genfs_io.c revision 1.1.14.3 1 /* $NetBSD: genfs_io.c,v 1.1.14.3 2008/01/09 01:57:01 matt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.1.14.3 2008/01/09 01:57:01 matt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59 off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65
66 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
67
68 int genfs_maxdio = MAXPHYS;
69
70 static inline void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 int i;
74
75 for (i = 0; i < npages; i++) {
76 struct vm_page *pg = pgs[i];
77
78 if (pg == NULL || pg == PGO_DONTCARE)
79 continue;
80 if (pg->flags & PG_FAKE) {
81 pg->flags |= PG_RELEASED;
82 }
83 }
84 mutex_enter(&uvm_pageqlock);
85 uvm_page_unbusy(pgs, npages);
86 mutex_exit(&uvm_pageqlock);
87 }
88
89 /*
90 * generic VM getpages routine.
91 * Return PG_BUSY pages for the given range,
92 * reading from backing store if necessary.
93 */
94
95 int
96 genfs_getpages(void *v)
97 {
98 struct vop_getpages_args /* {
99 struct vnode *a_vp;
100 voff_t a_offset;
101 struct vm_page **a_m;
102 int *a_count;
103 int a_centeridx;
104 vm_prot_t a_access_type;
105 int a_advice;
106 int a_flags;
107 } */ *ap = v;
108
109 off_t newsize, diskeof, memeof;
110 off_t offset, origoffset, startoffset, endoffset;
111 daddr_t lbn, blkno;
112 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
113 int fs_bshift, fs_bsize, dev_bshift;
114 int flags = ap->a_flags;
115 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
116 vaddr_t kva;
117 struct buf *bp, *mbp;
118 struct vnode *vp = ap->a_vp;
119 struct vnode *devvp;
120 struct genfs_node *gp = VTOG(vp);
121 struct uvm_object *uobj = &vp->v_uobj;
122 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
123 int pgs_size;
124 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
125 bool async = (flags & PGO_SYNCIO) == 0;
126 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
127 bool sawhole = false;
128 bool has_trans = false;
129 bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
131 voff_t origvsize;
132 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
133
134 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
135 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
136
137 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
138 vp->v_type == VLNK || vp->v_type == VBLK);
139
140 /* XXXUBC temp limit */
141 if (*ap->a_count > MAX_READ_PAGES) {
142 panic("genfs_getpages: too many pages");
143 }
144
145 pgs = pgs_onstack;
146 pgs_size = sizeof(pgs_onstack);
147
148 startover:
149 error = 0;
150 origvsize = vp->v_size;
151 origoffset = ap->a_offset;
152 orignpages = *ap->a_count;
153 GOP_SIZE(vp, origvsize, &diskeof, 0);
154 if (flags & PGO_PASTEOF) {
155 #if defined(DIAGNOSTIC)
156 off_t writeeof;
157 #endif /* defined(DIAGNOSTIC) */
158
159 newsize = MAX(origvsize,
160 origoffset + (orignpages << PAGE_SHIFT));
161 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
162 #if defined(DIAGNOSTIC)
163 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
164 if (newsize > round_page(writeeof)) {
165 panic("%s: past eof", __func__);
166 }
167 #endif /* defined(DIAGNOSTIC) */
168 } else {
169 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
170 }
171 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
172 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
173 KASSERT(orignpages > 0);
174
175 /*
176 * Bounds-check the request.
177 */
178
179 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
180 if ((flags & PGO_LOCKED) == 0) {
181 mutex_exit(&uobj->vmobjlock);
182 }
183 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
184 origoffset, *ap->a_count, memeof,0);
185 error = EINVAL;
186 goto out_err;
187 }
188
189 /* uobj is locked */
190
191 if ((flags & PGO_NOTIMESTAMP) == 0 &&
192 (vp->v_type != VBLK ||
193 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
194 int updflags = 0;
195
196 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
197 updflags = GOP_UPDATE_ACCESSED;
198 }
199 if (write) {
200 updflags |= GOP_UPDATE_MODIFIED;
201 }
202 if (updflags != 0) {
203 GOP_MARKUPDATE(vp, updflags);
204 }
205 }
206
207 if (write) {
208 gp->g_dirtygen++;
209 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
210 vn_syncer_add_to_worklist(vp, filedelay);
211 }
212 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
213 vp->v_iflag |= VI_WRMAPDIRTY;
214 }
215 }
216
217 /*
218 * For PGO_LOCKED requests, just return whatever's in memory.
219 */
220
221 if (flags & PGO_LOCKED) {
222 int nfound;
223
224 npages = *ap->a_count;
225 #if defined(DEBUG)
226 for (i = 0; i < npages; i++) {
227 pg = ap->a_m[i];
228 KASSERT(pg == NULL || pg == PGO_DONTCARE);
229 }
230 #endif /* defined(DEBUG) */
231 nfound = uvn_findpages(uobj, origoffset, &npages,
232 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
233 KASSERT(npages == *ap->a_count);
234 if (nfound == 0) {
235 error = EBUSY;
236 goto out_err;
237 }
238 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
239 genfs_rel_pages(ap->a_m, npages);
240
241 /*
242 * restore the array.
243 */
244
245 for (i = 0; i < npages; i++) {
246 pg = ap->a_m[i];
247
248 if (pg != NULL || pg != PGO_DONTCARE) {
249 ap->a_m[i] = NULL;
250 }
251 }
252 } else {
253 rw_exit(&gp->g_glock);
254 }
255 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
256 goto out_err;
257 }
258 mutex_exit(&uobj->vmobjlock);
259
260 /*
261 * find the requested pages and make some simple checks.
262 * leave space in the page array for a whole block.
