genfs_io.c revision 1.16 1 /* $NetBSD: genfs_io.c,v 1.16 2008/12/01 11:22:12 joerg Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.16 2008/12/01 11:22:12 joerg Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static inline void genfs_rel_pages(struct vm_page **, int);
66
67 int genfs_maxdio = MAXPHYS;
68
69 static inline void
70 genfs_rel_pages(struct vm_page **pgs, int npages)
71 {
72 int i;
73
74 for (i = 0; i < npages; i++) {
75 struct vm_page *pg = pgs[i];
76
77 if (pg == NULL || pg == PGO_DONTCARE)
78 continue;
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 mutex_enter(&uvm_pageqlock);
84 uvm_page_unbusy(pgs, npages);
85 mutex_exit(&uvm_pageqlock);
86 }
87
88 /*
89 * generic VM getpages routine.
90 * Return PG_BUSY pages for the given range,
91 * reading from backing store if necessary.
92 */
93
94 int
95 genfs_getpages(void *v)
96 {
97 struct vop_getpages_args /* {
98 struct vnode *a_vp;
99 voff_t a_offset;
100 struct vm_page **a_m;
101 int *a_count;
102 int a_centeridx;
103 vm_prot_t a_access_type;
104 int a_advice;
105 int a_flags;
106 } */ *ap = v;
107
108 off_t newsize, diskeof, memeof;
109 off_t offset, origoffset, startoffset, endoffset;
110 daddr_t lbn, blkno;
111 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
112 int fs_bshift, fs_bsize, dev_bshift;
113 const int flags = ap->a_flags;
114 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
115 vaddr_t kva;
116 struct buf *bp, *mbp;
117 struct vnode *vp = ap->a_vp;
118 struct vnode *devvp;
119 struct genfs_node *gp = VTOG(vp);
120 struct uvm_object *uobj = &vp->v_uobj;
121 struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
122 int pgs_size;
123 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
124 const bool async = (flags & PGO_SYNCIO) == 0;
125 const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
126 bool sawhole = false;
127 bool has_trans = false;
128 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
130 voff_t origvsize;
131 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
132
133 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
134 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
135
136 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
137 vp->v_type == VLNK || vp->v_type == VBLK);
138
139 pgs = NULL;
140 pgs_size = 0;
141
142 startover:
143 error = 0;
144 origvsize = vp->v_size;
145 origoffset = ap->a_offset;
146 orignpages = *ap->a_count;
147 GOP_SIZE(vp, origvsize, &diskeof, 0);
148 if (flags & PGO_PASTEOF) {
149 #if defined(DIAGNOSTIC)
150 off_t writeeof;
151 #endif /* defined(DIAGNOSTIC) */
152
153 newsize = MAX(origvsize,
154 origoffset + (orignpages << PAGE_SHIFT));
155 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
156 #if defined(DIAGNOSTIC)
157 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
158 if (newsize > round_page(writeeof)) {
159 panic("%s: past eof", __func__);
160 }
161 #endif /* defined(DIAGNOSTIC) */
162 } else {
163 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
164 }
165 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
166 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
167 KASSERT(orignpages > 0);
168
169 /*
170 * Bounds-check the request.
171 */
172
173 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
174 if ((flags & PGO_LOCKED) == 0) {
175 mutex_exit(&uobj->vmobjlock);
176 }
177 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
178 origoffset, *ap->a_count, memeof,0);
179 error = EINVAL;
180 goto out_err;
181 }
182
183 /* uobj is locked */
184
185 if ((flags & PGO_NOTIMESTAMP) == 0 &&
186 (vp->v_type != VBLK ||
187 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
188 int updflags = 0;
189
190 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
191 updflags = GOP_UPDATE_ACCESSED;
192 }
193 if (write) {
194 updflags |= GOP_UPDATE_MODIFIED;
195 }
196 if (updflags != 0) {
197 GOP_MARKUPDATE(vp, updflags);
198 }
199 }
200
201 if (write) {
202 gp->g_dirtygen++;
203 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
204 vn_syncer_add_to_worklist(vp, filedelay);
205 }
206 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
207 vp->v_iflag |= VI_WRMAPDIRTY;
208 }
209 }
210
211 /*
212 * For PGO_LOCKED requests, just return whatever's in memory.
213 */
214
215 if (flags & PGO_LOCKED) {
216 int nfound;
217
218 npages = *ap->a_count;
219 #if defined(DEBUG)
220 for (i = 0; i < npages; i++) {
221 pg = ap->a_m[i];
222 KASSERT(pg == NULL || pg == PGO_DONTCARE);
223 }
224 #endif /* defined(DEBUG) */
225 nfound = uvn_findpages(uobj, origoffset, &npages,
226 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
227 KASSERT(npages == *ap->a_count);
228 if (nfound == 0) {
229 error = EBUSY;
230 goto out_err;
231 }
232 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
233 genfs_rel_pages(ap->a_m, npages);
234
235 /*
236 * restore the array.
