Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.13.4.2.2.2
      1 /*	$NetBSD: genfs_io.c,v 1.13.4.2.2.2 2012/04/21 15:54:03 riz Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.13.4.2.2.2 2012/04/21 15:54:03 riz Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 
     51 #include <miscfs/genfs/genfs.h>
     52 #include <miscfs/genfs/genfs_node.h>
     53 #include <miscfs/specfs/specdev.h>
     54 
     55 #include <uvm/uvm.h>
     56 #include <uvm/uvm_pager.h>
     57 
     58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     59     off_t, enum uio_rw);
     60 static void genfs_dio_iodone(struct buf *);
     61 
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static inline void genfs_rel_pages(struct vm_page **, int);
     65 
     66 int genfs_maxdio = MAXPHYS;
     67 
     68 static inline void
     69 genfs_rel_pages(struct vm_page **pgs, int npages)
     70 {
     71 	int i;
     72 
     73 	for (i = 0; i < npages; i++) {
     74 		struct vm_page *pg = pgs[i];
     75 
     76 		if (pg == NULL || pg == PGO_DONTCARE)
     77 			continue;
     78 		if (pg->flags & PG_FAKE) {
     79 			pg->flags |= PG_RELEASED;
     80 		}
     81 	}
     82 	mutex_enter(&uvm_pageqlock);
     83 	uvm_page_unbusy(pgs, npages);
     84 	mutex_exit(&uvm_pageqlock);
     85 }
     86 
     87 /*
     88  * generic VM getpages routine.
     89  * Return PG_BUSY pages for the given range,
     90  * reading from backing store if necessary.
     91  */
     92 
     93 int
     94 genfs_getpages(void *v)
     95 {
     96 	struct vop_getpages_args /* {
     97 		struct vnode *a_vp;
     98 		voff_t a_offset;
     99 		struct vm_page **a_m;
    100 		int *a_count;
    101 		int a_centeridx;
    102 		vm_prot_t a_access_type;
    103 		int a_advice;
    104 		int a_flags;
    105 	} */ *ap = v;
    106 
    107 	off_t newsize, diskeof, memeof;
    108 	off_t offset, origoffset, startoffset, endoffset;
    109 	daddr_t lbn, blkno;
    110 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    111 	int fs_bshift, fs_bsize, dev_bshift;
    112 	const int flags = ap->a_flags;
    113 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    114 	vaddr_t kva;
    115 	struct buf *bp, *mbp;
    116 	struct vnode *vp = ap->a_vp;
    117 	struct vnode *devvp;
    118 	struct genfs_node *gp = VTOG(vp);
    119 	struct uvm_object *uobj = &vp->v_uobj;
    120 	struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
    121 	int pgs_size;
    122 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    123 	const bool async = (flags & PGO_SYNCIO) == 0;
    124 	const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    125 	bool sawhole = false;
    126 	bool has_trans = false;
    127 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    128 	const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    129 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    130 	voff_t origvsize;
    131 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    132 
    133 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    134 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    135 
    136 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    137 	    vp->v_type == VLNK || vp->v_type == VBLK);
    138 
    139 	pgs = NULL;
    140 	pgs_size = 0;
    141 
    142 startover:
    143 	error = 0;
    144 	origvsize = vp->v_size;
    145 	origoffset = ap->a_offset;
    146 	orignpages = *ap->a_count;
    147 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    148 	if (flags & PGO_PASTEOF) {
    149 #if defined(DIAGNOSTIC)
    150 		off_t writeeof;
    151 #endif /* defined(DIAGNOSTIC) */
    152 
    153 		newsize = MAX(origvsize,
    154 		    origoffset + (orignpages << PAGE_SHIFT));
    155 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    156 #if defined(DIAGNOSTIC)
    157 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    158 		if (newsize > round_page(writeeof)) {
    159 			panic("%s: past eof", __func__);
    160 		}
    161 #endif /* defined(DIAGNOSTIC) */
    162 	} else {
    163 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    164 	}
    165 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    166 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    167 	KASSERT(orignpages > 0);
    168 
    169 	/*
    170 	 * Bounds-check the request.
    171 	 */
    172 
    173 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    174 		if ((flags & PGO_LOCKED) == 0) {
    175 			mutex_exit(&uobj->vmobjlock);
    176 		}
    177 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    178 		    origoffset, *ap->a_count, memeof,0);
    179 		error = EINVAL;
    180 		goto out_err;
    181 	}
    182 
    183 	/* uobj is locked */
    184 
    185 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    186 	    (vp->v_type != VBLK ||
    187 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    188 		int updflags = 0;
    189 
    190 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    191 			updflags = GOP_UPDATE_ACCESSED;
    192 		}
    193 		if (write) {
    194 			updflags |= GOP_UPDATE_MODIFIED;
    195 		}
    196 		if (updflags != 0) {
    197 			GOP_MARKUPDATE(vp, updflags);
    198 		}
    199 	}
    200 
    201 	if (write) {
    202 		gp->g_dirtygen++;
    203 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    204 			vn_syncer_add_to_worklist(vp, filedelay);
    205 		}
    206 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    207 			vp->v_iflag |= VI_WRMAPDIRTY;
    208 		}
    209 	}
    210 
    211 	/*
    212 	 * For PGO_LOCKED requests, just return whatever's in memory.
    213 	 */
    214 
    215 	if (flags & PGO_LOCKED) {
    216 		int nfound;
    217 
    218 		KASSERT(!glocked);
    219 		npages = *ap->a_count;
    220 #if defined(DEBUG)
    221 		for (i = 0; i < npages; i++) {
    222 			pg = ap->a_m[i];
    223 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    224 		}
    225 #endif /* defined(DEBUG) */
    226 		nfound = uvn_findpages(uobj, origoffset, &npages,
    227 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    228 		KASSERT(npages == *ap->a_count);
    229 		if (nfound == 0) {
    230 			error = EBUSY;
    231 			goto out_err;
    232 		}
    233 		if (!genfs_node_rdtrylock(vp)) {
    234 			genfs_rel_pages(ap->a_m, npages);
    235 
    236 			/*
    237 			 * restore the array.
    238 			 */
    239 
    240 			for (i = 0; i < npages; i++) {
    241 				pg = ap->a_m[i];
    242 
    243 				if (pg != NULL || pg != PGO_DONTCARE) {
    244 					ap->a_m[i] = NULL;
    245 				}
    246 			}
    247 		} else {
    248 			genfs_node_unlock(vp);
    249 		}
    250 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    251 		goto out_err;
    252 	}
    253 	mutex_exit(&uobj->vmobjlock);
    254 
    255 	/*
    256 	 * find the requested pages and make some simple checks.
    257 	 * leave space in the page array for a whole block.
