Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.13.4.1
      1 /*	$NetBSD: genfs_io.c,v 1.13.4.1 2008/11/02 23:08:56 snj Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.13.4.1 2008/11/02 23:08:56 snj Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 
     51 #include <miscfs/genfs/genfs.h>
     52 #include <miscfs/genfs/genfs_node.h>
     53 #include <miscfs/specfs/specdev.h>
     54 
     55 #include <uvm/uvm.h>
     56 #include <uvm/uvm_pager.h>
     57 
     58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     59     off_t, enum uio_rw);
     60 static void genfs_dio_iodone(struct buf *);
     61 
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static inline void genfs_rel_pages(struct vm_page **, int);
     65 
     66 int genfs_maxdio = MAXPHYS;
     67 
     68 static inline void
     69 genfs_rel_pages(struct vm_page **pgs, int npages)
     70 {
     71 	int i;
     72 
     73 	for (i = 0; i < npages; i++) {
     74 		struct vm_page *pg = pgs[i];
     75 
     76 		if (pg == NULL || pg == PGO_DONTCARE)
     77 			continue;
     78 		if (pg->flags & PG_FAKE) {
     79 			pg->flags |= PG_RELEASED;
     80 		}
     81 	}
     82 	mutex_enter(&uvm_pageqlock);
     83 	uvm_page_unbusy(pgs, npages);
     84 	mutex_exit(&uvm_pageqlock);
     85 }
     86 
     87 /*
     88  * generic VM getpages routine.
     89  * Return PG_BUSY pages for the given range,
     90  * reading from backing store if necessary.
     91  */
     92 
     93 int
     94 genfs_getpages(void *v)
     95 {
     96 	struct vop_getpages_args /* {
     97 		struct vnode *a_vp;
     98 		voff_t a_offset;
     99 		struct vm_page **a_m;
    100 		int *a_count;
    101 		int a_centeridx;
    102 		vm_prot_t a_access_type;
    103 		int a_advice;
    104 		int a_flags;
    105 	} */ *ap = v;
    106 
    107 	off_t newsize, diskeof, memeof;
    108 	off_t offset, origoffset, startoffset, endoffset;
    109 	daddr_t lbn, blkno;
    110 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    111 	int fs_bshift, fs_bsize, dev_bshift;
    112 	const int flags = ap->a_flags;
    113 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    114 	vaddr_t kva;
    115 	struct buf *bp, *mbp;
    116 	struct vnode *vp = ap->a_vp;
    117 	struct vnode *devvp;
    118 	struct genfs_node *gp = VTOG(vp);
    119 	struct uvm_object *uobj = &vp->v_uobj;
    120 	struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
    121 	int pgs_size;
    122 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    123 	const bool async = (flags & PGO_SYNCIO) == 0;
    124 	const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    125 	bool sawhole = false;
    126 	bool has_trans = false;
    127 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    128 	const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    129 	voff_t origvsize;
    130 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    131 
    132 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    133 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    134 
    135 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    136 	    vp->v_type == VLNK || vp->v_type == VBLK);
    137 
    138 	pgs = NULL;
    139 	pgs_size = 0;
    140 
    141 startover:
    142 	error = 0;
    143 	origvsize = vp->v_size;
    144 	origoffset = ap->a_offset;
    145 	orignpages = *ap->a_count;
    146 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    147 	if (flags & PGO_PASTEOF) {
    148 #if defined(DIAGNOSTIC)
    149 		off_t writeeof;
    150 #endif /* defined(DIAGNOSTIC) */
    151 
    152 		newsize = MAX(origvsize,
    153 		    origoffset + (orignpages << PAGE_SHIFT));
    154 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    155 #if defined(DIAGNOSTIC)
    156 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    157 		if (newsize > round_page(writeeof)) {
    158 			panic("%s: past eof", __func__);
    159 		}
    160 #endif /* defined(DIAGNOSTIC) */
    161 	} else {
    162 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    163 	}
    164 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    165 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    166 	KASSERT(orignpages > 0);
    167 
    168 	/*
    169 	 * Bounds-check the request.
    170 	 */
    171 
    172 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    173 		if ((flags & PGO_LOCKED) == 0) {
    174 			mutex_exit(&uobj->vmobjlock);
    175 		}
    176 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    177 		    origoffset, *ap->a_count, memeof,0);
    178 		error = EINVAL;
    179 		goto out_err;
    180 	}
    181 
    182 	/* uobj is locked */
    183 
    184 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    185 	    (vp->v_type != VBLK ||
    186 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    187 		int updflags = 0;
    188 
    189 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    190 			updflags = GOP_UPDATE_ACCESSED;
    191 		}
    192 		if (write) {
    193 			updflags |= GOP_UPDATE_MODIFIED;
    194 		}
    195 		if (updflags != 0) {
    196 			GOP_MARKUPDATE(vp, updflags);
    197 		}
    198 	}
    199 
    200 	if (write) {
    201 		gp->g_dirtygen++;
    202 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    203 			vn_syncer_add_to_worklist(vp, filedelay);
    204 		}
    205 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    206 			vp->v_iflag |= VI_WRMAPDIRTY;
    207 		}
    208 	}
    209 
    210 	/*
    211 	 * For PGO_LOCKED requests, just return whatever's in memory.
    212 	 */
    213 
    214 	if (flags & PGO_LOCKED) {
    215 		int nfound;
    216 
    217 		npages = *ap->a_count;
    218 #if defined(DEBUG)
    219 		for (i = 0; i < npages; i++) {
    220 			pg = ap->a_m[i];
    221 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    222 		}
    223 #endif /* defined(DEBUG) */
    224 		nfound = uvn_findpages(uobj, origoffset, &npages,
    225 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    226 		KASSERT(npages == *ap->a_count);
    227 		if (nfound == 0) {
    228 			error = EBUSY;
    229 			goto out_err;
    230 		}
    231 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
    232 			genfs_rel_pages(ap->a_m, npages);
    233 
    234 			/*
    235 			 * restore the array.
    236 			 */
    237 
    238 			for (i = 0; i < npages; i++) {
    239 				pg = ap->a_m[i];
    240 
    241 				if (pg != NULL || pg != PGO_DONTCARE) {
    242 					ap->a_m[i] = NULL;
    243 				}
    244 			}
    245 		} else {
    246 			rw_exit(&gp->g_glock);
    247 		}
    248 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    249 		goto out_err;
    250 	}
    251 	mutex_exit(&uobj->vmobjlock);
    252 
    253 	/*
    254 	 * find the requested pages and make some simple checks.
    255 	 * leave space in the page array for a whole block.