237 */
238
239 for (i = 0; i < npages; i++) {
240 pg = ap->a_m[i];
241
242 if (pg != NULL || pg != PGO_DONTCARE) {
243 ap->a_m[i] = NULL;
244 }
245 }
246 } else {
247 rw_exit(&gp->g_glock);
248 }
249 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
250 goto out_err;
251 }
252 mutex_exit(&uobj->vmobjlock);
253
254 /*
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
257 */
258
259 if (vp->v_type != VBLK) {
260 fs_bshift = vp->v_mount->mnt_fs_bshift;
261 dev_bshift = vp->v_mount->mnt_dev_bshift;
262 } else {
263 fs_bshift = DEV_BSHIFT;
264 dev_bshift = DEV_BSHIFT;
265 }
266 fs_bsize = 1 << fs_bshift;
267
268 orignpages = MIN(orignpages,
269 round_page(memeof - origoffset) >> PAGE_SHIFT);
270 npages = orignpages;
271 startoffset = origoffset & ~(fs_bsize - 1);
272 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
273 fs_bsize - 1) & ~(fs_bsize - 1));
274 endoffset = MIN(endoffset, round_page(memeof));
275 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
276
277 pgs_size = sizeof(struct vm_page *) *
278 ((endoffset - startoffset) >> PAGE_SHIFT);
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
285 }
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
289 }
290
291
292 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
293 ridx, npages, startoffset, endoffset);
294
295 if (!has_trans) {
296 fstrans_start(vp->v_mount, FSTRANS_SHARED);
297 has_trans = true;
298 }
299
300 /*
301 * hold g_glock to prevent a race with truncate.
302 *
303 * check if our idea of v_size is still valid.
304 */
305
306 if (blockalloc) {
307 rw_enter(&gp->g_glock, RW_WRITER);
308 } else {
309 rw_enter(&gp->g_glock, RW_READER);
310 }
311 mutex_enter(&uobj->vmobjlock);
312 if (vp->v_size < origvsize) {
313 rw_exit(&gp->g_glock);
314 if (pgs != pgs_onstack)
315 kmem_free(pgs, pgs_size);
316 goto startover;
317 }
318
319 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
320 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
321 rw_exit(&gp->g_glock);
322 KASSERT(async != 0);
323 genfs_rel_pages(&pgs[ridx], orignpages);
324 mutex_exit(&uobj->vmobjlock);
325 error = EBUSY;
326 goto out_err;
327 }
328
329 /*
330 * if the pages are already resident, just return them.
331 */
332
333 for (i = 0; i < npages; i++) {
334 struct vm_page *pg1 = pgs[ridx + i];
335
336 if ((pg1->flags & PG_FAKE) ||
337 (blockalloc && (pg1->flags & PG_RDONLY))) {
338 break;
339 }
340 }
341 if (i == npages) {
342 rw_exit(&gp->g_glock);
343 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
344 npages += ridx;
345 goto out;
346 }
347
348 /*
349 * if PGO_OVERWRITE is set, don't bother reading the pages.
350 */
351
352 if (overwrite) {
353 rw_exit(&gp->g_glock);
354 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
355
356 for (i = 0; i < npages; i++) {
357 struct vm_page *pg1 = pgs[ridx + i];
358
359 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
360 }
361 npages += ridx;
362 goto out;
363 }
364
365 /*
366 * the page wasn't resident and we're not overwriting,
367 * so we're going to have to do some i/o.
368 * find any additional pages needed to cover the expanded range.
369 */
370
371 npages = (endoffset - startoffset) >> PAGE_SHIFT;
372 if (startoffset != origoffset || npages != orignpages) {
373
374 /*
375 * we need to avoid deadlocks caused by locking
376 * additional pages at lower offsets than pages we
377 * already have locked. unlock them all and start over.
378 */
379
380 genfs_rel_pages(&pgs[ridx], orignpages);
381 memset(pgs, 0, pgs_size);
382
383 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
384 startoffset, endoffset, 0,0);
385 npgs = npages;
386 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
387 async ? UFP_NOWAIT : UFP_ALL) != npages) {
388 rw_exit(&gp->g_glock);
389 KASSERT(async != 0);
390 genfs_rel_pages(pgs, npages);
391 mutex_exit(&uobj->vmobjlock);
392 error = EBUSY;
393 goto out_err;
394 }
395 }
396 mutex_exit(&uobj->vmobjlock);
397
398 /*
399 * read the desired page(s).
400 */
401
402 totalbytes = npages << PAGE_SHIFT;
403 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
404 tailbytes = totalbytes - bytes;
405 skipbytes = 0;
406
407 kva = uvm_pagermapin(pgs, npages,
408 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
409
410 mbp = getiobuf(vp, true);
411 mbp->b_bufsize = totalbytes;
412 mbp->b_data = (void *)kva;
413 mbp->b_resid = mbp->b_bcount = bytes;
414 mbp->b_cflags = BC_BUSY;
415 if (async) {
416 mbp->b_flags = B_READ | B_ASYNC;
417 mbp->b_iodone = uvm_aio_biodone;
418 } else {
419 mbp->b_flags = B_READ;
420 mbp->b_iodone = NULL;
421 }
422 if (async)
423 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
424 else
425 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
426
427 /*
428 * if EOF is in the middle of the range, zero the part past EOF.
429 * skip over pages which are not PG_FAKE since in that case they have
430 * valid data that we need to preserve.
431 */
432
433 tailstart = bytes;
434 while (tailbytes > 0) {
435 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
436
437 KASSERT(len <= tailbytes);
438 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
439 memset((void *)(kva + tailstart), 0, len);
440 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
441 kva, tailstart, len, 0);
442 }
443 tailstart += len;
444 tailbytes -= len;
445 }
446
447 /*
448 * now loop over the pages, reading as needed.
449 */
450
451 bp = NULL;
452 for (offset = startoffset;
453 bytes > 0;
454 offset += iobytes, bytes -= iobytes) {
455
456 /*
457 * skip pages which don't need to be read.
