & PG_FAKE && !overwrite) {
    643 			pg->flags &= ~(PG_FAKE);
    644 			pmap_clear_modify(pgs[i]);
    645 		}
    646 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    647 		if (i < ridx || i >= ridx + orignpages || async) {
    648 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    649 			    pg, pg->offset,0,0);
    650 			if (pg->flags & PG_WANTED) {
    651 				wakeup(pg);
    652 			}
    653 			if (pg->flags & PG_FAKE) {
    654 				KASSERT(overwrite);
    655 				uvm_pagezero(pg);
    656 			}
    657 			if (pg->flags & PG_RELEASED) {
    658 				uvm_pagefree(pg);
    659 				continue;
    660 			}
    661 			uvm_pageenqueue(pg);
    662 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    663 			UVM_PAGE_OWN(pg, NULL);
    664 		}
    665 	}
    666 	uvm_unlock_pageq();
    667 	simple_unlock(&uobj->vmobjlock);
    668 	if (ap->a_m != NULL) {
    669 		memcpy(ap->a_m, &pgs[ridx],
    670 		    orignpages * sizeof(struct vm_page *));
    671 	}
    672 
    673 out_err:
    674 	if (pgs != pgs_onstack)
    675 		kmem_free(pgs, pgs_size);
    676 	if (has_trans)
    677 		fstrans_done(vp->v_mount);
    678 	return (error);
    679 }
    680 
    681 /*
    682  * generic VM putpages routine.
    683  * Write the given range of pages to backing store.
    684  *
    685  * => "offhi == 0" means flush all pages at or after "offlo".
    686  * => object should be locked by caller.  we return with the
    687  *      object unlocked.
    688  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    689  *	thus, a caller might want to unlock higher level resources
    690  *	(e.g. vm_map) before calling flush.
    691  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    692  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    693  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    694  *	that new pages are inserted on the tail end of the list.   thus,
    695  *	we can make a complete pass through the object in one go by starting
    696  *	at the head and working towards the tail (new pages are put in
    697  *	front of us).
    698  * => NOTE: we are allowed to lock the page queues, so the caller
    699  *	must not be holding the page queue lock.
    700  *
    701  * note on "cleaning" object and PG_BUSY pages:
    702  *	this routine is holding the lock on the object.   the only time
    703  *	that it can run into a PG_BUSY page that it does not own is if
    704  *	some other process has started I/O on the page (e.g. either
    705  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    706  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    707  *	had a chance to modify it yet.    if the PG_BUSY page is being
    708  *	paged out then it means that someone else has already started
    709  *	cleaning the page for us (how nice!).    in this case, if we
    710  *	have syncio specified, then after we make our pass through the
    711  *	object we need to wait for the other PG_BUSY pages to clear
    712  *	off (i.e. we need to do an iosync).   also note that once a
    713  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    714  *
    715  * note on page traversal:
    716  *	we can traverse the pages in an object either by going down the
    717  *	linked list in "uobj->memq", or we can go over the address range
    718  *	by page doing hash table lookups for each address.    depending
    719  *	on how many pages are in the object it may be cheaper to do one
    720  *	or the other.   we set "by_list" to true if we are using memq.
    721  *	if the cost of a hash lookup was equal to the cost of the list
    722  *	traversal we could compare the number of pages in the start->stop
    723  *	range to the total number of pages in the object.   however, it
    724  *	seems that a hash table lookup is more expensive than the linked
    725  *	list traversal, so we multiply the number of pages in the
    726  *	range by an estimate of the relatively higher cost of the hash lookup.