    258 	 */
    259 
    260 	if (vp->v_type != VBLK) {
    261 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    262 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    263 	} else {
    264 		fs_bshift = DEV_BSHIFT;
    265 		dev_bshift = DEV_BSHIFT;
    266 	}
    267 	fs_bsize = 1 << fs_bshift;
    268 
    269 	orignpages = MIN(orignpages,
    270 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    271 	npages = orignpages;
    272 	startoffset = origoffset & ~(fs_bsize - 1);
    273 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    274 	    fs_bsize - 1) & ~(fs_bsize - 1));
    275 	endoffset = MIN(endoffset, round_page(memeof));
    276 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    277 
    278 	pgs_size = sizeof(struct vm_page *) *
    279 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    280 	if (pgs_size > sizeof(pgs_onstack)) {
    281 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    282 		if (pgs == NULL) {
    283 			pgs = pgs_onstack;
    284 			error = ENOMEM;
    285 			goto out_err;
    286 		}
    287 	} else {
    288 		pgs = pgs_onstack;
    289 		(void)memset(pgs, 0, pgs_size);
    290 	}
    291 
    292 
    293 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    294 	    ridx, npages, startoffset, endoffset);
    295 
    296 	if (!has_trans) {
    297 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    298 		has_trans = true;
    299 	}
    300 
    301 	/*
    302 	 * hold g_glock to prevent a race with truncate.
    303 	 *
    304 	 * check if our idea of v_size is still valid.
    305 	 */
    306 
    307 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    308 	if (!glocked) {
    309 		if (blockalloc) {
    310 			genfs_node_wrlock(vp);
    311 		} else {
    312 			genfs_node_rdlock(vp);
    313 		}
    314 	}
    315 	mutex_enter(&uobj->vmobjlock);
    316 	if (vp->v_size < origvsize) {
    317 		if (!glocked) {
    318 			genfs_node_unlock(vp);
    319 		}
    320 		if (pgs != pgs_onstack)
    321 			kmem_free(pgs, pgs_size);
    322 		goto startover;
    323 	}
    324 
    325 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    326 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    327 		if (!glocked) {
    328 			genfs_node_unlock(vp);
    329 		}
    330 		KASSERT(async != 0);
    331 		genfs_rel_pages(&pgs[ridx], orignpages);
    332 		mutex_exit(&uobj->vmobjlock);
    333 		error = EBUSY;
    334 		goto out_err;
    335 	}
    336 
    337 	/*
    338 	 * if the pages are already resident, just return them.
    339 	 */
    340 
    341 	for (i = 0; i < npages; i++) {
    342 		struct vm_page *pg1 = pgs[ridx + i];
    343 
    344 		if ((pg1->flags & PG_FAKE) ||
    345 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    346 			break;
    347 		}
    348 	}
    349 	if (i == npages) {
    350 		if (!glocked) {
    351 			genfs_node_unlock(vp);
    352 		}
    353 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    354 		npages += ridx;
    355 		goto out;
    356 	}
    357 
    358 	/*
    359 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    360 	 */
    361 
    362 	if (overwrite) {
    363 		if (!glocked) {
    364 			genfs_node_unlock(vp);
    365 		}
    366 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    367 
    368 		for (i = 0; i < npages; i++) {
    369 			struct vm_page *pg1 = pgs[ridx + i];
    370 
    371 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    372 		}
    373 		npages += ridx;
    374 		goto out;
    375 	}
    376 
    377 	/*
    378 	 * the page wasn't resident and we're not overwriting,
    379 	 * so we're going to have to do some i/o.
    380 	 * find any additional pages needed to cover the expanded range.
    381 	 */
    382 
    383 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    384 	if (startoffset != origoffset || npages != orignpages) {
    385 
    386 		/*
    387 		 * we need to avoid deadlocks caused by locking
    388 		 * additional pages at lower offsets than pages we
    389 		 * already have locked.  unlock them all and start over.
    390 		 */
    391 
    392 		genfs_rel_pages(&pgs[ridx], orignpages);
    393 		memset(pgs, 0, pgs_size);
    394 
    395 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    396 		    startoffset, endoffset, 0,0);
    397 		npgs = npages;
    398 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    399 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    400 			if (!glocked) {
    401 				genfs_node_unlock(vp);
    402 			}
    403 			KASSERT(async != 0);
    404 			genfs_rel_pages(pgs, npages);
    405 			mutex_exit(&uobj->vmobjlock);
    406 			error = EBUSY;
    407 			goto out_err;
    408 		}
    409 	}
    410 	mutex_exit(&uobj->vmobjlock);
    411 
    412 	/*
    413 	 * read the desired page(s).
    414 	 */
    415 
    416 	totalbytes = npages << PAGE_SHIFT;
    417 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    418 	tailbytes = totalbytes - bytes;
    419 	skipbytes = 0;
    420 
    421 	kva = uvm_pagermapin(pgs, npages,
    422 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    423 
    424 	mbp = getiobuf(vp, true);
    425 	mbp->b_bufsize = totalbytes;
    426 	mbp->b_data = (void *)kva;
    427 	mbp->b_resid = mbp->b_bcount = bytes;
    428 	mbp->b_cflags = BC_BUSY;
    429 	if (async) {
    430 		mbp->b_flags = B_READ | B_ASYNC;
    431 		mbp->b_iodone = uvm_aio_biodone;
    432 	} else {
    433 		mbp->b_flags = B_READ;
    434 		mbp->b_iodone = NULL;
    435 	}
    436 	if (async)
    437 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    438 	else
    439 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    440 
    441 	/*
    442 	 * if EOF is in the middle of the range, zero the part past EOF.
    443 	 * skip over pages which are not PG_FAKE since in that case they have
    444 	 * valid data that we need to preserve.
    445 	 */
    446 
    447 	tailstart = bytes;
    448 	while (tailbytes > 0) {
    449 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    450 
    451 		KASSERT(len <= tailbytes);
    452 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    453 			memset((void *)(kva + tailstart), 0, len);
    454 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    455 			    kva, tailstart, len, 0);
    456 		}
    457 		tailstart += len;
    458 		tailbytes -= len;
    459 	}
    460 
    461 	/*
    462 	 * now loop over the pages, reading as needed.
    463 	 */
    464 
    465 	bp = NULL;
    466 	for (offset = startoffset;
    467 	    bytes > 0;
    468 	    offset += iobytes, bytes -= iobytes) {
    469 
    470 		/*
    471 		 * skip pages which don't need to be read.
    472 		 */
    473 
    474 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    475 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    476 			size_t b;
    477 
    478 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    479 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    480 				sawhole = true;
    481 			}
    482 			b = MIN(PAGE_SIZE, bytes);
    483 			offset += b;
    484 			bytes -= b;
    485 			skipbytes += b;
    486 			pidx++;
    487 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    488 			    offset, 0,0,0);
    489 			if (bytes == 0) {
    490 				goto loopdone;
    491 			}
    492 		}
    493 
    494 		/*
    495 		 * bmap the file to find out the blkno to read from and
    496 		 * how much we can read in one i/o.  if bmap returns an error,
    497 		 * skip the rest of the top-level i/o.
    498 		 */
    499 
    500 		lbn = offset >> fs_bshift;
    501 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    502 		if (error) {
    503 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    504 			    lbn, error,0,0);
    505 			skipbytes += bytes;
    506 			goto loopdone;
    507 		}
    508 
    509 		/*
    510 		 * see how many pages can be read with this i/o.
