genfs_io.c revision 1.10 1 /* $NetBSD: genfs_io.c,v 1.10 2008/08/11 02:51:01 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.10 2008/08/11 02:51:01 yamt Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50
51 #include <miscfs/genfs/genfs.h>
52 #include <miscfs/genfs/genfs_node.h>
53 #include <miscfs/specfs/specdev.h>
54
55 #include <uvm/uvm.h>
56 #include <uvm/uvm_pager.h>
57
58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
59 off_t, enum uio_rw);
60 static void genfs_dio_iodone(struct buf *);
61
62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
63 void (*)(struct buf *));
64 static inline void genfs_rel_pages(struct vm_page **, int);
65
66 #define MAX_READ_PAGES 16 /* XXXUBC 16 */
67
68 int genfs_maxdio = MAXPHYS;
69
70 static inline void
71 genfs_rel_pages(struct vm_page **pgs, int npages)
72 {
73 int i;
74
75 for (i = 0; i < npages; i++) {
76 struct vm_page *pg = pgs[i];
77
78 if (pg == NULL || pg == PGO_DONTCARE)
79 continue;
80 if (pg->flags & PG_FAKE) {
81 pg->flags |= PG_RELEASED;
82 }
83 }
84 mutex_enter(&uvm_pageqlock);
85 uvm_page_unbusy(pgs, npages);
86 mutex_exit(&uvm_pageqlock);
87 }
88
89 /*
90 * generic VM getpages routine.
91 * Return PG_BUSY pages for the given range,
92 * reading from backing store if necessary.
93 */
94
95 int
96 genfs_getpages(void *v)
97 {
98 struct vop_getpages_args /* {
99 struct vnode *a_vp;
100 voff_t a_offset;
101 struct vm_page **a_m;
102 int *a_count;
103 int a_centeridx;
104 vm_prot_t a_access_type;
105 int a_advice;
106 int a_flags;
107 } */ *ap = v;
108
109 off_t newsize, diskeof, memeof;
110 off_t offset, origoffset, startoffset, endoffset;
111 daddr_t lbn, blkno;
112 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
113 int fs_bshift, fs_bsize, dev_bshift;
114 const int flags = ap->a_flags;
115 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
116 vaddr_t kva;
117 struct buf *bp, *mbp;
118 struct vnode *vp = ap->a_vp;
119 struct vnode *devvp;
120 struct genfs_node *gp = VTOG(vp);
121 struct uvm_object *uobj = &vp->v_uobj;
122 struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
123 int pgs_size;
124 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
125 const bool async = (flags & PGO_SYNCIO) == 0;
126 const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
127 bool sawhole = false;
128 bool has_trans = false;
129 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
130 const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
131 voff_t origvsize;
132 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
133
134 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
135 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
136
137 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
138 vp->v_type == VLNK || vp->v_type == VBLK);
139
140 /* XXXUBC temp limit */
141 if (*ap->a_count > MAX_READ_PAGES) {
142 panic("genfs_getpages: too many pages");
143 }
144
145 pgs = pgs_onstack;
146 pgs_size = sizeof(pgs_onstack);
147
148 startover:
149 error = 0;
150 origvsize = vp->v_size;
151 origoffset = ap->a_offset;
152 orignpages = *ap->a_count;
153 GOP_SIZE(vp, origvsize, &diskeof, 0);
154 if (flags & PGO_PASTEOF) {
155 #if defined(DIAGNOSTIC)
156 off_t writeeof;
157 #endif /* defined(DIAGNOSTIC) */
158
159 newsize = MAX(origvsize,
160 origoffset + (orignpages << PAGE_SHIFT));
161 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
162 #if defined(DIAGNOSTIC)
163 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
164 if (newsize > round_page(writeeof)) {
165 panic("%s: past eof", __func__);
166 }
167 #endif /* defined(DIAGNOSTIC) */
168 } else {
169 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
170 }
171 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
172 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
173 KASSERT(orignpages > 0);
174
175 /*
176 * Bounds-check the request.
177 */
178
179 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
180 if ((flags & PGO_LOCKED) == 0) {
181 mutex_exit(&uobj->vmobjlock);
182 }
183 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
184 origoffset, *ap->a_count, memeof,0);
185 error = EINVAL;
186 goto out_err;
187 }
188
189 /* uobj is locked */
190
191 if ((flags & PGO_NOTIMESTAMP) == 0 &&
192 (vp->v_type != VBLK ||
193 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
194 int updflags = 0;
195
196 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
197 updflags = GOP_UPDATE_ACCESSED;
198 }
199 if (write) {
200 updflags |= GOP_UPDATE_MODIFIED;
201 }
202 if (updflags != 0) {
203 GOP_MARKUPDATE(vp, updflags);
204 }
205 }
206
207 if (write) {
208 gp->g_dirtygen++;
209 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
210 vn_syncer_add_to_worklist(vp, filedelay);
211 }
212 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
213 vp->v_iflag |= VI_WRMAPDIRTY;
214 }
215 }
216
217 /*
218 * For PGO_LOCKED requests, just return whatever's in memory.
219 */
220
221 if (flags & PGO_LOCKED) {
222 int nfound;
223
224 npages = *ap->a_count;
225 #if defined(DEBUG)
226 for (i = 0; i < npages; i++) {
227 pg = ap->a_m[i];
228 KASSERT(pg == NULL || pg == PGO_DONTCARE);
229 }
230 #endif /* defined(DEBUG) */
231 nfound = uvn_findpages(uobj, origoffset, &npages,
232 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
233 KASSERT(npages == *ap->a_count);
234 if (nfound == 0) {
235 error = EBUSY;
236 goto out_err;
237 }
238 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
239 genfs_rel_pages(ap->a_m, npages);
240
241 /*
242 * restore the array.
243 */
244
245 for (i = 0; i < npages; i++) {
246 pg = ap->a_m[i];
247
248 if (pg != NULL || pg != PGO_DONTCARE) {
249 ap->a_m[i] = NULL;
250 }
251 }
252 } else {
253 rw_exit(&gp->g_glock);
254 }
255 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
256 goto out_err;
257 }
258 mutex_exit(&uobj->vmobjlock);
259
260 /*
261 * find the requested pages and make some simple checks.