263 */
264
265 if (vp->v_type != VBLK) {
266 fs_bshift = vp->v_mount->mnt_fs_bshift;
267 dev_bshift = vp->v_mount->mnt_dev_bshift;
268 } else {
269 fs_bshift = DEV_BSHIFT;
270 dev_bshift = DEV_BSHIFT;
271 }
272 fs_bsize = 1 << fs_bshift;
273
274 orignpages = MIN(orignpages,
275 round_page(memeof - origoffset) >> PAGE_SHIFT);
276 npages = orignpages;
277 startoffset = origoffset & ~(fs_bsize - 1);
278 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
279 fs_bsize - 1) & ~(fs_bsize - 1));
280 endoffset = MIN(endoffset, round_page(memeof));
281 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
282
283 pgs_size = sizeof(struct vm_page *) *
284 ((endoffset - startoffset) >> PAGE_SHIFT);
285 if (pgs_size > sizeof(pgs_onstack)) {
286 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
287 if (pgs == NULL) {
288 pgs = pgs_onstack;
289 error = ENOMEM;
290 goto out_err;
291 }
292 } else {
293 /* pgs == pgs_onstack */
294 memset(pgs, 0, pgs_size);
295 }
296 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
297 ridx, npages, startoffset, endoffset);
298
299 if (!has_trans) {
300 fstrans_start(vp->v_mount, FSTRANS_SHARED);
301 has_trans = true;
302 }
303
304 /*
305 * hold g_glock to prevent a race with truncate.
306 *
307 * check if our idea of v_size is still valid.
308 */
309
310 if (blockalloc) {
311 rw_enter(&gp->g_glock, RW_WRITER);
312 } else {
313 rw_enter(&gp->g_glock, RW_READER);
314 }
315 mutex_enter(&uobj->vmobjlock);
316 if (vp->v_size < origvsize) {
317 rw_exit(&gp->g_glock);
318 if (pgs != pgs_onstack)
319 kmem_free(pgs, pgs_size);
320 goto startover;
321 }
322
323 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
324 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
325 rw_exit(&gp->g_glock);
326 KASSERT(async != 0);
327 genfs_rel_pages(&pgs[ridx], orignpages);
328 mutex_exit(&uobj->vmobjlock);
329 error = EBUSY;
330 goto out_err;
331 }
332
333 /*
334 * if the pages are already resident, just return them.
335 */
336
337 for (i = 0; i < npages; i++) {
338 struct vm_page *pg1 = pgs[ridx + i];
339
340 if ((pg1->flags & PG_FAKE) ||
341 (blockalloc && (pg1->flags & PG_RDONLY))) {
342 break;
343 }
344 }
345 if (i == npages) {
346 rw_exit(&gp->g_glock);
347 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
348 npages += ridx;
349 goto out;
350 }
351
352 /*
353 * if PGO_OVERWRITE is set, don't bother reading the pages.
354 */
355
356 if (overwrite) {
357 rw_exit(&gp->g_glock);
358 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
359
360 for (i = 0; i < npages; i++) {
361 struct vm_page *pg1 = pgs[ridx + i];
362
363 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
364 }
365 npages += ridx;
366 goto out;
367 }
368
369 /*
370 * the page wasn't resident and we're not overwriting,
371 * so we're going to have to do some i/o.
372 * find any additional pages needed to cover the expanded range.
373 */
374
375 npages = (endoffset - startoffset) >> PAGE_SHIFT;
376 if (startoffset != origoffset || npages != orignpages) {
377
378 /*
379 * we need to avoid deadlocks caused by locking
380 * additional pages at lower offsets than pages we
381 * already have locked. unlock them all and start over.
382 */
383
384 genfs_rel_pages(&pgs[ridx], orignpages);
385 memset(pgs, 0, pgs_size);
386
387 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
388 startoffset, endoffset, 0,0);
389 npgs = npages;
390 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
391 async ? UFP_NOWAIT : UFP_ALL) != npages) {
392 rw_exit(&gp->g_glock);
393 KASSERT(async != 0);
394 genfs_rel_pages(pgs, npages);
395 mutex_exit(&uobj->vmobjlock);
396 error = EBUSY;
397 goto out_err;
398 }
399 }
400 mutex_exit(&uobj->vmobjlock);
401
402 /*
403 * read the desired page(s).
404 */
405
406 totalbytes = npages << PAGE_SHIFT;
407 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
408 tailbytes = totalbytes - bytes;
409 skipbytes = 0;
410
411 kva = uvm_pagermapin(pgs, npages,
412 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
413
414 mbp = getiobuf(vp, true);
415 mbp->b_bufsize = totalbytes;
416 mbp->b_data = (void *)kva;
417 mbp->b_resid = mbp->b_bcount = bytes;
418 mbp->b_cflags = BC_BUSY;
419 if (async) {
420 mbp->b_flags = B_READ | B_ASYNC;
421 mbp->b_iodone = uvm_aio_biodone;
422 } else {
423 mbp->b_flags = B_READ;
424 mbp->b_iodone = NULL;
425 }
426 if (async)
427 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
428 else
429 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
430
431 /*
432 * if EOF is in the middle of the range, zero the part past EOF.
433 * skip over pages which are not PG_FAKE since in that case they have
434 * valid data that we need to preserve.
435 */
436
437 tailstart = bytes;
438 while (tailbytes > 0) {
439 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
440
441 KASSERT(len <= tailbytes);
442 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
443 memset((void *)(kva + tailstart), 0, len);
444 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
445 kva, tailstart, len, 0);
446 }
447 tailstart += len;
448 tailbytes -= len;
449 }
450
451 /*
452 * now loop over the pages, reading as needed.
453 */
454
455 bp = NULL;
456 for (offset = startoffset;
457 bytes > 0;
458 offset += iobytes, bytes -= iobytes) {
459
460 /*
461 * skip pages which don't need to be read.
462 */
463
464 pidx = (offset - startoffset) >> PAGE_SHIFT;
465 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
466 size_t b;
467
468 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
469 if ((pgs[pidx]->flags & PG_RDONLY)) {
470 sawhole = true;
471 }
472 b = MIN(PAGE_SIZE, bytes);
473 offset += b;
474 bytes -= b;
475 skipbytes += b;
476 pidx++;
477 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
478 offset, 0,0,0);
479 if (bytes == 0) {
480 goto loopdone;
481 }
482 }
483
484 /*
485 * bmap the file to find out the blkno to read from and
486 * how much we can read in one i/o. if bmap returns an error,
487 * skip the rest of the top-level i/o.