    727  */
    728 
    729 int
    730 genfs_putpages(void *v)
    731 {
    732 	struct vop_putpages_args /* {
    733 		struct vnode *a_vp;
    734 		voff_t a_offlo;
    735 		voff_t a_offhi;
    736 		int a_flags;
    737 	} */ *ap = v;
    738 
    739 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    740 	    ap->a_flags, NULL);
    741 }
    742 
    743 int
    744 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
    745 	struct vm_page **busypg)
    746 {
    747 	struct uvm_object *uobj = &vp->v_uobj;
    748 	struct simplelock *slock = &uobj->vmobjlock;
    749 	off_t off;
    750 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    751 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    752 	int i, s, error, npages, nback;
    753 	int freeflag;
    754 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    755 	bool wasclean, by_list, needs_clean, yld;
    756 	bool async = (flags & PGO_SYNCIO) == 0;
    757 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    758 	struct lwp *l = curlwp ? curlwp : &lwp0;
    759 	struct genfs_node *gp = VTOG(vp);
    760 	int dirtygen;
    761 	bool modified = false;
    762 	bool has_trans = false;
    763 	bool cleanall;
    764 
    765 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    766 
    767 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    768 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    769 	KASSERT(startoff < endoff || endoff == 0);
    770 
    771 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    772 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    773 
    774 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    775 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    776 	if (uobj->uo_npages == 0) {
    777 		s = splbio();
    778 		if (vp->v_iflag & VI_ONWORKLST) {
    779 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    780 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    781 				vn_syncer_remove_from_worklist(vp);
    782 		}
    783 		splx(s);
    784 		simple_unlock(slock);
    785 		return (0);
    786 	}
    787 
    788 	/*
    789 	 * the vnode has pages, set up to process the request.
    790 	 */
    791 
    792 	if ((flags & PGO_CLEANIT) != 0) {
    793 		simple_unlock(slock);
    794 		if (pagedaemon) {
    795 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    796 			if (error)
    797 				return error;
    798 		} else
    799 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    800 		has_trans = true;
    801 		simple_lock(slock);
    802 	}
    803 
    804 	error = 0;
    805 	s = splbio();
    806 	simple_lock(&global_v_numoutput_slock);
    807 	wasclean = (vp->v_numoutput == 0);
    808 	simple_unlock(&global_v_numoutput_slock);
    809 	splx(s);
    810 	off = startoff;
    811 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    812 		endoff = trunc_page(LLONG_MAX);
    813 	}
    814 	by_list = (uobj->uo_npages <=
    815 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    816 
    817 #if !defined(DEBUG)
    818 	/*
    819 	 * if this vnode is known not to have dirty pages,
    820 	 * don't bother to clean it out.
    821 	 */
    822 
    823 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    824 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    825 			goto skip_scan;
    826 		}
    827 		flags &= ~PGO_CLEANIT;
    828 	}
    829 #endif /* !defined(DEBUG) */
    830 
    831 	/*
    832 	 * start the loop.  when scanning by list, hold the last page
    833 	 * in the list before we start.  pages allocated after we start
    834 	 * will be added to the end of the list, so we can stop at the
    835 	 * current last page.
    836 	 */
    837 
    838 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    839 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    840 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    841 	dirtygen = gp->g_dirtygen;
    842 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    843 	if (by_list) {
    844 		curmp.uobject = uobj;
    845 		curmp.offset = (voff_t)-1;
    846 		curmp.flags = PG_BUSY;
    847 		endmp.uobject = uobj;
    848 		endmp.offset = (voff_t)-1;
    849 		endmp.flags = PG_BUSY;
    850 		pg = TAILQ_FIRST(&uobj->memq);
    851 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
    852 		uvm_lwp_hold(l);
    853 	} else {
    854 		pg = uvm_pagelookup(uobj, off);
    855 	}
    856 	nextpg = NULL;
    857 	while (by_list || off < endoff) {
    858 
    859 		/*
    860 		 * if the current page is not interesting, move on to the next.
    861 		 */
    862 
    863 		KASSERT(pg == NULL || pg->uobject == uobj);
    864 		KASSERT(pg == NULL ||
    865 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    866 		    (pg->flags & PG_BUSY) != 0);
    867 		if (by_list) {
    868 			if (pg == &endmp) {
    869 				break;
    870 			}
    871 			if (pg->offset < startoff || pg->offset >= endoff ||
    872 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    873 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    874 					wasclean = false;
    875 				}
    876 				pg = TAILQ_NEXT(pg, listq);
    877 				continue;
    878 			}
    879 			off = pg->offset;
    880 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    881 			if (pg != NULL) {
    882 				wasclean = false;
    883 			}
    884 			off += PAGE_SIZE;
    885 			if (off < endoff) {
    886 				pg = uvm_pagelookup(uobj, off);
    887 			}
    888 			continue;
    889 		}
    890 
    891 		/*
    892 		 * if the current page needs to be cleaned and it's busy,
    893 		 * wait for it to become unbusy.