262 * leave space in the page array for a whole block.
263 */
264
265 if (vp->v_type != VBLK) {
266 fs_bshift = vp->v_mount->mnt_fs_bshift;
267 dev_bshift = vp->v_mount->mnt_dev_bshift;
268 } else {
269 fs_bshift = DEV_BSHIFT;
270 dev_bshift = DEV_BSHIFT;
271 }
272 fs_bsize = 1 << fs_bshift;
273
274 orignpages = MIN(orignpages,
275 round_page(memeof - origoffset) >> PAGE_SHIFT);
276 npages = orignpages;
277 startoffset = origoffset & ~(fs_bsize - 1);
278 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
279 fs_bsize - 1) & ~(fs_bsize - 1));
280 endoffset = MIN(endoffset, round_page(memeof));
281 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
282
283 pgs_size = sizeof(struct vm_page *) *
284 ((endoffset - startoffset) >> PAGE_SHIFT);
285 if (pgs_size > sizeof(pgs_onstack)) {
286 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
287 if (pgs == NULL) {
288 pgs = pgs_onstack;
289 error = ENOMEM;
290 goto out_err;
291 }
292 } else {
293 /* pgs == pgs_onstack */
294 memset(pgs, 0, pgs_size);
295 }
296 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
297 ridx, npages, startoffset, endoffset);
298
299 if (!has_trans) {
300 fstrans_start(vp->v_mount, FSTRANS_SHARED);
301 has_trans = true;
302 }
303
304 /*
305 * hold g_glock to prevent a race with truncate.
306 *
307 * check if our idea of v_size is still valid.
308 */
309
310 if (blockalloc) {
311 rw_enter(&gp->g_glock, RW_WRITER);
312 } else {
313 rw_enter(&gp->g_glock, RW_READER);
314 }
315 mutex_enter(&uobj->vmobjlock);
316 if (vp->v_size < origvsize) {
317 rw_exit(&gp->g_glock);
318 if (pgs != pgs_onstack)
319 kmem_free(pgs, pgs_size);
320 goto startover;
321 }
322
323 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
324 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
325 rw_exit(&gp->g_glock);
326 KASSERT(async != 0);
327 genfs_rel_pages(&pgs[ridx], orignpages);
328 mutex_exit(&uobj->vmobjlock);
329 error = EBUSY;
330 goto out_err;
331 }
332
333 /*
334 * if the pages are already resident, just return them.
335 */
336
337 for (i = 0; i < npages; i++) {
338 struct vm_page *pg1 = pgs[ridx + i];
339
340 if ((pg1->flags & PG_FAKE) ||
341 (blockalloc && (pg1->flags & PG_RDONLY))) {
342 break;
343 }
344 }
345 if (i == npages) {
346 rw_exit(&gp->g_glock);
347 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
348 npages += ridx;
349 goto out;
350 }
351
352 /*
353 * if PGO_OVERWRITE is set, don't bother reading the pages.
354 */
355
356 if (overwrite) {
357 rw_exit(&gp->g_glock);
358 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
359
360 for (i = 0; i < npages; i++) {
361 struct vm_page *pg1 = pgs[ridx + i];
362
363 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
364 }
365 npages += ridx;
366 goto out;
367 }
368
369 /*
370 * the page wasn't resident and we're not overwriting,
371 * so we're going to have to do some i/o.
372 * find any additional pages needed to cover the expanded range.
373 */
374
375 npages = (endoffset - startoffset) >> PAGE_SHIFT;
376 if (startoffset != origoffset || npages != orignpages) {
377
378 /*
379 * we need to avoid deadlocks caused by locking
380 * additional pages at lower offsets than pages we
381 * already have locked. unlock them all and start over.
382 */
383
384 genfs_rel_pages(&pgs[ridx], orignpages);
385 memset(pgs, 0, pgs_size);
386
387 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
388 startoffset, endoffset, 0,0);
389 npgs = npages;
390 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
391 async ? UFP_NOWAIT : UFP_ALL) != npages) {
392 rw_exit(&gp->g_glock);
393 KASSERT(async != 0);
394 genfs_rel_pages(pgs, npages);
395 mutex_exit(&uobj->vmobjlock);
396 error = EBUSY;
397 goto out_err;
398 }
399 }
400 mutex_exit(&uobj->vmobjlock);
401
402 /*
403 * read the desired page(s).
404 */
405
406 totalbytes = npages << PAGE_SHIFT;
407 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
408 tailbytes = totalbytes - bytes;
409 skipbytes = 0;
410
411 kva = uvm_pagermapin(pgs, npages,
412 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
413
414 mbp = getiobuf(vp, true);
415 mbp->b_bufsize = totalbytes;
416 mbp->b_data = (void *)kva;
417 mbp->b_resid = mbp->b_bcount = bytes;
418 mbp->b_cflags = BC_BUSY;
419 if (async) {
420 mbp->b_flags = B_READ | B_ASYNC;
421 mbp->b_iodone = uvm_aio_biodone;
422 } else {
423 mbp->b_flags = B_READ;
424 mbp->b_iodone = NULL;
425 }
426 if (async)
427 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
428 else
429 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
430
431 /*
432 * if EOF is in the middle of the range, zero the part past EOF.
433 * skip over pages which are not PG_FAKE since in that case they have
434 * valid data that we need to preserve.
435 */
436
437 tailstart = bytes;
438 while (tailbytes > 0) {
439 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
440
441 KASSERT(len <= tailbytes);
442 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
443 memset((void *)(kva + tailstart), 0, len);
444 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
445 kva, tailstart, len, 0);
446 }
447 tailstart += len;
448 tailbytes -= len;
449 }
450
451 /*
452 * now loop over the pages, reading as needed.
453 */
454
455 bp = NULL;
456 for (offset = startoffset;
457 bytes > 0;
458 offset += iobytes, bytes -= iobytes) {
459
460 /*
461 * skip pages which don't need to be read.
462 */
463
464 pidx = (offset - startoffset) >> PAGE_SHIFT;
465 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
466 size_t b;
467
468 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
469 if ((pgs[pidx]->flags & PG_RDONLY)) {
470 sawhole = true;
471 }
472 b = MIN(PAGE_SIZE, bytes);
473 offset += b;
474 bytes -= b;
475 skipbytes += b;
476 pidx++;
477 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
478 offset, 0,0,0);
479 if (bytes == 0) {
480 goto loopdone;
481 }
482 }
483
484 /*
485 * bmap the file to find out the blkno to read from and
486 * how much we can read in one i/o. if bmap returns an error,
487 * skip the rest of the top-level i/o.