458 */
459
460 pidx = (offset - startoffset) >> PAGE_SHIFT;
461 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
462 size_t b;
463
464 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
465 if ((pgs[pidx]->flags & PG_RDONLY)) {
466 sawhole = true;
467 }
468 b = MIN(PAGE_SIZE, bytes);
469 offset += b;
470 bytes -= b;
471 skipbytes += b;
472 pidx++;
473 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
474 offset, 0,0,0);
475 if (bytes == 0) {
476 goto loopdone;
477 }
478 }
479
480 /*
481 * bmap the file to find out the blkno to read from and
482 * how much we can read in one i/o. if bmap returns an error,
483 * skip the rest of the top-level i/o.
484 */
485
486 lbn = offset >> fs_bshift;
487 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
488 if (error) {
489 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
490 lbn, error,0,0);
491 skipbytes += bytes;
492 goto loopdone;
493 }
494
495 /*
496 * see how many pages can be read with this i/o.
497 * reduce the i/o size if necessary to avoid
498 * overwriting pages with valid data.
499 */
500
501 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
502 bytes);
503 if (offset + iobytes > round_page(offset)) {
504 pcount = 1;
505 while (pidx + pcount < npages &&
506 pgs[pidx + pcount]->flags & PG_FAKE) {
507 pcount++;
508 }
509 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
510 (offset - trunc_page(offset)));
511 }
512
513 /*
514 * if this block isn't allocated, zero it instead of
515 * reading it. unless we are going to allocate blocks,
516 * mark the pages we zeroed PG_RDONLY.
517 */
518
519 if (blkno < 0) {
520 int holepages = (round_page(offset + iobytes) -
521 trunc_page(offset)) >> PAGE_SHIFT;
522 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
523
524 sawhole = true;
525 memset((char *)kva + (offset - startoffset), 0,
526 iobytes);
527 skipbytes += iobytes;
528
529 for (i = 0; i < holepages; i++) {
530 if (write) {
531 pgs[pidx + i]->flags &= ~PG_CLEAN;
532 }
533 if (!blockalloc) {
534 pgs[pidx + i]->flags |= PG_RDONLY;
535 }
536 }
537 continue;
538 }
539
540 /*
541 * allocate a sub-buf for this piece of the i/o
542 * (or just use mbp if there's only 1 piece),
543 * and start it going.
544 */
545
546 if (offset == startoffset && iobytes == bytes) {
547 bp = mbp;
548 } else {
549 bp = getiobuf(vp, true);
550 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
551 }
552 bp->b_lblkno = 0;
553
554 /* adjust physical blkno for partial blocks */
555 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
556 dev_bshift);
557
558 UVMHIST_LOG(ubchist,
559 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
560 bp, offset, iobytes, bp->b_blkno);
561
562 VOP_STRATEGY(devvp, bp);
563 }
564
565 loopdone:
566 nestiobuf_done(mbp, skipbytes, error);
567 if (async) {
568 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
569 rw_exit(&gp->g_glock);
570 error = 0;
571 goto out_err;
572 }
573 if (bp != NULL) {
574 error = biowait(mbp);
575 }
576 putiobuf(mbp);
577 uvm_pagermapout(kva, npages);
578
579 /*
580 * if this we encountered a hole then we have to do a little more work.
581 * for read faults, we marked the page PG_RDONLY so that future
582 * write accesses to the page will fault again.
583 * for write faults, we must make sure that the backing store for
584 * the page is completely allocated while the pages are locked.
585 */
586
587 if (!error && sawhole && blockalloc) {
588 /*
589 * XXX: This assumes that we come here only via
590 * the mmio path
591 */
592 if (vp->v_mount->mnt_wapbl) {
593 error = WAPBL_BEGIN(vp->v_mount);
594 }
595
596 if (!error) {
597 error = GOP_ALLOC(vp, startoffset,
598 npages << PAGE_SHIFT, 0, cred);
599 if (vp->v_mount->mnt_wapbl) {
600 WAPBL_END(vp->v_mount);
601 }
602 }
603
604 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
605 startoffset, npages << PAGE_SHIFT, error,0);
606 if (!error) {
607 for (i = 0; i < npages; i++) {
608 if (pgs[i] == NULL) {
609 continue;
610 }
611 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
612 UVMHIST_LOG(ubchist, "mark dirty pg %p",
613 pgs[i],0,0,0);
614 }
615 }
616 }
617 rw_exit(&gp->g_glock);
618 mutex_enter(&uobj->vmobjlock);
619
620 /*
621 * we're almost done! release the pages...
622 * for errors, we free the pages.
623 * otherwise we activate them and mark them as valid and clean.
624 * also, unbusy pages that were not actually requested.