488 */
489
490 lbn = offset >> fs_bshift;
491 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
492 if (error) {
493 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
494 lbn, error,0,0);
495 skipbytes += bytes;
496 goto loopdone;
497 }
498
499 /*
500 * see how many pages can be read with this i/o.
501 * reduce the i/o size if necessary to avoid
502 * overwriting pages with valid data.
503 */
504
505 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
506 bytes);
507 if (offset + iobytes > round_page(offset)) {
508 pcount = 1;
509 while (pidx + pcount < npages &&
510 pgs[pidx + pcount]->flags & PG_FAKE) {
511 pcount++;
512 }
513 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
514 (offset - trunc_page(offset)));
515 }
516
517 /*
518 * if this block isn't allocated, zero it instead of
519 * reading it. unless we are going to allocate blocks,
520 * mark the pages we zeroed PG_RDONLY.
521 */
522
523 if (blkno < 0) {
524 int holepages = (round_page(offset + iobytes) -
525 trunc_page(offset)) >> PAGE_SHIFT;
526 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
527
528 sawhole = true;
529 memset((char *)kva + (offset - startoffset), 0,
530 iobytes);
531 skipbytes += iobytes;
532
533 for (i = 0; i < holepages; i++) {
534 if (write) {
535 pgs[pidx + i]->flags &= ~PG_CLEAN;
536 }
537 if (!blockalloc) {
538 pgs[pidx + i]->flags |= PG_RDONLY;
539 }
540 }
541 continue;
542 }
543
544 /*
545 * allocate a sub-buf for this piece of the i/o
546 * (or just use mbp if there's only 1 piece),
547 * and start it going.
548 */
549
550 if (offset == startoffset && iobytes == bytes) {
551 bp = mbp;
552 } else {
553 bp = getiobuf(vp, true);
554 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
555 }
556 bp->b_lblkno = 0;
557
558 /* adjust physical blkno for partial blocks */
559 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
560 dev_bshift);
561
562 UVMHIST_LOG(ubchist,
563 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
564 bp, offset, iobytes, bp->b_blkno);
565
566 VOP_STRATEGY(devvp, bp);
567 }
568
569 loopdone:
570 nestiobuf_done(mbp, skipbytes, error);
571 if (async) {
572 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
573 rw_exit(&gp->g_glock);
574 error = 0;
575 goto out_err;
576 }
577 if (bp != NULL) {
578 error = biowait(mbp);
579 }
580 putiobuf(mbp);
581 uvm_pagermapout(kva, npages);
582
583 /*
584 * if this we encountered a hole then we have to do a little more work.
585 * for read faults, we marked the page PG_RDONLY so that future
586 * write accesses to the page will fault again.
587 * for write faults, we must make sure that the backing store for
588 * the page is completely allocated while the pages are locked.
589 */
590
591 if (!error && sawhole && blockalloc) {
592 error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
593 cred);
594 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
595 startoffset, npages << PAGE_SHIFT, error,0);
596 if (!error) {
597 for (i = 0; i < npages; i++) {
598 if (pgs[i] == NULL) {
599 continue;
600 }
601 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
602 UVMHIST_LOG(ubchist, "mark dirty pg %p",
603 pgs[i],0,0,0);
604 }
605 }
606 }
607 rw_exit(&gp->g_glock);
608 mutex_enter(&uobj->vmobjlock);
609
610 /*
611 * we're almost done! release the pages...
612 * for errors, we free the pages.
613 * otherwise we activate them and mark them as valid and clean.
614 * also, unbusy pages that were not actually requested.
615 */
616
617 if (error) {
618 for (i = 0; i < npages; i++) {
619 if (pgs[i] == NULL) {
620 continue;
621 }
622 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
623 pgs[i], pgs[i]->flags, 0,0);
624 if (pgs[i]->flags & PG_FAKE) {
625 pgs[i]->flags |= PG_RELEASED;
626 }
627 }
628 mutex_enter(&uvm_pageqlock);
629 uvm_page_unbusy(pgs, npages);
630 mutex_exit(&uvm_pageqlock);
631 mutex_exit(&uobj->vmobjlock);
632 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
633 goto out_err;
634 }
635
636 out:
637 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
638 error = 0;
639 mutex_enter(&uvm_pageqlock);
640 for (i = 0; i < npages; i++) {
641 pg = pgs[i];
642 if (pg == NULL) {
643 continue;
644 }
645 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
646 pg, pg->flags, 0,0);
647 if (pg->flags & PG_FAKE && !overwrite) {
648 pg->flags &= ~(PG_FAKE);
649 pmap_clear_modify(pgs[i]);
650 }
651 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
652 if (i < ridx || i >= ridx + orignpages || async) {
653 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
654 pg, pg->offset,0,0);
655 if (pg->flags & PG_WANTED) {
656 wakeup(pg);
657 }
658 if (pg->flags & PG_FAKE) {
659 KASSERT(overwrite);
660 uvm_pagezero(pg);
661 }
662 if (pg->flags & PG_RELEASED) {
663 uvm_pagefree(pg);
664 continue;
665 }
666 uvm_pageenqueue(pg);
667 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
668 UVM_PAGE_OWN(pg, NULL);
669 }
670 }
671 mutex_exit(&uvm_pageqlock);
672 mutex_exit(&uobj->vmobjlock);
673 if (ap->a_m != NULL) {
674 memcpy(ap->a_m, &pgs[ridx],
675 orignpages * sizeof(struct vm_page *));
676 }
677
678 out_err:
679 if (pgs != pgs_onstack)
680 kmem_free(pgs, pgs_size);
681 if (has_trans)
682 fstrans_done(vp->v_mount);
683 return (error);
684 }
685
686 /*
687 * generic VM putpages routine.