    894 		 */
    895 
    896 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    897 		    SPCF_SHOULDYIELD) && !pagedaemon;
    898 		if (pg->flags & PG_BUSY || yld) {
    899 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    900 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    901 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    902 				error = EDEADLK;
    903 				if (busypg != NULL)
    904 					*busypg = pg;
    905 				break;
    906 			}
    907 			if (pagedaemon) {
    908 				/*
    909 				 * someone has taken the page while we
    910 				 * dropped the lock for fstrans_start.
    911 				 */
    912 				break;
    913 			}
    914 			if (by_list) {
    915 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
    916 				UVMHIST_LOG(ubchist, "curmp next %p",
    917 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
    918 			}
    919 			if (yld) {
    920 				simple_unlock(slock);
    921 				preempt();
    922 				simple_lock(slock);
    923 			} else {
    924 				pg->flags |= PG_WANTED;
    925 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    926 				simple_lock(slock);
    927 			}
    928 			if (by_list) {
    929 				UVMHIST_LOG(ubchist, "after next %p",
    930 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
    931 				pg = TAILQ_NEXT(&curmp, listq);
    932 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
    933 			} else {
    934 				pg = uvm_pagelookup(uobj, off);
    935 			}
    936 			continue;
    937 		}
    938 
    939 		/*
    940 		 * if we're freeing, remove all mappings of the page now.
    941 		 * if we're cleaning, check if the page is needs to be cleaned.
    942 		 */
    943 
    944 		if (flags & PGO_FREE) {
    945 			pmap_page_protect(pg, VM_PROT_NONE);
    946 		} else if (flags & PGO_CLEANIT) {
    947 
    948 			/*
    949 			 * if we still have some hope to pull this vnode off
    950 			 * from the syncer queue, write-protect the page.
    951 			 */
    952 
    953 			if (cleanall && wasclean &&
    954 			    gp->g_dirtygen == dirtygen) {
    955 
    956 				/*
    957 				 * uobj pages get wired only by uvm_fault
    958 				 * where uobj is locked.
    959 				 */
    960 
    961 				if (pg->wire_count == 0) {
    962 					pmap_page_protect(pg,
    963 					    VM_PROT_READ|VM_PROT_EXECUTE);
    964 				} else {
    965 					cleanall = false;
    966 				}
    967 			}
    968 		}
    969 
    970 		if (flags & PGO_CLEANIT) {
    971 			needs_clean = pmap_clear_modify(pg) ||
    972 			    (pg->flags & PG_CLEAN) == 0;
    973 			pg->flags |= PG_CLEAN;
    974 		} else {
    975 			needs_clean = false;
    976 		}
    977 
    978 		/*
    979 		 * if we're cleaning, build a cluster.
    980 		 * the cluster will consist of pages which are currently dirty,
    981 		 * but they will be returned to us marked clean.
    982 		 * if not cleaning, just operate on the one page.
    983 		 */
    984 
    985 		if (needs_clean) {
    986 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
    987 			wasclean = false;
    988 			memset(pgs, 0, sizeof(pgs));
    989 			pg->flags |= PG_BUSY;
    990 			UVM_PAGE_OWN(pg, "genfs_putpages");
    991 
    992 			/*
    993 			 * first look backward.
    994 			 */
    995 
    996 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
    997 			nback = npages;
    998 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
    999 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1000 			if (nback) {
   1001 				memmove(&pgs[0], &pgs[npages - nback],
   1002 				    nback * sizeof(pgs[0]));
   1003 				if (npages - nback < nback)
   1004 					memset(&pgs[nback], 0,
   1005 					    (npages - nback) * sizeof(pgs[0]));
   1006 				else
   1007 					memset(&pgs[npages - nback], 0,
   1008 					    nback * sizeof(pgs[0]));
   1009 			}
   1010 
   1011 			/*
   1012 			 * then plug in our page of interest.
   1013 			 */
   1014 
   1015 			pgs[nback] = pg;
   1016 
   1017 			/*
   1018 			 * then look forward to fill in the remaining space in
   1019 			 * the array of pages.
   1020 			 */
   1021 
   1022 			npages = maxpages - nback - 1;
   1023 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1024 			    &pgs[nback + 1],
   1025 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1026 			npages += nback + 1;
   1027 		} else {
   1028 			pgs[0] = pg;
   1029 			npages = 1;
   1030 			nback = 0;
   1031 		}
   1032 
   1033 		/*
   1034 		 * apply FREE or DEACTIVATE options if requested.