    256 	 */
    257 
    258 	if (vp->v_type != VBLK) {
    259 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    260 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    261 	} else {
    262 		fs_bshift = DEV_BSHIFT;
    263 		dev_bshift = DEV_BSHIFT;
    264 	}
    265 	fs_bsize = 1 << fs_bshift;
    266 
    267 	orignpages = MIN(orignpages,
    268 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    269 	npages = orignpages;
    270 	startoffset = origoffset & ~(fs_bsize - 1);
    271 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    272 	    fs_bsize - 1) & ~(fs_bsize - 1));
    273 	endoffset = MIN(endoffset, round_page(memeof));
    274 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    275 
    276 	pgs_size = sizeof(struct vm_page *) *
    277 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    278 	if (pgs_size > sizeof(pgs_onstack)) {
    279 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    280 		if (pgs == NULL) {
    281 			pgs = pgs_onstack;
    282 			error = ENOMEM;
    283 			goto out_err;
    284 		}
    285 	} else {
    286 		pgs = pgs_onstack;
    287 		(void)memset(pgs, 0, pgs_size);
    288 	}
    289 
    290 
    291 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    292 	    ridx, npages, startoffset, endoffset);
    293 
    294 	if (!has_trans) {
    295 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    296 		has_trans = true;
    297 	}
    298 
    299 	/*
    300 	 * hold g_glock to prevent a race with truncate.
    301 	 *
    302 	 * check if our idea of v_size is still valid.
    303 	 */
    304 
    305 	if (blockalloc) {
    306 		rw_enter(&gp->g_glock, RW_WRITER);
    307 	} else {
    308 		rw_enter(&gp->g_glock, RW_READER);
    309 	}
    310 	mutex_enter(&uobj->vmobjlock);
    311 	if (vp->v_size < origvsize) {
    312 		rw_exit(&gp->g_glock);
    313 		if (pgs != pgs_onstack)
    314 			kmem_free(pgs, pgs_size);
    315 		goto startover;
    316 	}
    317 
    318 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    319 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    320 		rw_exit(&gp->g_glock);
    321 		KASSERT(async != 0);
    322 		genfs_rel_pages(&pgs[ridx], orignpages);
    323 		mutex_exit(&uobj->vmobjlock);
    324 		error = EBUSY;
    325 		goto out_err;
    326 	}
    327 
    328 	/*
    329 	 * if the pages are already resident, just return them.
    330 	 */
    331 
    332 	for (i = 0; i < npages; i++) {
    333 		struct vm_page *pg1 = pgs[ridx + i];
    334 
    335 		if ((pg1->flags & PG_FAKE) ||
    336 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    337 			break;
    338 		}
    339 	}
    340 	if (i == npages) {
    341 		rw_exit(&gp->g_glock);
    342 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    343 		npages += ridx;
    344 		goto out;
    345 	}
    346 
    347 	/*
    348 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    349 	 */
    350 
    351 	if (overwrite) {
    352 		rw_exit(&gp->g_glock);
    353 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    354 
    355 		for (i = 0; i < npages; i++) {
    356 			struct vm_page *pg1 = pgs[ridx + i];
    357 
    358 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    359 		}
    360 		npages += ridx;
    361 		goto out;
    362 	}
    363 
    364 	/*
    365 	 * the page wasn't resident and we're not overwriting,
    366 	 * so we're going to have to do some i/o.
    367 	 * find any additional pages needed to cover the expanded range.
    368 	 */
    369 
    370 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    371 	if (startoffset != origoffset || npages != orignpages) {
    372 
    373 		/*
    374 		 * we need to avoid deadlocks caused by locking
    375 		 * additional pages at lower offsets than pages we
    376 		 * already have locked.  unlock them all and start over.
    377 		 */
    378 
    379 		genfs_rel_pages(&pgs[ridx], orignpages);
    380 		memset(pgs, 0, pgs_size);
    381 
    382 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    383 		    startoffset, endoffset, 0,0);
    384 		npgs = npages;
    385 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    386 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    387 			rw_exit(&gp->g_glock);
    388 			KASSERT(async != 0);
    389 			genfs_rel_pages(pgs, npages);
    390 			mutex_exit(&uobj->vmobjlock);
    391 			error = EBUSY;
    392 			goto out_err;
    393 		}
    394 	}
    395 	mutex_exit(&uobj->vmobjlock);
    396 
    397 	/*
    398 	 * read the desired page(s).
    399 	 */
    400 
    401 	totalbytes = npages << PAGE_SHIFT;
    402 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    403 	tailbytes = totalbytes - bytes;
    404 	skipbytes = 0;
    405 
    406 	kva = uvm_pagermapin(pgs, npages,
    407 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    408 
    409 	mbp = getiobuf(vp, true);
    410 	mbp->b_bufsize = totalbytes;
    411 	mbp->b_data = (void *)kva;
    412 	mbp->b_resid = mbp->b_bcount = bytes;
    413 	mbp->b_cflags = BC_BUSY;
    414 	if (async) {
    415 		mbp->b_flags = B_READ | B_ASYNC;
    416 		mbp->b_iodone = uvm_aio_biodone;
    417 	} else {
    418 		mbp->b_flags = B_READ;
    419 		mbp->b_iodone = NULL;
    420 	}
    421 	if (async)
    422 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    423 	else
    424 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    425 
    426 	/*
    427 	 * if EOF is in the middle of the range, zero the part past EOF.
    428 	 * skip over pages which are not PG_FAKE since in that case they have
    429 	 * valid data that we need to preserve.
    430 	 */
    431 
    432 	tailstart = bytes;
    433 	while (tailbytes > 0) {
    434 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    435 
    436 		KASSERT(len <= tailbytes);
    437 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    438 			memset((void *)(kva + tailstart), 0, len);
    439 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    440 			    kva, tailstart, len, 0);
    441 		}
    442 		tailstart += len;
    443 		tailbytes -= len;
    444 	}
    445 
    446 	/*
    447 	 * now loop over the pages, reading as needed.
    448 	 */
    449 
    450 	bp = NULL;
    451 	for (offset = startoffset;
    452 	    bytes > 0;
    453 	    offset += iobytes, bytes -= iobytes) {
    454 
    455 		/*
    456 		 * skip pages which don't need to be read.
    457 		 */
    458 
    459 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    460 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    461 			size_t b;
    462 
    463 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    464 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    465 				sawhole = true;
    466 			}
    467 			b = MIN(PAGE_SIZE, bytes);
    468 			offset += b;
    469 			bytes -= b;
    470 			skipbytes += b;
    471 			pidx++;
    472 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    473 			    offset, 0,0,0);
    474 			if (bytes == 0) {
    475 				goto loopdone;
    476 			}
    477 		}
    478 
    479 		/*
    480 		 * bmap the file to find out the blkno to read from and
    481 		 * how much we can read in one i/o.  if bmap returns an error,
    482 		 * skip the rest of the top-level i/o.
    483 		 */
    484 
    485 		lbn = offset >> fs_bshift;
    486 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    487 		if (error) {
    488 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    489 			    lbn, error,0,0);
    490 			skipbytes += bytes;
    491 			goto loopdone;
    492 		}
    493 
    494 		/*
    495 		 * see how many pages can be read with this i/o.