    511 		 * reduce the i/o size if necessary to avoid
    512 		 * overwriting pages with valid data.
    513 		 */
    514 
    515 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    516 		    bytes);
    517 		if (offset + iobytes > round_page(offset)) {
    518 			pcount = 1;
    519 			while (pidx + pcount < npages &&
    520 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    521 				pcount++;
    522 			}
    523 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    524 			    (offset - trunc_page(offset)));
    525 		}
    526 
    527 		/*
    528 		 * if this block isn't allocated, zero it instead of
    529 		 * reading it.  unless we are going to allocate blocks,
    530 		 * mark the pages we zeroed PG_RDONLY.
    531 		 */
    532 
    533 		if (blkno < 0) {
    534 			int holepages = (round_page(offset + iobytes) -
    535 			    trunc_page(offset)) >> PAGE_SHIFT;
    536 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    537 
    538 			sawhole = true;
    539 			memset((char *)kva + (offset - startoffset), 0,
    540 			    iobytes);
    541 			skipbytes += iobytes;
    542 
    543 			for (i = 0; i < holepages; i++) {
    544 				if (write) {
    545 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    546 				}
    547 				if (!blockalloc) {
    548 					pgs[pidx + i]->flags |= PG_RDONLY;
    549 				}
    550 			}
    551 			continue;
    552 		}
    553 
    554 		/*
    555 		 * allocate a sub-buf for this piece of the i/o
    556 		 * (or just use mbp if there's only 1 piece),
    557 		 * and start it going.
    558 		 */
    559 
    560 		if (offset == startoffset && iobytes == bytes) {
    561 			bp = mbp;
    562 		} else {
    563 			bp = getiobuf(vp, true);
    564 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    565 		}
    566 		bp->b_lblkno = 0;
    567 
    568 		/* adjust physical blkno for partial blocks */
    569 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    570 		    dev_bshift);
    571 
    572 		UVMHIST_LOG(ubchist,
    573 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    574 		    bp, offset, iobytes, bp->b_blkno);
    575 
    576 		VOP_STRATEGY(devvp, bp);
    577 	}
    578 
    579 loopdone:
    580 	nestiobuf_done(mbp, skipbytes, error);
    581 	if (async) {
    582 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    583 		if (!glocked) {
    584 			genfs_node_unlock(vp);
    585 		}
    586 		error = 0;
    587 		goto out_err;
    588 	}
    589 	if (bp != NULL) {
    590 		error = biowait(mbp);
    591 	}
    592 	putiobuf(mbp);
    593 	uvm_pagermapout(kva, npages);
    594 
    595 	/*
    596 	 * if this we encountered a hole then we have to do a little more work.
    597 	 * for read faults, we marked the page PG_RDONLY so that future
    598 	 * write accesses to the page will fault again.
    599 	 * for write faults, we must make sure that the backing store for
    600 	 * the page is completely allocated while the pages are locked.
    601 	 */
    602 
    603 	if (!error && sawhole && blockalloc) {
    604 		/*
    605 		 * XXX: This assumes that we come here only via
    606 		 * the mmio path
    607 		 */
    608 		if (vp->v_mount->mnt_wapbl) {
    609 			error = WAPBL_BEGIN(vp->v_mount);
    610 		}
    611 
    612 		if (!error) {
    613 			error = GOP_ALLOC(vp, startoffset,
    614 			    npages << PAGE_SHIFT, 0, cred);
    615 			if (vp->v_mount->mnt_wapbl) {
    616 				WAPBL_END(vp->v_mount);
    617 			}
    618 		}
    619 
    620 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    621 		    startoffset, npages << PAGE_SHIFT, error,0);
    622 		if (!error) {
    623 			for (i = 0; i < npages; i++) {
    624 				if (pgs[i] == NULL) {
    625 					continue;
    626 				}
    627 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    628 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    629 				    pgs[i],0,0,0);
    630 			}
    631 		}
    632 	}
    633 	if (!glocked) {
    634 		genfs_node_unlock(vp);
    635 	}
    636 	mutex_enter(&uobj->vmobjlock);
    637 
    638 	/*
    639 	 * we're almost done!  release the pages...
    640 	 * for errors, we free the pages.
    641 	 * otherwise we activate them and mark them as valid and clean.
    642 	 * also, unbusy pages that were not actually requested.
    643 	 */
    644 
    645 	if (error) {
    646 		for (i = 0; i < npages; i++) {
    647 			if (pgs[i] == NULL) {
    648 				continue;
    649 			}
    650 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    651 			    pgs[i], pgs[i]->flags, 0,0);
    652 			if (pgs[i]->flags & PG_FAKE) {
    653 				pgs[i]->flags |= PG_RELEASED;
    654 			}
    655 		}
    656 		mutex_enter(&uvm_pageqlock);
    657 		uvm_page_unbusy(pgs, npages);
    658 		mutex_exit(&uvm_pageqlock);
    659 		mutex_exit(&uobj->vmobjlock);
    660 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    661 		goto out_err;
    662 	}
    663 
    664 out:
    665 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    666 	error = 0;
    667 	mutex_enter(&uvm_pageqlock);
    668 	for (i = 0; i < npages; i++) {
    669 		pg = pgs[i];
    670 		if (pg == NULL) {
    671 			continue;
    672 		}
    673 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    674 		    pg, pg->flags, 0,0);
    675 		if (pg->flags & PG_FAKE && !overwrite) {
    676 			pg->flags &= ~(PG_FAKE);
    677 			pmap_clear_modify(pgs[i]);
    678 		}
    679 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    680 		if (i < ridx || i >= ridx + orignpages || async) {
    681 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    682 			    pg, pg->offset,0,0);
    683 			if (pg->flags & PG_WANTED) {
    684 				wakeup(pg);
    685 			}
    686 			if (pg->flags & PG_FAKE) {
    687 				KASSERT(overwrite);
    688 				uvm_pagezero(pg);
    689 			}
    690 			if (pg->flags & PG_RELEASED) {
    691 				uvm_pagefree(pg);
    692 				continue;
    693 			}
    694 			uvm_pageenqueue(pg);
    695 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    696 			UVM_PAGE_OWN(pg, NULL);
    697 		}
    698 	}
    699 	mutex_exit(&uvm_pageqlock);
    700 	mutex_exit(&uobj->vmobjlock);
    701 	if (ap->a_m != NULL) {
    702 		memcpy(ap->a_m, &pgs[ridx],
    703 		    orignpages * sizeof(struct vm_page *));
    704 	}
    705 
    706 out_err:
    707 	if (pgs != NULL && pgs != pgs_onstack)
    708 		kmem_free(pgs, pgs_size);
    709 	if (has_trans)
    710 		fstrans_done(vp->v_mount);
    711 	return (error);
    712 }
    713 
    714 /*
    715  * generic VM putpages routine.
    716  * Write the given range of pages to backing store.
