Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.11
      1 /*	$NetBSD: genfs_io.c,v 1.11 2008/08/14 00:47:13 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.11 2008/08/14 00:47:13 yamt Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 
     51 #include <miscfs/genfs/genfs.h>
     52 #include <miscfs/genfs/genfs_node.h>
     53 #include <miscfs/specfs/specdev.h>
     54 
     55 #include <uvm/uvm.h>
     56 #include <uvm/uvm_pager.h>
     57 
     58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     59     off_t, enum uio_rw);
     60 static void genfs_dio_iodone(struct buf *);
     61 
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static inline void genfs_rel_pages(struct vm_page **, int);
     65 
     66 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
     67 
     68 int genfs_maxdio = MAXPHYS;
     69 
     70 static inline void
     71 genfs_rel_pages(struct vm_page **pgs, int npages)
     72 {
     73 	int i;
     74 
     75 	for (i = 0; i < npages; i++) {
     76 		struct vm_page *pg = pgs[i];
     77 
     78 		if (pg == NULL || pg == PGO_DONTCARE)
     79 			continue;
     80 		if (pg->flags & PG_FAKE) {
     81 			pg->flags |= PG_RELEASED;
     82 		}
     83 	}
     84 	mutex_enter(&uvm_pageqlock);
     85 	uvm_page_unbusy(pgs, npages);
     86 	mutex_exit(&uvm_pageqlock);
     87 }
     88 
     89 /*
     90  * generic VM getpages routine.
     91  * Return PG_BUSY pages for the given range,
     92  * reading from backing store if necessary.
     93  */
     94 
     95 int
     96 genfs_getpages(void *v)
     97 {
     98 	struct vop_getpages_args /* {
     99 		struct vnode *a_vp;
    100 		voff_t a_offset;
    101 		struct vm_page **a_m;
    102 		int *a_count;
    103 		int a_centeridx;
    104 		vm_prot_t a_access_type;
    105 		int a_advice;
    106 		int a_flags;
    107 	} */ *ap = v;
    108 
    109 	off_t newsize, diskeof, memeof;
    110 	off_t offset, origoffset, startoffset, endoffset;
    111 	daddr_t lbn, blkno;
    112 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    113 	int fs_bshift, fs_bsize, dev_bshift;
    114 	const int flags = ap->a_flags;
    115 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    116 	vaddr_t kva;
    117 	struct buf *bp, *mbp;
    118 	struct vnode *vp = ap->a_vp;
    119 	struct vnode *devvp;
    120 	struct genfs_node *gp = VTOG(vp);
    121 	struct uvm_object *uobj = &vp->v_uobj;
    122 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
    123 	int pgs_size;
    124 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    125 	const bool async = (flags & PGO_SYNCIO) == 0;
    126 	const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    127 	bool sawhole = false;
    128 	bool has_trans = false;
    129 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    130 	const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    131 	voff_t origvsize;
    132 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    133 
    134 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    135 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    136 
    137 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    138 	    vp->v_type == VLNK || vp->v_type == VBLK);
    139 
    140 	/* XXXUBC temp limit */
    141 	if (*ap->a_count > MAX_READ_PAGES) {
    142 		panic("genfs_getpages: too many pages");
    143 	}
    144 
    145 	pgs = pgs_onstack;
    146 	pgs_size = sizeof(pgs_onstack);
    147 
    148 startover:
    149 	error = 0;
    150 	origvsize = vp->v_size;
    151 	origoffset = ap->a_offset;
    152 	orignpages = *ap->a_count;
    153 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    154 	if (flags & PGO_PASTEOF) {
    155 #if defined(DIAGNOSTIC)
    156 		off_t writeeof;
    157 #endif /* defined(DIAGNOSTIC) */
    158 
    159 		newsize = MAX(origvsize,
    160 		    origoffset + (orignpages << PAGE_SHIFT));
    161 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    162 #if defined(DIAGNOSTIC)
    163 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    164 		if (newsize > round_page(writeeof)) {
    165 			panic("%s: past eof", __func__);
    166 		}
    167 #endif /* defined(DIAGNOSTIC) */
    168 	} else {
    169 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    170 	}
    171 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    172 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    173 	KASSERT(orignpages > 0);
    174 
    175 	/*
    176 	 * Bounds-check the request.
    177 	 */
    178 
    179 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    180 		if ((flags & PGO_LOCKED) == 0) {
    181 			mutex_exit(&uobj->vmobjlock);
    182 		}
    183 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    184 		    origoffset, *ap->a_count, memeof,0);
    185 		error = EINVAL;
    186 		goto out_err;
    187 	}
    188 
    189 	/* uobj is locked */
    190 
    191 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    192 	    (vp->v_type != VBLK ||
    193 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    194 		int updflags = 0;
    195 
    196 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    197 			updflags = GOP_UPDATE_ACCESSED;
    198 		}
    199 		if (write) {
    200 			updflags |= GOP_UPDATE_MODIFIED;
    201 		}
    202 		if (updflags != 0) {
    203 			GOP_MARKUPDATE(vp, updflags);
    204 		}
    205 	}
    206 
    207 	if (write) {
    208 		gp->g_dirtygen++;
    209 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    210 			vn_syncer_add_to_worklist(vp, filedelay);
    211 		}
    212 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    213 			vp->v_iflag |= VI_WRMAPDIRTY;
    214 		}
    215 	}
    216 
    217 	/*
    218 	 * For PGO_LOCKED requests, just return whatever's in memory.
    219 	 */
    220 
    221 	if (flags & PGO_LOCKED) {
    222 		int nfound;
    223 
    224 		npages = *ap->a_count;
    225 #if defined(DEBUG)
    226 		for (i = 0; i < npages; i++) {
    227 			pg = ap->a_m[i];
    228 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    229 		}
    230 #endif /* defined(DEBUG) */
    231 		nfound = uvn_findpages(uobj, origoffset, &npages,
    232 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    233 		KASSERT(npages == *ap->a_count);
    234 		if (nfound == 0) {
    235 			error = EBUSY;
    236 			goto out_err;
    237 		}
    238 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
    239 			genfs_rel_pages(ap->a_m, npages);
    240 
    241 			/*
    242 			 * restore the array.
    243 			 */
    244 
    245 			for (i = 0; i < npages; i++) {
    246 				pg = ap->a_m[i];
    247 
    248 				if (pg != NULL || pg != PGO_DONTCARE) {
    249 					ap->a_m[i] = NULL;
    250 				}
    251 			}
    252 		} else {
    253 			rw_exit(&gp->g_glock);
    254 		}
    255 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    256 		goto out_err;
    257 	}
    258 	mutex_exit(&uobj->vmobjlock);
    259 
    260 	/*
    261 	 * find the requested pages and make some simple checks.
    262 	 * leave space in the page array for a whole block.