   1035 		 */
   1036 
   1037 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1038 			uvm_lock_pageq();
   1039 		}
   1040 		for (i = 0; i < npages; i++) {
   1041 			tpg = pgs[i];
   1042 			KASSERT(tpg->uobject == uobj);
   1043 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1044 				pg = tpg;
   1045 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1046 				continue;
   1047 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1048 				(void) pmap_clear_reference(tpg);
   1049 				uvm_pagedeactivate(tpg);
   1050 			} else if (flags & PGO_FREE) {
   1051 				pmap_page_protect(tpg, VM_PROT_NONE);
   1052 				if (tpg->flags & PG_BUSY) {
   1053 					tpg->flags |= freeflag;
   1054 					if (pagedaemon) {
   1055 						uvmexp.paging++;
   1056 						uvm_pagedequeue(tpg);
   1057 					}
   1058 				} else {
   1059 
   1060 					/*
   1061 					 * ``page is not busy''
   1062 					 * implies that npages is 1
   1063 					 * and needs_clean is false.
   1064 					 */
   1065 
   1066 					nextpg = TAILQ_NEXT(tpg, listq);
   1067 					uvm_pagefree(tpg);
   1068 					if (pagedaemon)
   1069 						uvmexp.pdfreed++;
   1070 				}
   1071 			}
   1072 		}
   1073 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1074 			uvm_unlock_pageq();
   1075 		}
   1076 		if (needs_clean) {
   1077 			modified = true;
   1078 
   1079 			/*
   1080 			 * start the i/o.  if we're traversing by list,
   1081 			 * keep our place in the list with a marker page.
   1082 			 */
   1083 
   1084 			if (by_list) {
   1085 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1086 				    listq);
   1087 			}
   1088 			simple_unlock(slock);
   1089 			error = GOP_WRITE(vp, pgs, npages, flags);
   1090 			simple_lock(slock);
   1091 			if (by_list) {
   1092 				pg = TAILQ_NEXT(&curmp, listq);
   1093 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1094 			}
   1095 			if (error) {
   1096 				break;
   1097 			}
   1098 			if (by_list) {
   1099 				continue;
   1100 			}
   1101 		}
   1102 
   1103 		/*
   1104 		 * find the next page and continue if there was no error.
   1105 		 */
   1106 
   1107 		if (by_list) {
   1108 			if (nextpg) {
   1109 				pg = nextpg;
   1110 				nextpg = NULL;
   1111 			} else {
   1112 				pg = TAILQ_NEXT(pg, listq);
   1113 			}
   1114 		} else {
   1115 			off += (npages - nback) << PAGE_SHIFT;
   1116 			if (off < endoff) {
   1117 				pg = uvm_pagelookup(uobj, off);
   1118 			}
   1119 		}
   1120 	}
   1121 	if (by_list) {
   1122 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1123 		uvm_lwp_rele(l);
   1124 	}
   1125 
   1126 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1127 	    (vp->v_type != VBLK ||
   1128 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1129 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1130 	}
   1131 
   1132 	/*
   1133 	 * if we're cleaning and there was nothing to clean,
   1134 	 * take us off the syncer list.  if we started any i/o
   1135 	 * and we're doing sync i/o, wait for all writes to finish.
   1136 	 */
   1137 
   1138 	s = splbio();
   1139 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1140 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1141 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1142 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1143 			vn_syncer_remove_from_worklist(vp);
   1144 	}
   1145 	splx(s);
   1146 
   1147 #if !defined(DEBUG)
   1148 skip_scan:
   1149 #endif /* !defined(DEBUG) */
   1150 	if (!wasclean && !async) {
   1151 		s = splbio();
   1152 		/*
   1153 		 * XXX - we want simple_unlock(&global_v_numoutput_slock);
   1154 		 *	 but the slot in ltsleep() is taken!
   1155 		 * XXX - try to recover from missed wakeups with a timeout..
   1156 		 *	 must think of something better.