625 */
626
627 if (error) {
628 for (i = 0; i < npages; i++) {
629 if (pgs[i] == NULL) {
630 continue;
631 }
632 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
633 pgs[i], pgs[i]->flags, 0,0);
634 if (pgs[i]->flags & PG_FAKE) {
635 pgs[i]->flags |= PG_RELEASED;
636 }
637 }
638 mutex_enter(&uvm_pageqlock);
639 uvm_page_unbusy(pgs, npages);
640 mutex_exit(&uvm_pageqlock);
641 mutex_exit(&uobj->vmobjlock);
642 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
643 goto out_err;
644 }
645
646 out:
647 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
648 error = 0;
649 mutex_enter(&uvm_pageqlock);
650 for (i = 0; i < npages; i++) {
651 pg = pgs[i];
652 if (pg == NULL) {
653 continue;
654 }
655 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
656 pg, pg->flags, 0,0);
657 if (pg->flags & PG_FAKE && !overwrite) {
658 pg->flags &= ~(PG_FAKE);
659 pmap_clear_modify(pgs[i]);
660 }
661 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
662 if (i < ridx || i >= ridx + orignpages || async) {
663 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
664 pg, pg->offset,0,0);
665 if (pg->flags & PG_WANTED) {
666 wakeup(pg);
667 }
668 if (pg->flags & PG_FAKE) {
669 KASSERT(overwrite);
670 uvm_pagezero(pg);
671 }
672 if (pg->flags & PG_RELEASED) {
673 uvm_pagefree(pg);
674 continue;
675 }
676 uvm_pageenqueue(pg);
677 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
678 UVM_PAGE_OWN(pg, NULL);
679 }
680 }
681 mutex_exit(&uvm_pageqlock);
682 mutex_exit(&uobj->vmobjlock);
683 if (ap->a_m != NULL) {
684 memcpy(ap->a_m, &pgs[ridx],
685 orignpages * sizeof(struct vm_page *));
686 }
687
688 out_err:
689 if (pgs != NULL && pgs != pgs_onstack)
690 kmem_free(pgs, pgs_size);
691 if (has_trans)
692 fstrans_done(vp->v_mount);
693 return (error);
694 }
695
696 /*
697 * generic VM putpages routine.
698 * Write the given range of pages to backing store.
699 *
700 * => "offhi == 0" means flush all pages at or after "offlo".
701 * => object should be locked by caller. we return with the
702 * object unlocked.
703 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
704 * thus, a caller might want to unlock higher level resources
705 * (e.g. vm_map) before calling flush.
706 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
707 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
708 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
709 * that new pages are inserted on the tail end of the list. thus,
710 * we can make a complete pass through the object in one go by starting
711 * at the head and working towards the tail (new pages are put in
712 * front of us).
713 * => NOTE: we are allowed to lock the page queues, so the caller
714 * must not be holding the page queue lock.
715 *
716 * note on "cleaning" object and PG_BUSY pages:
717 * this routine is holding the lock on the object. the only time
718 * that it can run into a PG_BUSY page that it does not own is if
719 * some other process has started I/O on the page (e.g. either
720 * a pagein, or a pageout). if the PG_BUSY page is being paged
721 * in, then it can not be dirty (!PG_CLEAN) because no one has
722 * had a chance to modify it yet. if the PG_BUSY page is being
723 * paged out then it means that someone else has already started
724 * cleaning the page for us (how nice!). in this case, if we
725 * have syncio specified, then after we make our pass through the
726 * object we need to wait for the other PG_BUSY pages to clear
727 * off (i.e. we need to do an iosync). also note that once a
728 * page is PG_BUSY it must stay in its object until it is un-busyed.
729 *
730 * note on page traversal:
731 * we can traverse the pages in an object either by going down the
732 * linked list in "uobj->memq", or we can go over the address range
733 * by page doing hash table lookups for each address. depending
734 * on how many pages are in the object it may be cheaper to do one
735 * or the other. we set "by_list" to true if we are using memq.
736 * if the cost of a hash lookup was equal to the cost of the list
737 * traversal we could compare the number of pages in the start->stop
738 * range to the total number of pages in the object. however, it
739 * seems that a hash table lookup is more expensive than the linked
740 * list traversal, so we multiply the number of pages in the
741 * range by an estimate of the relatively higher cost of the hash lookup.
742 */
743
744 int
745 genfs_putpages(void *v)
746 {
747 struct vop_putpages_args /* {
748 struct vnode *a_vp;
749 voff_t a_offlo;
750 voff_t a_offhi;
751 int a_flags;
752 } */ *ap = v;
753
754 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
755 ap->a_flags, NULL);
756 }
757
758 int
759 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
760 int origflags, struct vm_page **busypg)
761 {
762 struct uvm_object *uobj = &vp->v_uobj;
763 kmutex_t *slock = &uobj->vmobjlock;
764 off_t off;
765 /* Even for strange MAXPHYS, the shift rounds down to a page */
766 #define maxpages (MAXPHYS >> PAGE_SHIFT)
767 int i, error, npages, nback;
768 int freeflag;
769 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
770 bool wasclean, by_list, needs_clean, yld;
771 bool async = (origflags & PGO_SYNCIO) == 0;
772 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
773 struct lwp *l = curlwp ? curlwp : &lwp0;
774 struct genfs_node *gp = VTOG(vp);
775 int flags;
776 int dirtygen;
777 bool modified;
778 bool need_wapbl;
779 bool has_trans;
780 bool cleanall;
781 bool onworklst;
782
783 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
784
785 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
786 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
787 KASSERT(startoff < endoff || endoff == 0);
788
789 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
790 vp, uobj->uo_npages, startoff, endoff - startoff);
791
792 has_trans = false;
793 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
794 (origflags & PGO_JOURNALLOCKED) == 0);
795
796 retry:
797 modified = false;
798 flags = origflags;
799 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
800 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
801 if (uobj->uo_npages == 0) {
802 if (vp->v_iflag & VI_ONWORKLST) {
803 vp->v_iflag &= ~VI_WRMAPDIRTY;
804 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
805 vn_syncer_remove_from_worklist(vp);
806 }
807 if (has_trans) {
808 if (need_wapbl)
809 WAPBL_END(vp->v_mount);
810 fstrans_done(vp->v_mount);
811 }
812 mutex_exit(slock);
813 return (0);
814 }
815
816 /*
817 * the vnode has pages, set up to process the request.