688 * Write the given range of pages to backing store.
689 *
690 * => "offhi == 0" means flush all pages at or after "offlo".
691 * => object should be locked by caller. we return with the
692 * object unlocked.
693 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
694 * thus, a caller might want to unlock higher level resources
695 * (e.g. vm_map) before calling flush.
696 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
697 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
698 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
699 * that new pages are inserted on the tail end of the list. thus,
700 * we can make a complete pass through the object in one go by starting
701 * at the head and working towards the tail (new pages are put in
702 * front of us).
703 * => NOTE: we are allowed to lock the page queues, so the caller
704 * must not be holding the page queue lock.
705 *
706 * note on "cleaning" object and PG_BUSY pages:
707 * this routine is holding the lock on the object. the only time
708 * that it can run into a PG_BUSY page that it does not own is if
709 * some other process has started I/O on the page (e.g. either
710 * a pagein, or a pageout). if the PG_BUSY page is being paged
711 * in, then it can not be dirty (!PG_CLEAN) because no one has
712 * had a chance to modify it yet. if the PG_BUSY page is being
713 * paged out then it means that someone else has already started
714 * cleaning the page for us (how nice!). in this case, if we
715 * have syncio specified, then after we make our pass through the
716 * object we need to wait for the other PG_BUSY pages to clear
717 * off (i.e. we need to do an iosync). also note that once a
718 * page is PG_BUSY it must stay in its object until it is un-busyed.
719 *
720 * note on page traversal:
721 * we can traverse the pages in an object either by going down the
722 * linked list in "uobj->memq", or we can go over the address range
723 * by page doing hash table lookups for each address. depending
724 * on how many pages are in the object it may be cheaper to do one
725 * or the other. we set "by_list" to true if we are using memq.
726 * if the cost of a hash lookup was equal to the cost of the list
727 * traversal we could compare the number of pages in the start->stop
728 * range to the total number of pages in the object. however, it
729 * seems that a hash table lookup is more expensive than the linked
730 * list traversal, so we multiply the number of pages in the
731 * range by an estimate of the relatively higher cost of the hash lookup.
732 */
733
734 int
735 genfs_putpages(void *v)
736 {
737 struct vop_putpages_args /* {
738 struct vnode *a_vp;
739 voff_t a_offlo;
740 voff_t a_offhi;
741 int a_flags;
742 } */ *ap = v;
743
744 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
745 ap->a_flags, NULL);
746 }
747
748 int
749 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
750 struct vm_page **busypg)
751 {
752 struct uvm_object *uobj = &vp->v_uobj;
753 kmutex_t *slock = &uobj->vmobjlock;
754 off_t off;
755 /* Even for strange MAXPHYS, the shift rounds down to a page */
756 #define maxpages (MAXPHYS >> PAGE_SHIFT)
757 int i, error, npages, nback;
758 int freeflag;
759 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
760 bool wasclean, by_list, needs_clean, yld;
761 bool async = (flags & PGO_SYNCIO) == 0;
762 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
763 struct lwp *l = curlwp ? curlwp : &lwp0;
764 struct genfs_node *gp = VTOG(vp);
765 int dirtygen;
766 bool modified = false;
767 bool has_trans = false;
768 bool cleanall;
769
770 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
771
772 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
773 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
774 KASSERT(startoff < endoff || endoff == 0);
775
776 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
777 vp, uobj->uo_npages, startoff, endoff - startoff);
778
779 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
780 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
781 if (uobj->uo_npages == 0) {
782 if (vp->v_iflag & VI_ONWORKLST) {
783 vp->v_iflag &= ~VI_WRMAPDIRTY;
784 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
785 vn_syncer_remove_from_worklist(vp);
786 }
787 mutex_exit(slock);
788 return (0);
789 }
790
791 /*
792 * the vnode has pages, set up to process the request.
793 */
794
795 if ((flags & PGO_CLEANIT) != 0) {
796 mutex_exit(slock);
797 if (pagedaemon) {
798 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
799 if (error)
800 return error;
801 } else
802 fstrans_start(vp->v_mount, FSTRANS_LAZY);
803 has_trans = true;
804 mutex_enter(slock);
805 }
806
807 error = 0;
808 wasclean = (vp->v_numoutput == 0);
809 off = startoff;
810 if (endoff == 0 || flags & PGO_ALLPAGES) {
811 endoff = trunc_page(LLONG_MAX);
812 }
813 by_list = (uobj->uo_npages <=
814 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
815
816 #if !defined(DEBUG)
817 /*
818 * if this vnode is known not to have dirty pages,
819 * don't bother to clean it out.
820 */
821
822 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
823 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
824 goto skip_scan;
825 }
826 flags &= ~PGO_CLEANIT;
827 }
828 #endif /* !defined(DEBUG) */
829
830 /*
831 * start the loop. when scanning by list, hold the last page
832 * in the list before we start. pages allocated after we start
833 * will be added to the end of the list, so we can stop at the
834 * current last page.
835 */
836
837 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
838 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
839 (vp->v_iflag & VI_ONWORKLST) != 0;
840 dirtygen = gp->g_dirtygen;
841 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
842 if (by_list) {
843 curmp.uobject = uobj;
844 curmp.offset = (voff_t)-1;
845 curmp.flags = PG_BUSY;
846 endmp.uobject = uobj;
847 endmp.offset = (voff_t)-1;
848 endmp.flags = PG_BUSY;
849 pg = TAILQ_FIRST(&uobj->memq);
850 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
851 uvm_lwp_hold(l);
852 } else {
853 pg = uvm_pagelookup(uobj, off);
854 }
855 nextpg = NULL;
856 while (by_list || off < endoff) {
857
858 /*
859 * if the current page is not interesting, move on to the next.