   1157 		 */
   1158 		while (vp->v_numoutput != 0) {
   1159 			vp->v_iflag |= VI_BWAIT;
   1160 			UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, false,
   1161 			    "genput2", hz);
   1162 			simple_lock(slock);
   1163 		}
   1164 		splx(s);
   1165 	}
   1166 	simple_unlock(slock);
   1167 
   1168 	if (has_trans)
   1169 		fstrans_done(vp->v_mount);
   1170 
   1171 	return (error);
   1172 }
   1173 
   1174 int
   1175 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1176 {
   1177 	off_t off;
   1178 	vaddr_t kva;
   1179 	size_t len;
   1180 	int error;
   1181 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1182 
   1183 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1184 	    vp, pgs, npages, flags);
   1185 
   1186 	off = pgs[0]->offset;
   1187 	kva = uvm_pagermapin(pgs, npages,
   1188 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1189 	len = npages << PAGE_SHIFT;
   1190 
   1191 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1192 			    uvm_aio_biodone);
   1193 
   1194 	return error;
   1195 }
   1196 
   1197 /*
   1198  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1199  * and mapped into kernel memory.  Here we just look up the underlying
   1200  * device block addresses and call the strategy routine.
   1201  */
   1202 
   1203 static int
   1204 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1205     enum uio_rw rw, void (*iodone)(struct buf *))
   1206 {
   1207 	int s, error, run;
   1208 	int fs_bshift, dev_bshift;
   1209 	off_t eof, offset, startoffset;
   1210 	size_t bytes, iobytes, skipbytes;
   1211 	daddr_t lbn, blkno;
   1212 	struct buf *mbp, *bp;
   1213 	struct vnode *devvp;
   1214 	bool async = (flags & PGO_SYNCIO) == 0;
   1215 	bool write = rw == UIO_WRITE;
   1216 	int brw = write ? B_WRITE : B_READ;
   1217 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1218 
   1219 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1220 	    vp, kva, len, flags);
   1221 
   1222 	KASSERT(vp->v_size <= vp->v_writesize);
   1223 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1224 	if (vp->v_type != VBLK) {
   1225 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1226 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1227 	} else {
   1228 		fs_bshift = DEV_BSHIFT;
   1229 		dev_bshift = DEV_BSHIFT;
   1230 	}
   1231 	error = 0;
   1232 	startoffset = off;
   1233 	bytes = MIN(len, eof - startoffset);
   1234 	skipbytes = 0;
   1235 	KASSERT(bytes != 0);
   1236 
   1237 	if (write) {
   1238 		s = splbio();
   1239 		simple_lock(&global_v_numoutput_slock);
   1240 		vp->v_numoutput += 2;
   1241 		simple_unlock(&global_v_numoutput_slock);
   1242 		splx(s);
   1243 	}
   1244 	mbp = getiobuf();
   1245 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1246 	    vp, mbp, vp->v_numoutput, bytes);
   1247 	mbp->b_bufsize = len;
   1248 	mbp->b_data = (void *)kva;
   1249 	mbp->b_resid = mbp->b_bcount = bytes;
   1250 	mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
   1251 	mbp->b_iodone = iodone;
   1252 	mbp->b_vp = vp;
   1253 	if (curlwp == uvm.pagedaemon_lwp)
   1254 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1255 	else if (async)
   1256 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1257 	else
   1258 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1259 
   1260 	bp = NULL;
   1261 	for (offset = startoffset;
   1262 	    bytes > 0;
   1263 	    offset += iobytes, bytes -= iobytes) {
   1264 		lbn = offset >> fs_bshift;
   1265 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1266 		if (error) {
   1267 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1268 			skipbytes += bytes;
   1269 			bytes = 0;
   1270 			break;
   1271 		}
   1272 
   1273 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1274 		    bytes);
   1275 		if (blkno == (daddr_t)-1) {
   1276 			if (!write) {
   1277 				memset((char *)kva + (offset - startoffset), 0,
   1278 				   iobytes);
   1279 			}
   1280 			skipbytes += iobytes;
   1281 			continue;
   1282 		}
   1283 
   1284 		/* if it's really one i/o, don't make a second buf */
   1285 		if (offset == startoffset && iobytes == bytes) {
   1286 			bp = mbp;
   1287 		} else {
   1288 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1289 			    vp, bp, vp->v_numoutput, 0);
   1290 			bp = getiobuf();
   1291 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1292 		}
   1293 		bp->b_lblkno = 0;
   1294 
   1295 		/* adjust physical blkno for partial blocks */
   1296 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1297 		    dev_bshift);
   1298 		UVMHIST_LOG(ubchist,
   1299 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1300 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1301 
   1302 		VOP_STRATEGY(devvp, bp);
   1303 	}
   1304 	if (skipbytes) {
   1305 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1306 	}
   1307 	nestiobuf_done(mbp, skipbytes, error);
   1308 	if (async) {
   1309 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1310 		return (0);
   1311 	}
   1312 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1313 	error = biowait(mbp);
   1314 	s = splbio();
   1315 	(*iodone)(mbp);
   1316 	splx(s);
   1317 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1318 	return (error);
   1319 }
   1320 
   1321 /*
   1322  * VOP_PUTPAGES() for vnodes which never have pages.