488 */
489
490 lbn = offset >> fs_bshift;
491 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
492 if (error) {
493 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
494 lbn, error,0,0);
495 skipbytes += bytes;
496 goto loopdone;
497 }
498
499 /*
500 * see how many pages can be read with this i/o.
501 * reduce the i/o size if necessary to avoid
502 * overwriting pages with valid data.
503 */
504
505 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
506 bytes);
507 if (offset + iobytes > round_page(offset)) {
508 pcount = 1;
509 while (pidx + pcount < npages &&
510 pgs[pidx + pcount]->flags & PG_FAKE) {
511 pcount++;
512 }
513 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
514 (offset - trunc_page(offset)));
515 }
516
517 /*
518 * if this block isn't allocated, zero it instead of
519 * reading it. unless we are going to allocate blocks,
520 * mark the pages we zeroed PG_RDONLY.
521 */
522
523 if (blkno < 0) {
524 int holepages = (round_page(offset + iobytes) -
525 trunc_page(offset)) >> PAGE_SHIFT;
526 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
527
528 sawhole = true;
529 memset((char *)kva + (offset - startoffset), 0,
530 iobytes);
531 skipbytes += iobytes;
532
533 for (i = 0; i < holepages; i++) {
534 if (write) {
535 pgs[pidx + i]->flags &= ~PG_CLEAN;
536 }
537 if (!blockalloc) {
538 pgs[pidx + i]->flags |= PG_RDONLY;
539 }
540 }
541 continue;
542 }
543
544 /*
545 * allocate a sub-buf for this piece of the i/o
546 * (or just use mbp if there's only 1 piece),
547 * and start it going.
548 */
549
550 if (offset == startoffset && iobytes == bytes) {
551 bp = mbp;
552 } else {
553 bp = getiobuf(vp, true);
554 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
555 }
556 bp->b_lblkno = 0;
557
558 /* adjust physical blkno for partial blocks */
559 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
560 dev_bshift);
561
562 UVMHIST_LOG(ubchist,
563 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
564 bp, offset, iobytes, bp->b_blkno);
565
566 VOP_STRATEGY(devvp, bp);
567 }
568
569 loopdone:
570 nestiobuf_done(mbp, skipbytes, error);
571 if (async) {
572 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
573 rw_exit(&gp->g_glock);
574 error = 0;
575 goto out_err;
576 }
577 if (bp != NULL) {
578 error = biowait(mbp);
579 }
580 putiobuf(mbp);
581 uvm_pagermapout(kva, npages);
582
583 /*
584 * if this we encountered a hole then we have to do a little more work.
585 * for read faults, we marked the page PG_RDONLY so that future
586 * write accesses to the page will fault again.
587 * for write faults, we must make sure that the backing store for
588 * the page is completely allocated while the pages are locked.
589 */
590
591 if (!error && sawhole && blockalloc) {
592 /*
593 * XXX: This assumes that we come here only via
594 * the mmio path
595 */
596 if (vp->v_mount->mnt_wapbl && write) {
597 error = WAPBL_BEGIN(vp->v_mount);
598 }
599
600 if (!error) {
601 error = GOP_ALLOC(vp, startoffset,
602 npages << PAGE_SHIFT, 0, cred);
603 if (vp->v_mount->mnt_wapbl && write) {
604 WAPBL_END(vp->v_mount);
605 }
606 }
607
608 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
609 startoffset, npages << PAGE_SHIFT, error,0);
610 if (!error) {
611 for (i = 0; i < npages; i++) {
612 if (pgs[i] == NULL) {
613 continue;
614 }
615 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
616 UVMHIST_LOG(ubchist, "mark dirty pg %p",
617 pgs[i],0,0,0);
618 }
619 }
620 }
621 rw_exit(&gp->g_glock);
622 mutex_enter(&uobj->vmobjlock);
623
624 /*
625 * we're almost done! release the pages...
626 * for errors, we free the pages.
627 * otherwise we activate them and mark them as valid and clean.
628 * also, unbusy pages that were not actually requested.
629 */
630
631 if (error) {
632 for (i = 0; i < npages; i++) {
633 if (pgs[i] == NULL) {
634 continue;
635 }
636 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
637 pgs[i], pgs[i]->flags, 0,0);
638 if (pgs[i]->flags & PG_FAKE) {
639 pgs[i]->flags |= PG_RELEASED;
640 }
641 }
642 mutex_enter(&uvm_pageqlock);
643 uvm_page_unbusy(pgs, npages);
644 mutex_exit(&uvm_pageqlock);
645 mutex_exit(&uobj->vmobjlock);
646 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
647 goto out_err;
648 }
649
650 out:
651 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
652 error = 0;
653 mutex_enter(&uvm_pageqlock);
654 for (i = 0; i < npages; i++) {
655 pg = pgs[i];
656 if (pg == NULL) {
657 continue;
658 }
659 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
660 pg, pg->flags, 0,0);
661 if (pg->flags & PG_FAKE && !overwrite) {
662 pg->flags &= ~(PG_FAKE);
663 pmap_clear_modify(pgs[i]);
664 }
665 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
666 if (i < ridx || i >= ridx + orignpages || async) {
667 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
668 pg, pg->offset,0,0);
669 if (pg->flags & PG_WANTED) {
670 wakeup(pg);
671 }
672 if (pg->flags & PG_FAKE) {
673 KASSERT(overwrite);
674 uvm_pagezero(pg);
675 }
676 if (pg->flags & PG_RELEASED) {
677 uvm_pagefree(pg);
678 continue;
679 }
680 uvm_pageenqueue(pg);
681 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
682 UVM_PAGE_OWN(pg, NULL);
683 }
684 }
685 mutex_exit(&uvm_pageqlock);
686 mutex_exit(&uobj->vmobjlock);
687 if (ap->a_m != NULL) {
688 memcpy(ap->a_m, &pgs[ridx],
689 orignpages * sizeof(struct vm_page *));
690 }
691
692 out_err:
693 if (pgs != pgs_onstack)
694 kmem_free(pgs, pgs_size);
695 if (has_trans)
696 fstrans_done(vp->v_mount);
697 return (error);
698 }
699
700 /*
701 * generic VM putpages routine.
