genfs_io.c revision 1.1.10.2 1 /* $NetBSD: genfs_io.c,v 1.1.10.2 2007/10/27 11:35:53 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.1.10.2 2007/10/27 11:35:53 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59 off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65
66 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
67
68 int genfs_maxdio = MAXPHYS;
69
70 static inline void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 int i;
74
75 for (i = 0; i < npages; i++) {
76 struct vm_page *pg = pgs[i];
77
78 if (pg == NULL || pg == PGO_DONTCARE)
79 continue;
80 if (pg->flags & PG_FAKE) {
81 pg->flags |= PG_RELEASED;
82 }
83 }
84 uvm_lock_pageq();
85 uvm_page_unbusy(pgs, npages);
86 uvm_unlock_pageq();
87 }
88
89 /*
90 * generic VM getpages routine.
91 * Return PG_BUSY pages for the given range,
92 * reading from backing store if necessary.
93 */
94
95 int
96 genfs_getpages(void *v)
97 {
98 struct vop_getpages_args /* {
99 struct vnode *a_vp;
100 voff_t a_offset;
101 struct vm_page **a_m;
102 int *a_count;
103 int a_centeridx;
104 vm_prot_t a_access_type;
105 int a_advice;
106 int a_flags;
107 } */ *ap = v;
108
109 off_t newsize, diskeof, memeof;
110 off_t offset, origoffset, startoffset, endoffset;
111 daddr_t lbn, blkno;
112 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
113 int fs_bshift, fs_bsize, dev_bshift;
114 int flags = ap->a_flags;
115 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
116 vaddr_t kva;
117 struct buf *bp, *mbp;
118 struct vnode *vp = ap->a_vp;
119 struct vnode *devvp;
120 struct genfs_node *gp = VTOG(vp);
121 struct uvm_object *uobj = &vp->v_uobj;
122 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
123 int pgs_size;
124 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
125 bool async = (flags & PGO_SYNCIO) == 0;
126 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
127 bool sawhole = false;
128 bool has_trans = false;
129 bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
131 voff_t origvsize;
132 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
133
134 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
135 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
136
137 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
138 vp->v_type == VLNK || vp->v_type == VBLK);
139
140 /* XXXUBC temp limit */
141 if (*ap->a_count > MAX_READ_PAGES) {
142 panic("genfs_getpages: too many pages");
143 }
144
145 pgs = pgs_onstack;
146 pgs_size = sizeof(pgs_onstack);
147
148 startover:
149 error = 0;
150 origvsize = vp->v_size;
151 origoffset = ap->a_offset;
152 orignpages = *ap->a_count;
153 GOP_SIZE(vp, origvsize, &diskeof, 0);
154 if (flags & PGO_PASTEOF) {
155 #if defined(DIAGNOSTIC)
156 off_t writeeof;
157 #endif /* defined(DIAGNOSTIC) */
158
159 newsize = MAX(origvsize,
160 origoffset + (orignpages << PAGE_SHIFT));
161 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
162 #if defined(DIAGNOSTIC)
163 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
164 if (newsize > round_page(writeeof)) {
165 panic("%s: past eof", __func__);
166 }
167 #endif /* defined(DIAGNOSTIC) */
168 } else {
169 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
170 }
171 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
172 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
173 KASSERT(orignpages > 0);
174
175 /*
176 * Bounds-check the request.
177 */
178
179 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
180 if ((flags & PGO_LOCKED) == 0) {
181 simple_unlock(&uobj->vmobjlock);
182 }
183 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
184 origoffset, *ap->a_count, memeof,0);
185 error = EINVAL;
186 goto out_err;
187 }
188
189 /* uobj is locked */
190
191 if ((flags & PGO_NOTIMESTAMP) == 0 &&
192 (vp->v_type != VBLK ||
193 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
194 int updflags = 0;
195
196 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
197 updflags = GOP_UPDATE_ACCESSED;
198 }
199 if (write) {
200 updflags |= GOP_UPDATE_MODIFIED;
201 }
202 if (updflags != 0) {
203 GOP_MARKUPDATE(vp, updflags);
204 }
205 }
206
207 if (write) {
208 gp->g_dirtygen++;
209 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
210 vn_syncer_add_to_worklist(vp, filedelay);
211 }
212 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
213 vp->v_iflag |= VI_WRMAPDIRTY;
214 }
215 }
216
217 /*
218 * For PGO_LOCKED requests, just return whatever's in memory.
219 */
220
221 if (flags & PGO_LOCKED) {
222 int nfound;
223
224 npages = *ap->a_count;
225 #if defined(DEBUG)
226 for (i = 0; i < npages; i++) {
227 pg = ap->a_m[i];
228 KASSERT(pg == NULL || pg == PGO_DONTCARE);
229 }
230 #endif /* defined(DEBUG) */
231 nfound = uvn_findpages(uobj, origoffset, &npages,
232 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
233 KASSERT(npages == *ap->a_count);
234 if (nfound == 0) {
235 error = EBUSY;
236 goto out_err;
237 }
238 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
239 genfs_rel_pages(ap->a_m, npages);
240
241 /*
242 * restore the array.
243 */
244
245 for (i = 0; i < npages; i++) {
246 pg = ap->a_m[i];
247
248 if (pg != NULL || pg != PGO_DONTCARE) {
249 ap->a_m[i] = NULL;
250 }
251 }
252 } else {
253 rw_exit(&gp->g_glock);
254 }
255 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
256 goto out_err;
257 }
258 simple_unlock(&uobj->vmobjlock);
259
260 /*
261 * find the requested pages and make some simple checks.
262 * leave space in the page array for a whole block.