    263 	 */
    264 
    265 	if (vp->v_type != VBLK) {
    266 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    267 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    268 	} else {
    269 		fs_bshift = DEV_BSHIFT;
    270 		dev_bshift = DEV_BSHIFT;
    271 	}
    272 	fs_bsize = 1 << fs_bshift;
    273 
    274 	orignpages = MIN(orignpages,
    275 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    276 	npages = orignpages;
    277 	startoffset = origoffset & ~(fs_bsize - 1);
    278 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    279 	    fs_bsize - 1) & ~(fs_bsize - 1));
    280 	endoffset = MIN(endoffset, round_page(memeof));
    281 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    282 
    283 	pgs_size = sizeof(struct vm_page *) *
    284 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    285 	if (pgs_size > sizeof(pgs_onstack)) {
    286 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    287 		if (pgs == NULL) {
    288 			pgs = pgs_onstack;
    289 			error = ENOMEM;
    290 			goto out_err;
    291 		}
    292 	} else {
    293 		/* pgs == pgs_onstack */
    294 		memset(pgs, 0, pgs_size);
    295 	}
    296 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    297 	    ridx, npages, startoffset, endoffset);
    298 
    299 	if (!has_trans) {
    300 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    301 		has_trans = true;
    302 	}
    303 
    304 	/*
    305 	 * hold g_glock to prevent a race with truncate.
    306 	 *
    307 	 * check if our idea of v_size is still valid.
    308 	 */
    309 
    310 	if (blockalloc) {
    311 		rw_enter(&gp->g_glock, RW_WRITER);
    312 	} else {
    313 		rw_enter(&gp->g_glock, RW_READER);
    314 	}
    315 	mutex_enter(&uobj->vmobjlock);
    316 	if (vp->v_size < origvsize) {
    317 		rw_exit(&gp->g_glock);
    318 		if (pgs != pgs_onstack)
    319 			kmem_free(pgs, pgs_size);
    320 		goto startover;
    321 	}
    322 
    323 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    324 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    325 		rw_exit(&gp->g_glock);
    326 		KASSERT(async != 0);
    327 		genfs_rel_pages(&pgs[ridx], orignpages);
    328 		mutex_exit(&uobj->vmobjlock);
    329 		error = EBUSY;
    330 		goto out_err;
    331 	}
    332 
    333 	/*
    334 	 * if the pages are already resident, just return them.
    335 	 */
    336 
    337 	for (i = 0; i < npages; i++) {
    338 		struct vm_page *pg1 = pgs[ridx + i];
    339 
    340 		if ((pg1->flags & PG_FAKE) ||
    341 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    342 			break;
    343 		}
    344 	}
    345 	if (i == npages) {
    346 		rw_exit(&gp->g_glock);
    347 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    348 		npages += ridx;
    349 		goto out;
    350 	}
    351 
    352 	/*
    353 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    354 	 */
    355 
    356 	if (overwrite) {
    357 		rw_exit(&gp->g_glock);
    358 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    359 
    360 		for (i = 0; i < npages; i++) {
    361 			struct vm_page *pg1 = pgs[ridx + i];
    362 
    363 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    364 		}
    365 		npages += ridx;
    366 		goto out;
    367 	}
    368 
    369 	/*
    370 	 * the page wasn't resident and we're not overwriting,
    371 	 * so we're going to have to do some i/o.
    372 	 * find any additional pages needed to cover the expanded range.
    373 	 */
    374 
    375 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    376 	if (startoffset != origoffset || npages != orignpages) {
    377 
    378 		/*
    379 		 * we need to avoid deadlocks caused by locking
    380 		 * additional pages at lower offsets than pages we
    381 		 * already have locked.  unlock them all and start over.
    382 		 */
    383 
    384 		genfs_rel_pages(&pgs[ridx], orignpages);
    385 		memset(pgs, 0, pgs_size);
    386 
    387 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    388 		    startoffset, endoffset, 0,0);
    389 		npgs = npages;
    390 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    391 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    392 			rw_exit(&gp->g_glock);
    393 			KASSERT(async != 0);
    394 			genfs_rel_pages(pgs, npages);
    395 			mutex_exit(&uobj->vmobjlock);
    396 			error = EBUSY;
    397 			goto out_err;
    398 		}
    399 	}
    400 	mutex_exit(&uobj->vmobjlock);
    401 
    402 	/*
    403 	 * read the desired page(s).
    404 	 */
    405 
    406 	totalbytes = npages << PAGE_SHIFT;
    407 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    408 	tailbytes = totalbytes - bytes;
    409 	skipbytes = 0;
    410 
    411 	kva = uvm_pagermapin(pgs, npages,
    412 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    413 
    414 	mbp = getiobuf(vp, true);
    415 	mbp->b_bufsize = totalbytes;
    416 	mbp->b_data = (void *)kva;
    417 	mbp->b_resid = mbp->b_bcount = bytes;
    418 	mbp->b_cflags = BC_BUSY;
    419 	if (async) {
    420 		mbp->b_flags = B_READ | B_ASYNC;
    421 		mbp->b_iodone = uvm_aio_biodone;
    422 	} else {
    423 		mbp->b_flags = B_READ;
    424 		mbp->b_iodone = NULL;
    425 	}
    426 	if (async)
    427 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    428 	else
    429 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    430 
    431 	/*
    432 	 * if EOF is in the middle of the range, zero the part past EOF.
    433 	 * skip over pages which are not PG_FAKE since in that case they have
    434 	 * valid data that we need to preserve.
    435 	 */
    436 
    437 	tailstart = bytes;
    438 	while (tailbytes > 0) {
    439 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    440 
    441 		KASSERT(len <= tailbytes);
    442 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    443 			memset((void *)(kva + tailstart), 0, len);
    444 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    445 			    kva, tailstart, len, 0);
    446 		}
    447 		tailstart += len;
    448 		tailbytes -= len;
    449 	}
    450 
    451 	/*
    452 	 * now loop over the pages, reading as needed.
    453 	 */
    454 
    455 	bp = NULL;
    456 	for (offset = startoffset;
    457 	    bytes > 0;
    458 	    offset += iobytes, bytes -= iobytes) {
    459 
    460 		/*
    461 		 * skip pages which don't need to be read.
    462 		 */
    463 
    464 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    465 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    466 			size_t b;
    467 
    468 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    469 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    470 				sawhole = true;
    471 			}
    472 			b = MIN(PAGE_SIZE, bytes);
    473 			offset += b;
    474 			bytes -= b;
    475 			skipbytes += b;
    476 			pidx++;
    477 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    478 			    offset, 0,0,0);
    479 			if (bytes == 0) {
    480 				goto loopdone;
    481 			}
    482 		}
    483 
    484 		/*
    485 		 * bmap the file to find out the blkno to read from and
    486 		 * how much we can read in one i/o.  if bmap returns an error,
    487 		 * skip the rest of the top-level i/o.