818 */
819
820 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
821 mutex_exit(slock);
822 if (pagedaemon) {
823 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
824 if (error)
825 return error;
826 } else
827 fstrans_start(vp->v_mount, FSTRANS_LAZY);
828 if (need_wapbl) {
829 error = WAPBL_BEGIN(vp->v_mount);
830 if (error) {
831 fstrans_done(vp->v_mount);
832 return error;
833 }
834 }
835 has_trans = true;
836 mutex_enter(slock);
837 goto retry;
838 }
839
840 error = 0;
841 wasclean = (vp->v_numoutput == 0);
842 off = startoff;
843 if (endoff == 0 || flags & PGO_ALLPAGES) {
844 endoff = trunc_page(LLONG_MAX);
845 }
846 by_list = (uobj->uo_npages <=
847 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
848
849 #if !defined(DEBUG)
850 /*
851 * if this vnode is known not to have dirty pages,
852 * don't bother to clean it out.
853 */
854
855 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
856 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
857 goto skip_scan;
858 }
859 flags &= ~PGO_CLEANIT;
860 }
861 #endif /* !defined(DEBUG) */
862
863 /*
864 * start the loop. when scanning by list, hold the last page
865 * in the list before we start. pages allocated after we start
866 * will be added to the end of the list, so we can stop at the
867 * current last page.
868 */
869
870 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
871 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
872 (vp->v_iflag & VI_ONWORKLST) != 0;
873 dirtygen = gp->g_dirtygen;
874 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
875 if (by_list) {
876 curmp.uobject = uobj;
877 curmp.offset = (voff_t)-1;
878 curmp.flags = PG_BUSY;
879 endmp.uobject = uobj;
880 endmp.offset = (voff_t)-1;
881 endmp.flags = PG_BUSY;
882 pg = TAILQ_FIRST(&uobj->memq);
883 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
884 uvm_lwp_hold(l);
885 } else {
886 pg = uvm_pagelookup(uobj, off);
887 }
888 nextpg = NULL;
889 while (by_list || off < endoff) {
890
891 /*
892 * if the current page is not interesting, move on to the next.
893 */
894
895 KASSERT(pg == NULL || pg->uobject == uobj);
896 KASSERT(pg == NULL ||
897 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
898 (pg->flags & PG_BUSY) != 0);
899 if (by_list) {
900 if (pg == &endmp) {
901 break;
902 }
903 if (pg->offset < startoff || pg->offset >= endoff ||
904 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
905 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
906 wasclean = false;
907 }
908 pg = TAILQ_NEXT(pg, listq.queue);
909 continue;
910 }
911 off = pg->offset;
912 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
913 if (pg != NULL) {
914 wasclean = false;
915 }
916 off += PAGE_SIZE;
917 if (off < endoff) {
918 pg = uvm_pagelookup(uobj, off);
919 }
920 continue;
921 }
922
923 /*
924 * if the current page needs to be cleaned and it's busy,
925 * wait for it to become unbusy.
926 */
927
928 yld = (l->l_cpu->ci_schedstate.spc_flags &
929 SPCF_SHOULDYIELD) && !pagedaemon;
930 if (pg->flags & PG_BUSY || yld) {
931 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
932 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
933 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
934 error = EDEADLK;
935 if (busypg != NULL)
936 *busypg = pg;
937 break;
938 }
939 if (pagedaemon) {
940 /*
941 * someone has taken the page while we
942 * dropped the lock for fstrans_start.
943 */
944 break;
945 }
946 if (by_list) {
947 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
948 UVMHIST_LOG(ubchist, "curmp next %p",
949 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
950 }
951 if (yld) {
952 mutex_exit(slock);
953 preempt();
954 mutex_enter(slock);
955 } else {
956 pg->flags |= PG_WANTED;
957 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
958 mutex_enter(slock);
959 }
960 if (by_list) {
961 UVMHIST_LOG(ubchist, "after next %p",
962 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
963 pg = TAILQ_NEXT(&curmp, listq.queue);
964 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
965 } else {
966 pg = uvm_pagelookup(uobj, off);
967 }
968 continue;
969 }
970
971 /*
972 * if we're freeing, remove all mappings of the page now.
973 * if we're cleaning, check if the page is needs to be cleaned.
974 */
975
976 if (flags & PGO_FREE) {
977 pmap_page_protect(pg, VM_PROT_NONE);
978 } else if (flags & PGO_CLEANIT) {
979
980 /*
981 * if we still have some hope to pull this vnode off
982 * from the syncer queue, write-protect the page.
983 */
984
985 if (cleanall && wasclean &&
986 gp->g_dirtygen == dirtygen) {
987
988 /*
989 * uobj pages get wired only by uvm_fault
990 * where uobj is locked.
991 */
992
993 if (pg->wire_count == 0) {
994 pmap_page_protect(pg,
995 VM_PROT_READ|VM_PROT_EXECUTE);
996 } else {
997 cleanall = false;
998 }
999 }
1000 }
1001
1002 if (flags & PGO_CLEANIT) {
1003 needs_clean = pmap_clear_modify(pg) ||
1004 (pg->flags & PG_CLEAN) == 0;
1005 pg->flags |= PG_CLEAN;
1006 } else {
1007 needs_clean = false;
1008 }
1009
1010 /*
1011 * if we're cleaning, build a cluster.
1012 * the cluster will consist of pages which are currently dirty,
1013 * but they will be returned to us marked clean.
1014 * if not cleaning, just operate on the one page.
1015 */
1016
1017 if (needs_clean) {
1018 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1019 wasclean = false;
1020 memset(pgs, 0, sizeof(pgs));
1021 pg->flags |= PG_BUSY;
1022 UVM_PAGE_OWN(pg, "genfs_putpages");
1023
1024 /*
1025 * first look backward.