    717  *
    718  * => "offhi == 0" means flush all pages at or after "offlo".
    719  * => object should be locked by caller.  we return with the
    720  *      object unlocked.
    721  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    722  *	thus, a caller might want to unlock higher level resources
    723  *	(e.g. vm_map) before calling flush.
    724  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    725  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    726  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    727  *	that new pages are inserted on the tail end of the list.   thus,
    728  *	we can make a complete pass through the object in one go by starting
    729  *	at the head and working towards the tail (new pages are put in
    730  *	front of us).
    731  * => NOTE: we are allowed to lock the page queues, so the caller
    732  *	must not be holding the page queue lock.
    733  *
    734  * note on "cleaning" object and PG_BUSY pages:
    735  *	this routine is holding the lock on the object.   the only time
    736  *	that it can run into a PG_BUSY page that it does not own is if
    737  *	some other process has started I/O on the page (e.g. either
    738  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    739  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    740  *	had a chance to modify it yet.    if the PG_BUSY page is being
    741  *	paged out then it means that someone else has already started
    742  *	cleaning the page for us (how nice!).    in this case, if we
    743  *	have syncio specified, then after we make our pass through the
    744  *	object we need to wait for the other PG_BUSY pages to clear
    745  *	off (i.e. we need to do an iosync).   also note that once a
    746  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    747  *
    748  * note on page traversal:
    749  *	we can traverse the pages in an object either by going down the
    750  *	linked list in "uobj->memq", or we can go over the address range
    751  *	by page doing hash table lookups for each address.    depending
    752  *	on how many pages are in the object it may be cheaper to do one
    753  *	or the other.   we set "by_list" to true if we are using memq.
    754  *	if the cost of a hash lookup was equal to the cost of the list
    755  *	traversal we could compare the number of pages in the start->stop
    756  *	range to the total number of pages in the object.   however, it
    757  *	seems that a hash table lookup is more expensive than the linked
    758  *	list traversal, so we multiply the number of pages in the
    759  *	range by an estimate of the relatively higher cost of the hash lookup.
    760  */
    761 
    762 int
    763 genfs_putpages(void *v)
    764 {
    765 	struct vop_putpages_args /* {
    766 		struct vnode *a_vp;
    767 		voff_t a_offlo;
    768 		voff_t a_offhi;
    769 		int a_flags;
    770 	} */ *ap = v;
    771 
    772 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    773 	    ap->a_flags, NULL);
    774 }
    775 
    776 int
    777 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    778     int origflags, struct vm_page **busypg)
    779 {
    780 	struct uvm_object *uobj = &vp->v_uobj;
    781 	kmutex_t *slock = &uobj->vmobjlock;
    782 	off_t off;
    783 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    784 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    785 	int i, error, npages, nback;
    786 	int freeflag;
    787 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    788 	bool wasclean, by_list, needs_clean, yld;
    789 	bool async = (origflags & PGO_SYNCIO) == 0;
    790 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    791 	struct lwp *l = curlwp ? curlwp : &lwp0;
    792 	struct genfs_node *gp = VTOG(vp);
    793 	int flags;
    794 	int dirtygen;
    795 	bool modified;
    796 	bool need_wapbl;
    797 	bool has_trans;
    798 	bool cleanall;
    799 	bool onworklst;
    800 
    801 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    802 
    803 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    804 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    805 //	KASSERT(startoff < endoff || endoff == 0);
    806 
    807 // replacement for the previous KASSERT to get debug output, by rmind
    808 	if (!(startoff < endoff || endoff == 0)) {
    809 		proc_t *p = curproc;
    810 		mutex_exit(slock);
    811 		printf("genfs_do_putpages: startoff 0x%lx, endoff 0x%lx vm_map %p\n", (uint64_t) startoff, (uint64_t) endoff, &p->p_vmspace->vm_map);
    812 		void uvm_map_printit(struct vm_map *, bool, void (*)(const char *, ...));
    813 		uvm_map_printit(&p->p_vmspace->vm_map, true, printf);
    814 		KASSERT(p == l->l_proc);
    815 		Debugger();	/* Bang ! */
    816 		return EIO;
    817 	}
    818 
    819 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    820 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    821 
    822 	has_trans = false;
    823 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    824 	    (origflags & PGO_JOURNALLOCKED) == 0);
    825 
    826 retry:
    827 	modified = false;
    828 	flags = origflags;
    829 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    830 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    831 	if (uobj->uo_npages == 0) {
    832 		if (vp->v_iflag & VI_ONWORKLST) {
    833 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    834 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    835 				vn_syncer_remove_from_worklist(vp);
    836 		}
    837 		if (has_trans) {
    838 			if (need_wapbl)
    839 				WAPBL_END(vp->v_mount);
    840 			fstrans_done(vp->v_mount);
    841 		}
    842 		mutex_exit(slock);
    843 		return (0);
    844 	}
    845 
    846 	/*
    847 	 * the vnode has pages, set up to process the request.
    848 	 */
    849 
    850 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    851 		mutex_exit(slock);
    852 		if (pagedaemon) {
    853 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    854 			if (error)
    855 				return error;
    856 		} else
    857 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    858 		if (need_wapbl) {
    859 			error = WAPBL_BEGIN(vp->v_mount);
    860 			if (error) {
    861 				fstrans_done(vp->v_mount);
    862 				return error;
    863 			}
    864 		}
    865 		has_trans = true;
    866 		mutex_enter(slock);
    867 		goto retry;
    868 	}
    869 
    870 	error = 0;
    871 	wasclean = (vp->v_numoutput == 0);
    872 	off = startoff;
    873 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    874 		endoff = trunc_page(LLONG_MAX);
    875 	}
    876 	by_list = (uobj->uo_npages <=
    877 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    878 
    879 #if !defined(DEBUG)
    880 	/*
    881 	 * if this vnode is known not to have dirty pages,
    882 	 * don't bother to clean it out.
    883 	 */
    884 
    885 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    886 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    887 			goto skip_scan;
    888 		}
    889 		flags &= ~PGO_CLEANIT;
    890 	}
    891 #endif /* !defined(DEBUG) */
    892 
    893 	/*
    894 	 * start the loop.  when scanning by list, hold the last page
    895 	 * in the list before we start.  pages allocated after we start
    896 	 * will be added to the end of the list, so we can stop at the
    897 	 * current last page.
    898 	 */
    899 
    900 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    901 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    902 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    903 	dirtygen = gp->g_dirtygen;
    904 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    905 	if (by_list) {
    906 		curmp.uobject = uobj;
    907 		curmp.offset = (voff_t)-1;
    908 		curmp.flags = PG_BUSY;
    909 		endmp.uobject = uobj;
    910 		endmp.offset = (voff_t)-1;
    911 		endmp.flags = PG_BUSY;
    912 		pg = TAILQ_FIRST(&uobj->memq);
    913 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    914 		uvm_lwp_hold(l);
    915 	} else {
    916 		pg = uvm_pagelookup(uobj, off);
    917 	}
    918 	nextpg = NULL;
    919 	while (by_list || off < endoff) {
    920 
    921 		/*
    922 		 * if the current page is not interesting, move on to the next.