    488 		 */
    489 
    490 		lbn = offset >> fs_bshift;
    491 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    492 		if (error) {
    493 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    494 			    lbn, error,0,0);
    495 			skipbytes += bytes;
    496 			goto loopdone;
    497 		}
    498 
    499 		/*
    500 		 * see how many pages can be read with this i/o.
    501 		 * reduce the i/o size if necessary to avoid
    502 		 * overwriting pages with valid data.
    503 		 */
    504 
    505 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    506 		    bytes);
    507 		if (offset + iobytes > round_page(offset)) {
    508 			pcount = 1;
    509 			while (pidx + pcount < npages &&
    510 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    511 				pcount++;
    512 			}
    513 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    514 			    (offset - trunc_page(offset)));
    515 		}
    516 
    517 		/*
    518 		 * if this block isn't allocated, zero it instead of
    519 		 * reading it.  unless we are going to allocate blocks,
    520 		 * mark the pages we zeroed PG_RDONLY.
    521 		 */
    522 
    523 		if (blkno < 0) {
    524 			int holepages = (round_page(offset + iobytes) -
    525 			    trunc_page(offset)) >> PAGE_SHIFT;
    526 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    527 
    528 			sawhole = true;
    529 			memset((char *)kva + (offset - startoffset), 0,
    530 			    iobytes);
    531 			skipbytes += iobytes;
    532 
    533 			for (i = 0; i < holepages; i++) {
    534 				if (write) {
    535 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    536 				}
    537 				if (!blockalloc) {
    538 					pgs[pidx + i]->flags |= PG_RDONLY;
    539 				}
    540 			}
    541 			continue;
    542 		}
    543 
    544 		/*
    545 		 * allocate a sub-buf for this piece of the i/o
    546 		 * (or just use mbp if there's only 1 piece),
    547 		 * and start it going.
    548 		 */
    549 
    550 		if (offset == startoffset && iobytes == bytes) {
    551 			bp = mbp;
    552 		} else {
    553 			bp = getiobuf(vp, true);
    554 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    555 		}
    556 		bp->b_lblkno = 0;
    557 
    558 		/* adjust physical blkno for partial blocks */
    559 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    560 		    dev_bshift);
    561 
    562 		UVMHIST_LOG(ubchist,
    563 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    564 		    bp, offset, iobytes, bp->b_blkno);
    565 
    566 		VOP_STRATEGY(devvp, bp);
    567 	}
    568 
    569 loopdone:
    570 	nestiobuf_done(mbp, skipbytes, error);
    571 	if (async) {
    572 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    573 		rw_exit(&gp->g_glock);
    574 		error = 0;
    575 		goto out_err;
    576 	}
    577 	if (bp != NULL) {
    578 		error = biowait(mbp);
    579 	}
    580 	putiobuf(mbp);
    581 	uvm_pagermapout(kva, npages);
    582 
    583 	/*
    584 	 * if this we encountered a hole then we have to do a little more work.
    585 	 * for read faults, we marked the page PG_RDONLY so that future
    586 	 * write accesses to the page will fault again.
    587 	 * for write faults, we must make sure that the backing store for
    588 	 * the page is completely allocated while the pages are locked.
    589 	 */
    590 
    591 	if (!error && sawhole && blockalloc) {
    592 		/*
    593 		 * XXX: This assumes that we come here only via
    594 		 * the mmio path
    595 		 */
    596 		if (vp->v_mount->mnt_wapbl) {
    597 			error = WAPBL_BEGIN(vp->v_mount);
    598 		}
    599 
    600 		if (!error) {
    601 			error = GOP_ALLOC(vp, startoffset,
    602 			    npages << PAGE_SHIFT, 0, cred);
    603 			if (vp->v_mount->mnt_wapbl) {
    604 				WAPBL_END(vp->v_mount);
    605 			}
    606 		}
    607 
    608 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    609 		    startoffset, npages << PAGE_SHIFT, error,0);
    610 		if (!error) {
    611 			for (i = 0; i < npages; i++) {
    612 				if (pgs[i] == NULL) {
    613 					continue;
    614 				}
    615 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    616 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    617 				    pgs[i],0,0,0);
    618 			}
    619 		}
    620 	}
    621 	rw_exit(&gp->g_glock);
    622 	mutex_enter(&uobj->vmobjlock);
    623 
    624 	/*
    625 	 * we're almost done!  release the pages...
    626 	 * for errors, we free the pages.
    627 	 * otherwise we activate them and mark them as valid and clean.
    628 	 * also, unbusy pages that were not actually requested.
    629 	 */
    630 
    631 	if (error) {
    632 		for (i = 0; i < npages; i++) {
    633 			if (pgs[i] == NULL) {
    634 				continue;
    635 			}
    636 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    637 			    pgs[i], pgs[i]->flags, 0,0);
    638 			if (pgs[i]->flags & PG_FAKE) {
    639 				pgs[i]->flags |= PG_RELEASED;
    640 			}
    641 		}
    642 		mutex_enter(&uvm_pageqlock);
    643 		uvm_page_unbusy(pgs, npages);
    644 		mutex_exit(&uvm_pageqlock);
    645 		mutex_exit(&uobj->vmobjlock);
    646 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    647 		goto out_err;
    648 	}
    649 
    650 out:
    651 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    652 	error = 0;
    653 	mutex_enter(&uvm_pageqlock);
    654 	for (i = 0; i < npages; i++) {
    655 		pg = pgs[i];
    656 		if (pg == NULL) {
    657 			continue;
    658 		}
    659 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    660 		    pg, pg->flags, 0,0);
    661 		if (pg->flags & PG_FAKE && !overwrite) {
    662 			pg->flags &= ~(PG_FAKE);
    663 			pmap_clear_modify(pgs[i]);
    664 		}
    665 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    666 		if (i < ridx || i >= ridx + orignpages || async) {
    667 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    668 			    pg, pg->offset,0,0);
    669 			if (pg->flags & PG_WANTED) {
    670 				wakeup(pg);
    671 			}
    672 			if (pg->flags & PG_FAKE) {
    673 				KASSERT(overwrite);
    674 				uvm_pagezero(pg);
    675 			}
    676 			if (pg->flags & PG_RELEASED) {
    677 				uvm_pagefree(pg);
    678 				continue;
    679 			}
    680 			uvm_pageenqueue(pg);
    681 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    682 			UVM_PAGE_OWN(pg, NULL);
    683 		}
    684 	}
    685 	mutex_exit(&uvm_pageqlock);
    686 	mutex_exit(&uobj->vmobjlock);
    687 	if (ap->a_m != NULL) {
    688 		memcpy(ap->a_m, &pgs[ridx],
    689 		    orignpages * sizeof(struct vm_page *));
    690 	}
    691 
    692 out_err:
    693 	if (pgs != pgs_onstack)
    694 		kmem_free(pgs, pgs_size);
    695 	if (has_trans)
    696 		fstrans_done(vp->v_mount);
    697 	return (error);
    698 }
    699 
    700 /*
    701  * generic VM putpages routine.