    496 		 * reduce the i/o size if necessary to avoid
    497 		 * overwriting pages with valid data.
    498 		 */
    499 
    500 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    501 		    bytes);
    502 		if (offset + iobytes > round_page(offset)) {
    503 			pcount = 1;
    504 			while (pidx + pcount < npages &&
    505 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    506 				pcount++;
    507 			}
    508 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    509 			    (offset - trunc_page(offset)));
    510 		}
    511 
    512 		/*
    513 		 * if this block isn't allocated, zero it instead of
    514 		 * reading it.  unless we are going to allocate blocks,
    515 		 * mark the pages we zeroed PG_RDONLY.
    516 		 */
    517 
    518 		if (blkno < 0) {
    519 			int holepages = (round_page(offset + iobytes) -
    520 			    trunc_page(offset)) >> PAGE_SHIFT;
    521 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    522 
    523 			sawhole = true;
    524 			memset((char *)kva + (offset - startoffset), 0,
    525 			    iobytes);
    526 			skipbytes += iobytes;
    527 
    528 			for (i = 0; i < holepages; i++) {
    529 				if (write) {
    530 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    531 				}
    532 				if (!blockalloc) {
    533 					pgs[pidx + i]->flags |= PG_RDONLY;
    534 				}
    535 			}
    536 			continue;
    537 		}
    538 
    539 		/*
    540 		 * allocate a sub-buf for this piece of the i/o
    541 		 * (or just use mbp if there's only 1 piece),
    542 		 * and start it going.
    543 		 */
    544 
    545 		if (offset == startoffset && iobytes == bytes) {
    546 			bp = mbp;
    547 		} else {
    548 			bp = getiobuf(vp, true);
    549 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    550 		}
    551 		bp->b_lblkno = 0;
    552 
    553 		/* adjust physical blkno for partial blocks */
    554 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    555 		    dev_bshift);
    556 
    557 		UVMHIST_LOG(ubchist,
    558 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    559 		    bp, offset, iobytes, bp->b_blkno);
    560 
    561 		VOP_STRATEGY(devvp, bp);
    562 	}
    563 
    564 loopdone:
    565 	nestiobuf_done(mbp, skipbytes, error);
    566 	if (async) {
    567 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    568 		rw_exit(&gp->g_glock);
    569 		error = 0;
    570 		goto out_err;
    571 	}
    572 	if (bp != NULL) {
    573 		error = biowait(mbp);
    574 	}
    575 	putiobuf(mbp);
    576 	uvm_pagermapout(kva, npages);
    577 
    578 	/*
    579 	 * if this we encountered a hole then we have to do a little more work.
    580 	 * for read faults, we marked the page PG_RDONLY so that future
    581 	 * write accesses to the page will fault again.
    582 	 * for write faults, we must make sure that the backing store for
    583 	 * the page is completely allocated while the pages are locked.
    584 	 */
    585 
    586 	if (!error && sawhole && blockalloc) {
    587 		/*
    588 		 * XXX: This assumes that we come here only via
    589 		 * the mmio path
    590 		 */
    591 		if (vp->v_mount->mnt_wapbl) {
    592 			error = WAPBL_BEGIN(vp->v_mount);
    593 		}
    594 
    595 		if (!error) {
    596 			error = GOP_ALLOC(vp, startoffset,
    597 			    npages << PAGE_SHIFT, 0, cred);
    598 			if (vp->v_mount->mnt_wapbl) {
    599 				WAPBL_END(vp->v_mount);
    600 			}
    601 		}
    602 
    603 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    604 		    startoffset, npages << PAGE_SHIFT, error,0);
    605 		if (!error) {
    606 			for (i = 0; i < npages; i++) {
    607 				if (pgs[i] == NULL) {
    608 					continue;
    609 				}
    610 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    611 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    612 				    pgs[i],0,0,0);
    613 			}
    614 		}
    615 	}
    616 	rw_exit(&gp->g_glock);
    617 	mutex_enter(&uobj->vmobjlock);
    618 
    619 	/*
    620 	 * we're almost done!  release the pages...
    621 	 * for errors, we free the pages.
    622 	 * otherwise we activate them and mark them as valid and clean.
    623 	 * also, unbusy pages that were not actually requested.
    624 	 */
    625 
    626 	if (error) {
    627 		for (i = 0; i < npages; i++) {
    628 			if (pgs[i] == NULL) {
    629 				continue;
    630 			}
    631 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    632 			    pgs[i], pgs[i]->flags, 0,0);
    633 			if (pgs[i]->flags & PG_FAKE) {
    634 				pgs[i]->flags |= PG_RELEASED;
    635 			}
    636 		}
    637 		mutex_enter(&uvm_pageqlock);
    638 		uvm_page_unbusy(pgs, npages);
    639 		mutex_exit(&uvm_pageqlock);
    640 		mutex_exit(&uobj->vmobjlock);
    641 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    642 		goto out_err;
    643 	}
    644 
    645 out:
    646 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    647 	error = 0;
    648 	mutex_enter(&uvm_pageqlock);
    649 	for (i = 0; i < npages; i++) {
    650 		pg = pgs[i];
    651 		if (pg == NULL) {
    652 			continue;
    653 		}
    654 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    655 		    pg, pg->flags, 0,0);
    656 		if (pg->flags & PG_FAKE && !overwrite) {
    657 			pg->flags &= ~(PG_FAKE);
    658 			pmap_clear_modify(pgs[i]);
    659 		}
    660 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    661 		if (i < ridx || i >= ridx + orignpages || async) {
    662 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    663 			    pg, pg->offset,0,0);
    664 			if (pg->flags & PG_WANTED) {
    665 				wakeup(pg);
    666 			}
    667 			if (pg->flags & PG_FAKE) {
    668 				KASSERT(overwrite);
    669 				uvm_pagezero(pg);
    670 			}
    671 			if (pg->flags & PG_RELEASED) {
    672 				uvm_pagefree(pg);
    673 				continue;
    674 			}
    675 			uvm_pageenqueue(pg);
    676 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    677 			UVM_PAGE_OWN(pg, NULL);
    678 		}
    679 	}
    680 	mutex_exit(&uvm_pageqlock);
    681 	mutex_exit(&uobj->vmobjlock);
    682 	if (ap->a_m != NULL) {
    683 		memcpy(ap->a_m, &pgs[ridx],
    684 		    orignpages * sizeof(struct vm_page *));
    685 	}
    686 
    687 out_err:
    688 	if (pgs != NULL && pgs != pgs_onstack)
    689 		kmem_free(pgs, pgs_size);
    690 	if (has_trans)
    691 		fstrans_done(vp->v_mount);
    692 	return (error);
    693 }
    694 
    695 /*
    696  * generic VM putpages routine.
    697  * Write the given range of pages to backing store.