860 */
861
862 KASSERT(pg == NULL || pg->uobject == uobj);
863 KASSERT(pg == NULL ||
864 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
865 (pg->flags & PG_BUSY) != 0);
866 if (by_list) {
867 if (pg == &endmp) {
868 break;
869 }
870 if (pg->offset < startoff || pg->offset >= endoff ||
871 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
872 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
873 wasclean = false;
874 }
875 pg = TAILQ_NEXT(pg, listq);
876 continue;
877 }
878 off = pg->offset;
879 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
880 if (pg != NULL) {
881 wasclean = false;
882 }
883 off += PAGE_SIZE;
884 if (off < endoff) {
885 pg = uvm_pagelookup(uobj, off);
886 }
887 continue;
888 }
889
890 /*
891 * if the current page needs to be cleaned and it's busy,
892 * wait for it to become unbusy.
893 */
894
895 yld = (l->l_cpu->ci_schedstate.spc_flags &
896 SPCF_SHOULDYIELD) && !pagedaemon;
897 if (pg->flags & PG_BUSY || yld) {
898 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
899 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
900 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
901 error = EDEADLK;
902 if (busypg != NULL)
903 *busypg = pg;
904 break;
905 }
906 if (pagedaemon) {
907 /*
908 * someone has taken the page while we
909 * dropped the lock for fstrans_start.
910 */
911 break;
912 }
913 if (by_list) {
914 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
915 UVMHIST_LOG(ubchist, "curmp next %p",
916 TAILQ_NEXT(&curmp, listq), 0,0,0);
917 }
918 if (yld) {
919 mutex_exit(slock);
920 preempt();
921 mutex_enter(slock);
922 } else {
923 pg->flags |= PG_WANTED;
924 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
925 mutex_enter(slock);
926 }
927 if (by_list) {
928 UVMHIST_LOG(ubchist, "after next %p",
929 TAILQ_NEXT(&curmp, listq), 0,0,0);
930 pg = TAILQ_NEXT(&curmp, listq);
931 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
932 } else {
933 pg = uvm_pagelookup(uobj, off);
934 }
935 continue;
936 }
937
938 /*
939 * if we're freeing, remove all mappings of the page now.
940 * if we're cleaning, check if the page is needs to be cleaned.
941 */
942
943 if (flags & PGO_FREE) {
944 pmap_page_protect(pg, VM_PROT_NONE);
945 } else if (flags & PGO_CLEANIT) {
946
947 /*
948 * if we still have some hope to pull this vnode off
949 * from the syncer queue, write-protect the page.
950 */
951
952 if (cleanall && wasclean &&
953 gp->g_dirtygen == dirtygen) {
954
955 /*
956 * uobj pages get wired only by uvm_fault
957 * where uobj is locked.
958 */
959
960 if (pg->wire_count == 0) {
961 pmap_page_protect(pg,
962 VM_PROT_READ|VM_PROT_EXECUTE);
963 } else {
964 cleanall = false;
965 }
966 }
967 }
968
969 if (flags & PGO_CLEANIT) {
970 needs_clean = pmap_clear_modify(pg) ||
971 (pg->flags & PG_CLEAN) == 0;
972 pg->flags |= PG_CLEAN;
973 } else {
974 needs_clean = false;
975 }
976
977 /*
978 * if we're cleaning, build a cluster.
979 * the cluster will consist of pages which are currently dirty,
980 * but they will be returned to us marked clean.
981 * if not cleaning, just operate on the one page.
982 */
983
984 if (needs_clean) {
985 KDASSERT((vp->v_iflag & VI_ONWORKLST));
986 wasclean = false;
987 memset(pgs, 0, sizeof(pgs));
988 pg->flags |= PG_BUSY;
989 UVM_PAGE_OWN(pg, "genfs_putpages");
990
991 /*
992 * first look backward.
993 */
994
995 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
996 nback = npages;
997 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
998 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
999 if (nback) {
1000 memmove(&pgs[0], &pgs[npages - nback],
1001 nback * sizeof(pgs[0]));
1002 if (npages - nback < nback)
1003 memset(&pgs[nback], 0,
1004 (npages - nback) * sizeof(pgs[0]));
1005 else
1006 memset(&pgs[npages - nback], 0,
1007 nback * sizeof(pgs[0]));
1008 }
1009
1010 /*
1011 * then plug in our page of interest.
1012 */
1013
1014 pgs[nback] = pg;
1015
1016 /*
1017 * then look forward to fill in the remaining space in
1018 * the array of pages.
1019 */
1020
1021 npages = maxpages - nback - 1;
1022 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1023 &pgs[nback + 1],
1024 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1025 npages += nback + 1;
1026 } else {
1027 pgs[0] = pg;
1028 npages = 1;
1029 nback = 0;
1030 }
1031
1032 /*
1033 * apply FREE or DEACTIVATE options if requested.
1034 */
1035
1036 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1037 mutex_enter(&uvm_pageqlock);
1038 }
1039 for (i = 0; i < npages; i++) {
1040 tpg = pgs[i];
1041 KASSERT(tpg->uobject == uobj);
1042 if (by_list && tpg == TAILQ_NEXT(pg, listq))
1043 pg = tpg;
1044 if (tpg->offset < startoff || tpg->offset >= endoff)
1045 continue;
1046 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1047 (void) pmap_clear_reference(tpg);
1048 uvm_pagedeactivate(tpg);
1049 } else if (flags & PGO_FREE) {
1050 pmap_page_protect(tpg, VM_PROT_NONE);
1051 if (tpg->flags & PG_BUSY) {
1052 tpg->flags |= freeflag;
1053 if (pagedaemon) {
1054 uvm_pageout_start(1);
1055 uvm_pagedequeue(tpg);
1056 }
1057 } else {
1058
1059 /*
1060 * ``page is not busy''
1061 * implies that npages is 1
1062 * and needs_clean is false.
1063 */
1064
1065 nextpg = TAILQ_NEXT(tpg, listq);
1066 uvm_pagefree(tpg);
1067 if (pagedaemon)
1068 uvmexp.pdfreed++;
1069 }
1070 }
1071 }
1072 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1073 mutex_exit(&uvm_pageqlock);
1074 }
1075 if (needs_clean) {
1076 modified = true;
1077
1078 /*
1079 * start the i/o. if we're traversing by list,
1080 * keep our place in the list with a marker page.