    923 		 */
    924 
    925 		KASSERT(pg == NULL || pg->uobject == uobj);
    926 		KASSERT(pg == NULL ||
    927 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    928 		    (pg->flags & PG_BUSY) != 0);
    929 		if (by_list) {
    930 			if (pg == &endmp) {
    931 				break;
    932 			}
    933 			if (pg->offset < startoff || pg->offset >= endoff ||
    934 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    935 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    936 					wasclean = false;
    937 				}
    938 				pg = TAILQ_NEXT(pg, listq.queue);
    939 				continue;
    940 			}
    941 			off = pg->offset;
    942 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    943 			if (pg != NULL) {
    944 				wasclean = false;
    945 			}
    946 			off += PAGE_SIZE;
    947 			if (off < endoff) {
    948 				pg = uvm_pagelookup(uobj, off);
    949 			}
    950 			continue;
    951 		}
    952 
    953 		/*
    954 		 * if the current page needs to be cleaned and it's busy,
    955 		 * wait for it to become unbusy.
    956 		 */
    957 
    958 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    959 		    SPCF_SHOULDYIELD) && !pagedaemon;
    960 		if (pg->flags & PG_BUSY || yld) {
    961 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    962 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    963 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    964 				error = EDEADLK;
    965 				if (busypg != NULL)
    966 					*busypg = pg;
    967 				break;
    968 			}
    969 			if (pagedaemon) {
    970 				/*
    971 				 * someone has taken the page while we
    972 				 * dropped the lock for fstrans_start.
    973 				 */
    974 				break;
    975 			}
    976 			if (by_list) {
    977 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    978 				UVMHIST_LOG(ubchist, "curmp next %p",
    979 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    980 			}
    981 			if (yld) {
    982 				mutex_exit(slock);
    983 				preempt();
    984 				mutex_enter(slock);
    985 			} else {
    986 				pg->flags |= PG_WANTED;
    987 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    988 				mutex_enter(slock);
    989 			}
    990 			if (by_list) {
    991 				UVMHIST_LOG(ubchist, "after next %p",
    992 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    993 				pg = TAILQ_NEXT(&curmp, listq.queue);
    994 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
    995 			} else {
    996 				pg = uvm_pagelookup(uobj, off);
    997 			}
    998 			continue;
    999 		}
   1000 
   1001 		/*
   1002 		 * if we're freeing, remove all mappings of the page now.
   1003 		 * if we're cleaning, check if the page is needs to be cleaned.
   1004 		 */
   1005 
   1006 		if (flags & PGO_FREE) {
   1007 			pmap_page_protect(pg, VM_PROT_NONE);
   1008 		} else if (flags & PGO_CLEANIT) {
   1009 
   1010 			/*
   1011 			 * if we still have some hope to pull this vnode off
   1012 			 * from the syncer queue, write-protect the page.
   1013 			 */
   1014 
   1015 			if (cleanall && wasclean &&
   1016 			    gp->g_dirtygen == dirtygen) {
   1017 
   1018 				/*
   1019 				 * uobj pages get wired only by uvm_fault
   1020 				 * where uobj is locked.
   1021 				 */
   1022 
   1023 				if (pg->wire_count == 0) {
   1024 					pmap_page_protect(pg,
   1025 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1026 				} else {
   1027 					cleanall = false;
   1028 				}
   1029 			}
   1030 		}
   1031 
   1032 		if (flags & PGO_CLEANIT) {
   1033 			needs_clean = pmap_clear_modify(pg) ||
   1034 			    (pg->flags & PG_CLEAN) == 0;
   1035 			pg->flags |= PG_CLEAN;
   1036 		} else {
   1037 			needs_clean = false;
   1038 		}
   1039 
   1040 		/*
   1041 		 * if we're cleaning, build a cluster.
   1042 		 * the cluster will consist of pages which are currently dirty,
   1043 		 * but they will be returned to us marked clean.
   1044 		 * if not cleaning, just operate on the one page.
   1045 		 */
   1046 
   1047 		if (needs_clean) {
   1048 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1049 			wasclean = false;
   1050 			memset(pgs, 0, sizeof(pgs));
   1051 			pg->flags |= PG_BUSY;
   1052 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1053 
   1054 			/*
   1055 			 * first look backward.
   1056 			 */
   1057 
   1058 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1059 			nback = npages;
   1060 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1061 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1062 			if (nback) {
   1063 				memmove(&pgs[0], &pgs[npages - nback],
   1064 				    nback * sizeof(pgs[0]));
   1065 				if (npages - nback < nback)
   1066 					memset(&pgs[nback], 0,
   1067 					    (npages - nback) * sizeof(pgs[0]));
   1068 				else
   1069 					memset(&pgs[npages - nback], 0,
   1070 					    nback * sizeof(pgs[0]));
   1071 			}
   1072 
   1073 			/*
   1074 			 * then plug in our page of interest.
   1075 			 */
   1076 
   1077 			pgs[nback] = pg;
   1078 
   1079 			/*
   1080 			 * then look forward to fill in the remaining space in
   1081 			 * the array of pages.
   1082 			 */
   1083 
   1084 			npages = maxpages - nback - 1;
   1085 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1086 			    &pgs[nback + 1],
   1087 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1088 			npages += nback + 1;
   1089 		} else {
   1090 			pgs[0] = pg;
   1091 			npages = 1;
   1092 			nback = 0;
   1093 		}
   1094 
   1095 		/*
   1096 		 * apply FREE or DEACTIVATE options if requested.
   1097 		 */
   1098 
   1099 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1100 			mutex_enter(&uvm_pageqlock);
   1101 		}
   1102 		for (i = 0; i < npages; i++) {
   1103 			tpg = pgs[i];
   1104 			KASSERT(tpg->uobject == uobj);
   1105 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1106 				pg = tpg;
   1107 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1108 				continue;
   1109 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1110 				uvm_pagedeactivate(tpg);
   1111 			} else if (flags & PGO_FREE) {
   1112 				pmap_page_protect(tpg, VM_PROT_NONE);
   1113 				if (tpg->flags & PG_BUSY) {
   1114 					tpg->flags |= freeflag;
   1115 					if (pagedaemon) {
   1116 						uvm_pageout_start(1);
   1117 						uvm_pagedequeue(tpg);
   1118 					}
   1119 				} else {
   1120 
   1121 					/*
   1122 					 * ``page is not busy''
   1123 					 * implies that npages is 1
   1124 					 * and needs_clean is false.
   1125 					 */
   1126 
   1127 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1128 					uvm_pagefree(tpg);
   1129 					if (pagedaemon)
   1130 						uvmexp.pdfreed++;
   1131 				}
   1132 			}
   1133 		}
   1134 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1135 			mutex_exit(&uvm_pageqlock);
   1136 		}
   1137 		if (needs_clean) {
   1138 			modified = true;
   1139 
   1140 			/*
   1141 			 * start the i/o.  if we're traversing by list,
   1142 			 * keep our place in the list with a marker page.