263 */
264
265 if (vp->v_type != VBLK) {
266 fs_bshift = vp->v_mount->mnt_fs_bshift;
267 dev_bshift = vp->v_mount->mnt_dev_bshift;
268 } else {
269 fs_bshift = DEV_BSHIFT;
270 dev_bshift = DEV_BSHIFT;
271 }
272 fs_bsize = 1 << fs_bshift;
273
274 orignpages = MIN(orignpages,
275 round_page(memeof - origoffset) >> PAGE_SHIFT);
276 npages = orignpages;
277 startoffset = origoffset & ~(fs_bsize - 1);
278 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
279 fs_bsize - 1) & ~(fs_bsize - 1));
280 endoffset = MIN(endoffset, round_page(memeof));
281 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
282
283 pgs_size = sizeof(struct vm_page *) *
284 ((endoffset - startoffset) >> PAGE_SHIFT);
285 if (pgs_size > sizeof(pgs_onstack)) {
286 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
287 if (pgs == NULL) {
288 pgs = pgs_onstack;
289 error = ENOMEM;
290 goto out_err;
291 }
292 } else {
293 /* pgs == pgs_onstack */
294 memset(pgs, 0, pgs_size);
295 }
296 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
297 ridx, npages, startoffset, endoffset);
298
299 if (!has_trans) {
300 fstrans_start(vp->v_mount, FSTRANS_SHARED);
301 has_trans = true;
302 }
303
304 /*
305 * hold g_glock to prevent a race with truncate.
306 *
307 * check if our idea of v_size is still valid.
308 */
309
310 if (blockalloc) {
311 rw_enter(&gp->g_glock, RW_WRITER);
312 } else {
313 rw_enter(&gp->g_glock, RW_READER);
314 }
315 simple_lock(&uobj->vmobjlock);
316 if (vp->v_size < origvsize) {
317 rw_exit(&gp->g_glock);
318 if (pgs != pgs_onstack)
319 kmem_free(pgs, pgs_size);
320 goto startover;
321 }
322
323 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
324 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
325 rw_exit(&gp->g_glock);
326 KASSERT(async != 0);
327 genfs_rel_pages(&pgs[ridx], orignpages);
328 simple_unlock(&uobj->vmobjlock);
329 error = EBUSY;
330 goto out_err;
331 }
332
333 /*
334 * if the pages are already resident, just return them.
335 */
336
337 for (i = 0; i < npages; i++) {
338 struct vm_page *pg1 = pgs[ridx + i];
339
340 if ((pg1->flags & PG_FAKE) ||
341 (blockalloc && (pg1->flags & PG_RDONLY))) {
342 break;
343 }
344 }
345 if (i == npages) {
346 rw_exit(&gp->g_glock);
347 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
348 npages += ridx;
349 goto out;
350 }
351
352 /*
353 * if PGO_OVERWRITE is set, don't bother reading the pages.
354 */
355
356 if (overwrite) {
357 rw_exit(&gp->g_glock);
358 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
359
360 for (i = 0; i < npages; i++) {
361 struct vm_page *pg1 = pgs[ridx + i];
362
363 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
364 }
365 npages += ridx;
366 goto out;
367 }
368
369 /*
370 * the page wasn't resident and we're not overwriting,
371 * so we're going to have to do some i/o.
372 * find any additional pages needed to cover the expanded range.
373 */
374
375 npages = (endoffset - startoffset) >> PAGE_SHIFT;
376 if (startoffset != origoffset || npages != orignpages) {
377
378 /*
379 * we need to avoid deadlocks caused by locking
380 * additional pages at lower offsets than pages we
381 * already have locked. unlock them all and start over.
382 */
383
384 genfs_rel_pages(&pgs[ridx], orignpages);
385 memset(pgs, 0, pgs_size);
386
387 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
388 startoffset, endoffset, 0,0);
389 npgs = npages;
390 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
391 async ? UFP_NOWAIT : UFP_ALL) != npages) {
392 rw_exit(&gp->g_glock);
393 KASSERT(async != 0);
394 genfs_rel_pages(pgs, npages);
395 simple_unlock(&uobj->vmobjlock);
396 error = EBUSY;
397 goto out_err;
398 }
399 }
400 simple_unlock(&uobj->vmobjlock);
401
402 /*
403 * read the desired page(s).
404 */
405
406 totalbytes = npages << PAGE_SHIFT;
407 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
408 tailbytes = totalbytes - bytes;
409 skipbytes = 0;
410
411 kva = uvm_pagermapin(pgs, npages,
412 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
413
414 mbp = getiobuf();
415 mbp->b_bufsize = totalbytes;
416 mbp->b_data = (void *)kva;
417 mbp->b_resid = mbp->b_bcount = bytes;
418 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
419 mbp->b_iodone = (async ? uvm_aio_biodone : 0);
420 mbp->b_vp = vp;
421 if (async)
422 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
423 else
424 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
425
426 /*
427 * if EOF is in the middle of the range, zero the part past EOF.
428 * skip over pages which are not PG_FAKE since in that case they have
429 * valid data that we need to preserve.
430 */
431
432 tailstart = bytes;
433 while (tailbytes > 0) {
434 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
435
436 KASSERT(len <= tailbytes);
437 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
438 memset((void *)(kva + tailstart), 0, len);
439 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
440 kva, tailstart, len, 0);
441 }
442 tailstart += len;
443 tailbytes -= len;
444 }
445
446 /*
447 * now loop over the pages, reading as needed.
448 */
449
450 bp = NULL;
451 for (offset = startoffset;
452 bytes > 0;
453 offset += iobytes, bytes -= iobytes) {
454
455 /*
456 * skip pages which don't need to be read.
457 */
458
459 pidx = (offset - startoffset) >> PAGE_SHIFT;
460 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
461 size_t b;
462
463 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
464 if ((pgs[pidx]->flags & PG_RDONLY)) {
465 sawhole = true;
466 }
467 b = MIN(PAGE_SIZE, bytes);
468 offset += b;
469 bytes -= b;
470 skipbytes += b;
471 pidx++;
472 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
473 offset, 0,0,0);
474 if (bytes == 0) {
475 goto loopdone;
476 }
477 }
478
479 /*
480 * bmap the file to find out the blkno to read from and
481 * how much we can read in one i/o. if bmap returns an error,
482 * skip the rest of the top-level i/o.