   1323  */
   1324 
   1325 int
   1326 genfs_null_putpages(void *v)
   1327 {
   1328 	struct vop_putpages_args /* {
   1329 		struct vnode *a_vp;
   1330 		voff_t a_offlo;
   1331 		voff_t a_offhi;
   1332 		int a_flags;
   1333 	} */ *ap = v;
   1334 	struct vnode *vp = ap->a_vp;
   1335 
   1336 	KASSERT(vp->v_uobj.uo_npages == 0);
   1337 	simple_unlock(&vp->v_interlock);
   1338 	return (0);
   1339 }
   1340 
   1341 int
   1342 genfs_compat_getpages(void *v)
   1343 {
   1344 	struct vop_getpages_args /* {
   1345 		struct vnode *a_vp;
   1346 		voff_t a_offset;
   1347 		struct vm_page **a_m;
   1348 		int *a_count;
   1349 		int a_centeridx;
   1350 		vm_prot_t a_access_type;
   1351 		int a_advice;
   1352 		int a_flags;
   1353 	} */ *ap = v;
   1354 
   1355 	off_t origoffset;
   1356 	struct vnode *vp = ap->a_vp;
   1357 	struct uvm_object *uobj = &vp->v_uobj;
   1358 	struct vm_page *pg, **pgs;
   1359 	vaddr_t kva;
   1360 	int i, error, orignpages, npages;
   1361 	struct iovec iov;
   1362 	struct uio uio;
   1363 	kauth_cred_t cred = curlwp->l_cred;
   1364 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1365 
   1366 	error = 0;
   1367 	origoffset = ap->a_offset;
   1368 	orignpages = *ap->a_count;
   1369 	pgs = ap->a_m;
   1370 
   1371 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1372 		vn_syncer_add_to_worklist(vp, filedelay);
   1373 	}
   1374 	if (ap->a_flags & PGO_LOCKED) {
   1375 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1376 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1377 
   1378 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1379 	}
   1380 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1381 		simple_unlock(&uobj->vmobjlock);
   1382 		return (EINVAL);
   1383 	}
   1384 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1385 		simple_unlock(&uobj->vmobjlock);
   1386 		return 0;
   1387 	}
   1388 	npages = orignpages;
   1389 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1390 	simple_unlock(&uobj->vmobjlock);
   1391 	kva = uvm_pagermapin(pgs, npages,
   1392 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1393 	for (i = 0; i < npages; i++) {
   1394 		pg = pgs[i];
   1395 		if ((pg->flags & PG_FAKE) == 0) {
   1396 			continue;
   1397 		}
   1398 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1399 		iov.iov_len = PAGE_SIZE;
   1400 		uio.uio_iov = &iov;
   1401 		uio.uio_iovcnt = 1;
   1402 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1403 		uio.uio_rw = UIO_READ;
   1404 		uio.uio_resid = PAGE_SIZE;
   1405 		UIO_SETUP_SYSSPACE(&uio);
   1406 		/* XXX vn_lock */
   1407 		error = VOP_READ(vp, &uio, 0, cred);
   1408 		if (error) {
   1409 			break;
   1410 		}
   1411 		if (uio.uio_resid) {
   1412 			memset(iov.iov_base, 0, uio.uio_resid);
   1413 		}
   1414 	}
   1415 	uvm_pagermapout(kva, npages);
   1416 	simple_lock(&uobj->vmobjlock);
   1417 	uvm_lock_pageq();
   1418 	for (i = 0; i < npages; i++) {
   1419 		pg = pgs[i];
   1420 		if (error && (pg->flags & PG_FAKE) != 0) {
   1421 			pg->flags |= PG_RELEASED;
   1422 		} else {
   1423 			pmap_clear_modify(pg);
   1424 			uvm_pageactivate(pg);
   1425 		}
   1426 	}
   1427 	if (error) {
   1428 		uvm_page_unbusy(pgs, npages);
   1429 	}
   1430 	uvm_unlock_pageq();
   1431 	simple_unlock(&uobj->vmobjlock);
   1432 	return (error);
   1433 }
   1434 
   1435 int
   1436 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1437     int flags)