   1143 			 */
   1144 
   1145 			if (by_list) {
   1146 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1147 				    listq.queue);
   1148 			}
   1149 			mutex_exit(slock);
   1150 			error = GOP_WRITE(vp, pgs, npages, flags);
   1151 			mutex_enter(slock);
   1152 			if (by_list) {
   1153 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1154 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1155 			}
   1156 			if (error) {
   1157 				break;
   1158 			}
   1159 			if (by_list) {
   1160 				continue;
   1161 			}
   1162 		}
   1163 
   1164 		/*
   1165 		 * find the next page and continue if there was no error.
   1166 		 */
   1167 
   1168 		if (by_list) {
   1169 			if (nextpg) {
   1170 				pg = nextpg;
   1171 				nextpg = NULL;
   1172 			} else {
   1173 				pg = TAILQ_NEXT(pg, listq.queue);
   1174 			}
   1175 		} else {
   1176 			off += (npages - nback) << PAGE_SHIFT;
   1177 			if (off < endoff) {
   1178 				pg = uvm_pagelookup(uobj, off);
   1179 			}
   1180 		}
   1181 	}
   1182 	if (by_list) {
   1183 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1184 		uvm_lwp_rele(l);
   1185 	}
   1186 
   1187 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1188 	    (vp->v_type != VBLK ||
   1189 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1190 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1191 	}
   1192 
   1193 	/*
   1194 	 * if we're cleaning and there was nothing to clean,
   1195 	 * take us off the syncer list.  if we started any i/o
   1196 	 * and we're doing sync i/o, wait for all writes to finish.
   1197 	 */
   1198 
   1199 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1200 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1201 #if defined(DEBUG)
   1202 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1203 			if ((pg->flags & PG_CLEAN) == 0) {
   1204 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1205 			}
   1206 			if (pmap_is_modified(pg)) {
   1207 				printf("%s: %p: modified\n", __func__, pg);
   1208 			}
   1209 		}
   1210 #endif /* defined(DEBUG) */
   1211 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1212 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1213 			vn_syncer_remove_from_worklist(vp);
   1214 	}
   1215 
   1216 #if !defined(DEBUG)
   1217 skip_scan:
   1218 #endif /* !defined(DEBUG) */
   1219 
   1220 	/* Wait for output to complete. */
   1221 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1222 		while (vp->v_numoutput != 0)
   1223 			cv_wait(&vp->v_cv, slock);
   1224 	}
   1225 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1226 	mutex_exit(slock);
   1227 
   1228 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1229 		/*
   1230 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1231 		 * retrying is not a big deal because, in many cases,
   1232 		 * uobj->uo_npages is already 0 here.
   1233 		 */
   1234 		mutex_enter(slock);
   1235 		goto retry;
   1236 	}
   1237 
   1238 	if (has_trans) {
   1239 		if (need_wapbl)
   1240 			WAPBL_END(vp->v_mount);
   1241 		fstrans_done(vp->v_mount);
   1242 	}
   1243 
   1244 	return (error);
   1245 }
   1246 
   1247 int
   1248 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1249 {
   1250 	off_t off;
   1251 	vaddr_t kva;
   1252 	size_t len;
   1253 	int error;
   1254 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1255 
   1256 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1257 	    vp, pgs, npages, flags);
   1258 
   1259 	off = pgs[0]->offset;
   1260 	kva = uvm_pagermapin(pgs, npages,
   1261 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1262 	len = npages << PAGE_SHIFT;
   1263 
   1264 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1265 			    uvm_aio_biodone);
   1266 
   1267 	return error;
   1268 }
   1269 
   1270 int
   1271 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1272 {
   1273 	off_t off;
   1274 	vaddr_t kva;
   1275 	size_t len;
   1276 	int error;
   1277 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1278 
   1279 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1280 	    vp, pgs, npages, flags);
   1281 
   1282 	off = pgs[0]->offset;
   1283 	kva = uvm_pagermapin(pgs, npages,
   1284 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1285 	len = npages << PAGE_SHIFT;
   1286 
   1287 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1288 			    uvm_aio_biodone);
   1289 
   1290 	return error;
   1291 }
   1292 
   1293 /*
   1294  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1295  * and mapped into kernel memory.  Here we just look up the underlying
   1296  * device block addresses and call the strategy routine.
   1297  */
   1298 
   1299 static int
   1300 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1301     enum uio_rw rw, void (*iodone)(struct buf *))
   1302 {
   1303 	int s, error, run;
   1304 	int fs_bshift, dev_bshift;
   1305 	off_t eof, offset, startoffset;
   1306 	size_t bytes, iobytes, skipbytes;
   1307 	daddr_t lbn, blkno;
   1308 	struct buf *mbp, *bp;
   1309 	struct vnode *devvp;
   1310 	bool async = (flags & PGO_SYNCIO) == 0;
   1311 	bool write = rw == UIO_WRITE;
   1312 	int brw = write ? B_WRITE : B_READ;
   1313 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1314 
   1315 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1316 	    vp, kva, len, flags);
   1317 
   1318 	KASSERT(vp->v_size <= vp->v_writesize);
   1319 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1320 	if (vp->v_type != VBLK) {
   1321 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1322 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1323 	} else {
   1324 		fs_bshift = DEV_BSHIFT;
   1325 		dev_bshift = DEV_BSHIFT;
   1326 	}
   1327 	error = 0;
   1328 	startoffset = off;
   1329 	bytes = MIN(len, eof - startoffset);
   1330 	skipbytes = 0;
   1331 	KASSERT(bytes != 0);
   1332 
   1333 	if (write) {
   1334 		mutex_enter(&vp->v_interlock);
   1335 		vp->v_numoutput += 2;
   1336 		mutex_exit(&vp->v_interlock);
   1337 	}
   1338 	mbp = getiobuf(vp, true);
   1339 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1340 	    vp, mbp, vp->v_numoutput, bytes);
   1341 	mbp->b_bufsize = len;
   1342 	mbp->b_data = (void *)kva;
   1343 	mbp->b_resid = mbp->b_bcount = bytes;
   1344 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1345 	if (async) {
   1346 		mbp->b_flags = brw | B_ASYNC;
   1347 		mbp->b_iodone = iodone;
   1348 	} else {
   1349 		mbp->b_flags = brw;
   1350 		mbp->b_iodone = NULL;
   1351 	}
   1352 	if (curlwp == uvm.pagedaemon_lwp)
   1353 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1354 	else if (async)
   1355 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1356 	else
   1357 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1358 
   1359 	bp = NULL;
   1360 	for (offset = startoffset;
   1361 	    bytes > 0;
   1362 	    offset += iobytes, bytes -= iobytes) {
   1363 		lbn = offset >> fs_bshift;
   1364 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1365 		if (error) {
   1366 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1367 			skipbytes += bytes;
   1368 			bytes = 0;
   1369 			break;
   1370 		}
   1371 
   1372 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1373 		    bytes);
   1374 		if (blkno == (daddr_t)-1) {
   1375 			if (!write) {
   1376 				memset((char *)kva + (offset - startoffset), 0,
   1377 				   iobytes);
   1378 			}
   1379 			skipbytes += iobytes;
   1380 			continue;
   1381 		}
   1382 
   1383 		/* if it's really one i/o, don't make a second buf */
   1384 		if (offset == startoffset && iobytes == bytes) {
   1385 			bp = mbp;
   1386 		} else {
   1387 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1388 			    vp, bp, vp->v_numoutput, 0);
   1389 			bp = getiobuf(vp, true);
   1390 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1391 		}
   1392 		bp->b_lblkno = 0;
   1393 
   1394 		/* adjust physical blkno for partial blocks */
   1395 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1396 		    dev_bshift);
   1397 		UVMHIST_LOG(ubchist,
   1398 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1399 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1400 
   1401 		VOP_STRATEGY(devvp, bp);
   1402 	}
   1403 	if (skipbytes) {
   1404 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1405 	}
   1406 	nestiobuf_done(mbp, skipbytes, error);
   1407 	if (async) {
   1408 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1409 		return (0);
   1410 	}
   1411 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1412 	error = biowait(mbp);
   1413 	s = splbio();
   1414 	(*iodone)(mbp);
   1415 	splx(s);
   1416 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1417 	return (error);
   1418 }
   1419 
   1420 /*
   1421  * VOP_PUTPAGES() for vnodes which never have pages.