483 */
484
485 lbn = offset >> fs_bshift;
486 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
487 if (error) {
488 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
489 lbn, error,0,0);
490 skipbytes += bytes;
491 goto loopdone;
492 }
493
494 /*
495 * see how many pages can be read with this i/o.
496 * reduce the i/o size if necessary to avoid
497 * overwriting pages with valid data.
498 */
499
500 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
501 bytes);
502 if (offset + iobytes > round_page(offset)) {
503 pcount = 1;
504 while (pidx + pcount < npages &&
505 pgs[pidx + pcount]->flags & PG_FAKE) {
506 pcount++;
507 }
508 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
509 (offset - trunc_page(offset)));
510 }
511
512 /*
513 * if this block isn't allocated, zero it instead of
514 * reading it. unless we are going to allocate blocks,
515 * mark the pages we zeroed PG_RDONLY.
516 */
517
518 if (blkno < 0) {
519 int holepages = (round_page(offset + iobytes) -
520 trunc_page(offset)) >> PAGE_SHIFT;
521 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
522
523 sawhole = true;
524 memset((char *)kva + (offset - startoffset), 0,
525 iobytes);
526 skipbytes += iobytes;
527
528 for (i = 0; i < holepages; i++) {
529 if (write) {
530 pgs[pidx + i]->flags &= ~PG_CLEAN;
531 }
532 if (!blockalloc) {
533 pgs[pidx + i]->flags |= PG_RDONLY;
534 }
535 }
536 continue;
537 }
538
539 /*
540 * allocate a sub-buf for this piece of the i/o
541 * (or just use mbp if there's only 1 piece),
542 * and start it going.
543 */
544
545 if (offset == startoffset && iobytes == bytes) {
546 bp = mbp;
547 } else {
548 bp = getiobuf();
549 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
550 }
551 bp->b_lblkno = 0;
552
553 /* adjust physical blkno for partial blocks */
554 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
555 dev_bshift);
556
557 UVMHIST_LOG(ubchist,
558 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
559 bp, offset, iobytes, bp->b_blkno);
560
561 VOP_STRATEGY(devvp, bp);
562 }
563
564 loopdone:
565 nestiobuf_done(mbp, skipbytes, error);
566 if (async) {
567 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
568 rw_exit(&gp->g_glock);
569 error = 0;
570 goto out_err;
571 }
572 if (bp != NULL) {
573 error = biowait(mbp);
574 }
575 putiobuf(mbp);
576 uvm_pagermapout(kva, npages);
577
578 /*
579 * if this we encountered a hole then we have to do a little more work.
580 * for read faults, we marked the page PG_RDONLY so that future
581 * write accesses to the page will fault again.
582 * for write faults, we must make sure that the backing store for
583 * the page is completely allocated while the pages are locked.
584 */
585
586 if (!error && sawhole && blockalloc) {
587 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
588 cred);
589 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
590 startoffset, npages << PAGE_SHIFT, error,0);
591 if (!error) {
592 for (i = 0; i < npages; i++) {
593 if (pgs[i] == NULL) {
594 continue;
595 }
596 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
597 UVMHIST_LOG(ubchist, "mark dirty pg %p",
598 pgs[i],0,0,0);
599 }
600 }
601 }
602 rw_exit(&gp->g_glock);
603 simple_lock(&uobj->vmobjlock);
604
605 /*
606 * we're almost done! release the pages...
607 * for errors, we free the pages.
608 * otherwise we activate them and mark them as valid and clean.
609 * also, unbusy pages that were not actually requested.
610 */
611
612 if (error) {
613 for (i = 0; i < npages; i++) {
614 if (pgs[i] == NULL) {
615 continue;
616 }
617 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
618 pgs[i], pgs[i]->flags, 0,0);
619 if (pgs[i]->flags & PG_FAKE) {
620 pgs[i]->flags |= PG_RELEASED;
621 }
622 }
623 uvm_lock_pageq();
624 uvm_page_unbusy(pgs, npages);
625 uvm_unlock_pageq();
626 simple_unlock(&uobj->vmobjlock);
627 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
628 goto out_err;
629 }
630
631 out:
632 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
633 error = 0;
634 uvm_lock_pageq();
635 for (i = 0; i < npages; i++) {
636 pg = pgs[i];
637 if (pg == NULL) {
638 continue;
639 }
640 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
641 pg, pg->flags, 0,0);
642 if (pg->flags & PG_FAKE && !overwrite) {
643 pg->flags &= ~(PG_FAKE);
644 pmap_clear_modify(pgs[i]);
645 }
646 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
647 if (i < ridx || i >= ridx + orignpages || async) {
648 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
649 pg, pg->offset,0,0);
650 if (pg->flags & PG_WANTED) {
651 wakeup(pg);
652 }
653 if (pg->flags & PG_FAKE) {
654 KASSERT(overwrite);
655 uvm_pagezero(pg);
656 }
657 if (pg->flags & PG_RELEASED) {
658 uvm_pagefree(pg);
659 continue;
660 }
661 uvm_pageenqueue(pg);
662 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
663 UVM_PAGE_OWN(pg, NULL);
664 }
665 }
666 uvm_unlock_pageq();
667 simple_unlock(&uobj->vmobjlock);
668 if (ap->a_m != NULL) {
669 memcpy(ap->a_m, &pgs[ridx],
670 orignpages * sizeof(struct vm_page *));
671 }
672
673 out_err:
674 if (pgs != pgs_onstack)
675 kmem_free(pgs, pgs_size);
676 if (has_trans)
677 fstrans_done(vp->v_mount);
678 return (error);
679 }
680
681 /*
682 * generic VM putpages routine.
683 * Write the given range of pages to backing store.
684 *
685 * => "offhi == 0" means flush all pages at or after "offlo".
686 * => object should be locked by caller. we return with the
687 * object unlocked.
688 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
689 * thus, a caller might want to unlock higher level resources
690 * (e.g. vm_map) before calling flush.