1081 */
1082
1083 if (by_list) {
1084 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1085 listq);
1086 }
1087 mutex_exit(slock);
1088 error = GOP_WRITE(vp, pgs, npages, flags);
1089 mutex_enter(slock);
1090 if (by_list) {
1091 pg = TAILQ_NEXT(&curmp, listq);
1092 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
1093 }
1094 if (error) {
1095 break;
1096 }
1097 if (by_list) {
1098 continue;
1099 }
1100 }
1101
1102 /*
1103 * find the next page and continue if there was no error.
1104 */
1105
1106 if (by_list) {
1107 if (nextpg) {
1108 pg = nextpg;
1109 nextpg = NULL;
1110 } else {
1111 pg = TAILQ_NEXT(pg, listq);
1112 }
1113 } else {
1114 off += (npages - nback) << PAGE_SHIFT;
1115 if (off < endoff) {
1116 pg = uvm_pagelookup(uobj, off);
1117 }
1118 }
1119 }
1120 if (by_list) {
1121 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
1122 uvm_lwp_rele(l);
1123 }
1124
1125 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1126 (vp->v_type != VBLK ||
1127 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1128 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1129 }
1130
1131 /*
1132 * if we're cleaning and there was nothing to clean,
1133 * take us off the syncer list. if we started any i/o
1134 * and we're doing sync i/o, wait for all writes to finish.
1135 */
1136
1137 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1138 (vp->v_iflag & VI_ONWORKLST) != 0) {
1139 vp->v_iflag &= ~VI_WRMAPDIRTY;
1140 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1141 vn_syncer_remove_from_worklist(vp);
1142 }
1143
1144 #if !defined(DEBUG)
1145 skip_scan:
1146 #endif /* !defined(DEBUG) */
1147
1148 /* Wait for output to complete. */
1149 if (!wasclean && !async && vp->v_numoutput != 0) {
1150 while (vp->v_numoutput != 0)
1151 cv_wait(&vp->v_cv, slock);
1152 }
1153 mutex_exit(slock);
1154
1155 if (has_trans)
1156 fstrans_done(vp->v_mount);
1157
1158 return (error);
1159 }
1160
1161 int
1162 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1163 {
1164 off_t off;
1165 vaddr_t kva;
1166 size_t len;
1167 int error;
1168 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1169
1170 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1171 vp, pgs, npages, flags);
1172
1173 off = pgs[0]->offset;
1174 kva = uvm_pagermapin(pgs, npages,
1175 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1176 len = npages << PAGE_SHIFT;
1177
1178 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1179 uvm_aio_biodone);
1180
1181 return error;
1182 }
1183
1184 /*
1185 * Backend routine for doing I/O to vnode pages. Pages are already locked
1186 * and mapped into kernel memory. Here we just look up the underlying
1187 * device block addresses and call the strategy routine.
1188 */
1189
1190 static int
1191 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1192 enum uio_rw rw, void (*iodone)(struct buf *))
1193 {
1194 int s, error, run;
1195 int fs_bshift, dev_bshift;
1196 off_t eof, offset, startoffset;
1197 size_t bytes, iobytes, skipbytes;
1198 daddr_t lbn, blkno;
1199 struct buf *mbp, *bp;
1200 struct vnode *devvp;
1201 bool async = (flags & PGO_SYNCIO) == 0;
1202 bool write = rw == UIO_WRITE;
1203 int brw = write ? B_WRITE : B_READ;
1204 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1205
1206 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1207 vp, kva, len, flags);
1208
1209 KASSERT(vp->v_size <= vp->v_writesize);
1210 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1211 if (vp->v_type != VBLK) {
1212 fs_bshift = vp->v_mount->mnt_fs_bshift;
1213 dev_bshift = vp->v_mount->mnt_dev_bshift;
1214 } else {
1215 fs_bshift = DEV_BSHIFT;
1216 dev_bshift = DEV_BSHIFT;
1217 }
1218 error = 0;
1219 startoffset = off;
1220 bytes = MIN(len, eof - startoffset);
1221 skipbytes = 0;
1222 KASSERT(bytes != 0);
1223
1224 if (write) {
1225 mutex_enter(&vp->v_interlock);
1226 vp->v_numoutput += 2;
1227 mutex_exit(&vp->v_interlock);
1228 }
1229 mbp = getiobuf(vp, true);
1230 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1231 vp, mbp, vp->v_numoutput, bytes);
1232 mbp->b_bufsize = len;
1233 mbp->b_data = (void *)kva;
1234 mbp->b_resid = mbp->b_bcount = bytes;
1235 mbp->b_cflags = BC_BUSY | BC_AGE;
1236 if (async) {
1237 mbp->b_flags = brw | B_ASYNC;
1238 mbp->b_iodone = iodone;
1239 } else {
1240 mbp->b_flags = brw;
1241 mbp->b_iodone = NULL;
1242 }
1243 if (curlwp == uvm.pagedaemon_lwp)
1244 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1245 else if (async)
1246 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1247 else
1248 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1249
1250 bp = NULL;
1251 for (offset = startoffset;
1252 bytes > 0;
1253 offset += iobytes, bytes -= iobytes) {
1254 lbn = offset >> fs_bshift;
1255 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1256 if (error) {
1257 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1258 skipbytes += bytes;
1259 bytes = 0;
1260 break;
1261 }
1262
1263 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1264 bytes);
1265 if (blkno == (daddr_t)-1) {
1266 if (!write) {
1267 memset((char *)kva + (offset - startoffset), 0,
1268 iobytes);
1269 }
1270 skipbytes += iobytes;
1271 continue;
1272 }
1273
1274 /* if it's really one i/o, don't make a second buf */
1275 if (offset == startoffset && iobytes == bytes) {
1276 bp = mbp;
1277 } else {
1278 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1279 vp, bp, vp->v_numoutput, 0);
1280 bp = getiobuf(vp, true);
1281 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1282 }
1283 bp->b_lblkno = 0;
1284
1285 /* adjust physical blkno for partial blocks */
1286 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1287 dev_bshift);
1288 UVMHIST_LOG(ubchist,
1289 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1290 vp, offset, bp->b_bcount, bp->b_blkno);
1291
1292 VOP_STRATEGY(devvp, bp);
1293 }
1294 if (skipbytes) {
1295 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1296 }
1297 nestiobuf_done(mbp, skipbytes, error);
1298 if (async) {
1299 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1300 return (0);
1301 }
1302 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1303 error = biowait(mbp);
1304 s = splbio();
1305 (*iodone)(mbp);
1306 splx(s);
1307 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1308 return (error);
1309 }
1310
1311 /*
1312 * VOP_PUTPAGES() for vnodes which never have pages.