    702  * Write the given range of pages to backing store.
    703  *
    704  * => "offhi == 0" means flush all pages at or after "offlo".
    705  * => object should be locked by caller.  we return with the
    706  *      object unlocked.
    707  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    708  *	thus, a caller might want to unlock higher level resources
    709  *	(e.g. vm_map) before calling flush.
    710  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    711  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    712  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    713  *	that new pages are inserted on the tail end of the list.   thus,
    714  *	we can make a complete pass through the object in one go by starting
    715  *	at the head and working towards the tail (new pages are put in
    716  *	front of us).
    717  * => NOTE: we are allowed to lock the page queues, so the caller
    718  *	must not be holding the page queue lock.
    719  *
    720  * note on "cleaning" object and PG_BUSY pages:
    721  *	this routine is holding the lock on the object.   the only time
    722  *	that it can run into a PG_BUSY page that it does not own is if
    723  *	some other process has started I/O on the page (e.g. either
    724  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    725  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    726  *	had a chance to modify it yet.    if the PG_BUSY page is being
    727  *	paged out then it means that someone else has already started
    728  *	cleaning the page for us (how nice!).    in this case, if we
    729  *	have syncio specified, then after we make our pass through the
    730  *	object we need to wait for the other PG_BUSY pages to clear
    731  *	off (i.e. we need to do an iosync).   also note that once a
    732  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    733  *
    734  * note on page traversal:
    735  *	we can traverse the pages in an object either by going down the
    736  *	linked list in "uobj->memq", or we can go over the address range
    737  *	by page doing hash table lookups for each address.    depending
    738  *	on how many pages are in the object it may be cheaper to do one
    739  *	or the other.   we set "by_list" to true if we are using memq.
    740  *	if the cost of a hash lookup was equal to the cost of the list
    741  *	traversal we could compare the number of pages in the start->stop
    742  *	range to the total number of pages in the object.   however, it
    743  *	seems that a hash table lookup is more expensive than the linked
    744  *	list traversal, so we multiply the number of pages in the
    745  *	range by an estimate of the relatively higher cost of the hash lookup.
    746  */
    747 
    748 int
    749 genfs_putpages(void *v)
    750 {
    751 	struct vop_putpages_args /* {
    752 		struct vnode *a_vp;
    753 		voff_t a_offlo;
    754 		voff_t a_offhi;
    755 		int a_flags;
    756 	} */ *ap = v;
    757 
    758 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    759 	    ap->a_flags, NULL);
    760 }
    761 
    762 int
    763 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    764     int origflags, struct vm_page **busypg)
    765 {
    766 	struct uvm_object *uobj = &vp->v_uobj;
    767 	kmutex_t *slock = &uobj->vmobjlock;
    768 	off_t off;
    769 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    770 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    771 	int i, error, npages, nback;
    772 	int freeflag;
    773 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    774 	bool wasclean, by_list, needs_clean, yld;
    775 	bool async = (origflags & PGO_SYNCIO) == 0;
    776 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    777 	struct lwp *l = curlwp ? curlwp : &lwp0;
    778 	struct genfs_node *gp = VTOG(vp);
    779 	int flags;
    780 	int dirtygen;
    781 	bool modified;
    782 	bool has_trans;
    783 	bool cleanall;
    784 	bool onworklst;
    785 
    786 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    787 
    788 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    789 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    790 	KASSERT(startoff < endoff || endoff == 0);
    791 
    792 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    793 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    794 
    795 	has_trans = false;
    796 
    797 retry:
    798 	modified = false;
    799 	flags = origflags;
    800 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    801 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    802 	if (uobj->uo_npages == 0) {
    803 		if (vp->v_iflag & VI_ONWORKLST) {
    804 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    805 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    806 				vn_syncer_remove_from_worklist(vp);
    807 		}
    808 		if (has_trans)
    809 			fstrans_done(vp->v_mount);
    810 		mutex_exit(slock);
    811 		return (0);
    812 	}
    813 
    814 	/*
    815 	 * the vnode has pages, set up to process the request.
    816 	 */
    817 
    818 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    819 		mutex_exit(slock);
    820 		if (pagedaemon) {
    821 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    822 			if (error)
    823 				return error;
    824 		} else
    825 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    826 		has_trans = true;
    827 		mutex_enter(slock);
    828 		goto retry;
    829 	}
    830 
    831 	error = 0;
    832 	wasclean = (vp->v_numoutput == 0);
    833 	off = startoff;
    834 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    835 		endoff = trunc_page(LLONG_MAX);
    836 	}
    837 	by_list = (uobj->uo_npages <=
    838 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    839 
    840 #if !defined(DEBUG)
    841 	/*
    842 	 * if this vnode is known not to have dirty pages,
    843 	 * don't bother to clean it out.
    844 	 */
    845 
    846 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    847 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    848 			goto skip_scan;
    849 		}
    850 		flags &= ~PGO_CLEANIT;
    851 	}
    852 #endif /* !defined(DEBUG) */
    853 
    854 	/*
    855 	 * start the loop.  when scanning by list, hold the last page
    856 	 * in the list before we start.  pages allocated after we start
    857 	 * will be added to the end of the list, so we can stop at the
    858 	 * current last page.
    859 	 */
    860 
    861 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    862 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    863 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    864 	dirtygen = gp->g_dirtygen;
    865 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    866 	if (by_list) {
    867 		curmp.uobject = uobj;
    868 		curmp.offset = (voff_t)-1;
    869 		curmp.flags = PG_BUSY;
    870 		endmp.uobject = uobj;
    871 		endmp.offset = (voff_t)-1;
    872 		endmp.flags = PG_BUSY;
    873 		pg = TAILQ_FIRST(&uobj->memq);
    874 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    875 		uvm_lwp_hold(l);
    876 	} else {
    877 		pg = uvm_pagelookup(uobj, off);
    878 	}
    879 	nextpg = NULL;
    880 	while (by_list || off < endoff) {
    881 
    882 		/*
    883 		 * if the current page is not interesting, move on to the next.