691 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
692 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
693 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
694 * that new pages are inserted on the tail end of the list. thus,
695 * we can make a complete pass through the object in one go by starting
696 * at the head and working towards the tail (new pages are put in
697 * front of us).
698 * => NOTE: we are allowed to lock the page queues, so the caller
699 * must not be holding the page queue lock.
700 *
701 * note on "cleaning" object and PG_BUSY pages:
702 * this routine is holding the lock on the object. the only time
703 * that it can run into a PG_BUSY page that it does not own is if
704 * some other process has started I/O on the page (e.g. either
705 * a pagein, or a pageout). if the PG_BUSY page is being paged
706 * in, then it can not be dirty (!PG_CLEAN) because no one has
707 * had a chance to modify it yet. if the PG_BUSY page is being
708 * paged out then it means that someone else has already started
709 * cleaning the page for us (how nice!). in this case, if we
710 * have syncio specified, then after we make our pass through the
711 * object we need to wait for the other PG_BUSY pages to clear
712 * off (i.e. we need to do an iosync). also note that once a
713 * page is PG_BUSY it must stay in its object until it is un-busyed.
714 *
715 * note on page traversal:
716 * we can traverse the pages in an object either by going down the
717 * linked list in "uobj->memq", or we can go over the address range
718 * by page doing hash table lookups for each address. depending
719 * on how many pages are in the object it may be cheaper to do one
720 * or the other. we set "by_list" to true if we are using memq.
721 * if the cost of a hash lookup was equal to the cost of the list
722 * traversal we could compare the number of pages in the start->stop
723 * range to the total number of pages in the object. however, it
724 * seems that a hash table lookup is more expensive than the linked
725 * list traversal, so we multiply the number of pages in the
726 * range by an estimate of the relatively higher cost of the hash lookup.
727 */
728
729 int
730 genfs_putpages(void *v)
731 {
732 struct vop_putpages_args /* {
733 struct vnode *a_vp;
734 voff_t a_offlo;
735 voff_t a_offhi;
736 int a_flags;
737 } */ *ap = v;
738
739 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
740 ap->a_flags, NULL);
741 }
742
743 int
744 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
745 struct vm_page **busypg)
746 {
747 struct uvm_object *uobj = &vp->v_uobj;
748 struct simplelock *slock = &uobj->vmobjlock;
749 off_t off;
750 /* Even for strange MAXPHYS, the shift rounds down to a page */
751 #define maxpages (MAXPHYS >> PAGE_SHIFT)
752 int i, s, error, npages, nback;
753 int freeflag;
754 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
755 bool wasclean, by_list, needs_clean, yld;
756 bool async = (flags & PGO_SYNCIO) == 0;
757 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
758 struct lwp *l = curlwp ? curlwp : &lwp0;
759 struct genfs_node *gp = VTOG(vp);
760 int dirtygen;
761 bool modified = false;
762 bool has_trans = false;
763 bool cleanall;
764
765 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
766
767 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
768 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
769 KASSERT(startoff < endoff || endoff == 0);
770
771 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
772 vp, uobj->uo_npages, startoff, endoff - startoff);
773
774 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
775 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
776 if (uobj->uo_npages == 0) {
777 s = splbio();
778 if (vp->v_iflag & VI_ONWORKLST) {
779 vp->v_iflag &= ~VI_WRMAPDIRTY;
780 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
781 vn_syncer_remove_from_worklist(vp);
782 }
783 splx(s);
784 simple_unlock(slock);
785 return (0);
786 }
787
788 /*
789 * the vnode has pages, set up to process the request.
790 */
791
792 if ((flags & PGO_CLEANIT) != 0) {
793 simple_unlock(slock);
794 if (pagedaemon) {
795 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
796 if (error)
797 return error;
798 } else
799 fstrans_start(vp->v_mount, FSTRANS_LAZY);
800 has_trans = true;
801 simple_lock(slock);
802 }
803
804 error = 0;
805 s = splbio();
806 simple_lock(&global_v_numoutput_slock);
807 wasclean = (vp->v_numoutput == 0);
808 simple_unlock(&global_v_numoutput_slock);
809 splx(s);
810 off = startoff;
811 if (endoff == 0 || flags & PGO_ALLPAGES) {
812 endoff = trunc_page(LLONG_MAX);
813 }
814 by_list = (uobj->uo_npages <=
815 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
816
817 #if !defined(DEBUG)
818 /*
819 * if this vnode is known not to have dirty pages,
820 * don't bother to clean it out.
821 */
822
823 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
824 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
825 goto skip_scan;
826 }
827 flags &= ~PGO_CLEANIT;
828 }
829 #endif /* !defined(DEBUG) */
830
831 /*
832 * start the loop. when scanning by list, hold the last page
833 * in the list before we start. pages allocated after we start
834 * will be added to the end of the list, so we can stop at the
835 * current last page.
836 */
837
838 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
839 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
840 (vp->v_iflag & VI_ONWORKLST) != 0;
841 dirtygen = gp->g_dirtygen;
842 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
843 if (by_list) {
844 curmp.uobject = uobj;
845 curmp.offset = (voff_t)-1;
846 curmp.flags = PG_BUSY;
847 endmp.uobject = uobj;
848 endmp.offset = (voff_t)-1;
849 endmp.flags = PG_BUSY;
850 pg = TAILQ_FIRST(&uobj->memq);
851 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
852 uvm_lwp_hold(l);
853 } else {
854 pg = uvm_pagelookup(uobj, off);
855 }
856 nextpg = NULL;
857 while (by_list || off < endoff) {
858
859 /*
860 * if the current page is not interesting, move on to the next.