    698  *
    699  * => "offhi == 0" means flush all pages at or after "offlo".
    700  * => object should be locked by caller.  we return with the
    701  *      object unlocked.
    702  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    703  *	thus, a caller might want to unlock higher level resources
    704  *	(e.g. vm_map) before calling flush.
    705  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    706  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    707  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    708  *	that new pages are inserted on the tail end of the list.   thus,
    709  *	we can make a complete pass through the object in one go by starting
    710  *	at the head and working towards the tail (new pages are put in
    711  *	front of us).
    712  * => NOTE: we are allowed to lock the page queues, so the caller
    713  *	must not be holding the page queue lock.
    714  *
    715  * note on "cleaning" object and PG_BUSY pages:
    716  *	this routine is holding the lock on the object.   the only time
    717  *	that it can run into a PG_BUSY page that it does not own is if
    718  *	some other process has started I/O on the page (e.g. either
    719  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    720  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    721  *	had a chance to modify it yet.    if the PG_BUSY page is being
    722  *	paged out then it means that someone else has already started
    723  *	cleaning the page for us (how nice!).    in this case, if we
    724  *	have syncio specified, then after we make our pass through the
    725  *	object we need to wait for the other PG_BUSY pages to clear
    726  *	off (i.e. we need to do an iosync).   also note that once a
    727  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    728  *
    729  * note on page traversal:
    730  *	we can traverse the pages in an object either by going down the
    731  *	linked list in "uobj->memq", or we can go over the address range
    732  *	by page doing hash table lookups for each address.    depending
    733  *	on how many pages are in the object it may be cheaper to do one
    734  *	or the other.   we set "by_list" to true if we are using memq.
    735  *	if the cost of a hash lookup was equal to the cost of the list
    736  *	traversal we could compare the number of pages in the start->stop
    737  *	range to the total number of pages in the object.   however, it
    738  *	seems that a hash table lookup is more expensive than the linked
    739  *	list traversal, so we multiply the number of pages in the
    740  *	range by an estimate of the relatively higher cost of the hash lookup.
    741  */
    742 
    743 int
    744 genfs_putpages(void *v)
    745 {
    746 	struct vop_putpages_args /* {
    747 		struct vnode *a_vp;
    748 		voff_t a_offlo;
    749 		voff_t a_offhi;
    750 		int a_flags;
    751 	} */ *ap = v;
    752 
    753 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    754 	    ap->a_flags, NULL);
    755 }
    756 
    757 int
    758 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    759     int origflags, struct vm_page **busypg)
    760 {
    761 	struct uvm_object *uobj = &vp->v_uobj;
    762 	kmutex_t *slock = &uobj->vmobjlock;
    763 	off_t off;
    764 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    765 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    766 	int i, error, npages, nback;
    767 	int freeflag;
    768 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    769 	bool wasclean, by_list, needs_clean, yld;
    770 	bool async = (origflags & PGO_SYNCIO) == 0;
    771 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    772 	struct lwp *l = curlwp ? curlwp : &lwp0;
    773 	struct genfs_node *gp = VTOG(vp);
    774 	int flags;
    775 	int dirtygen;
    776 	bool modified;
    777 	bool need_wapbl;
    778 	bool has_trans;
    779 	bool cleanall;
    780 	bool onworklst;
    781 
    782 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    783 
    784 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    785 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    786 	KASSERT(startoff < endoff || endoff == 0);
    787 
    788 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    789 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    790 
    791 	has_trans = false;
    792 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    793 	    (origflags & PGO_JOURNALLOCKED) == 0);
    794 
    795 retry:
    796 	modified = false;
    797 	flags = origflags;
    798 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    799 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    800 	if (uobj->uo_npages == 0) {
    801 		if (vp->v_iflag & VI_ONWORKLST) {
    802 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    803 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    804 				vn_syncer_remove_from_worklist(vp);
    805 		}
    806 		if (has_trans) {
    807 			if (need_wapbl)
    808 				WAPBL_END(vp->v_mount);
    809 			fstrans_done(vp->v_mount);
    810 		}
    811 		mutex_exit(slock);
    812 		return (0);
    813 	}
    814 
    815 	/*
    816 	 * the vnode has pages, set up to process the request.
    817 	 */
    818 
    819 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    820 		mutex_exit(slock);
    821 		if (pagedaemon) {
    822 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    823 			if (error)
    824 				return error;
    825 		} else
    826 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    827 		if (need_wapbl) {
    828 			error = WAPBL_BEGIN(vp->v_mount);
    829 			if (error) {
    830 				fstrans_done(vp->v_mount);
    831 				return error;
    832 			}
    833 		}
    834 		has_trans = true;
    835 		mutex_enter(slock);
    836 		goto retry;
    837 	}
    838 
    839 	error = 0;
    840 	wasclean = (vp->v_numoutput == 0);
    841 	off = startoff;
    842 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    843 		endoff = trunc_page(LLONG_MAX);
    844 	}
    845 	by_list = (uobj->uo_npages <=
    846 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    847 
    848 #if !defined(DEBUG)
    849 	/*
    850 	 * if this vnode is known not to have dirty pages,
    851 	 * don't bother to clean it out.
    852 	 */
    853 
    854 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    855 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    856 			goto skip_scan;
    857 		}
    858 		flags &= ~PGO_CLEANIT;
    859 	}
    860 #endif /* !defined(DEBUG) */
    861 
    862 	/*
    863 	 * start the loop.  when scanning by list, hold the last page
    864 	 * in the list before we start.  pages allocated after we start
    865 	 * will be added to the end of the list, so we can stop at the
    866 	 * current last page.
    867 	 */
    868 
    869 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    870 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    871 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    872 	dirtygen = gp->g_dirtygen;
    873 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    874 	if (by_list) {
    875 		curmp.uobject = uobj;
    876 		curmp.offset = (voff_t)-1;
    877 		curmp.flags = PG_BUSY;
    878 		endmp.uobject = uobj;
    879 		endmp.offset = (voff_t)-1;
    880 		endmp.flags = PG_BUSY;
    881 		pg = TAILQ_FIRST(&uobj->memq);
    882 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    883 		uvm_lwp_hold(l);
    884 	} else {
    885 		pg = uvm_pagelookup(uobj, off);
    886 	}
    887 	nextpg = NULL;
    888 	while (by_list || off < endoff) {
    889 
    890 		/*
    891 		 * if the current page is not interesting, move on to the next.
    892 		 */
    893 
    894 		KASSERT(pg == NULL || pg->uobject == uobj);
    895 		KASSERT(pg == NULL ||
    896 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    897 		    (pg->flags & PG_BUSY) != 0);
    898 		if (by_list) {
    899 			if (pg == &endmp) {
    900 				break;
    901 			}
    902 			if (pg->offset < startoff || pg->offset >= endoff ||
    903 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    904 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    905 					wasclean = false;
    906 				}
    907 				pg = TAILQ_NEXT(pg, listq.queue);
    908 				continue;
    909 			}
    910 			off = pg->offset;
    911 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    912 			if (pg != NULL) {
    913 				wasclean = false;
    914 			}
    915 			off += PAGE_SIZE;
    916 			if (off < endoff) {
    917 				pg = uvm_pagelookup(uobj, off);
    918 			}
    919 			continue;
    920 		}
    921 
    922 		/*
    923 		 * if the current page needs to be cleaned and it's busy,
    924 		 * wait for it to become unbusy.