702 * Write the given range of pages to backing store.
703 *
704 * => "offhi == 0" means flush all pages at or after "offlo".
705 * => object should be locked by caller. we return with the
706 * object unlocked.
707 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
708 * thus, a caller might want to unlock higher level resources
709 * (e.g. vm_map) before calling flush.
710 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
711 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
712 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
713 * that new pages are inserted on the tail end of the list. thus,
714 * we can make a complete pass through the object in one go by starting
715 * at the head and working towards the tail (new pages are put in
716 * front of us).
717 * => NOTE: we are allowed to lock the page queues, so the caller
718 * must not be holding the page queue lock.
719 *
720 * note on "cleaning" object and PG_BUSY pages:
721 * this routine is holding the lock on the object. the only time
722 * that it can run into a PG_BUSY page that it does not own is if
723 * some other process has started I/O on the page (e.g. either
724 * a pagein, or a pageout). if the PG_BUSY page is being paged
725 * in, then it can not be dirty (!PG_CLEAN) because no one has
726 * had a chance to modify it yet. if the PG_BUSY page is being
727 * paged out then it means that someone else has already started
728 * cleaning the page for us (how nice!). in this case, if we
729 * have syncio specified, then after we make our pass through the
730 * object we need to wait for the other PG_BUSY pages to clear
731 * off (i.e. we need to do an iosync). also note that once a
732 * page is PG_BUSY it must stay in its object until it is un-busyed.
733 *
734 * note on page traversal:
735 * we can traverse the pages in an object either by going down the
736 * linked list in "uobj->memq", or we can go over the address range
737 * by page doing hash table lookups for each address. depending
738 * on how many pages are in the object it may be cheaper to do one
739 * or the other. we set "by_list" to true if we are using memq.
740 * if the cost of a hash lookup was equal to the cost of the list
741 * traversal we could compare the number of pages in the start->stop
742 * range to the total number of pages in the object. however, it
743 * seems that a hash table lookup is more expensive than the linked
744 * list traversal, so we multiply the number of pages in the
745 * range by an estimate of the relatively higher cost of the hash lookup.
746 */
747
748 int
749 genfs_putpages(void *v)
750 {
751 struct vop_putpages_args /* {
752 struct vnode *a_vp;
753 voff_t a_offlo;
754 voff_t a_offhi;
755 int a_flags;
756 } */ *ap = v;
757
758 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
759 ap->a_flags, NULL);
760 }
761
762 int
763 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
764 int origflags, struct vm_page **busypg)
765 {
766 struct uvm_object *uobj = &vp->v_uobj;
767 kmutex_t *slock = &uobj->vmobjlock;
768 off_t off;
769 /* Even for strange MAXPHYS, the shift rounds down to a page */
770 #define maxpages (MAXPHYS >> PAGE_SHIFT)
771 int i, error, npages, nback;
772 int freeflag;
773 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
774 bool wasclean, by_list, needs_clean, yld;
775 bool async = (origflags & PGO_SYNCIO) == 0;
776 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
777 struct lwp *l = curlwp ? curlwp : &lwp0;
778 struct genfs_node *gp = VTOG(vp);
779 int flags;
780 int dirtygen;
781 bool modified;
782 bool has_trans;
783 bool cleanall;
784 bool onworklst;
785
786 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
787
788 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
789 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
790 KASSERT(startoff < endoff || endoff == 0);
791
792 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
793 vp, uobj->uo_npages, startoff, endoff - startoff);
794
795 has_trans = false;
796
797 retry:
798 modified = false;
799 flags = origflags;
800 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
801 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
802 if (uobj->uo_npages == 0) {
803 if (vp->v_iflag & VI_ONWORKLST) {
804 vp->v_iflag &= ~VI_WRMAPDIRTY;
805 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
806 vn_syncer_remove_from_worklist(vp);
807 }
808 if (has_trans)
809 fstrans_done(vp->v_mount);
810 mutex_exit(slock);
811 return (0);
812 }
813
814 /*
815 * the vnode has pages, set up to process the request.
816 */
817
818 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
819 mutex_exit(slock);
820 if (pagedaemon) {
821 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
822 if (error)
823 return error;
824 } else
825 fstrans_start(vp->v_mount, FSTRANS_LAZY);
826 has_trans = true;
827 mutex_enter(slock);
828 goto retry;
829 }
830
831 error = 0;
832 wasclean = (vp->v_numoutput == 0);
833 off = startoff;
834 if (endoff == 0 || flags & PGO_ALLPAGES) {
835 endoff = trunc_page(LLONG_MAX);
836 }
837 by_list = (uobj->uo_npages <=
838 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
839
840 #if !defined(DEBUG)
841 /*
842 * if this vnode is known not to have dirty pages,
843 * don't bother to clean it out.
844 */
845
846 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
847 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
848 goto skip_scan;
849 }
850 flags &= ~PGO_CLEANIT;
851 }
852 #endif /* !defined(DEBUG) */
853
854 /*
855 * start the loop. when scanning by list, hold the last page
856 * in the list before we start. pages allocated after we start
857 * will be added to the end of the list, so we can stop at the
858 * current last page.
859 */
860
861 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
862 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
863 (vp->v_iflag & VI_ONWORKLST) != 0;
864 dirtygen = gp->g_dirtygen;
865 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
866 if (by_list) {
867 curmp.uobject = uobj;
868 curmp.offset = (voff_t)-1;
869 curmp.flags = PG_BUSY;
870 endmp.uobject = uobj;
871 endmp.offset = (voff_t)-1;
872 endmp.flags = PG_BUSY;
873 pg = TAILQ_FIRST(&uobj->memq);
874 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
875 uvm_lwp_hold(l);
876 } else {
877 pg = uvm_pagelookup(uobj, off);
878 }
879 nextpg = NULL;
880 while (by_list || off < endoff) {
881
882 /*
883 * if the current page is not interesting, move on to the next.