861 */
862
863 KASSERT(pg == NULL || pg->uobject == uobj);
864 KASSERT(pg == NULL ||
865 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
866 (pg->flags & PG_BUSY) != 0);
867 if (by_list) {
868 if (pg == &endmp) {
869 break;
870 }
871 if (pg->offset < startoff || pg->offset >= endoff ||
872 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
873 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
874 wasclean = false;
875 }
876 pg = TAILQ_NEXT(pg, listq);
877 continue;
878 }
879 off = pg->offset;
880 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
881 if (pg != NULL) {
882 wasclean = false;
883 }
884 off += PAGE_SIZE;
885 if (off < endoff) {
886 pg = uvm_pagelookup(uobj, off);
887 }
888 continue;
889 }
890
891 /*
892 * if the current page needs to be cleaned and it's busy,
893 * wait for it to become unbusy.
894 */
895
896 yld = (l->l_cpu->ci_schedstate.spc_flags &
897 SPCF_SHOULDYIELD) && !pagedaemon;
898 if (pg->flags & PG_BUSY || yld) {
899 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
900 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
901 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
902 error = EDEADLK;
903 if (busypg != NULL)
904 *busypg = pg;
905 break;
906 }
907 if (pagedaemon) {
908 /*
909 * someone has taken the page while we
910 * dropped the lock for fstrans_start.
911 */
912 break;
913 }
914 if (by_list) {
915 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
916 UVMHIST_LOG(ubchist, "curmp next %p",
917 TAILQ_NEXT(&curmp, listq), 0,0,0);
918 }
919 if (yld) {
920 simple_unlock(slock);
921 preempt();
922 simple_lock(slock);
923 } else {
924 pg->flags |= PG_WANTED;
925 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
926 simple_lock(slock);
927 }
928 if (by_list) {
929 UVMHIST_LOG(ubchist, "after next %p",
930 TAILQ_NEXT(&curmp, listq), 0,0,0);
931 pg = TAILQ_NEXT(&curmp, listq);
932 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
933 } else {
934 pg = uvm_pagelookup(uobj, off);
935 }
936 continue;
937 }
938
939 /*
940 * if we're freeing, remove all mappings of the page now.
941 * if we're cleaning, check if the page is needs to be cleaned.
942 */
943
944 if (flags & PGO_FREE) {
945 pmap_page_protect(pg, VM_PROT_NONE);
946 } else if (flags & PGO_CLEANIT) {
947
948 /*
949 * if we still have some hope to pull this vnode off
950 * from the syncer queue, write-protect the page.
951 */
952
953 if (cleanall && wasclean &&
954 gp->g_dirtygen == dirtygen) {
955
956 /*
957 * uobj pages get wired only by uvm_fault
958 * where uobj is locked.
959 */
960
961 if (pg->wire_count == 0) {
962 pmap_page_protect(pg,
963 VM_PROT_READ|VM_PROT_EXECUTE);
964 } else {
965 cleanall = false;
966 }
967 }
968 }
969
970 if (flags & PGO_CLEANIT) {
971 needs_clean = pmap_clear_modify(pg) ||
972 (pg->flags & PG_CLEAN) == 0;
973 pg->flags |= PG_CLEAN;
974 } else {
975 needs_clean = false;
976 }
977
978 /*
979 * if we're cleaning, build a cluster.
980 * the cluster will consist of pages which are currently dirty,
981 * but they will be returned to us marked clean.
982 * if not cleaning, just operate on the one page.
983 */
984
985 if (needs_clean) {
986 KDASSERT((vp->v_iflag & VI_ONWORKLST));
987 wasclean = false;
988 memset(pgs, 0, sizeof(pgs));
989 pg->flags |= PG_BUSY;
990 UVM_PAGE_OWN(pg, "genfs_putpages");
991
992 /*
993 * first look backward.
994 */
995
996 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
997 nback = npages;
998 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
999 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1000 if (nback) {
1001 memmove(&pgs[0], &pgs[npages - nback],
1002 nback * sizeof(pgs[0]));
1003 if (npages - nback < nback)
1004 memset(&pgs[nback], 0,
1005 (npages - nback) * sizeof(pgs[0]));
1006 else
1007 memset(&pgs[npages - nback], 0,
1008 nback * sizeof(pgs[0]));
1009 }
1010
1011 /*
1012 * then plug in our page of interest.
1013 */
1014
1015 pgs[nback] = pg;
1016
1017 /*
1018 * then look forward to fill in the remaining space in
1019 * the array of pages.
1020 */
1021
1022 npages = maxpages - nback - 1;
1023 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1024 &pgs[nback + 1],
1025 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1026 npages += nback + 1;
1027 } else {
1028 pgs[0] = pg;
1029 npages = 1;
1030 nback = 0;
1031 }
1032
1033 /*
1034 * apply FREE or DEACTIVATE options if requested.
1035 */
1036
1037 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1038 uvm_lock_pageq();
1039 }
1040 for (i = 0; i < npages; i++) {
1041 tpg = pgs[i];
1042 KASSERT(tpg->uobject == uobj);
1043 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1044 pg = tpg;
1045 if (tpg->offset < startoff || tpg->offset >= endoff)
1046 continue;
1047 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1048 (void) pmap_clear_reference(tpg);
1049 uvm_pagedeactivate(tpg);
1050 } else if (flags & PGO_FREE) {
1051 pmap_page_protect(tpg, VM_PROT_NONE);
1052 if (tpg->flags & PG_BUSY) {
1053 tpg->flags |= freeflag;
1054 if (pagedaemon) {
1055 uvmexp.paging++;
1056 uvm_pagedequeue(tpg);
1057 }
1058 } else {
1059
1060 /*
1061 * ``page is not busy''
1062 * implies that npages is 1
1063 * and needs_clean is false.
1064 */
1065
1066 nextpg = TAILQ_NEXT(tpg, listq);
1067 uvm_pagefree(tpg);
1068 if (pagedaemon)
1069 uvmexp.pdfreed++;
1070 }
1071 }
1072 }
1073 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1074 uvm_unlock_pageq();
1075 }
1076 if (needs_clean) {
1077 modified = true;
1078
1079 /*
1080 * start the i/o. if we're traversing by list,
1081 * keep our place in the list with a marker page.