1026 */
1027
1028 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1029 nback = npages;
1030 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1031 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1032 if (nback) {
1033 memmove(&pgs[0], &pgs[npages - nback],
1034 nback * sizeof(pgs[0]));
1035 if (npages - nback < nback)
1036 memset(&pgs[nback], 0,
1037 (npages - nback) * sizeof(pgs[0]));
1038 else
1039 memset(&pgs[npages - nback], 0,
1040 nback * sizeof(pgs[0]));
1041 }
1042
1043 /*
1044 * then plug in our page of interest.
1045 */
1046
1047 pgs[nback] = pg;
1048
1049 /*
1050 * then look forward to fill in the remaining space in
1051 * the array of pages.
1052 */
1053
1054 npages = maxpages - nback - 1;
1055 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1056 &pgs[nback + 1],
1057 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1058 npages += nback + 1;
1059 } else {
1060 pgs[0] = pg;
1061 npages = 1;
1062 nback = 0;
1063 }
1064
1065 /*
1066 * apply FREE or DEACTIVATE options if requested.
1067 */
1068
1069 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1070 mutex_enter(&uvm_pageqlock);
1071 }
1072 for (i = 0; i < npages; i++) {
1073 tpg = pgs[i];
1074 KASSERT(tpg->uobject == uobj);
1075 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1076 pg = tpg;
1077 if (tpg->offset < startoff || tpg->offset >= endoff)
1078 continue;
1079 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1080 uvm_pagedeactivate(tpg);
1081 } else if (flags & PGO_FREE) {
1082 pmap_page_protect(tpg, VM_PROT_NONE);
1083 if (tpg->flags & PG_BUSY) {
1084 tpg->flags |= freeflag;
1085 if (pagedaemon) {
1086 uvm_pageout_start(1);
1087 uvm_pagedequeue(tpg);
1088 }
1089 } else {
1090
1091 /*
1092 * ``page is not busy''
1093 * implies that npages is 1
1094 * and needs_clean is false.
1095 */
1096
1097 nextpg = TAILQ_NEXT(tpg, listq.queue);
1098 uvm_pagefree(tpg);
1099 if (pagedaemon)
1100 uvmexp.pdfreed++;
1101 }
1102 }
1103 }
1104 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1105 mutex_exit(&uvm_pageqlock);
1106 }
1107 if (needs_clean) {
1108 modified = true;
1109
1110 /*
1111 * start the i/o. if we're traversing by list,
1112 * keep our place in the list with a marker page.
1113 */
1114
1115 if (by_list) {
1116 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1117 listq.queue);
1118 }
1119 mutex_exit(slock);
1120 error = GOP_WRITE(vp, pgs, npages, flags);
1121 mutex_enter(slock);
1122 if (by_list) {
1123 pg = TAILQ_NEXT(&curmp, listq.queue);
1124 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1125 }
1126 if (error) {
1127 break;
1128 }
1129 if (by_list) {
1130 continue;
1131 }
1132 }
1133
1134 /*
1135 * find the next page and continue if there was no error.
1136 */
1137
1138 if (by_list) {
1139 if (nextpg) {
1140 pg = nextpg;
1141 nextpg = NULL;
1142 } else {
1143 pg = TAILQ_NEXT(pg, listq.queue);
1144 }
1145 } else {
1146 off += (npages - nback) << PAGE_SHIFT;
1147 if (off < endoff) {
1148 pg = uvm_pagelookup(uobj, off);
1149 }
1150 }
1151 }
1152 if (by_list) {
1153 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1154 uvm_lwp_rele(l);
1155 }
1156
1157 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1158 (vp->v_type != VBLK ||
1159 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1160 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1161 }
1162
1163 /*
1164 * if we're cleaning and there was nothing to clean,
1165 * take us off the syncer list. if we started any i/o
1166 * and we're doing sync i/o, wait for all writes to finish.
1167 */
1168
1169 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1170 (vp->v_iflag & VI_ONWORKLST) != 0) {
1171 #if defined(DEBUG)
1172 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1173 if ((pg->flags & PG_CLEAN) == 0) {
1174 printf("%s: %p: !CLEAN\n", __func__, pg);
1175 }
1176 if (pmap_is_modified(pg)) {
1177 printf("%s: %p: modified\n", __func__, pg);
1178 }
1179 }
1180 #endif /* defined(DEBUG) */
1181 vp->v_iflag &= ~VI_WRMAPDIRTY;
1182 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1183 vn_syncer_remove_from_worklist(vp);
1184 }
1185
1186 #if !defined(DEBUG)
1187 skip_scan:
1188 #endif /* !defined(DEBUG) */
1189
1190 /* Wait for output to complete. */
1191 if (!wasclean && !async && vp->v_numoutput != 0) {
1192 while (vp->v_numoutput != 0)
1193 cv_wait(&vp->v_cv, slock);
1194 }
1195 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1196 mutex_exit(slock);
1197
1198 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1199 /*
1200 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1201 * retrying is not a big deal because, in many cases,
1202 * uobj->uo_npages is already 0 here.