1313 */
1314
1315 int
1316 genfs_null_putpages(void *v)
1317 {
1318 struct vop_putpages_args /* {
1319 struct vnode *a_vp;
1320 voff_t a_offlo;
1321 voff_t a_offhi;
1322 int a_flags;
1323 } */ *ap = v;
1324 struct vnode *vp = ap->a_vp;
1325
1326 KASSERT(vp->v_uobj.uo_npages == 0);
1327 mutex_exit(&vp->v_interlock);
1328 return (0);
1329 }
1330
1331 int
1332 genfs_compat_getpages(void *v)
1333 {
1334 struct vop_getpages_args /* {
1335 struct vnode *a_vp;
1336 voff_t a_offset;
1337 struct vm_page **a_m;
1338 int *a_count;
1339 int a_centeridx;
1340 vm_prot_t a_access_type;
1341 int a_advice;
1342 int a_flags;
1343 } */ *ap = v;
1344
1345 off_t origoffset;
1346 struct vnode *vp = ap->a_vp;
1347 struct uvm_object *uobj = &vp->v_uobj;
1348 struct vm_page *pg, **pgs;
1349 vaddr_t kva;
1350 int i, error, orignpages, npages;
1351 struct iovec iov;
1352 struct uio uio;
1353 kauth_cred_t cred = curlwp->l_cred;
1354 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1355
1356 error = 0;
1357 origoffset = ap->a_offset;
1358 orignpages = *ap->a_count;
1359 pgs = ap->a_m;
1360
1361 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1362 vn_syncer_add_to_worklist(vp, filedelay);
1363 }
1364 if (ap->a_flags & PGO_LOCKED) {
1365 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1366 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1367
1368 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1369 }
1370 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1371 mutex_exit(&uobj->vmobjlock);
1372 return (EINVAL);
1373 }
1374 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1375 mutex_exit(&uobj->vmobjlock);
1376 return 0;
1377 }
1378 npages = orignpages;
1379 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1380 mutex_exit(&uobj->vmobjlock);
1381 kva = uvm_pagermapin(pgs, npages,
1382 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1383 for (i = 0; i < npages; i++) {
1384 pg = pgs[i];
1385 if ((pg->flags & PG_FAKE) == 0) {
1386 continue;
1387 }
1388 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1389 iov.iov_len = PAGE_SIZE;
1390 uio.uio_iov = &iov;
1391 uio.uio_iovcnt = 1;
1392 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1393 uio.uio_rw = UIO_READ;
1394 uio.uio_resid = PAGE_SIZE;
1395 UIO_SETUP_SYSSPACE(&uio);
1396 /* XXX vn_lock */
1397 error = VOP_READ(vp, &uio, 0, cred);
1398 if (error) {
1399 break;
1400 }
1401 if (uio.uio_resid) {
1402 memset(iov.iov_base, 0, uio.uio_resid);
1403 }
1404 }
1405 uvm_pagermapout(kva, npages);
1406 mutex_enter(&uobj->vmobjlock);
1407 mutex_enter(&uvm_pageqlock);
1408 for (i = 0; i < npages; i++) {
1409 pg = pgs[i];
1410 if (error && (pg->flags & PG_FAKE) != 0) {
1411 pg->flags |= PG_RELEASED;
1412 } else {
1413 pmap_clear_modify(pg);
1414 uvm_pageactivate(pg);
1415 }
1416 }
1417 if (error) {
1418 uvm_page_unbusy(pgs, npages);
1419 }
1420 mutex_exit(&uvm_pageqlock);
1421 mutex_exit(&uobj->vmobjlock);
1422 return (error);
1423 }
1424
1425 int
1426 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1427 int flags)
1428 {
1429 off_t offset;
1430 struct iovec iov;
1431 struct uio uio;
1432 kauth_cred_t cred = curlwp->l_cred;
1433 struct buf *bp;
1434 vaddr_t kva;
1435 int error;
1436
1437 offset = pgs[0]->offset;
1438 kva = uvm_pagermapin(pgs, npages,
1439 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1440
1441 iov.iov_base = (void *)kva;
1442 iov.iov_len = npages << PAGE_SHIFT;
1443 uio.uio_iov = &iov;
1444 uio.uio_iovcnt = 1;
1445 uio.uio_offset = offset;
1446 uio.uio_rw = UIO_WRITE;
1447 uio.uio_resid = npages << PAGE_SHIFT;
1448 UIO_SETUP_SYSSPACE(&uio);
1449 /* XXX vn_lock */
1450 error = VOP_WRITE(vp, &uio, 0, cred);
1451
1452 mutex_enter(&vp->v_interlock);
1453 vp->v_numoutput++;
1454 mutex_exit(&vp->v_interlock);
1455
1456 bp = getiobuf(vp, true);
1457 bp->b_cflags = BC_BUSY | BC_AGE;
1458 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1459 bp->b_data = (char *)kva;
1460 bp->b_bcount = npages << PAGE_SHIFT;
1461 bp->b_bufsize = npages << PAGE_SHIFT;
1462 bp->b_resid = 0;
1463 bp->b_error = error;
1464 uvm_aio_aiodone(bp);
1465 return (error);
1466 }
1467
1468 /*
1469 * Process a uio using direct I/O. If we reach a part of the request
1470 * which cannot be processed in this fashion for some reason, just return.