1082 */
1083
1084 if (by_list) {
1085 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1086 listq);
1087 }
1088 simple_unlock(slock);
1089 error = GOP_WRITE(vp, pgs, npages, flags);
1090 simple_lock(slock);
1091 if (by_list) {
1092 pg = TAILQ_NEXT(&curmp, listq);
1093 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1094 }
1095 if (error) {
1096 break;
1097 }
1098 if (by_list) {
1099 continue;
1100 }
1101 }
1102
1103 /*
1104 * find the next page and continue if there was no error.
1105 */
1106
1107 if (by_list) {
1108 if (nextpg) {
1109 pg = nextpg;
1110 nextpg = NULL;
1111 } else {
1112 pg = TAILQ_NEXT(pg, listq);
1113 }
1114 } else {
1115 off += (npages - nback) << PAGE_SHIFT;
1116 if (off < endoff) {
1117 pg = uvm_pagelookup(uobj, off);
1118 }
1119 }
1120 }
1121 if (by_list) {
1122 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1123 uvm_lwp_rele(l);
1124 }
1125
1126 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1127 (vp->v_type != VBLK ||
1128 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1129 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1130 }
1131
1132 /*
1133 * if we're cleaning and there was nothing to clean,
1134 * take us off the syncer list. if we started any i/o
1135 * and we're doing sync i/o, wait for all writes to finish.
1136 */
1137
1138 s = splbio();
1139 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1140 (vp->v_iflag & VI_ONWORKLST) != 0) {
1141 vp->v_iflag &= ~VI_WRMAPDIRTY;
1142 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1143 vn_syncer_remove_from_worklist(vp);
1144 }
1145 splx(s);
1146
1147 #if !defined(DEBUG)
1148 skip_scan:
1149 #endif /* !defined(DEBUG) */
1150 if (!wasclean && !async) {
1151 s = splbio();
1152 /*
1153 * XXX - we want simple_unlock(&global_v_numoutput_slock);
1154 * but the slot in ltsleep() is taken!
1155 * XXX - try to recover from missed wakeups with a timeout..
1156 * must think of something better.
1157 */
1158 while (vp->v_numoutput != 0) {
1159 vp->v_iflag |= VI_BWAIT;
1160 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, false,
1161 "genput2", hz);
1162 simple_lock(slock);
1163 }
1164 splx(s);
1165 }
1166 simple_unlock(slock);
1167
1168 if (has_trans)
1169 fstrans_done(vp->v_mount);
1170
1171 return (error);
1172 }
1173
1174 int
1175 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1176 {
1177 off_t off;
1178 vaddr_t kva;
1179 size_t len;
1180 int error;
1181 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1182
1183 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1184 vp, pgs, npages, flags);
1185
1186 off = pgs[0]->offset;
1187 kva = uvm_pagermapin(pgs, npages,
1188 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1189 len = npages << PAGE_SHIFT;
1190
1191 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1192 uvm_aio_biodone);
1193
1194 return error;
1195 }
1196
1197 /*
1198 * Backend routine for doing I/O to vnode pages. Pages are already locked
1199 * and mapped into kernel memory. Here we just look up the underlying
1200 * device block addresses and call the strategy routine.
1201 */
1202
1203 static int
1204 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1205 enum uio_rw rw, void (*iodone)(struct buf *))
1206 {
1207 int s, error, run;
1208 int fs_bshift, dev_bshift;
1209 off_t eof, offset, startoffset;
1210 size_t bytes, iobytes, skipbytes;
1211 daddr_t lbn, blkno;
1212 struct buf *mbp, *bp;
1213 struct vnode *devvp;
1214 bool async = (flags & PGO_SYNCIO) == 0;
1215 bool write = rw == UIO_WRITE;
1216 int brw = write ? B_WRITE : B_READ;
1217 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1218
1219 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1220 vp, kva, len, flags);
1221
1222 KASSERT(vp->v_size <= vp->v_writesize);
1223 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1224 if (vp->v_type != VBLK) {
1225 fs_bshift = vp->v_mount->mnt_fs_bshift;
1226 dev_bshift = vp->v_mount->mnt_dev_bshift;
1227 } else {
1228 fs_bshift = DEV_BSHIFT;
1229 dev_bshift = DEV_BSHIFT;
1230 }
1231 error = 0;
1232 startoffset = off;
1233 bytes = MIN(len, eof - startoffset);
1234 skipbytes = 0;
1235 KASSERT(bytes != 0);
1236
1237 if (write) {
1238 s = splbio();
1239 simple_lock(&global_v_numoutput_slock);
1240 vp->v_numoutput += 2;
1241 simple_unlock(&global_v_numoutput_slock);
1242 splx(s);
1243 }
1244 mbp = getiobuf();
1245 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1246 vp, mbp, vp->v_numoutput, bytes);
1247 mbp->b_bufsize = len;
1248 mbp->b_data = (void *)kva;
1249 mbp->b_resid = mbp->b_bcount = bytes;
1250 mbp->b_flags = B_BUSY | brw | B_AGE | (async ? (B_CALL | B_ASYNC) : 0);
1251 mbp->b_iodone = iodone;
1252 mbp->b_vp = vp;
1253 if (curlwp == uvm.pagedaemon_lwp)
1254 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1255 else if (async)
1256 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1257 else
1258 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1259
1260 bp = NULL;
1261 for (offset = startoffset;
1262 bytes > 0;
1263 offset += iobytes, bytes -= iobytes) {
1264 lbn = offset >> fs_bshift;
1265 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1266 if (error) {
1267 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1268 skipbytes += bytes;
1269 bytes = 0;
1270 break;
1271 }
1272
1273 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1274 bytes);
1275 if (blkno == (daddr_t)-1) {
1276 if (!write) {
1277 memset((char *)kva + (offset - startoffset), 0,
1278 iobytes);
1279 }
1280 skipbytes += iobytes;
1281 continue;
1282 }
1283
1284 /* if it's really one i/o, don't make a second buf */
1285 if (offset == startoffset && iobytes == bytes) {
1286 bp = mbp;
1287 } else {
1288 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1289 vp, bp, vp->v_numoutput, 0);
1290 bp = getiobuf();
1291 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1292 }
1293 bp->b_lblkno = 0;
1294
1295 /* adjust physical blkno for partial blocks */
1296 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1297 dev_bshift);
1298 UVMHIST_LOG(ubchist,
1299 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1300 vp, offset, bp->b_bcount, bp->b_blkno);
1301
1302 VOP_STRATEGY(devvp, bp);
1303 }
1304 if (skipbytes) {
1305 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1306 }
1307 nestiobuf_done(mbp, skipbytes, error);
1308 if (async) {
1309 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1310 return (0);
1311 }
1312 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1313 error = biowait(mbp);
1314 s = splbio();
1315 (*iodone)(mbp);
1316 splx(s);
1317 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1318 return (error);
1319 }
1320
1321 /*
1322 * VOP_PUTPAGES() for vnodes which never have pages.