   1438 {
   1439 	off_t offset;
   1440 	struct iovec iov;
   1441 	struct uio uio;
   1442 	kauth_cred_t cred = curlwp->l_cred;
   1443 	struct buf *bp;
   1444 	vaddr_t kva;
   1445 	int s, error;
   1446 
   1447 	offset = pgs[0]->offset;
   1448 	kva = uvm_pagermapin(pgs, npages,
   1449 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1450 
   1451 	iov.iov_base = (void *)kva;
   1452 	iov.iov_len = npages << PAGE_SHIFT;
   1453 	uio.uio_iov = &iov;
   1454 	uio.uio_iovcnt = 1;
   1455 	uio.uio_offset = offset;
   1456 	uio.uio_rw = UIO_WRITE;
   1457 	uio.uio_resid = npages << PAGE_SHIFT;
   1458 	UIO_SETUP_SYSSPACE(&uio);
   1459 	/* XXX vn_lock */
   1460 	error = VOP_WRITE(vp, &uio, 0, cred);
   1461 
   1462 	s = splbio();
   1463 	V_INCR_NUMOUTPUT(vp);
   1464 	splx(s);
   1465 
   1466 	bp = getiobuf();
   1467 	bp->b_flags = B_BUSY | B_WRITE | B_AGE;
   1468 	bp->b_vp = vp;
   1469 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1470 	bp->b_data = (char *)kva;
   1471 	bp->b_bcount = npages << PAGE_SHIFT;
   1472 	bp->b_bufsize = npages << PAGE_SHIFT;
   1473 	bp->b_resid = 0;
   1474 	bp->b_error = error;
   1475 	uvm_aio_aiodone(bp);
   1476 	return (error);
   1477 }
   1478 
   1479 /*
   1480  * Process a uio using direct I/O.  If we reach a part of the request
   1481  * which cannot be processed in this fashion for some reason, just return.
   1482  * The caller must handle some additional part of the request using
   1483  * buffered I/O before trying direct I/O again.
   1484  */
   1485 
   1486 void
   1487 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1488 {
   1489 	struct vmspace *vs;
   1490 	struct iovec *iov;
   1491 	vaddr_t va;
   1492 	size_t len;
   1493 	const int mask = DEV_BSIZE - 1;
   1494 	int error;
   1495 
   1496 	/*
   1497 	 * We only support direct I/O to user space for now.
   1498 	 */
   1499 
   1500 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1501 		return;
   1502 	}
   1503 
   1504 	/*
   1505 	 * If the vnode is mapped, we would need to get the getpages lock
   1506 	 * to stabilize the bmap, but then we would get into trouble whil e
   1507 	 * locking the pages if the pages belong to this same vnode (or a
   1508 	 * multi-vnode cascade to the same effect).  Just fall back to
   1509 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1510 	 */
   1511 
   1512 	if (vp->v_vflag & VV_MAPPED) {
   1513 		return;
   1514 	}
   1515 
   1516 	/*
   1517 	 * Do as much of the uio as possible with direct I/O.
   1518 	 */
   1519 
   1520 	vs = uio->uio_vmspace;
   1521 	while (uio->uio_resid) {
   1522 		iov = uio->uio_iov;
   1523 		if (iov->iov_len == 0) {
   1524 			uio->uio_iov++;
   1525 			uio->uio_iovcnt--;
   1526 			continue;
   1527 		}
   1528 		va = (vaddr_t)iov->iov_base;
   1529 		len = MIN(iov->iov_len, genfs_maxdio);
   1530 		len &= ~mask;
   1531 
   1532 		/*
   1533 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1534 		 * the current EOF, then fall back to buffered I/O.
   1535 		 */
   1536 
   1537 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1538 			return;
   1539 		}
   1540 
   1541 		/*
   1542 		 * Check alignment.  The file offset must be at least
   1543 		 * sector-aligned.  The exact constraint on memory alignment
   1544 		 * is very hardware-dependent, but requiring sector-aligned
   1545 		 * addresses there too is safe.