1471 * The caller must handle some additional part of the request using
1472 * buffered I/O before trying direct I/O again.
1473 */
1474
1475 void
1476 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1477 {
1478 struct vmspace *vs;
1479 struct iovec *iov;
1480 vaddr_t va;
1481 size_t len;
1482 const int mask = DEV_BSIZE - 1;
1483 int error;
1484
1485 /*
1486 * We only support direct I/O to user space for now.
1487 */
1488
1489 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1490 return;
1491 }
1492
1493 /*
1494 * If the vnode is mapped, we would need to get the getpages lock
1495 * to stabilize the bmap, but then we would get into trouble whil e
1496 * locking the pages if the pages belong to this same vnode (or a
1497 * multi-vnode cascade to the same effect). Just fall back to
1498 * buffered I/O if the vnode is mapped to avoid this mess.
1499 */
1500
1501 if (vp->v_vflag & VV_MAPPED) {
1502 return;
1503 }
1504
1505 /*
1506 * Do as much of the uio as possible with direct I/O.
1507 */
1508
1509 vs = uio->uio_vmspace;
1510 while (uio->uio_resid) {
1511 iov = uio->uio_iov;
1512 if (iov->iov_len == 0) {
1513 uio->uio_iov++;
1514 uio->uio_iovcnt--;
1515 continue;
1516 }
1517 va = (vaddr_t)iov->iov_base;
1518 len = MIN(iov->iov_len, genfs_maxdio);
1519 len &= ~mask;
1520
1521 /*
1522 * If the next chunk is smaller than DEV_BSIZE or extends past
1523 * the current EOF, then fall back to buffered I/O.
1524 */
1525
1526 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1527 return;
1528 }
1529
1530 /*
1531 * Check alignment. The file offset must be at least
1532 * sector-aligned. The exact constraint on memory alignment
1533 * is very hardware-dependent, but requiring sector-aligned
1534 * addresses there too is safe.
1535 */
1536
1537 if (uio->uio_offset & mask || va & mask) {
1538 return;
1539 }
1540 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1541 uio->uio_rw);
1542 if (error) {
1543 break;
1544 }
1545 iov->iov_base = (char *)iov->iov_base + len;
1546 iov->iov_len -= len;
1547 uio->uio_offset += len;
1548 uio->uio_resid -= len;
1549 }
1550 }
1551
1552 /*
1553 * Iodone routine for direct I/O. We don't do much here since the request is
1554 * always synchronous, so the caller will do most of the work after biowait().
1555 */
1556
1557 static void
1558 genfs_dio_iodone(struct buf *bp)
1559 {
1560
1561 KASSERT((bp->b_flags & B_ASYNC) == 0);
1562 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1563 mutex_enter(bp->b_objlock);
1564 vwakeup(bp);
1565 mutex_exit(bp->b_objlock);
1566 }
1567 putiobuf(bp);
1568 }
1569
1570 /*
1571 * Process one chunk of a direct I/O request.
1572 */
1573
1574 static int
1575 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1576 off_t off, enum uio_rw rw)
1577 {
1578 struct vm_map *map;
1579 struct pmap *upm, *kpm;
1580 size_t klen = round_page(uva + len) - trunc_page(uva);
1581 off_t spoff, epoff;
1582 vaddr_t kva, puva;
1583 paddr_t pa;
1584 vm_prot_t prot;
1585 int error, rv, poff, koff;
1586 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1587 (rw == UIO_WRITE ? PGO_FREE : 0);
1588
1589 /*
1590 * For writes, verify that this range of the file already has fully
1591 * allocated backing store. If there are any holes, just punt and
1592 * make the caller take the buffered write path.
1593 */
1594
1595 if (rw == UIO_WRITE) {
1596 daddr_t lbn, elbn, blkno;
1597 int bsize, bshift, run;
1598
1599 bshift = vp->v_mount->mnt_fs_bshift;
1600 bsize = 1 << bshift;
1601 lbn = off >> bshift;
1602 elbn = (off + len + bsize - 1) >> bshift;
1603 while (lbn < elbn) {
1604 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1605 if (error) {
1606 return error;
1607 }
1608 if (blkno == (daddr_t)-1) {
1609 return ENOSPC;
1610 }
1611 lbn += 1 + run;
1612 }
1613 }
1614
1615 /*
1616 * Flush any cached pages for parts of the file that we're about to
1617 * access. If we're writing, invalidate pages as well.
1618 */
1619
1620 spoff = trunc_page(off);
1621 epoff = round_page(off + len);
1622 mutex_enter(&vp->v_interlock);
1623 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1624 if (error) {
1625 return error;
1626 }
1627
1628 /*
1629 * Wire the user pages and remap them into kernel memory.
1630 */
1631
1632 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1633 error = uvm_vslock(vs, (void *)uva, len, prot);
1634 if (error) {
1635 return error;
1636 }
1637
1638 map = &vs->vm_map;
1639 upm = vm_map_pmap(map);
1640 kpm = vm_map_pmap(kernel_map);
1641 kva = uvm_km_alloc(kernel_map, klen, 0,
1642 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1643 puva = trunc_page(uva);
1644 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1645 rv = pmap_extract(upm, puva + poff, &pa);
1646 KASSERT(rv);
1647 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1648 }
1649 pmap_update(kpm);
1650
1651 /*
1652 * Do the I/O.
1653 */
1654
1655 koff = uva - trunc_page(uva);
1656 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1657 genfs_dio_iodone);
1658
1659 /*
1660 * Tear down the kernel mapping.
1661 */
1662
1663 pmap_remove(kpm, kva, kva + klen);
1664 pmap_update(kpm);
1665 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1666
1667 /*
1668 * Unwire the user pages.
1669 */
1670
1671 uvm_vsunlock(vs, (void *)uva, len);
1672 return error;
1673 }
1674
1675