    925 		 */
    926 
    927 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    928 		    SPCF_SHOULDYIELD) && !pagedaemon;
    929 		if (pg->flags & PG_BUSY || yld) {
    930 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    931 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    932 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    933 				error = EDEADLK;
    934 				if (busypg != NULL)
    935 					*busypg = pg;
    936 				break;
    937 			}
    938 			if (pagedaemon) {
    939 				/*
    940 				 * someone has taken the page while we
    941 				 * dropped the lock for fstrans_start.
    942 				 */
    943 				break;
    944 			}
    945 			if (by_list) {
    946 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    947 				UVMHIST_LOG(ubchist, "curmp next %p",
    948 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    949 			}
    950 			if (yld) {
    951 				mutex_exit(slock);
    952 				preempt();
    953 				mutex_enter(slock);
    954 			} else {
    955 				pg->flags |= PG_WANTED;
    956 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    957 				mutex_enter(slock);
    958 			}
    959 			if (by_list) {
    960 				UVMHIST_LOG(ubchist, "after next %p",
    961 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    962 				pg = TAILQ_NEXT(&curmp, listq.queue);
    963 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
    964 			} else {
    965 				pg = uvm_pagelookup(uobj, off);
    966 			}
    967 			continue;
    968 		}
    969 
    970 		/*
    971 		 * if we're freeing, remove all mappings of the page now.
    972 		 * if we're cleaning, check if the page is needs to be cleaned.
    973 		 */
    974 
    975 		if (flags & PGO_FREE) {
    976 			pmap_page_protect(pg, VM_PROT_NONE);
    977 		} else if (flags & PGO_CLEANIT) {
    978 
    979 			/*
    980 			 * if we still have some hope to pull this vnode off
    981 			 * from the syncer queue, write-protect the page.
    982 			 */
    983 
    984 			if (cleanall && wasclean &&
    985 			    gp->g_dirtygen == dirtygen) {
    986 
    987 				/*
    988 				 * uobj pages get wired only by uvm_fault
    989 				 * where uobj is locked.
    990 				 */
    991 
    992 				if (pg->wire_count == 0) {
    993 					pmap_page_protect(pg,
    994 					    VM_PROT_READ|VM_PROT_EXECUTE);
    995 				} else {
    996 					cleanall = false;
    997 				}
    998 			}
    999 		}
   1000 
   1001 		if (flags & PGO_CLEANIT) {
   1002 			needs_clean = pmap_clear_modify(pg) ||
   1003 			    (pg->flags & PG_CLEAN) == 0;
   1004 			pg->flags |= PG_CLEAN;
   1005 		} else {
   1006 			needs_clean = false;
   1007 		}
   1008 
   1009 		/*
   1010 		 * if we're cleaning, build a cluster.
   1011 		 * the cluster will consist of pages which are currently dirty,
   1012 		 * but they will be returned to us marked clean.
   1013 		 * if not cleaning, just operate on the one page.
   1014 		 */
   1015 
   1016 		if (needs_clean) {
   1017 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1018 			wasclean = false;
   1019 			memset(pgs, 0, sizeof(pgs));
   1020 			pg->flags |= PG_BUSY;
   1021 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1022 
   1023 			/*
   1024 			 * first look backward.
   1025 			 */
   1026 
   1027 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1028 			nback = npages;
   1029 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1030 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1031 			if (nback) {
   1032 				memmove(&pgs[0], &pgs[npages - nback],
   1033 				    nback * sizeof(pgs[0]));
   1034 				if (npages - nback < nback)
   1035 					memset(&pgs[nback], 0,
   1036 					    (npages - nback) * sizeof(pgs[0]));
   1037 				else
   1038 					memset(&pgs[npages - nback], 0,
   1039 					    nback * sizeof(pgs[0]));
   1040 			}
   1041 
   1042 			/*
   1043 			 * then plug in our page of interest.
   1044 			 */
   1045 
   1046 			pgs[nback] = pg;
   1047 
   1048 			/*
   1049 			 * then look forward to fill in the remaining space in
   1050 			 * the array of pages.
   1051 			 */
   1052 
   1053 			npages = maxpages - nback - 1;
   1054 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1055 			    &pgs[nback + 1],
   1056 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1057 			npages += nback + 1;
   1058 		} else {
   1059 			pgs[0] = pg;
   1060 			npages = 1;
   1061 			nback = 0;
   1062 		}
   1063 
   1064 		/*
   1065 		 * apply FREE or DEACTIVATE options if requested.
   1066 		 */
   1067 
   1068 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1069 			mutex_enter(&uvm_pageqlock);
   1070 		}
   1071 		for (i = 0; i < npages; i++) {
   1072 			tpg = pgs[i];
   1073 			KASSERT(tpg->uobject == uobj);
   1074 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1075 				pg = tpg;
   1076 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1077 				continue;
   1078 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1079 				uvm_pagedeactivate(tpg);
   1080 			} else if (flags & PGO_FREE) {
   1081 				pmap_page_protect(tpg, VM_PROT_NONE);
   1082 				if (tpg->flags & PG_BUSY) {
   1083 					tpg->flags |= freeflag;
   1084 					if (pagedaemon) {
   1085 						uvm_pageout_start(1);
   1086 						uvm_pagedequeue(tpg);
   1087 					}
   1088 				} else {
   1089 
   1090 					/*
   1091 					 * ``page is not busy''
   1092 					 * implies that npages is 1
   1093 					 * and needs_clean is false.
   1094 					 */
   1095 
   1096 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1097 					uvm_pagefree(tpg);
   1098 					if (pagedaemon)
   1099 						uvmexp.pdfreed++;
   1100 				}
   1101 			}
   1102 		}
   1103 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1104 			mutex_exit(&uvm_pageqlock);
   1105 		}
   1106 		if (needs_clean) {
   1107 			modified = true;
   1108 
   1109 			/*
   1110 			 * start the i/o.  if we're traversing by list,
   1111 			 * keep our place in the list with a marker page.
   1112 			 */
   1113 
   1114 			if (by_list) {
   1115 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1116 				    listq.queue);
   1117 			}
   1118 			mutex_exit(slock);
   1119 			error = GOP_WRITE(vp, pgs, npages, flags);
   1120 			mutex_enter(slock);
   1121 			if (by_list) {
   1122 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1123 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1124 			}
   1125 			if (error) {
   1126 				break;
   1127 			}
   1128 			if (by_list) {
   1129 				continue;
   1130 			}
   1131 		}
   1132 
   1133 		/*
   1134 		 * find the next page and continue if there was no error.