1323 */
1324
1325 int
1326 genfs_null_putpages(void *v)
1327 {
1328 struct vop_putpages_args /* {
1329 struct vnode *a_vp;
1330 voff_t a_offlo;
1331 voff_t a_offhi;
1332 int a_flags;
1333 } */ *ap = v;
1334 struct vnode *vp = ap->a_vp;
1335
1336 KASSERT(vp->v_uobj.uo_npages == 0);
1337 simple_unlock(&vp->v_interlock);
1338 return (0);
1339 }
1340
1341 int
1342 genfs_compat_getpages(void *v)
1343 {
1344 struct vop_getpages_args /* {
1345 struct vnode *a_vp;
1346 voff_t a_offset;
1347 struct vm_page **a_m;
1348 int *a_count;
1349 int a_centeridx;
1350 vm_prot_t a_access_type;
1351 int a_advice;
1352 int a_flags;
1353 } */ *ap = v;
1354
1355 off_t origoffset;
1356 struct vnode *vp = ap->a_vp;
1357 struct uvm_object *uobj = &vp->v_uobj;
1358 struct vm_page *pg, **pgs;
1359 vaddr_t kva;
1360 int i, error, orignpages, npages;
1361 struct iovec iov;
1362 struct uio uio;
1363 kauth_cred_t cred = curlwp->l_cred;
1364 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1365
1366 error = 0;
1367 origoffset = ap->a_offset;
1368 orignpages = *ap->a_count;
1369 pgs = ap->a_m;
1370
1371 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1372 vn_syncer_add_to_worklist(vp, filedelay);
1373 }
1374 if (ap->a_flags & PGO_LOCKED) {
1375 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1376 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1377
1378 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1379 }
1380 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1381 simple_unlock(&uobj->vmobjlock);
1382 return (EINVAL);
1383 }
1384 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1385 simple_unlock(&uobj->vmobjlock);
1386 return 0;
1387 }
1388 npages = orignpages;
1389 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1390 simple_unlock(&uobj->vmobjlock);
1391 kva = uvm_pagermapin(pgs, npages,
1392 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1393 for (i = 0; i < npages; i++) {
1394 pg = pgs[i];
1395 if ((pg->flags & PG_FAKE) == 0) {
1396 continue;
1397 }
1398 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1399 iov.iov_len = PAGE_SIZE;
1400 uio.uio_iov = &iov;
1401 uio.uio_iovcnt = 1;
1402 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1403 uio.uio_rw = UIO_READ;
1404 uio.uio_resid = PAGE_SIZE;
1405 UIO_SETUP_SYSSPACE(&uio);
1406 /* XXX vn_lock */
1407 error = VOP_READ(vp, &uio, 0, cred);
1408 if (error) {
1409 break;
1410 }
1411 if (uio.uio_resid) {
1412 memset(iov.iov_base, 0, uio.uio_resid);
1413 }
1414 }
1415 uvm_pagermapout(kva, npages);
1416 simple_lock(&uobj->vmobjlock);
1417 uvm_lock_pageq();
1418 for (i = 0; i < npages; i++) {
1419 pg = pgs[i];
1420 if (error && (pg->flags & PG_FAKE) != 0) {
1421 pg->flags |= PG_RELEASED;
1422 } else {
1423 pmap_clear_modify(pg);
1424 uvm_pageactivate(pg);
1425 }
1426 }
1427 if (error) {
1428 uvm_page_unbusy(pgs, npages);
1429 }
1430 uvm_unlock_pageq();
1431 simple_unlock(&uobj->vmobjlock);
1432 return (error);
1433 }
1434
1435 int
1436 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1437 int flags)
1438 {
1439 off_t offset;
1440 struct iovec iov;
1441 struct uio uio;
1442 kauth_cred_t cred = curlwp->l_cred;
1443 struct buf *bp;
1444 vaddr_t kva;
1445 int s, error;
1446
1447 offset = pgs[0]->offset;
1448 kva = uvm_pagermapin(pgs, npages,
1449 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1450
1451 iov.iov_base = (void *)kva;
1452 iov.iov_len = npages << PAGE_SHIFT;
1453 uio.uio_iov = &iov;
1454 uio.uio_iovcnt = 1;
1455 uio.uio_offset = offset;
1456 uio.uio_rw = UIO_WRITE;
1457 uio.uio_resid = npages << PAGE_SHIFT;
1458 UIO_SETUP_SYSSPACE(&uio);
1459 /* XXX vn_lock */
1460 error = VOP_WRITE(vp, &uio, 0, cred);
1461
1462 s = splbio();
1463 V_INCR_NUMOUTPUT(vp);
1464 splx(s);
1465
1466 bp = getiobuf();
1467 bp->b_flags = B_BUSY | B_WRITE | B_AGE;
1468 bp->b_vp = vp;
1469 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1470 bp->b_data = (char *)kva;
1471 bp->b_bcount = npages << PAGE_SHIFT;
1472 bp->b_bufsize = npages << PAGE_SHIFT;
1473 bp->b_resid = 0;
1474 bp->b_error = error;
1475 uvm_aio_aiodone(bp);
1476 return (error);
1477 }
1478
1479 /*
1480 * Process a uio using direct I/O. If we reach a part of the request
1481 * which cannot be processed in this fashion for some reason, just return.