    884 		 */
    885 
    886 		KASSERT(pg == NULL || pg->uobject == uobj);
    887 		KASSERT(pg == NULL ||
    888 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    889 		    (pg->flags & PG_BUSY) != 0);
    890 		if (by_list) {
    891 			if (pg == &endmp) {
    892 				break;
    893 			}
    894 			if (pg->offset < startoff || pg->offset >= endoff ||
    895 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    896 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    897 					wasclean = false;
    898 				}
    899 				pg = TAILQ_NEXT(pg, listq.queue);
    900 				continue;
    901 			}
    902 			off = pg->offset;
    903 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    904 			if (pg != NULL) {
    905 				wasclean = false;
    906 			}
    907 			off += PAGE_SIZE;
    908 			if (off < endoff) {
    909 				pg = uvm_pagelookup(uobj, off);
    910 			}
    911 			continue;
    912 		}
    913 
    914 		/*
    915 		 * if the current page needs to be cleaned and it's busy,
    916 		 * wait for it to become unbusy.
    917 		 */
    918 
    919 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    920 		    SPCF_SHOULDYIELD) && !pagedaemon;
    921 		if (pg->flags & PG_BUSY || yld) {
    922 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    923 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    924 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    925 				error = EDEADLK;
    926 				if (busypg != NULL)
    927 					*busypg = pg;
    928 				break;
    929 			}
    930 			if (pagedaemon) {
    931 				/*
    932 				 * someone has taken the page while we
    933 				 * dropped the lock for fstrans_start.
    934 				 */
    935 				break;
    936 			}
    937 			if (by_list) {
    938 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    939 				UVMHIST_LOG(ubchist, "curmp next %p",
    940 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    941 			}
    942 			if (yld) {
    943 				mutex_exit(slock);
    944 				preempt();
    945 				mutex_enter(slock);
    946 			} else {
    947 				pg->flags |= PG_WANTED;
    948 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    949 				mutex_enter(slock);
    950 			}
    951 			if (by_list) {
    952 				UVMHIST_LOG(ubchist, "after next %p",
    953 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    954 				pg = TAILQ_NEXT(&curmp, listq.queue);
    955 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
    956 			} else {
    957 				pg = uvm_pagelookup(uobj, off);
    958 			}
    959 			continue;
    960 		}
    961 
    962 		/*
    963 		 * if we're freeing, remove all mappings of the page now.
    964 		 * if we're cleaning, check if the page is needs to be cleaned.
    965 		 */
    966 
    967 		if (flags & PGO_FREE) {
    968 			pmap_page_protect(pg, VM_PROT_NONE);
    969 		} else if (flags & PGO_CLEANIT) {
    970 
    971 			/*
    972 			 * if we still have some hope to pull this vnode off
    973 			 * from the syncer queue, write-protect the page.
    974 			 */
    975 
    976 			if (cleanall && wasclean &&
    977 			    gp->g_dirtygen == dirtygen) {
    978 
    979 				/*
    980 				 * uobj pages get wired only by uvm_fault
    981 				 * where uobj is locked.
    982 				 */
    983 
    984 				if (pg->wire_count == 0) {
    985 					pmap_page_protect(pg,
    986 					    VM_PROT_READ|VM_PROT_EXECUTE);
    987 				} else {
    988 					cleanall = false;
    989 				}
    990 			}
    991 		}
    992 
    993 		if (flags & PGO_CLEANIT) {
    994 			needs_clean = pmap_clear_modify(pg) ||
    995 			    (pg->flags & PG_CLEAN) == 0;
    996 			pg->flags |= PG_CLEAN;
    997 		} else {
    998 			needs_clean = false;
    999 		}
   1000 
   1001 		/*
   1002 		 * if we're cleaning, build a cluster.
   1003 		 * the cluster will consist of pages which are currently dirty,
   1004 		 * but they will be returned to us marked clean.
   1005 		 * if not cleaning, just operate on the one page.
   1006 		 */
   1007 
   1008 		if (needs_clean) {
   1009 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1010 			wasclean = false;
   1011 			memset(pgs, 0, sizeof(pgs));
   1012 			pg->flags |= PG_BUSY;
   1013 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1014 
   1015 			/*
   1016 			 * first look backward.
   1017 			 */
   1018 
   1019 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1020 			nback = npages;
   1021 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1022 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1023 			if (nback) {
   1024 				memmove(&pgs[0], &pgs[npages - nback],
   1025 				    nback * sizeof(pgs[0]));
   1026 				if (npages - nback < nback)
   1027 					memset(&pgs[nback], 0,
   1028 					    (npages - nback) * sizeof(pgs[0]));
   1029 				else
   1030 					memset(&pgs[npages - nback], 0,
   1031 					    nback * sizeof(pgs[0]));
   1032 			}
   1033 
   1034 			/*
   1035 			 * then plug in our page of interest.
   1036 			 */
   1037 
   1038 			pgs[nback] = pg;
   1039 
   1040 			/*
   1041 			 * then look forward to fill in the remaining space in
   1042 			 * the array of pages.
   1043 			 */
   1044 
   1045 			npages = maxpages - nback - 1;
   1046 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1047 			    &pgs[nback + 1],
   1048 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1049 			npages += nback + 1;
   1050 		} else {
   1051 			pgs[0] = pg;
   1052 			npages = 1;
   1053 			nback = 0;
   1054 		}
   1055 
   1056 		/*
   1057 		 * apply FREE or DEACTIVATE options if requested.
   1058 		 */
   1059 
   1060 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1061 			mutex_enter(&uvm_pageqlock);
   1062 		}
   1063 		for (i = 0; i < npages; i++) {
   1064 			tpg = pgs[i];
   1065 			KASSERT(tpg->uobject == uobj);
   1066 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1067 				pg = tpg;
   1068 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1069 				continue;
   1070 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1071 				uvm_pagedeactivate(tpg);
   1072 			} else if (flags & PGO_FREE) {
   1073 				pmap_page_protect(tpg, VM_PROT_NONE);
   1074 				if (tpg->flags & PG_BUSY) {
   1075 					tpg->flags |= freeflag;
   1076 					if (pagedaemon) {
   1077 						uvm_pageout_start(1);
   1078 						uvm_pagedequeue(tpg);
   1079 					}
   1080 				} else {
   1081 
   1082 					/*
   1083 					 * ``page is not busy''
   1084 					 * implies that npages is 1
   1085 					 * and needs_clean is false.
   1086 					 */
   1087 
   1088 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1089 					uvm_pagefree(tpg);
   1090 					if (pagedaemon)
   1091 						uvmexp.pdfreed++;
   1092 				}
   1093 			}
   1094 		}
   1095 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1096 			mutex_exit(&uvm_pageqlock);
   1097 		}
   1098 		if (needs_clean) {
   1099 			modified = true;
   1100 
   1101 			/*
   1102 			 * start the i/o.  if we're traversing by list,
   1103 			 * keep our place in the list with a marker page.