   1135 		 */
   1136 
   1137 		if (by_list) {
   1138 			if (nextpg) {
   1139 				pg = nextpg;
   1140 				nextpg = NULL;
   1141 			} else {
   1142 				pg = TAILQ_NEXT(pg, listq.queue);
   1143 			}
   1144 		} else {
   1145 			off += (npages - nback) << PAGE_SHIFT;
   1146 			if (off < endoff) {
   1147 				pg = uvm_pagelookup(uobj, off);
   1148 			}
   1149 		}
   1150 	}
   1151 	if (by_list) {
   1152 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1153 		uvm_lwp_rele(l);
   1154 	}
   1155 
   1156 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1157 	    (vp->v_type != VBLK ||
   1158 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1159 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1160 	}
   1161 
   1162 	/*
   1163 	 * if we're cleaning and there was nothing to clean,
   1164 	 * take us off the syncer list.  if we started any i/o
   1165 	 * and we're doing sync i/o, wait for all writes to finish.
   1166 	 */
   1167 
   1168 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1169 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1170 #if defined(DEBUG)
   1171 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1172 			if ((pg->flags & PG_CLEAN) == 0) {
   1173 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1174 			}
   1175 			if (pmap_is_modified(pg)) {
   1176 				printf("%s: %p: modified\n", __func__, pg);
   1177 			}
   1178 		}
   1179 #endif /* defined(DEBUG) */
   1180 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1181 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1182 			vn_syncer_remove_from_worklist(vp);
   1183 	}
   1184 
   1185 #if !defined(DEBUG)
   1186 skip_scan:
   1187 #endif /* !defined(DEBUG) */
   1188 
   1189 	/* Wait for output to complete. */
   1190 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1191 		while (vp->v_numoutput != 0)
   1192 			cv_wait(&vp->v_cv, slock);
   1193 	}
   1194 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1195 	mutex_exit(slock);
   1196 
   1197 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1198 		/*
   1199 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1200 		 * retrying is not a big deal because, in many cases,
   1201 		 * uobj->uo_npages is already 0 here.
   1202 		 */
   1203 		mutex_enter(slock);
   1204 		goto retry;
   1205 	}
   1206 
   1207 	if (has_trans) {
   1208 		if (need_wapbl)
   1209 			WAPBL_END(vp->v_mount);
   1210 		fstrans_done(vp->v_mount);
   1211 	}
   1212 
   1213 	return (error);
   1214 }
   1215 
   1216 int
   1217 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1218 {
   1219 	off_t off;
   1220 	vaddr_t kva;
   1221 	size_t len;
   1222 	int error;
   1223 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1224 
   1225 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1226 	    vp, pgs, npages, flags);
   1227 
   1228 	off = pgs[0]->offset;
   1229 	kva = uvm_pagermapin(pgs, npages,
   1230 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1231 	len = npages << PAGE_SHIFT;
   1232 
   1233 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1234 			    uvm_aio_biodone);
   1235 
   1236 	return error;
   1237 }
   1238 
   1239 int
   1240 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1241 {
   1242 	off_t off;
   1243 	vaddr_t kva;
   1244 	size_t len;
   1245 	int error;
   1246 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1247 
   1248 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1249 	    vp, pgs, npages, flags);
   1250 
   1251 	off = pgs[0]->offset;
   1252 	kva = uvm_pagermapin(pgs, npages,
   1253 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1254 	len = npages << PAGE_SHIFT;
   1255 
   1256 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1257 			    uvm_aio_biodone);
   1258 
   1259 	return error;
   1260 }
   1261 
   1262 /*
   1263  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1264  * and mapped into kernel memory.  Here we just look up the underlying
   1265  * device block addresses and call the strategy routine.
   1266  */
   1267 
   1268 static int
   1269 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1270     enum uio_rw rw, void (*iodone)(struct buf *))
   1271 {
   1272 	int s, error, run;
   1273 	int fs_bshift, dev_bshift;
   1274 	off_t eof, offset, startoffset;
   1275 	size_t bytes, iobytes, skipbytes;
   1276 	daddr_t lbn, blkno;
   1277 	struct buf *mbp, *bp;
   1278 	struct vnode *devvp;
   1279 	bool async = (flags & PGO_SYNCIO) == 0;
   1280 	bool write = rw == UIO_WRITE;
   1281 	int brw = write ? B_WRITE : B_READ;
   1282 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1283 
   1284 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1285 	    vp, kva, len, flags);
   1286 
   1287 	KASSERT(vp->v_size <= vp->v_writesize);
   1288 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1289 	if (vp->v_type != VBLK) {
   1290 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1291 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1292 	} else {
   1293 		fs_bshift = DEV_BSHIFT;
   1294 		dev_bshift = DEV_BSHIFT;
   1295 	}
   1296 	error = 0;
   1297 	startoffset = off;
   1298 	bytes = MIN(len, eof - startoffset);
   1299 	skipbytes = 0;
   1300 	KASSERT(bytes != 0);
   1301 
   1302 	if (write) {
   1303 		mutex_enter(&vp->v_interlock);
   1304 		vp->v_numoutput += 2;
   1305 		mutex_exit(&vp->v_interlock);
   1306 	}
   1307 	mbp = getiobuf(vp, true);
   1308 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1309 	    vp, mbp, vp->v_numoutput, bytes);
   1310 	mbp->b_bufsize = len;
   1311 	mbp->b_data = (void *)kva;
   1312 	mbp->b_resid = mbp->b_bcount = bytes;
   1313 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1314 	if (async) {
   1315 		mbp->b_flags = brw | B_ASYNC;
   1316 		mbp->b_iodone = iodone;
   1317 	} else {
   1318 		mbp->b_flags = brw;
   1319 		mbp->b_iodone = NULL;
   1320 	}
   1321 	if (curlwp == uvm.pagedaemon_lwp)
   1322 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1323 	else if (async)
   1324 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1325 	else
   1326 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1327 
   1328 	bp = NULL;
   1329 	for (offset = startoffset;
   1330 	    bytes > 0;
   1331 	    offset += iobytes, bytes -= iobytes) {
   1332 		lbn = offset >> fs_bshift;
   1333 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1334 		if (error) {
   1335 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1336 			skipbytes += bytes;
   1337 			bytes = 0;
   1338 			break;
   1339 		}
   1340 
   1341 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1342 		    bytes);
   1343 		if (blkno == (daddr_t)-1) {
   1344 			if (!write) {
   1345 				memset((char *)kva + (offset - startoffset), 0,
   1346 				   iobytes);
   1347 			}
   1348 			skipbytes += iobytes;
   1349 			continue;
   1350 		}
   1351 
   1352 		/* if it's really one i/o, don't make a second buf */
   1353 		if (offset == startoffset && iobytes == bytes) {
   1354 			bp = mbp;
   1355 		} else {
   1356 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1357 			    vp, bp, vp->v_numoutput, 0);
   1358 			bp = getiobuf(vp, true);
   1359 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1360 		}
   1361 		bp->b_lblkno = 0;
   1362 
   1363 		/* adjust physical blkno for partial blocks */
   1364 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1365 		    dev_bshift);
   1366 		UVMHIST_LOG(ubchist,
   1367 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1368 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1369 
   1370 		VOP_STRATEGY(devvp, bp);
   1371 	}
   1372 	if (skipbytes) {
   1373 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1374 	}
   1375 	nestiobuf_done(mbp, skipbytes, error);
   1376 	if (async) {
   1377 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1378 		return (0);
   1379 	}
   1380 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1381 	error = biowait(mbp);
   1382 	s = splbio();
   1383 	(*iodone)(mbp);
   1384 	splx(s);
   1385 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1386 	return (error);
   1387 }
   1388 
   1389 /*
   1390  * VOP_PUTPAGES() for vnodes which never have pages.