884 */
885
886 KASSERT(pg == NULL || pg->uobject == uobj);
887 KASSERT(pg == NULL ||
888 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
889 (pg->flags & PG_BUSY) != 0);
890 if (by_list) {
891 if (pg == &endmp) {
892 break;
893 }
894 if (pg->offset < startoff || pg->offset >= endoff ||
895 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
896 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
897 wasclean = false;
898 }
899 pg = TAILQ_NEXT(pg, listq.queue);
900 continue;
901 }
902 off = pg->offset;
903 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
904 if (pg != NULL) {
905 wasclean = false;
906 }
907 off += PAGE_SIZE;
908 if (off < endoff) {
909 pg = uvm_pagelookup(uobj, off);
910 }
911 continue;
912 }
913
914 /*
915 * if the current page needs to be cleaned and it's busy,
916 * wait for it to become unbusy.
917 */
918
919 yld = (l->l_cpu->ci_schedstate.spc_flags &
920 SPCF_SHOULDYIELD) && !pagedaemon;
921 if (pg->flags & PG_BUSY || yld) {
922 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
923 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
924 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
925 error = EDEADLK;
926 if (busypg != NULL)
927 *busypg = pg;
928 break;
929 }
930 if (pagedaemon) {
931 /*
932 * someone has taken the page while we
933 * dropped the lock for fstrans_start.
934 */
935 break;
936 }
937 if (by_list) {
938 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
939 UVMHIST_LOG(ubchist, "curmp next %p",
940 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
941 }
942 if (yld) {
943 mutex_exit(slock);
944 preempt();
945 mutex_enter(slock);
946 } else {
947 pg->flags |= PG_WANTED;
948 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
949 mutex_enter(slock);
950 }
951 if (by_list) {
952 UVMHIST_LOG(ubchist, "after next %p",
953 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
954 pg = TAILQ_NEXT(&curmp, listq.queue);
955 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
956 } else {
957 pg = uvm_pagelookup(uobj, off);
958 }
959 continue;
960 }
961
962 /*
963 * if we're freeing, remove all mappings of the page now.
964 * if we're cleaning, check if the page is needs to be cleaned.
965 */
966
967 if (flags & PGO_FREE) {
968 pmap_page_protect(pg, VM_PROT_NONE);
969 } else if (flags & PGO_CLEANIT) {
970
971 /*
972 * if we still have some hope to pull this vnode off
973 * from the syncer queue, write-protect the page.
974 */
975
976 if (cleanall && wasclean &&
977 gp->g_dirtygen == dirtygen) {
978
979 /*
980 * uobj pages get wired only by uvm_fault
981 * where uobj is locked.
982 */
983
984 if (pg->wire_count == 0) {
985 pmap_page_protect(pg,
986 VM_PROT_READ|VM_PROT_EXECUTE);
987 } else {
988 cleanall = false;
989 }
990 }
991 }
992
993 if (flags & PGO_CLEANIT) {
994 needs_clean = pmap_clear_modify(pg) ||
995 (pg->flags & PG_CLEAN) == 0;
996 pg->flags |= PG_CLEAN;
997 } else {
998 needs_clean = false;
999 }
1000
1001 /*
1002 * if we're cleaning, build a cluster.
1003 * the cluster will consist of pages which are currently dirty,
1004 * but they will be returned to us marked clean.
1005 * if not cleaning, just operate on the one page.
1006 */
1007
1008 if (needs_clean) {
1009 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1010 wasclean = false;
1011 memset(pgs, 0, sizeof(pgs));
1012 pg->flags |= PG_BUSY;
1013 UVM_PAGE_OWN(pg, "genfs_putpages");
1014
1015 /*
1016 * first look backward.
1017 */
1018
1019 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1020 nback = npages;
1021 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1022 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1023 if (nback) {
1024 memmove(&pgs[0], &pgs[npages - nback],
1025 nback * sizeof(pgs[0]));
1026 if (npages - nback < nback)
1027 memset(&pgs[nback], 0,
1028 (npages - nback) * sizeof(pgs[0]));
1029 else
1030 memset(&pgs[npages - nback], 0,
1031 nback * sizeof(pgs[0]));
1032 }
1033
1034 /*
1035 * then plug in our page of interest.
1036 */
1037
1038 pgs[nback] = pg;
1039
1040 /*
1041 * then look forward to fill in the remaining space in
1042 * the array of pages.
1043 */
1044
1045 npages = maxpages - nback - 1;
1046 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1047 &pgs[nback + 1],
1048 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1049 npages += nback + 1;
1050 } else {
1051 pgs[0] = pg;
1052 npages = 1;
1053 nback = 0;
1054 }
1055
1056 /*
1057 * apply FREE or DEACTIVATE options if requested.
1058 */
1059
1060 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1061 mutex_enter(&uvm_pageqlock);
1062 }
1063 for (i = 0; i < npages; i++) {
1064 tpg = pgs[i];
1065 KASSERT(tpg->uobject == uobj);
1066 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1067 pg = tpg;
1068 if (tpg->offset < startoff || tpg->offset >= endoff)
1069 continue;
1070 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1071 uvm_pagedeactivate(tpg);
1072 } else if (flags & PGO_FREE) {
1073 pmap_page_protect(tpg, VM_PROT_NONE);
1074 if (tpg->flags & PG_BUSY) {
1075 tpg->flags |= freeflag;
1076 if (pagedaemon) {
1077 uvm_pageout_start(1);
1078 uvm_pagedequeue(tpg);
1079 }
1080 } else {
1081
1082 /*
1083 * ``page is not busy''
1084 * implies that npages is 1
1085 * and needs_clean is false.
1086 */
1087
1088 nextpg = TAILQ_NEXT(tpg, listq.queue);
1089 uvm_pagefree(tpg);
1090 if (pagedaemon)
1091 uvmexp.pdfreed++;
1092 }
1093 }
1094 }
1095 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1096 mutex_exit(&uvm_pageqlock);
1097 }
1098 if (needs_clean) {
1099 modified = true;
1100
1101 /*
1102 * start the i/o. if we're traversing by list,
1103 * keep our place in the list with a marker page.