1482 * The caller must handle some additional part of the request using
1483 * buffered I/O before trying direct I/O again.
1484 */
1485
1486 void
1487 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1488 {
1489 struct vmspace *vs;
1490 struct iovec *iov;
1491 vaddr_t va;
1492 size_t len;
1493 const int mask = DEV_BSIZE - 1;
1494 int error;
1495
1496 /*
1497 * We only support direct I/O to user space for now.
1498 */
1499
1500 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1501 return;
1502 }
1503
1504 /*
1505 * If the vnode is mapped, we would need to get the getpages lock
1506 * to stabilize the bmap, but then we would get into trouble whil e
1507 * locking the pages if the pages belong to this same vnode (or a
1508 * multi-vnode cascade to the same effect). Just fall back to
1509 * buffered I/O if the vnode is mapped to avoid this mess.
1510 */
1511
1512 if (vp->v_vflag & VV_MAPPED) {
1513 return;
1514 }
1515
1516 /*
1517 * Do as much of the uio as possible with direct I/O.
1518 */
1519
1520 vs = uio->uio_vmspace;
1521 while (uio->uio_resid) {
1522 iov = uio->uio_iov;
1523 if (iov->iov_len == 0) {
1524 uio->uio_iov++;
1525 uio->uio_iovcnt--;
1526 continue;
1527 }
1528 va = (vaddr_t)iov->iov_base;
1529 len = MIN(iov->iov_len, genfs_maxdio);
1530 len &= ~mask;
1531
1532 /*
1533 * If the next chunk is smaller than DEV_BSIZE or extends past
1534 * the current EOF, then fall back to buffered I/O.
1535 */
1536
1537 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1538 return;
1539 }
1540
1541 /*
1542 * Check alignment. The file offset must be at least
1543 * sector-aligned. The exact constraint on memory alignment
1544 * is very hardware-dependent, but requiring sector-aligned
1545 * addresses there too is safe.
1546 */
1547
1548 if (uio->uio_offset & mask || va & mask) {
1549 return;
1550 }
1551 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1552 uio->uio_rw);
1553 if (error) {
1554 break;
1555 }
1556 iov->iov_base = (char *)iov->iov_base + len;
1557 iov->iov_len -= len;
1558 uio->uio_offset += len;
1559 uio->uio_resid -= len;
1560 }
1561 }
1562
1563 /*
1564 * Iodone routine for direct I/O. We don't do much here since the request is
1565 * always synchronous, so the caller will do most of the work after biowait().
1566 */
1567
1568 static void
1569 genfs_dio_iodone(struct buf *bp)
1570 {
1571 int s;
1572
1573 KASSERT((bp->b_flags & B_ASYNC) == 0);
1574 s = splbio();
1575 if ((bp->b_flags & (B_READ | B_AGE)) == B_AGE) {
1576 vwakeup(bp);
1577 }
1578 putiobuf(bp);
1579 splx(s);
1580 }
1581
1582 /*
1583 * Process one chunk of a direct I/O request.
1584 */
1585
1586 static int
1587 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1588 off_t off, enum uio_rw rw)
1589 {
1590 struct vm_map *map;
1591 struct pmap *upm, *kpm;
1592 size_t klen = round_page(uva + len) - trunc_page(uva);
1593 off_t spoff, epoff;
1594 vaddr_t kva, puva;
1595 paddr_t pa;
1596 vm_prot_t prot;
1597 int error, rv, poff, koff;
1598 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1599 (rw == UIO_WRITE ? PGO_FREE : 0);
1600
1601 /*
1602 * For writes, verify that this range of the file already has fully
1603 * allocated backing store. If there are any holes, just punt and
1604 * make the caller take the buffered write path.
1605 */
1606
1607 if (rw == UIO_WRITE) {
1608 daddr_t lbn, elbn, blkno;
1609 int bsize, bshift, run;
1610
1611 bshift = vp->v_mount->mnt_fs_bshift;
1612 bsize = 1 << bshift;
1613 lbn = off >> bshift;
1614 elbn = (off + len + bsize - 1) >> bshift;
1615 while (lbn < elbn) {
1616 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1617 if (error) {
1618 return error;
1619 }
1620 if (blkno == (daddr_t)-1) {
1621 return ENOSPC;
1622 }
1623 lbn += 1 + run;
1624 }
1625 }
1626
1627 /*
1628 * Flush any cached pages for parts of the file that we're about to
1629 * access. If we're writing, invalidate pages as well.
1630 */
1631
1632 spoff = trunc_page(off);
1633 epoff = round_page(off + len);
1634 simple_lock(&vp->v_interlock);
1635 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1636 if (error) {
1637 return error;
1638 }
1639
1640 /*
1641 * Wire the user pages and remap them into kernel memory.
1642 */
1643
1644 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1645 error = uvm_vslock(vs, (void *)uva, len, prot);
1646 if (error) {
1647 return error;
1648 }
1649
1650 map = &vs->vm_map;
1651 upm = vm_map_pmap(map);
1652 kpm = vm_map_pmap(kernel_map);
1653 kva = uvm_km_alloc(kernel_map, klen, 0,
1654 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1655 puva = trunc_page(uva);
1656 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1657 rv = pmap_extract(upm, puva + poff, &pa);
1658 KASSERT(rv);
1659 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1660 }
1661 pmap_update(kpm);
1662
1663 /*
1664 * Do the I/O.
1665 */
1666
1667 koff = uva - trunc_page(uva);
1668 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1669 genfs_dio_iodone);
1670
1671 /*
1672 * Tear down the kernel mapping.
1673 */
1674
1675 pmap_remove(kpm, kva, kva + klen);
1676 pmap_update(kpm);
1677 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1678
1679 /*
1680 * Unwire the user pages.
1681 */
1682
1683 uvm_vsunlock(vs, (void *)uva, len);
1684 return error;
1685 }
1686