   1391  */
   1392 
   1393 int
   1394 genfs_null_putpages(void *v)
   1395 {
   1396 	struct vop_putpages_args /* {
   1397 		struct vnode *a_vp;
   1398 		voff_t a_offlo;
   1399 		voff_t a_offhi;
   1400 		int a_flags;
   1401 	} */ *ap = v;
   1402 	struct vnode *vp = ap->a_vp;
   1403 
   1404 	KASSERT(vp->v_uobj.uo_npages == 0);
   1405 	mutex_exit(&vp->v_interlock);
   1406 	return (0);
   1407 }
   1408 
   1409 int
   1410 genfs_compat_getpages(void *v)
   1411 {
   1412 	struct vop_getpages_args /* {
   1413 		struct vnode *a_vp;
   1414 		voff_t a_offset;
   1415 		struct vm_page **a_m;
   1416 		int *a_count;
   1417 		int a_centeridx;
   1418 		vm_prot_t a_access_type;
   1419 		int a_advice;
   1420 		int a_flags;
   1421 	} */ *ap = v;
   1422 
   1423 	off_t origoffset;
   1424 	struct vnode *vp = ap->a_vp;
   1425 	struct uvm_object *uobj = &vp->v_uobj;
   1426 	struct vm_page *pg, **pgs;
   1427 	vaddr_t kva;
   1428 	int i, error, orignpages, npages;
   1429 	struct iovec iov;
   1430 	struct uio uio;
   1431 	kauth_cred_t cred = curlwp->l_cred;
   1432 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1433 
   1434 	error = 0;
   1435 	origoffset = ap->a_offset;
   1436 	orignpages = *ap->a_count;
   1437 	pgs = ap->a_m;
   1438 
   1439 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1440 		vn_syncer_add_to_worklist(vp, filedelay);
   1441 	}
   1442 	if (ap->a_flags & PGO_LOCKED) {
   1443 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1444 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1445 
   1446 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1447 	}
   1448 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1449 		mutex_exit(&uobj->vmobjlock);
   1450 		return (EINVAL);
   1451 	}
   1452 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1453 		mutex_exit(&uobj->vmobjlock);
   1454 		return 0;
   1455 	}
   1456 	npages = orignpages;
   1457 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1458 	mutex_exit(&uobj->vmobjlock);
   1459 	kva = uvm_pagermapin(pgs, npages,
   1460 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1461 	for (i = 0; i < npages; i++) {
   1462 		pg = pgs[i];
   1463 		if ((pg->flags & PG_FAKE) == 0) {
   1464 			continue;
   1465 		}
   1466 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1467 		iov.iov_len = PAGE_SIZE;
   1468 		uio.uio_iov = &iov;
   1469 		uio.uio_iovcnt = 1;
   1470 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1471 		uio.uio_rw = UIO_READ;
   1472 		uio.uio_resid = PAGE_SIZE;
   1473 		UIO_SETUP_SYSSPACE(&uio);
   1474 		/* XXX vn_lock */
   1475 		error = VOP_READ(vp, &uio, 0, cred);
   1476 		if (error) {
   1477 			break;
   1478 		}
   1479 		if (uio.uio_resid) {
   1480 			memset(iov.iov_base, 0, uio.uio_resid);
   1481 		}
   1482 	}
   1483 	uvm_pagermapout(kva, npages);
   1484 	mutex_enter(&uobj->vmobjlock);
   1485 	mutex_enter(&uvm_pageqlock);
   1486 	for (i = 0; i < npages; i++) {
   1487 		pg = pgs[i];
   1488 		if (error && (pg->flags & PG_FAKE) != 0) {
   1489 			pg->flags |= PG_RELEASED;
   1490 		} else {
   1491 			pmap_clear_modify(pg);
   1492 			uvm_pageactivate(pg);
   1493 		}
   1494 	}
   1495 	if (error) {
   1496 		uvm_page_unbusy(pgs, npages);
   1497 	}
   1498 	mutex_exit(&uvm_pageqlock);
   1499 	mutex_exit(&uobj->vmobjlock);
   1500 	return (error);
   1501 }
   1502 
   1503 int
   1504 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1505     int flags)
   1506 {
   1507 	off_t offset;
   1508 	struct iovec iov;
   1509 	struct uio uio;
   1510 	kauth_cred_t cred = curlwp->l_cred;
   1511 	struct buf *bp;
   1512 	vaddr_t kva;
   1513 	int error;
   1514 
   1515 	offset = pgs[0]->offset;
   1516 	kva = uvm_pagermapin(pgs, npages,
   1517 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1518 
   1519 	iov.iov_base = (void *)kva;
   1520 	iov.iov_len = npages << PAGE_SHIFT;
   1521 	uio.uio_iov = &iov;
   1522 	uio.uio_iovcnt = 1;
   1523 	uio.uio_offset = offset;
   1524 	uio.uio_rw = UIO_WRITE;
   1525 	uio.uio_resid = npages << PAGE_SHIFT;
   1526 	UIO_SETUP_SYSSPACE(&uio);
   1527 	/* XXX vn_lock */
   1528 	error = VOP_WRITE(vp, &uio, 0, cred);
   1529 
   1530 	mutex_enter(&vp->v_interlock);
   1531 	vp->v_numoutput++;
   1532 	mutex_exit(&vp->v_interlock);
   1533 
   1534 	bp = getiobuf(vp, true);
   1535 	bp->b_cflags = BC_BUSY | BC_AGE;
   1536 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1537 	bp->b_data = (char *)kva;
   1538 	bp->b_bcount = npages << PAGE_SHIFT;
   1539 	bp->b_bufsize = npages << PAGE_SHIFT;
   1540 	bp->b_resid = 0;
   1541 	bp->b_error = error;
   1542 	uvm_aio_aiodone(bp);
   1543 	return (error);
   1544 }
   1545 
   1546 /*
   1547  * Process a uio using direct I/O.  If we reach a part of the request
   1548  * which cannot be processed in this fashion for some reason, just return.