1104 */
1105
1106 if (by_list) {
1107 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1108 listq.queue);
1109 }
1110 mutex_exit(slock);
1111 error = GOP_WRITE(vp, pgs, npages, flags);
1112 mutex_enter(slock);
1113 if (by_list) {
1114 pg = TAILQ_NEXT(&curmp, listq.queue);
1115 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1116 }
1117 if (error) {
1118 break;
1119 }
1120 if (by_list) {
1121 continue;
1122 }
1123 }
1124
1125 /*
1126 * find the next page and continue if there was no error.
1127 */
1128
1129 if (by_list) {
1130 if (nextpg) {
1131 pg = nextpg;
1132 nextpg = NULL;
1133 } else {
1134 pg = TAILQ_NEXT(pg, listq.queue);
1135 }
1136 } else {
1137 off += (npages - nback) << PAGE_SHIFT;
1138 if (off < endoff) {
1139 pg = uvm_pagelookup(uobj, off);
1140 }
1141 }
1142 }
1143 if (by_list) {
1144 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1145 uvm_lwp_rele(l);
1146 }
1147
1148 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1149 (vp->v_type != VBLK ||
1150 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1151 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1152 }
1153
1154 /*
1155 * if we're cleaning and there was nothing to clean,
1156 * take us off the syncer list. if we started any i/o
1157 * and we're doing sync i/o, wait for all writes to finish.
1158 */
1159
1160 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1161 (vp->v_iflag & VI_ONWORKLST) != 0) {
1162 #if defined(DEBUG)
1163 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1164 if ((pg->flags & PG_CLEAN) == 0) {
1165 printf("%s: %p: !CLEAN\n", __func__, pg);
1166 }
1167 if (pmap_is_modified(pg)) {
1168 printf("%s: %p: modified\n", __func__, pg);
1169 }
1170 }
1171 #endif /* defined(DEBUG) */
1172 vp->v_iflag &= ~VI_WRMAPDIRTY;
1173 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1174 vn_syncer_remove_from_worklist(vp);
1175 }
1176
1177 #if !defined(DEBUG)
1178 skip_scan:
1179 #endif /* !defined(DEBUG) */
1180
1181 /* Wait for output to complete. */
1182 if (!wasclean && !async && vp->v_numoutput != 0) {
1183 while (vp->v_numoutput != 0)
1184 cv_wait(&vp->v_cv, slock);
1185 }
1186 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1187 mutex_exit(slock);
1188
1189 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1190 /*
1191 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1192 * retrying is not a big deal because, in many cases,
1193 * uobj->uo_npages is already 0 here.
1194 */
1195 mutex_enter(slock);
1196 goto retry;
1197 }
1198
1199 if (has_trans)
1200 fstrans_done(vp->v_mount);
1201
1202 return (error);
1203 }
1204
1205 int
1206 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1207 {
1208 off_t off;
1209 vaddr_t kva;
1210 size_t len;
1211 int error;
1212 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1213
1214 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1215 vp, pgs, npages, flags);
1216
1217 off = pgs[0]->offset;
1218 kva = uvm_pagermapin(pgs, npages,
1219 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1220 len = npages << PAGE_SHIFT;
1221
1222 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1223 uvm_aio_biodone);
1224
1225 return error;
1226 }
1227
1228 int
1229 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1230 {
1231 off_t off;
1232 vaddr_t kva;
1233 size_t len;
1234 int error;
1235 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1236
1237 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1238 vp, pgs, npages, flags);
1239
1240 off = pgs[0]->offset;
1241 kva = uvm_pagermapin(pgs, npages,
1242 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1243 len = npages << PAGE_SHIFT;
1244
1245 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1246 uvm_aio_biodone);
1247
1248 return error;
1249 }
1250
1251 /*
1252 * Backend routine for doing I/O to vnode pages. Pages are already locked
1253 * and mapped into kernel memory. Here we just look up the underlying
1254 * device block addresses and call the strategy routine.
1255 */
1256
1257 static int
1258 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1259 enum uio_rw rw, void (*iodone)(struct buf *))
1260 {
1261 int s, error, run;
1262 int fs_bshift, dev_bshift;
1263 off_t eof, offset, startoffset;
1264 size_t bytes, iobytes, skipbytes;
1265 daddr_t lbn, blkno;
1266 struct buf *mbp, *bp;
1267 struct vnode *devvp;
1268 bool async = (flags & PGO_SYNCIO) == 0;
1269 bool write = rw == UIO_WRITE;
1270 int brw = write ? B_WRITE : B_READ;
1271 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1272
1273 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1274 vp, kva, len, flags);
1275
1276 KASSERT(vp->v_size <= vp->v_writesize);
1277 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1278 if (vp->v_type != VBLK) {
1279 fs_bshift = vp->v_mount->mnt_fs_bshift;
1280 dev_bshift = vp->v_mount->mnt_dev_bshift;
1281 } else {
1282 fs_bshift = DEV_BSHIFT;
1283 dev_bshift = DEV_BSHIFT;
1284 }
1285 error = 0;
1286 startoffset = off;
1287 bytes = MIN(len, eof - startoffset);
1288 skipbytes = 0;
1289 KASSERT(bytes != 0);
1290
1291 if (write) {
1292 mutex_enter(&vp->v_interlock);
1293 vp->v_numoutput += 2;
1294 mutex_exit(&vp->v_interlock);
1295 }
1296 mbp = getiobuf(vp, true);
1297 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1298 vp, mbp, vp->v_numoutput, bytes);
1299 mbp->b_bufsize = len;
1300 mbp->b_data = (void *)kva;
1301 mbp->b_resid = mbp->b_bcount = bytes;
1302 mbp->b_cflags = BC_BUSY | BC_AGE;
1303 if (async) {
1304 mbp->b_flags = brw | B_ASYNC;
1305 mbp->b_iodone = iodone;
1306 } else {
1307 mbp->b_flags = brw;
1308 mbp->b_iodone = NULL;
1309 }
1310 if (curlwp == uvm.pagedaemon_lwp)
1311 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1312 else if (async)
1313 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1314 else
1315 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1316
1317 bp = NULL;
1318 for (offset = startoffset;
1319 bytes > 0;
1320 offset += iobytes, bytes -= iobytes) {
1321 lbn = offset >> fs_bshift;
1322 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1323 if (error) {
1324 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1325 skipbytes += bytes;
1326 bytes = 0;
1327 break;
1328 }
1329
1330 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1331 bytes);
1332 if (blkno == (daddr_t)-1) {
1333 if (!write) {
1334 memset((char *)kva + (offset - startoffset), 0,
1335 iobytes);
1336 }
1337 skipbytes += iobytes;
1338 continue;
1339 }
1340
1341 /* if it's really one i/o, don't make a second buf */
1342 if (offset == startoffset && iobytes == bytes) {
1343 bp = mbp;
1344 } else {
1345 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1346 vp, bp, vp->v_numoutput, 0);
1347 bp = getiobuf(vp, true);
1348 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1349 }
1350 bp->b_lblkno = 0;
1351
1352 /* adjust physical blkno for partial blocks */
1353 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1354 dev_bshift);
1355 UVMHIST_LOG(ubchist,
1356 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1357 vp, offset, bp->b_bcount, bp->b_blkno);
1358
1359 VOP_STRATEGY(devvp, bp);
1360 }
1361 if (skipbytes) {
1362 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1363 }
1364 nestiobuf_done(mbp, skipbytes, error);
1365 if (async) {
1366 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1367 return (0);
1368 }
1369 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1370 error = biowait(mbp);
1371 s = splbio();
1372 (*iodone)(mbp);
1373 splx(s);
1374 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1375 return (error);
1376 }
1377
1378 /*
1379 * VOP_PUTPAGES() for vnodes which never have pages.