1203 */
1204 mutex_enter(slock);
1205 goto retry;
1206 }
1207
1208 if (has_trans) {
1209 if (need_wapbl)
1210 WAPBL_END(vp->v_mount);
1211 fstrans_done(vp->v_mount);
1212 }
1213
1214 return (error);
1215 }
1216
1217 int
1218 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1219 {
1220 off_t off;
1221 vaddr_t kva;
1222 size_t len;
1223 int error;
1224 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1225
1226 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1227 vp, pgs, npages, flags);
1228
1229 off = pgs[0]->offset;
1230 kva = uvm_pagermapin(pgs, npages,
1231 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1232 len = npages << PAGE_SHIFT;
1233
1234 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1235 uvm_aio_biodone);
1236
1237 return error;
1238 }
1239
1240 int
1241 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1242 {
1243 off_t off;
1244 vaddr_t kva;
1245 size_t len;
1246 int error;
1247 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1248
1249 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1250 vp, pgs, npages, flags);
1251
1252 off = pgs[0]->offset;
1253 kva = uvm_pagermapin(pgs, npages,
1254 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1255 len = npages << PAGE_SHIFT;
1256
1257 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1258 uvm_aio_biodone);
1259
1260 return error;
1261 }
1262
1263 /*
1264 * Backend routine for doing I/O to vnode pages. Pages are already locked
1265 * and mapped into kernel memory. Here we just look up the underlying
1266 * device block addresses and call the strategy routine.
1267 */
1268
1269 static int
1270 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1271 enum uio_rw rw, void (*iodone)(struct buf *))
1272 {
1273 int s, error, run;
1274 int fs_bshift, dev_bshift;
1275 off_t eof, offset, startoffset;
1276 size_t bytes, iobytes, skipbytes;
1277 daddr_t lbn, blkno;
1278 struct buf *mbp, *bp;
1279 struct vnode *devvp;
1280 bool async = (flags & PGO_SYNCIO) == 0;
1281 bool write = rw == UIO_WRITE;
1282 int brw = write ? B_WRITE : B_READ;
1283 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1284
1285 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1286 vp, kva, len, flags);
1287
1288 KASSERT(vp->v_size <= vp->v_writesize);
1289 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1290 if (vp->v_type != VBLK) {
1291 fs_bshift = vp->v_mount->mnt_fs_bshift;
1292 dev_bshift = vp->v_mount->mnt_dev_bshift;
1293 } else {
1294 fs_bshift = DEV_BSHIFT;
1295 dev_bshift = DEV_BSHIFT;
1296 }
1297 error = 0;
1298 startoffset = off;
1299 bytes = MIN(len, eof - startoffset);
1300 skipbytes = 0;
1301 KASSERT(bytes != 0);
1302
1303 if (write) {
1304 mutex_enter(&vp->v_interlock);
1305 vp->v_numoutput += 2;
1306 mutex_exit(&vp->v_interlock);
1307 }
1308 mbp = getiobuf(vp, true);
1309 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1310 vp, mbp, vp->v_numoutput, bytes);
1311 mbp->b_bufsize = len;
1312 mbp->b_data = (void *)kva;
1313 mbp->b_resid = mbp->b_bcount = bytes;
1314 mbp->b_cflags = BC_BUSY | BC_AGE;
1315 if (async) {
1316 mbp->b_flags = brw | B_ASYNC;
1317 mbp->b_iodone = iodone;
1318 } else {
1319 mbp->b_flags = brw;
1320 mbp->b_iodone = NULL;
1321 }
1322 if (curlwp == uvm.pagedaemon_lwp)
1323 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1324 else if (async)
1325 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1326 else
1327 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1328
1329 bp = NULL;
1330 for (offset = startoffset;
1331 bytes > 0;
1332 offset += iobytes, bytes -= iobytes) {
1333 lbn = offset >> fs_bshift;
1334 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1335 if (error) {
1336 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1337 skipbytes += bytes;
1338 bytes = 0;
1339 break;
1340 }
1341
1342 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1343 bytes);
1344 if (blkno == (daddr_t)-1) {
1345 if (!write) {
1346 memset((char *)kva + (offset - startoffset), 0,
1347 iobytes);
1348 }
1349 skipbytes += iobytes;
1350 continue;
1351 }
1352
1353 /* if it's really one i/o, don't make a second buf */
1354 if (offset == startoffset && iobytes == bytes) {
1355 bp = mbp;
1356 } else {
1357 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1358 vp, bp, vp->v_numoutput, 0);
1359 bp = getiobuf(vp, true);
1360 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1361 }
1362 bp->b_lblkno = 0;
1363
1364 /* adjust physical blkno for partial blocks */
1365 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1366 dev_bshift);
1367 UVMHIST_LOG(ubchist,
1368 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1369 vp, offset, bp->b_bcount, bp->b_blkno);
1370
1371 VOP_STRATEGY(devvp, bp);
1372 }
1373 if (skipbytes) {
1374 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1375 }
1376 nestiobuf_done(mbp, skipbytes, error);
1377 if (async) {
1378 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1379 return (0);
1380 }
1381 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1382 error = biowait(mbp);
1383 s = splbio();
1384 (*iodone)(mbp);
1385 splx(s);
1386 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1387 return (error);
1388 }
1389
1390 /*
1391 * VOP_PUTPAGES() for vnodes which never have pages.