   1549  * The caller must handle some additional part of the request using
   1550  * buffered I/O before trying direct I/O again.
   1551  */
   1552 
   1553 void
   1554 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1555 {
   1556 	struct vmspace *vs;
   1557 	struct iovec *iov;
   1558 	vaddr_t va;
   1559 	size_t len;
   1560 	const int mask = DEV_BSIZE - 1;
   1561 	int error;
   1562 
   1563 	/*
   1564 	 * We only support direct I/O to user space for now.
   1565 	 */
   1566 
   1567 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1568 		return;
   1569 	}
   1570 
   1571 	/*
   1572 	 * If the vnode is mapped, we would need to get the getpages lock
   1573 	 * to stabilize the bmap, but then we would get into trouble whil e
   1574 	 * locking the pages if the pages belong to this same vnode (or a
   1575 	 * multi-vnode cascade to the same effect).  Just fall back to
   1576 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1577 	 */
   1578 
   1579 	if (vp->v_vflag & VV_MAPPED) {
   1580 		return;
   1581 	}
   1582 
   1583 	if ((ioflag & IO_JOURNALLOCKED) == 0) {
   1584 		error = WAPBL_BEGIN(vp->v_mount);
   1585 		if (error)
   1586 			return;
   1587 	}
   1588 
   1589 	/*
   1590 	 * Do as much of the uio as possible with direct I/O.
   1591 	 */
   1592 
   1593 	vs = uio->uio_vmspace;
   1594 	while (uio->uio_resid) {
   1595 		iov = uio->uio_iov;
   1596 		if (iov->iov_len == 0) {
   1597 			uio->uio_iov++;
   1598 			uio->uio_iovcnt--;
   1599 			continue;
   1600 		}
   1601 		va = (vaddr_t)iov->iov_base;
   1602 		len = MIN(iov->iov_len, genfs_maxdio);
   1603 		len &= ~mask;
   1604 
   1605 		/*
   1606 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1607 		 * the current EOF, then fall back to buffered I/O.
   1608 		 */
   1609 
   1610 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1611 			break;
   1612 		}
   1613 
   1614 		/*
   1615 		 * Check alignment.  The file offset must be at least
   1616 		 * sector-aligned.  The exact constraint on memory alignment
   1617 		 * is very hardware-dependent, but requiring sector-aligned
   1618 		 * addresses there too is safe.
   1619 		 */
   1620 
   1621 		if (uio->uio_offset & mask || va & mask) {
   1622 			break;
   1623 		}
   1624 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1625 					  uio->uio_rw);
   1626 		if (error) {
   1627 			break;
   1628 		}
   1629 		iov->iov_base = (char *)iov->iov_base + len;
   1630 		iov->iov_len -= len;
   1631 		uio->uio_offset += len;
   1632 		uio->uio_resid -= len;
   1633 	}
   1634 
   1635 	if ((ioflag & IO_JOURNALLOCKED) == 0)
   1636 		WAPBL_END(vp->v_mount);
   1637 }
   1638 
   1639 /*
   1640  * Iodone routine for direct I/O.  We don't do much here since the request is
   1641  * always synchronous, so the caller will do most of the work after biowait().
   1642  */
   1643 
   1644 static void
   1645 genfs_dio_iodone(struct buf *bp)
   1646 {
   1647 
   1648 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1649 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1650 		mutex_enter(bp->b_objlock);
   1651 		vwakeup(bp);
   1652 		mutex_exit(bp->b_objlock);
   1653 	}
   1654 	putiobuf(bp);
   1655 }
   1656 
   1657 /*
   1658  * Process one chunk of a direct I/O request.
   1659  */
   1660 
   1661 static int
   1662 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1663     off_t off, enum uio_rw rw)
   1664 {
   1665 	struct vm_map *map;
   1666 	struct pmap *upm, *kpm;
   1667 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1668 	off_t spoff, epoff;
   1669 	vaddr_t kva, puva;
   1670 	paddr_t pa;
   1671 	vm_prot_t prot;
   1672 	int error, rv, poff, koff;
   1673 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1674 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1675 
   1676 	/*
   1677 	 * For writes, verify that this range of the file already has fully
   1678 	 * allocated backing store.  If there are any holes, just punt and
   1679 	 * make the caller take the buffered write path.
   1680 	 */
   1681 
   1682 	if (rw == UIO_WRITE) {
   1683 		daddr_t lbn, elbn, blkno;
   1684 		int bsize, bshift, run;
   1685 
   1686 		bshift = vp->v_mount->mnt_fs_bshift;
   1687 		bsize = 1 << bshift;
   1688 		lbn = off >> bshift;
   1689 		elbn = (off + len + bsize - 1) >> bshift;
   1690 		while (lbn < elbn) {
   1691 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1692 			if (error) {
   1693 				return error;
   1694 			}
   1695 			if (blkno == (daddr_t)-1) {
   1696 				return ENOSPC;
   1697 			}
   1698 			lbn += 1 + run;
   1699 		}
   1700 	}
   1701 
   1702 	/*
   1703 	 * Flush any cached pages for parts of the file that we're about to
   1704 	 * access.  If we're writing, invalidate pages as well.
   1705 	 */
   1706 
   1707 	spoff = trunc_page(off);
   1708 	epoff = round_page(off + len);
   1709 	mutex_enter(&vp->v_interlock);
   1710 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1711 	if (error) {
   1712 		return error;
   1713 	}
   1714 
   1715 	/*
   1716 	 * Wire the user pages and remap them into kernel memory.
   1717 	 */
   1718 
   1719 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1720 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1721 	if (error) {
   1722 		return error;
   1723 	}
   1724 
   1725 	map = &vs->vm_map;
   1726 	upm = vm_map_pmap(map);
   1727 	kpm = vm_map_pmap(kernel_map);
   1728 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1729 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1730 	puva = trunc_page(uva);
   1731 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1732 		rv = pmap_extract(upm, puva + poff, &pa);
   1733 		KASSERT(rv);
   1734 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1735 	}
   1736 	pmap_update(kpm);
   1737 
   1738 	/*
   1739 	 * Do the I/O.
   1740 	 */
   1741 
   1742 	koff = uva - trunc_page(uva);
   1743 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1744 			    genfs_dio_iodone);
   1745 
   1746 	/*
   1747 	 * Tear down the kernel mapping.
   1748 	 */
   1749 
   1750 	pmap_remove(kpm, kva, kva + klen);
   1751 	pmap_update(kpm);
   1752 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1753 
   1754 	/*
   1755 	 * Unwire the user pages.
   1756 	 */
   1757 
   1758 	uvm_vsunlock(vs, (void *)uva, len);
   1759 	return error;
   1760 }
   1761 
   1762