1380 */
1381
1382 int
1383 genfs_null_putpages(void *v)
1384 {
1385 struct vop_putpages_args /* {
1386 struct vnode *a_vp;
1387 voff_t a_offlo;
1388 voff_t a_offhi;
1389 int a_flags;
1390 } */ *ap = v;
1391 struct vnode *vp = ap->a_vp;
1392
1393 KASSERT(vp->v_uobj.uo_npages == 0);
1394 mutex_exit(&vp->v_interlock);
1395 return (0);
1396 }
1397
1398 int
1399 genfs_compat_getpages(void *v)
1400 {
1401 struct vop_getpages_args /* {
1402 struct vnode *a_vp;
1403 voff_t a_offset;
1404 struct vm_page **a_m;
1405 int *a_count;
1406 int a_centeridx;
1407 vm_prot_t a_access_type;
1408 int a_advice;
1409 int a_flags;
1410 } */ *ap = v;
1411
1412 off_t origoffset;
1413 struct vnode *vp = ap->a_vp;
1414 struct uvm_object *uobj = &vp->v_uobj;
1415 struct vm_page *pg, **pgs;
1416 vaddr_t kva;
1417 int i, error, orignpages, npages;
1418 struct iovec iov;
1419 struct uio uio;
1420 kauth_cred_t cred = curlwp->l_cred;
1421 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1422
1423 error = 0;
1424 origoffset = ap->a_offset;
1425 orignpages = *ap->a_count;
1426 pgs = ap->a_m;
1427
1428 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1429 vn_syncer_add_to_worklist(vp, filedelay);
1430 }
1431 if (ap->a_flags & PGO_LOCKED) {
1432 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1433 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1434
1435 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1436 }
1437 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1438 mutex_exit(&uobj->vmobjlock);
1439 return (EINVAL);
1440 }
1441 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1442 mutex_exit(&uobj->vmobjlock);
1443 return 0;
1444 }
1445 npages = orignpages;
1446 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1447 mutex_exit(&uobj->vmobjlock);
1448 kva = uvm_pagermapin(pgs, npages,
1449 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1450 for (i = 0; i < npages; i++) {
1451 pg = pgs[i];
1452 if ((pg->flags & PG_FAKE) == 0) {
1453 continue;
1454 }
1455 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1456 iov.iov_len = PAGE_SIZE;
1457 uio.uio_iov = &iov;
1458 uio.uio_iovcnt = 1;
1459 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1460 uio.uio_rw = UIO_READ;
1461 uio.uio_resid = PAGE_SIZE;
1462 UIO_SETUP_SYSSPACE(&uio);
1463 /* XXX vn_lock */
1464 error = VOP_READ(vp, &uio, 0, cred);
1465 if (error) {
1466 break;
1467 }
1468 if (uio.uio_resid) {
1469 memset(iov.iov_base, 0, uio.uio_resid);
1470 }
1471 }
1472 uvm_pagermapout(kva, npages);
1473 mutex_enter(&uobj->vmobjlock);
1474 mutex_enter(&uvm_pageqlock);
1475 for (i = 0; i < npages; i++) {
1476 pg = pgs[i];
1477 if (error && (pg->flags & PG_FAKE) != 0) {
1478 pg->flags |= PG_RELEASED;
1479 } else {
1480 pmap_clear_modify(pg);
1481 uvm_pageactivate(pg);
1482 }
1483 }
1484 if (error) {
1485 uvm_page_unbusy(pgs, npages);
1486 }
1487 mutex_exit(&uvm_pageqlock);
1488 mutex_exit(&uobj->vmobjlock);
1489 return (error);
1490 }
1491
1492 int
1493 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1494 int flags)
1495 {
1496 off_t offset;
1497 struct iovec iov;
1498 struct uio uio;
1499 kauth_cred_t cred = curlwp->l_cred;
1500 struct buf *bp;
1501 vaddr_t kva;
1502 int error;
1503
1504 offset = pgs[0]->offset;
1505 kva = uvm_pagermapin(pgs, npages,
1506 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1507
1508 iov.iov_base = (void *)kva;
1509 iov.iov_len = npages << PAGE_SHIFT;
1510 uio.uio_iov = &iov;
1511 uio.uio_iovcnt = 1;
1512 uio.uio_offset = offset;
1513 uio.uio_rw = UIO_WRITE;
1514 uio.uio_resid = npages << PAGE_SHIFT;
1515 UIO_SETUP_SYSSPACE(&uio);
1516 /* XXX vn_lock */
1517 error = VOP_WRITE(vp, &uio, 0, cred);
1518
1519 mutex_enter(&vp->v_interlock);
1520 vp->v_numoutput++;
1521 mutex_exit(&vp->v_interlock);
1522
1523 bp = getiobuf(vp, true);
1524 bp->b_cflags = BC_BUSY | BC_AGE;
1525 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1526 bp->b_data = (char *)kva;
1527 bp->b_bcount = npages << PAGE_SHIFT;
1528 bp->b_bufsize = npages << PAGE_SHIFT;
1529 bp->b_resid = 0;
1530 bp->b_error = error;
1531 uvm_aio_aiodone(bp);
1532 return (error);
1533 }
1534
1535 /*
1536 * Process a uio using direct I/O. If we reach a part of the request
1537 * which cannot be processed in this fashion for some reason, just return.