   1546 		 */
   1547 
   1548 		if (uio->uio_offset & mask || va & mask) {
   1549 			return;
   1550 		}
   1551 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1552 					  uio->uio_rw);
   1553 		if (error) {
   1554 			break;
   1555 		}
   1556 		iov->iov_base = (char *)iov->iov_base + len;
   1557 		iov->iov_len -= len;
   1558 		uio->uio_offset += len;
   1559 		uio->uio_resid -= len;
   1560 	}
   1561 }
   1562 
   1563 /*
   1564  * Iodone routine for direct I/O.  We don't do much here since the request is
   1565  * always synchronous, so the caller will do most of the work after biowait().
   1566  */
   1567 
   1568 static void
   1569 genfs_dio_iodone(struct buf *bp)
   1570 {
   1571 	int s;
   1572 
   1573 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1574 	s = splbio();
   1575 	if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
   1576 		vwakeup(bp);
   1577 	}
   1578 	putiobuf(bp);
   1579 	splx(s);
   1580 }
   1581 
   1582 /*
   1583  * Process one chunk of a direct I/O request.
   1584  */
   1585 
   1586 static int
   1587 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1588     off_t off, enum uio_rw rw)
   1589 {
   1590 	struct vm_map *map;
   1591 	struct pmap *upm, *kpm;
   1592 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1593 	off_t spoff, epoff;
   1594 	vaddr_t kva, puva;
   1595 	paddr_t pa;
   1596 	vm_prot_t prot;
   1597 	int error, rv, poff, koff;
   1598 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
   1599 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1600 
   1601 	/*
   1602 	 * For writes, verify that this range of the file already has fully
   1603 	 * allocated backing store.  If there are any holes, just punt and
   1604 	 * make the caller take the buffered write path.
   1605 	 */
   1606 
   1607 	if (rw == UIO_WRITE) {
   1608 		daddr_t lbn, elbn, blkno;
   1609 		int bsize, bshift, run;
   1610 
   1611 		bshift = vp->v_mount->mnt_fs_bshift;
   1612 		bsize = 1 << bshift;
   1613 		lbn = off >> bshift;
   1614 		elbn = (off + len + bsize - 1) >> bshift;
   1615 		while (lbn < elbn) {
   1616 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1617 			if (error) {
   1618 				return error;
   1619 			}
   1620 			if (blkno == (daddr_t)-1) {
   1621 				return ENOSPC;
   1622 			}
   1623 			lbn += 1 + run;
   1624 		}
   1625 	}
   1626 
   1627 	/*
   1628 	 * Flush any cached pages for parts of the file that we're about to
   1629 	 * access.  If we're writing, invalidate pages as well.
   1630 	 */
   1631 
   1632 	spoff = trunc_page(off);
   1633 	epoff = round_page(off + len);
   1634 	simple_lock(&vp->v_interlock);
   1635 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1636 	if (error) {
   1637 		return error;
   1638 	}
   1639 
   1640 	/*
   1641 	 * Wire the user pages and remap them into kernel memory.
   1642 	 */
   1643 
   1644 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1645 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1646 	if (error) {
   1647 		return error;
   1648 	}
   1649 
   1650 	map = &vs->vm_map;
   1651 	upm = vm_map_pmap(map);
   1652 	kpm = vm_map_pmap(kernel_map);
   1653 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1654 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1655 	puva = trunc_page(uva);
   1656 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1657 		rv = pmap_extract(upm, puva + poff, &pa);
   1658 		KASSERT(rv);
   1659 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1660 	}
   1661 	pmap_update(kpm);
   1662 
   1663 	/*
   1664 	 * Do the I/O.
   1665 	 */
   1666 
   1667 	koff = uva - trunc_page(uva);
   1668 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1669 			    genfs_dio_iodone);
   1670 
   1671 	/*
   1672 	 * Tear down the kernel mapping.
   1673 	 */
   1674 
   1675 	pmap_remove(kpm, kva, kva + klen);
   1676 	pmap_update(kpm);
   1677 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1678 
   1679 	/*
   1680 	 * Unwire the user pages.
   1681 	 */
   1682 
   1683 	uvm_vsunlock(vs, (void *)uva, len);
   1684 	return error;
   1685 }
   1686