   1104 			 */
   1105 
   1106 			if (by_list) {
   1107 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1108 				    listq.queue);
   1109 			}
   1110 			mutex_exit(slock);
   1111 			error = GOP_WRITE(vp, pgs, npages, flags);
   1112 			mutex_enter(slock);
   1113 			if (by_list) {
   1114 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1115 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1116 			}
   1117 			if (error) {
   1118 				break;
   1119 			}
   1120 			if (by_list) {
   1121 				continue;
   1122 			}
   1123 		}
   1124 
   1125 		/*
   1126 		 * find the next page and continue if there was no error.
   1127 		 */
   1128 
   1129 		if (by_list) {
   1130 			if (nextpg) {
   1131 				pg = nextpg;
   1132 				nextpg = NULL;
   1133 			} else {
   1134 				pg = TAILQ_NEXT(pg, listq.queue);
   1135 			}
   1136 		} else {
   1137 			off += (npages - nback) << PAGE_SHIFT;
   1138 			if (off < endoff) {
   1139 				pg = uvm_pagelookup(uobj, off);
   1140 			}
   1141 		}
   1142 	}
   1143 	if (by_list) {
   1144 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1145 		uvm_lwp_rele(l);
   1146 	}
   1147 
   1148 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1149 	    (vp->v_type != VBLK ||
   1150 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1151 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1152 	}
   1153 
   1154 	/*
   1155 	 * if we're cleaning and there was nothing to clean,
   1156 	 * take us off the syncer list.  if we started any i/o
   1157 	 * and we're doing sync i/o, wait for all writes to finish.
   1158 	 */
   1159 
   1160 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1161 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1162 #if defined(DEBUG)
   1163 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1164 			if ((pg->flags & PG_CLEAN) == 0) {
   1165 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1166 			}
   1167 			if (pmap_is_modified(pg)) {
   1168 				printf("%s: %p: modified\n", __func__, pg);
   1169 			}
   1170 		}
   1171 #endif /* defined(DEBUG) */
   1172 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1173 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1174 			vn_syncer_remove_from_worklist(vp);
   1175 	}
   1176 
   1177 #if !defined(DEBUG)
   1178 skip_scan:
   1179 #endif /* !defined(DEBUG) */
   1180 
   1181 	/* Wait for output to complete. */
   1182 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1183 		while (vp->v_numoutput != 0)
   1184 			cv_wait(&vp->v_cv, slock);
   1185 	}
   1186 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1187 	mutex_exit(slock);
   1188 
   1189 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1190 		/*
   1191 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1192 		 * retrying is not a big deal because, in many cases,
   1193 		 * uobj->uo_npages is already 0 here.
   1194 		 */
   1195 		mutex_enter(slock);
   1196 		goto retry;
   1197 	}
   1198 
   1199 	if (has_trans)
   1200 		fstrans_done(vp->v_mount);
   1201 
   1202 	return (error);
   1203 }
   1204 
   1205 int
   1206 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1207 {
   1208 	off_t off;
   1209 	vaddr_t kva;
   1210 	size_t len;
   1211 	int error;
   1212 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1213 
   1214 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1215 	    vp, pgs, npages, flags);
   1216 
   1217 	off = pgs[0]->offset;
   1218 	kva = uvm_pagermapin(pgs, npages,
   1219 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1220 	len = npages << PAGE_SHIFT;
   1221 
   1222 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1223 			    uvm_aio_biodone);
   1224 
   1225 	return error;
   1226 }
   1227 
   1228 int
   1229 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1230 {
   1231 	off_t off;
   1232 	vaddr_t kva;
   1233 	size_t len;
   1234 	int error;
   1235 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1236 
   1237 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1238 	    vp, pgs, npages, flags);
   1239 
   1240 	off = pgs[0]->offset;
   1241 	kva = uvm_pagermapin(pgs, npages,
   1242 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1243 	len = npages << PAGE_SHIFT;
   1244 
   1245 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1246 			    uvm_aio_biodone);
   1247 
   1248 	return error;
   1249 }
   1250 
   1251 /*
   1252  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1253  * and mapped into kernel memory.  Here we just look up the underlying
   1254  * device block addresses and call the strategy routine.
   1255  */
   1256 
   1257 static int
   1258 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1259     enum uio_rw rw, void (*iodone)(struct buf *))
   1260 {
   1261 	int s, error, run;
   1262 	int fs_bshift, dev_bshift;
   1263 	off_t eof, offset, startoffset;
   1264 	size_t bytes, iobytes, skipbytes;
   1265 	daddr_t lbn, blkno;
   1266 	struct buf *mbp, *bp;
   1267 	struct vnode *devvp;
   1268 	bool async = (flags & PGO_SYNCIO) == 0;
   1269 	bool write = rw == UIO_WRITE;
   1270 	int brw = write ? B_WRITE : B_READ;
   1271 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1272 
   1273 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1274 	    vp, kva, len, flags);
   1275 
   1276 	KASSERT(vp->v_size <= vp->v_writesize);
   1277 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1278 	if (vp->v_type != VBLK) {
   1279 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1280 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1281 	} else {
   1282 		fs_bshift = DEV_BSHIFT;
   1283 		dev_bshift = DEV_BSHIFT;
   1284 	}
   1285 	error = 0;
   1286 	startoffset = off;
   1287 	bytes = MIN(len, eof - startoffset);
   1288 	skipbytes = 0;
   1289 	KASSERT(bytes != 0);
   1290 
   1291 	if (write) {
   1292 		mutex_enter(&vp->v_interlock);
   1293 		vp->v_numoutput += 2;
   1294 		mutex_exit(&vp->v_interlock);
   1295 	}
   1296 	mbp = getiobuf(vp, true);
   1297 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1298 	    vp, mbp, vp->v_numoutput, bytes);
   1299 	mbp->b_bufsize = len;
   1300 	mbp->b_data = (void *)kva;
   1301 	mbp->b_resid = mbp->b_bcount = bytes;
   1302 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1303 	if (async) {
   1304 		mbp->b_flags = brw | B_ASYNC;
   1305 		mbp->b_iodone = iodone;
   1306 	} else {
   1307 		mbp->b_flags = brw;
   1308 		mbp->b_iodone = NULL;
   1309 	}
   1310 	if (curlwp == uvm.pagedaemon_lwp)
   1311 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1312 	else if (async)
   1313 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1314 	else
   1315 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1316 
   1317 	bp = NULL;
   1318 	for (offset = startoffset;
   1319 	    bytes > 0;
   1320 	    offset += iobytes, bytes -= iobytes) {
   1321 		lbn = offset >> fs_bshift;
   1322 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1323 		if (error) {
   1324 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1325 			skipbytes += bytes;
   1326 			bytes = 0;
   1327 			break;
   1328 		}
   1329 
   1330 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1331 		    bytes);
   1332 		if (blkno == (daddr_t)-1) {
   1333 			if (!write) {
   1334 				memset((char *)kva + (offset - startoffset), 0,
   1335 				   iobytes);
   1336 			}
   1337 			skipbytes += iobytes;
   1338 			continue;
   1339 		}
   1340 
   1341 		/* if it's really one i/o, don't make a second buf */
   1342 		if (offset == startoffset && iobytes == bytes) {
   1343 			bp = mbp;
   1344 		} else {
   1345 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1346 			    vp, bp, vp->v_numoutput, 0);
   1347 			bp = getiobuf(vp, true);
   1348 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1349 		}
   1350 		bp->b_lblkno = 0;
   1351 
   1352 		/* adjust physical blkno for partial blocks */
   1353 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1354 		    dev_bshift);
   1355 		UVMHIST_LOG(ubchist,
   1356 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1357 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1358 
   1359 		VOP_STRATEGY(devvp, bp);
   1360 	}
   1361 	if (skipbytes) {
   1362 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1363 	}
   1364 	nestiobuf_done(mbp, skipbytes, error);
   1365 	if (async) {
   1366 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1367 		return (0);
   1368 	}
   1369 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1370 	error = biowait(mbp);
   1371 	s = splbio();
   1372 	(*iodone)(mbp);
   1373 	splx(s);
   1374 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1375 	return (error);
   1376 }
   1377 
   1378 /*
   1379  * VOP_PUTPAGES() for vnodes which never have pages.