1538 * The caller must handle some additional part of the request using
1539 * buffered I/O before trying direct I/O again.
1540 */
1541
1542 void
1543 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1544 {
1545 struct vmspace *vs;
1546 struct iovec *iov;
1547 vaddr_t va;
1548 size_t len;
1549 const int mask = DEV_BSIZE - 1;
1550 int error;
1551
1552 /*
1553 * We only support direct I/O to user space for now.
1554 */
1555
1556 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1557 return;
1558 }
1559
1560 /*
1561 * If the vnode is mapped, we would need to get the getpages lock
1562 * to stabilize the bmap, but then we would get into trouble whil e
1563 * locking the pages if the pages belong to this same vnode (or a
1564 * multi-vnode cascade to the same effect). Just fall back to
1565 * buffered I/O if the vnode is mapped to avoid this mess.
1566 */
1567
1568 if (vp->v_vflag & VV_MAPPED) {
1569 return;
1570 }
1571
1572 /*
1573 * Do as much of the uio as possible with direct I/O.
1574 */
1575
1576 vs = uio->uio_vmspace;
1577 while (uio->uio_resid) {
1578 iov = uio->uio_iov;
1579 if (iov->iov_len == 0) {
1580 uio->uio_iov++;
1581 uio->uio_iovcnt--;
1582 continue;
1583 }
1584 va = (vaddr_t)iov->iov_base;
1585 len = MIN(iov->iov_len, genfs_maxdio);
1586 len &= ~mask;
1587
1588 /*
1589 * If the next chunk is smaller than DEV_BSIZE or extends past
1590 * the current EOF, then fall back to buffered I/O.
1591 */
1592
1593 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1594 return;
1595 }
1596
1597 /*
1598 * Check alignment. The file offset must be at least
1599 * sector-aligned. The exact constraint on memory alignment
1600 * is very hardware-dependent, but requiring sector-aligned
1601 * addresses there too is safe.
1602 */
1603
1604 if (uio->uio_offset & mask || va & mask) {
1605 return;
1606 }
1607 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1608 uio->uio_rw);
1609 if (error) {
1610 break;
1611 }
1612 iov->iov_base = (char *)iov->iov_base + len;
1613 iov->iov_len -= len;
1614 uio->uio_offset += len;
1615 uio->uio_resid -= len;
1616 }
1617 }
1618
1619 /*
1620 * Iodone routine for direct I/O. We don't do much here since the request is
1621 * always synchronous, so the caller will do most of the work after biowait().
1622 */
1623
1624 static void
1625 genfs_dio_iodone(struct buf *bp)
1626 {
1627
1628 KASSERT((bp->b_flags & B_ASYNC) == 0);
1629 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1630 mutex_enter(bp->b_objlock);
1631 vwakeup(bp);
1632 mutex_exit(bp->b_objlock);
1633 }
1634 putiobuf(bp);
1635 }
1636
1637 /*
1638 * Process one chunk of a direct I/O request.
1639 */
1640
1641 static int
1642 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1643 off_t off, enum uio_rw rw)
1644 {
1645 struct vm_map *map;
1646 struct pmap *upm, *kpm;
1647 size_t klen = round_page(uva + len) - trunc_page(uva);
1648 off_t spoff, epoff;
1649 vaddr_t kva, puva;
1650 paddr_t pa;
1651 vm_prot_t prot;
1652 int error, rv, poff, koff;
1653 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
1654 (rw == UIO_WRITE ? PGO_FREE : 0);
1655
1656 /*
1657 * For writes, verify that this range of the file already has fully
1658 * allocated backing store. If there are any holes, just punt and
1659 * make the caller take the buffered write path.
1660 */
1661
1662 if (rw == UIO_WRITE) {
1663 daddr_t lbn, elbn, blkno;
1664 int bsize, bshift, run;
1665
1666 bshift = vp->v_mount->mnt_fs_bshift;
1667 bsize = 1 << bshift;
1668 lbn = off >> bshift;
1669 elbn = (off + len + bsize - 1) >> bshift;
1670 while (lbn < elbn) {
1671 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1672 if (error) {
1673 return error;
1674 }
1675 if (blkno == (daddr_t)-1) {
1676 return ENOSPC;
1677 }
1678 lbn += 1 + run;
1679 }
1680 }
1681
1682 /*
1683 * Flush any cached pages for parts of the file that we're about to
1684 * access. If we're writing, invalidate pages as well.
1685 */
1686
1687 spoff = trunc_page(off);
1688 epoff = round_page(off + len);
1689 mutex_enter(&vp->v_interlock);
1690 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1691 if (error) {
1692 return error;
1693 }
1694
1695 /*
1696 * Wire the user pages and remap them into kernel memory.
1697 */
1698
1699 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1700 error = uvm_vslock(vs, (void *)uva, len, prot);
1701 if (error) {
1702 return error;
1703 }
1704
1705 map = &vs->vm_map;
1706 upm = vm_map_pmap(map);
1707 kpm = vm_map_pmap(kernel_map);
1708 kva = uvm_km_alloc(kernel_map, klen, 0,
1709 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1710 puva = trunc_page(uva);
1711 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1712 rv = pmap_extract(upm, puva + poff, &pa);
1713 KASSERT(rv);
1714 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1715 }
1716 pmap_update(kpm);
1717
1718 /*
1719 * Do the I/O.
1720 */
1721
1722 koff = uva - trunc_page(uva);
1723 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1724 genfs_dio_iodone);
1725
1726 /*
1727 * Tear down the kernel mapping.
1728 */
1729
1730 pmap_remove(kpm, kva, kva + klen);
1731 pmap_update(kpm);
1732 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1733
1734 /*
1735 * Unwire the user pages.
1736 */
1737
1738 uvm_vsunlock(vs, (void *)uva, len);
1739 return error;
1740 }
1741
1742