   1422  */
   1423 
   1424 int
   1425 genfs_null_putpages(void *v)
   1426 {
   1427 	struct vop_putpages_args /* {
   1428 		struct vnode *a_vp;
   1429 		voff_t a_offlo;
   1430 		voff_t a_offhi;
   1431 		int a_flags;
   1432 	} */ *ap = v;
   1433 	struct vnode *vp = ap->a_vp;
   1434 
   1435 	KASSERT(vp->v_uobj.uo_npages == 0);
   1436 	mutex_exit(&vp->v_interlock);
   1437 	return (0);
   1438 }
   1439 
   1440 int
   1441 genfs_compat_getpages(void *v)
   1442 {
   1443 	struct vop_getpages_args /* {
   1444 		struct vnode *a_vp;
   1445 		voff_t a_offset;
   1446 		struct vm_page **a_m;
   1447 		int *a_count;
   1448 		int a_centeridx;
   1449 		vm_prot_t a_access_type;
   1450 		int a_advice;
   1451 		int a_flags;
   1452 	} */ *ap = v;
   1453 
   1454 	off_t origoffset;
   1455 	struct vnode *vp = ap->a_vp;
   1456 	struct uvm_object *uobj = &vp->v_uobj;
   1457 	struct vm_page *pg, **pgs;
   1458 	vaddr_t kva;
   1459 	int i, error, orignpages, npages;
   1460 	struct iovec iov;
   1461 	struct uio uio;
   1462 	kauth_cred_t cred = curlwp->l_cred;
   1463 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1464 
   1465 	error = 0;
   1466 	origoffset = ap->a_offset;
   1467 	orignpages = *ap->a_count;
   1468 	pgs = ap->a_m;
   1469 
   1470 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1471 		vn_syncer_add_to_worklist(vp, filedelay);
   1472 	}
   1473 	if (ap->a_flags & PGO_LOCKED) {
   1474 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1475 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1476 
   1477 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1478 	}
   1479 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1480 		mutex_exit(&uobj->vmobjlock);
   1481 		return (EINVAL);
   1482 	}
   1483 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1484 		mutex_exit(&uobj->vmobjlock);
   1485 		return 0;
   1486 	}
   1487 	npages = orignpages;
   1488 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1489 	mutex_exit(&uobj->vmobjlock);
   1490 	kva = uvm_pagermapin(pgs, npages,
   1491 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1492 	for (i = 0; i < npages; i++) {
   1493 		pg = pgs[i];
   1494 		if ((pg->flags & PG_FAKE) == 0) {
   1495 			continue;
   1496 		}
   1497 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1498 		iov.iov_len = PAGE_SIZE;
   1499 		uio.uio_iov = &iov;
   1500 		uio.uio_iovcnt = 1;
   1501 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1502 		uio.uio_rw = UIO_READ;
   1503 		uio.uio_resid = PAGE_SIZE;
   1504 		UIO_SETUP_SYSSPACE(&uio);
   1505 		/* XXX vn_lock */
   1506 		error = VOP_READ(vp, &uio, 0, cred);
   1507 		if (error) {
   1508 			break;
   1509 		}
   1510 		if (uio.uio_resid) {
   1511 			memset(iov.iov_base, 0, uio.uio_resid);
   1512 		}
   1513 	}
   1514 	uvm_pagermapout(kva, npages);
   1515 	mutex_enter(&uobj->vmobjlock);
   1516 	mutex_enter(&uvm_pageqlock);
   1517 	for (i = 0; i < npages; i++) {
   1518 		pg = pgs[i];
   1519 		if (error && (pg->flags & PG_FAKE) != 0) {
   1520 			pg->flags |= PG_RELEASED;
   1521 		} else {
   1522 			pmap_clear_modify(pg);
   1523 			uvm_pageactivate(pg);
   1524 		}
   1525 	}
   1526 	if (error) {
   1527 		uvm_page_unbusy(pgs, npages);
   1528 	}
   1529 	mutex_exit(&uvm_pageqlock);
   1530 	mutex_exit(&uobj->vmobjlock);
   1531 	return (error);
   1532 }
   1533 
   1534 int
   1535 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1536     int flags)
   1537 {
   1538 	off_t offset;
   1539 	struct iovec iov;
   1540 	struct uio uio;
   1541 	kauth_cred_t cred = curlwp->l_cred;
   1542 	struct buf *bp;
   1543 	vaddr_t kva;
   1544 	int error;
   1545 
   1546 	offset = pgs[0]->offset;
   1547 	kva = uvm_pagermapin(pgs, npages,
   1548 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1549 
   1550 	iov.iov_base = (void *)kva;
   1551 	iov.iov_len = npages << PAGE_SHIFT;
   1552 	uio.uio_iov = &iov;
   1553 	uio.uio_iovcnt = 1;
   1554 	uio.uio_offset = offset;
   1555 	uio.uio_rw = UIO_WRITE;
   1556 	uio.uio_resid = npages << PAGE_SHIFT;
   1557 	UIO_SETUP_SYSSPACE(&uio);
   1558 	/* XXX vn_lock */
   1559 	error = VOP_WRITE(vp, &uio, 0, cred);
   1560 
   1561 	mutex_enter(&vp->v_interlock);
   1562 	vp->v_numoutput++;
   1563 	mutex_exit(&vp->v_interlock);
   1564 
   1565 	bp = getiobuf(vp, true);
   1566 	bp->b_cflags = BC_BUSY | BC_AGE;
   1567 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1568 	bp->b_data = (char *)kva;
   1569 	bp->b_bcount = npages << PAGE_SHIFT;
   1570 	bp->b_bufsize = npages << PAGE_SHIFT;
   1571 	bp->b_resid = 0;
   1572 	bp->b_error = error;
   1573 	uvm_aio_aiodone(bp);
   1574 	return (error);
   1575 }
   1576 
   1577 /*
   1578  * Process a uio using direct I/O.  If we reach a part of the request
   1579  * which cannot be processed in this fashion for some reason, just return.