   1380  */
   1381 
   1382 int
   1383 genfs_null_putpages(void *v)
   1384 {
   1385 	struct vop_putpages_args /* {
   1386 		struct vnode *a_vp;
   1387 		voff_t a_offlo;
   1388 		voff_t a_offhi;
   1389 		int a_flags;
   1390 	} */ *ap = v;
   1391 	struct vnode *vp = ap->a_vp;
   1392 
   1393 	KASSERT(vp->v_uobj.uo_npages == 0);
   1394 	mutex_exit(&vp->v_interlock);
   1395 	return (0);
   1396 }
   1397 
   1398 int
   1399 genfs_compat_getpages(void *v)
   1400 {
   1401 	struct vop_getpages_args /* {
   1402 		struct vnode *a_vp;
   1403 		voff_t a_offset;
   1404 		struct vm_page **a_m;
   1405 		int *a_count;
   1406 		int a_centeridx;
   1407 		vm_prot_t a_access_type;
   1408 		int a_advice;
   1409 		int a_flags;
   1410 	} */ *ap = v;
   1411 
   1412 	off_t origoffset;
   1413 	struct vnode *vp = ap->a_vp;
   1414 	struct uvm_object *uobj = &vp->v_uobj;
   1415 	struct vm_page *pg, **pgs;
   1416 	vaddr_t kva;
   1417 	int i, error, orignpages, npages;
   1418 	struct iovec iov;
   1419 	struct uio uio;
   1420 	kauth_cred_t cred = curlwp->l_cred;
   1421 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1422 
   1423 	error = 0;
   1424 	origoffset = ap->a_offset;
   1425 	orignpages = *ap->a_count;
   1426 	pgs = ap->a_m;
   1427 
   1428 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1429 		vn_syncer_add_to_worklist(vp, filedelay);
   1430 	}
   1431 	if (ap->a_flags & PGO_LOCKED) {
   1432 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1433 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1434 
   1435 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1436 	}
   1437 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1438 		mutex_exit(&uobj->vmobjlock);
   1439 		return (EINVAL);
   1440 	}
   1441 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1442 		mutex_exit(&uobj->vmobjlock);
   1443 		return 0;
   1444 	}
   1445 	npages = orignpages;
   1446 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1447 	mutex_exit(&uobj->vmobjlock);
   1448 	kva = uvm_pagermapin(pgs, npages,
   1449 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1450 	for (i = 0; i < npages; i++) {
   1451 		pg = pgs[i];
   1452 		if ((pg->flags & PG_FAKE) == 0) {
   1453 			continue;
   1454 		}
   1455 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1456 		iov.iov_len = PAGE_SIZE;
   1457 		uio.uio_iov = &iov;
   1458 		uio.uio_iovcnt = 1;
   1459 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1460 		uio.uio_rw = UIO_READ;
   1461 		uio.uio_resid = PAGE_SIZE;
   1462 		UIO_SETUP_SYSSPACE(&uio);
   1463 		/* XXX vn_lock */
   1464 		error = VOP_READ(vp, &uio, 0, cred);
   1465 		if (error) {
   1466 			break;
   1467 		}
   1468 		if (uio.uio_resid) {
   1469 			memset(iov.iov_base, 0, uio.uio_resid);
   1470 		}
   1471 	}
   1472 	uvm_pagermapout(kva, npages);
   1473 	mutex_enter(&uobj->vmobjlock);
   1474 	mutex_enter(&uvm_pageqlock);
   1475 	for (i = 0; i < npages; i++) {
   1476 		pg = pgs[i];
   1477 		if (error && (pg->flags & PG_FAKE) != 0) {
   1478 			pg->flags |= PG_RELEASED;
   1479 		} else {
   1480 			pmap_clear_modify(pg);
   1481 			uvm_pageactivate(pg);
   1482 		}
   1483 	}
   1484 	if (error) {
   1485 		uvm_page_unbusy(pgs, npages);
   1486 	}
   1487 	mutex_exit(&uvm_pageqlock);
   1488 	mutex_exit(&uobj->vmobjlock);
   1489 	return (error);
   1490 }
   1491 
   1492 int
   1493 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1494     int flags)
   1495 {
   1496 	off_t offset;
   1497 	struct iovec iov;
   1498 	struct uio uio;
   1499 	kauth_cred_t cred = curlwp->l_cred;
   1500 	struct buf *bp;
   1501 	vaddr_t kva;
   1502 	int error;
   1503 
   1504 	offset = pgs[0]->offset;
   1505 	kva = uvm_pagermapin(pgs, npages,
   1506 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1507 
   1508 	iov.iov_base = (void *)kva;
   1509 	iov.iov_len = npages << PAGE_SHIFT;
   1510 	uio.uio_iov = &iov;
   1511 	uio.uio_iovcnt = 1;
   1512 	uio.uio_offset = offset;
   1513 	uio.uio_rw = UIO_WRITE;
   1514 	uio.uio_resid = npages << PAGE_SHIFT;
   1515 	UIO_SETUP_SYSSPACE(&uio);
   1516 	/* XXX vn_lock */
   1517 	error = VOP_WRITE(vp, &uio, 0, cred);
   1518 
   1519 	mutex_enter(&vp->v_interlock);
   1520 	vp->v_numoutput++;
   1521 	mutex_exit(&vp->v_interlock);
   1522 
   1523 	bp = getiobuf(vp, true);
   1524 	bp->b_cflags = BC_BUSY | BC_AGE;
   1525 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1526 	bp->b_data = (char *)kva;
   1527 	bp->b_bcount = npages << PAGE_SHIFT;
   1528 	bp->b_bufsize = npages << PAGE_SHIFT;
   1529 	bp->b_resid = 0;
   1530 	bp->b_error = error;
   1531 	uvm_aio_aiodone(bp);
   1532 	return (error);
   1533 }
   1534 
   1535 /*
   1536  * Process a uio using direct I/O.  If we reach a part of the request
   1537  * which cannot be processed in this fashion for some reason, just return.
   1538  * The caller must handle some additional part of the request using
   1539  * buffered I/O before trying direct I/O again.
   1540  */
   1541 
   1542 void
   1543 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1544 {
   1545 	struct vmspace *vs;
   1546 	struct iovec *iov;
   1547 	vaddr_t va;
   1548 	size_t len;
   1549 	const int mask = DEV_BSIZE - 1;
   1550 	int error;
   1551 
   1552 	/*
   1553 	 * We only support direct I/O to user space for now.
   1554 	 */
   1555 
   1556 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1557 		return;
   1558 	}
   1559 
   1560 	/*
   1561 	 * If the vnode is mapped, we would need to get the getpages lock
   1562 	 * to stabilize the bmap, but then we would get into trouble whil e
   1563 	 * locking the pages if the pages belong to this same vnode (or a
   1564 	 * multi-vnode cascade to the same effect).  Just fall back to
   1565 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1566 	 */
   1567 
   1568 	if (vp->v_vflag & VV_MAPPED) {
   1569 		return;
   1570 	}
   1571 
   1572 	/*
   1573 	 * Do as much of the uio as possible with direct I/O.
   1574 	 */
   1575 
   1576 	vs = uio->uio_vmspace;
   1577 	while (uio->uio_resid) {
   1578 		iov = uio->uio_iov;
   1579 		if (iov->iov_len == 0) {
   1580 			uio->uio_iov++;
   1581 			uio->uio_iovcnt--;
   1582 			continue;
   1583 		}
   1584 		va = (vaddr_t)iov->iov_base;
   1585 		len = MIN(iov->iov_len, genfs_maxdio);
   1586 		len &= ~mask;
   1587 
   1588 		/*
   1589 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1590 		 * the current EOF, then fall back to buffered I/O.
   1591 		 */
   1592 
   1593 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1594 			return;
   1595 		}
   1596 
   1597 		/*
   1598 		 * Check alignment.  The file offset must be at least
   1599 		 * sector-aligned.  The exact constraint on memory alignment
   1600 		 * is very hardware-dependent, but requiring sector-aligned
   1601 		 * addresses there too is safe.
   1602 		 */
   1603 
   1604 		if (uio->uio_offset & mask || va & mask) {
   1605 			return;
   1606 		}
   1607 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1608 					  uio->uio_rw);
   1609 		if (error) {
   1610 			break;
   1611 		}
   1612 		iov->iov_base = (char *)iov->iov_base + len;
   1613 		iov->iov_len -= len;
   1614 		uio->uio_offset += len;
   1615 		uio->uio_resid -= len;
   1616 	}
   1617 }
   1618 
   1619 /*
   1620  * Iodone routine for direct I/O.  We don't do much here since the request is
   1621  * always synchronous, so the caller will do most of the work after biowait().
   1622  */
   1623 
   1624 static void
   1625 genfs_dio_iodone(struct buf *bp)
   1626 {
   1627 
   1628 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1629 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1630 		mutex_enter(bp->b_objlock);
   1631 		vwakeup(bp);
   1632 		mutex_exit(bp->b_objlock);
   1633 	}
   1634 	putiobuf(bp);
   1635 }
   1636 
   1637 /*
   1638  * Process one chunk of a direct I/O request.
   1639  */
   1640 
   1641 static int
   1642 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1643     off_t off, enum uio_rw rw)
   1644 {
   1645 	struct vm_map *map;
   1646 	struct pmap *upm, *kpm;
   1647 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1648 	off_t spoff, epoff;
   1649 	vaddr_t kva, puva;
   1650 	paddr_t pa;
   1651 	vm_prot_t prot;
   1652 	int error, rv, poff, koff;
   1653 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
   1654 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1655 
   1656 	/*
   1657 	 * For writes, verify that this range of the file already has fully
   1658 	 * allocated backing store.  If there are any holes, just punt and
   1659 	 * make the caller take the buffered write path.
   1660 	 */
   1661 
   1662 	if (rw == UIO_WRITE) {
   1663 		daddr_t lbn, elbn, blkno;
   1664 		int bsize, bshift, run;
   1665 
   1666 		bshift = vp->v_mount->mnt_fs_bshift;
   1667 		bsize = 1 << bshift;
   1668 		lbn = off >> bshift;
   1669 		elbn = (off + len + bsize - 1) >> bshift;
   1670 		while (lbn < elbn) {
   1671 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1672 			if (error) {
   1673 				return error;
   1674 			}
   1675 			if (blkno == (daddr_t)-1) {
   1676 				return ENOSPC;
   1677 			}
   1678 			lbn += 1 + run;
   1679 		}
   1680 	}
   1681 
   1682 	/*
   1683 	 * Flush any cached pages for parts of the file that we're about to
   1684 	 * access.  If we're writing, invalidate pages as well.
   1685 	 */
   1686 
   1687 	spoff = trunc_page(off);
   1688 	epoff = round_page(off + len);
   1689 	mutex_enter(&vp->v_interlock);
   1690 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1691 	if (error) {
   1692 		return error;
   1693 	}
   1694 
   1695 	/*
   1696 	 * Wire the user pages and remap them into kernel memory.
   1697 	 */
   1698 
   1699 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1700 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1701 	if (error) {
   1702 		return error;
   1703 	}
   1704 
   1705 	map = &vs->vm_map;
   1706 	upm = vm_map_pmap(map);
   1707 	kpm = vm_map_pmap(kernel_map);
   1708 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1709 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1710 	puva = trunc_page(uva);
   1711 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1712 		rv = pmap_extract(upm, puva + poff, &pa);
   1713 		KASSERT(rv);
   1714 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1715 	}
   1716 	pmap_update(kpm);
   1717 
   1718 	/*
   1719 	 * Do the I/O.
   1720 	 */
   1721 
   1722 	koff = uva - trunc_page(uva);
   1723 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1724 			    genfs_dio_iodone);
   1725 
   1726 	/*
   1727 	 * Tear down the kernel mapping.
   1728 	 */
   1729 
   1730 	pmap_remove(kpm, kva, kva + klen);
   1731 	pmap_update(kpm);
   1732 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1733 
   1734 	/*
   1735 	 * Unwire the user pages.
   1736 	 */
   1737 
   1738 	uvm_vsunlock(vs, (void *)uva, len);
   1739 	return error;
   1740 }
   1741 
   1742