   1580  * The caller must handle some additional part of the request using
   1581  * buffered I/O before trying direct I/O again.
   1582  */
   1583 
   1584 void
   1585 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1586 {
   1587 	struct vmspace *vs;
   1588 	struct iovec *iov;
   1589 	vaddr_t va;
   1590 	size_t len;
   1591 	const int mask = DEV_BSIZE - 1;
   1592 	int error;
   1593 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1594 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1595 
   1596 	/*
   1597 	 * We only support direct I/O to user space for now.
   1598 	 */
   1599 
   1600 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1601 		return;
   1602 	}
   1603 
   1604 	/*
   1605 	 * If the vnode is mapped, we would need to get the getpages lock
   1606 	 * to stabilize the bmap, but then we would get into trouble whil e
   1607 	 * locking the pages if the pages belong to this same vnode (or a
   1608 	 * multi-vnode cascade to the same effect).  Just fall back to
   1609 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1610 	 */
   1611 
   1612 	if (vp->v_vflag & VV_MAPPED) {
   1613 		return;
   1614 	}
   1615 
   1616 	if (need_wapbl) {
   1617 		error = WAPBL_BEGIN(vp->v_mount);
   1618 		if (error)
   1619 			return;
   1620 	}
   1621 
   1622 	/*
   1623 	 * Do as much of the uio as possible with direct I/O.
   1624 	 */
   1625 
   1626 	vs = uio->uio_vmspace;
   1627 	while (uio->uio_resid) {
   1628 		iov = uio->uio_iov;
   1629 		if (iov->iov_len == 0) {
   1630 			uio->uio_iov++;
   1631 			uio->uio_iovcnt--;
   1632 			continue;
   1633 		}
   1634 		va = (vaddr_t)iov->iov_base;
   1635 		len = MIN(iov->iov_len, genfs_maxdio);
   1636 		len &= ~mask;
   1637 
   1638 		/*
   1639 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1640 		 * the current EOF, then fall back to buffered I/O.
   1641 		 */
   1642 
   1643 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1644 			break;
   1645 		}
   1646 
   1647 		/*
   1648 		 * Check alignment.  The file offset must be at least
   1649 		 * sector-aligned.  The exact constraint on memory alignment
   1650 		 * is very hardware-dependent, but requiring sector-aligned
   1651 		 * addresses there too is safe.
   1652 		 */
   1653 
   1654 		if (uio->uio_offset & mask || va & mask) {
   1655 			break;
   1656 		}
   1657 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1658 					  uio->uio_rw);
   1659 		if (error) {
   1660 			break;
   1661 		}
   1662 		iov->iov_base = (char *)iov->iov_base + len;
   1663 		iov->iov_len -= len;
   1664 		uio->uio_offset += len;
   1665 		uio->uio_resid -= len;
   1666 	}
   1667 
   1668 	if (need_wapbl)
   1669 		WAPBL_END(vp->v_mount);
   1670 }
   1671 
   1672 /*
   1673  * Iodone routine for direct I/O.  We don't do much here since the request is
   1674  * always synchronous, so the caller will do most of the work after biowait().
   1675  */
   1676 
   1677 static void
   1678 genfs_dio_iodone(struct buf *bp)
   1679 {
   1680 
   1681 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1682 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1683 		mutex_enter(bp->b_objlock);
   1684 		vwakeup(bp);
   1685 		mutex_exit(bp->b_objlock);
   1686 	}
   1687 	putiobuf(bp);
   1688 }
   1689 
   1690 /*
   1691  * Process one chunk of a direct I/O request.
   1692  */
   1693 
   1694 static int
   1695 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1696     off_t off, enum uio_rw rw)
   1697 {
   1698 	struct vm_map *map;
   1699 	struct pmap *upm, *kpm;
   1700 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1701 	off_t spoff, epoff;
   1702 	vaddr_t kva, puva;
   1703 	paddr_t pa;
   1704 	vm_prot_t prot;
   1705 	int error, rv, poff, koff;
   1706 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1707 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1708 
   1709 	/*
   1710 	 * For writes, verify that this range of the file already has fully
   1711 	 * allocated backing store.  If there are any holes, just punt and
   1712 	 * make the caller take the buffered write path.
   1713 	 */
   1714 
   1715 	if (rw == UIO_WRITE) {
   1716 		daddr_t lbn, elbn, blkno;
   1717 		int bsize, bshift, run;
   1718 
   1719 		bshift = vp->v_mount->mnt_fs_bshift;
   1720 		bsize = 1 << bshift;
   1721 		lbn = off >> bshift;
   1722 		elbn = (off + len + bsize - 1) >> bshift;
   1723 		while (lbn < elbn) {
   1724 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1725 			if (error) {
   1726 				return error;
   1727 			}
   1728 			if (blkno == (daddr_t)-1) {
   1729 				return ENOSPC;
   1730 			}
   1731 			lbn += 1 + run;
   1732 		}
   1733 	}
   1734 
   1735 	/*
   1736 	 * Flush any cached pages for parts of the file that we're about to
   1737 	 * access.  If we're writing, invalidate pages as well.
   1738 	 */
   1739 
   1740 	spoff = trunc_page(off);
   1741 	epoff = round_page(off + len);
   1742 	mutex_enter(&vp->v_interlock);
   1743 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1744 	if (error) {
   1745 		return error;
   1746 	}
   1747 
   1748 	/*
   1749 	 * Wire the user pages and remap them into kernel memory.
   1750 	 */
   1751 
   1752 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1753 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1754 	if (error) {
   1755 		return error;
   1756 	}
   1757 
   1758 	map = &vs->vm_map;
   1759 	upm = vm_map_pmap(map);
   1760 	kpm = vm_map_pmap(kernel_map);
   1761 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1762 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1763 	puva = trunc_page(uva);
   1764 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1765 		rv = pmap_extract(upm, puva + poff, &pa);
   1766 		KASSERT(rv);
   1767 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1768 	}
   1769 	pmap_update(kpm);
   1770 
   1771 	/*
   1772 	 * Do the I/O.
   1773 	 */
   1774 
   1775 	koff = uva - trunc_page(uva);
   1776 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1777 			    genfs_dio_iodone);
   1778 
   1779 	/*
   1780 	 * Tear down the kernel mapping.
   1781 	 */
   1782 
   1783 	pmap_remove(kpm, kva, kva + klen);
   1784 	pmap_update(kpm);
   1785 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1786 
   1787 	/*
   1788 	 * Unwire the user pages.
   1789 	 */
   1790 
   1791 	uvm_vsunlock(vs, (void *)uva, len);
   1792 	return error;
   1793 }
   1794 
   1795