1392 */
1393
1394 int
1395 genfs_null_putpages(void *v)
1396 {
1397 struct vop_putpages_args /* {
1398 struct vnode *a_vp;
1399 voff_t a_offlo;
1400 voff_t a_offhi;
1401 int a_flags;
1402 } */ *ap = v;
1403 struct vnode *vp = ap->a_vp;
1404
1405 KASSERT(vp->v_uobj.uo_npages == 0);
1406 mutex_exit(&vp->v_interlock);
1407 return (0);
1408 }
1409
1410 int
1411 genfs_compat_getpages(void *v)
1412 {
1413 struct vop_getpages_args /* {
1414 struct vnode *a_vp;
1415 voff_t a_offset;
1416 struct vm_page **a_m;
1417 int *a_count;
1418 int a_centeridx;
1419 vm_prot_t a_access_type;
1420 int a_advice;
1421 int a_flags;
1422 } */ *ap = v;
1423
1424 off_t origoffset;
1425 struct vnode *vp = ap->a_vp;
1426 struct uvm_object *uobj = &vp->v_uobj;
1427 struct vm_page *pg, **pgs;
1428 vaddr_t kva;
1429 int i, error, orignpages, npages;
1430 struct iovec iov;
1431 struct uio uio;
1432 kauth_cred_t cred = curlwp->l_cred;
1433 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1434
1435 error = 0;
1436 origoffset = ap->a_offset;
1437 orignpages = *ap->a_count;
1438 pgs = ap->a_m;
1439
1440 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1441 vn_syncer_add_to_worklist(vp, filedelay);
1442 }
1443 if (ap->a_flags & PGO_LOCKED) {
1444 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1445 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1446
1447 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1448 }
1449 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1450 mutex_exit(&uobj->vmobjlock);
1451 return (EINVAL);
1452 }
1453 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1454 mutex_exit(&uobj->vmobjlock);
1455 return 0;
1456 }
1457 npages = orignpages;
1458 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1459 mutex_exit(&uobj->vmobjlock);
1460 kva = uvm_pagermapin(pgs, npages,
1461 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1462 for (i = 0; i < npages; i++) {
1463 pg = pgs[i];
1464 if ((pg->flags & PG_FAKE) == 0) {
1465 continue;
1466 }
1467 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1468 iov.iov_len = PAGE_SIZE;
1469 uio.uio_iov = &iov;
1470 uio.uio_iovcnt = 1;
1471 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1472 uio.uio_rw = UIO_READ;
1473 uio.uio_resid = PAGE_SIZE;
1474 UIO_SETUP_SYSSPACE(&uio);
1475 /* XXX vn_lock */
1476 error = VOP_READ(vp, &uio, 0, cred);
1477 if (error) {
1478 break;
1479 }
1480 if (uio.uio_resid) {
1481 memset(iov.iov_base, 0, uio.uio_resid);
1482 }
1483 }
1484 uvm_pagermapout(kva, npages);
1485 mutex_enter(&uobj->vmobjlock);
1486 mutex_enter(&uvm_pageqlock);
1487 for (i = 0; i < npages; i++) {
1488 pg = pgs[i];
1489 if (error && (pg->flags & PG_FAKE) != 0) {
1490 pg->flags |= PG_RELEASED;
1491 } else {
1492 pmap_clear_modify(pg);
1493 uvm_pageactivate(pg);
1494 }
1495 }
1496 if (error) {
1497 uvm_page_unbusy(pgs, npages);
1498 }
1499 mutex_exit(&uvm_pageqlock);
1500 mutex_exit(&uobj->vmobjlock);
1501 return (error);
1502 }
1503
1504 int
1505 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1506 int flags)
1507 {
1508 off_t offset;
1509 struct iovec iov;
1510 struct uio uio;
1511 kauth_cred_t cred = curlwp->l_cred;
1512 struct buf *bp;
1513 vaddr_t kva;
1514 int error;
1515
1516 offset = pgs[0]->offset;
1517 kva = uvm_pagermapin(pgs, npages,
1518 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1519
1520 iov.iov_base = (void *)kva;
1521 iov.iov_len = npages << PAGE_SHIFT;
1522 uio.uio_iov = &iov;
1523 uio.uio_iovcnt = 1;
1524 uio.uio_offset = offset;
1525 uio.uio_rw = UIO_WRITE;
1526 uio.uio_resid = npages << PAGE_SHIFT;
1527 UIO_SETUP_SYSSPACE(&uio);
1528 /* XXX vn_lock */
1529 error = VOP_WRITE(vp, &uio, 0, cred);
1530
1531 mutex_enter(&vp->v_interlock);
1532 vp->v_numoutput++;
1533 mutex_exit(&vp->v_interlock);
1534
1535 bp = getiobuf(vp, true);
1536 bp->b_cflags = BC_BUSY | BC_AGE;
1537 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1538 bp->b_data = (char *)kva;
1539 bp->b_bcount = npages << PAGE_SHIFT;
1540 bp->b_bufsize = npages << PAGE_SHIFT;
1541 bp->b_resid = 0;
1542 bp->b_error = error;
1543 uvm_aio_aiodone(bp);
1544 return (error);
1545 }
1546
1547 /*
1548 * Process a uio using direct I/O. If we reach a part of the request
1549 * which cannot be processed in this fashion for some reason, just return.
1550 * The caller must handle some additional part of the request using
1551 * buffered I/O before trying direct I/O again.
1552 */
1553
1554 void
1555 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1556 {
1557 struct vmspace *vs;
1558 struct iovec *iov;
1559 vaddr_t va;
1560 size_t len;
1561 const int mask = DEV_BSIZE - 1;
1562 int error;
1563 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1564 (ioflag & IO_JOURNALLOCKED) == 0);
1565
1566 /*
1567 * We only support direct I/O to user space for now.
1568 */
1569
1570 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1571 return;
1572 }
1573
1574 /*
1575 * If the vnode is mapped, we would need to get the getpages lock
1576 * to stabilize the bmap, but then we would get into trouble whil e
1577 * locking the pages if the pages belong to this same vnode (or a
1578 * multi-vnode cascade to the same effect). Just fall back to
1579 * buffered I/O if the vnode is mapped to avoid this mess.
1580 */
1581
1582 if (vp->v_vflag & VV_MAPPED) {
1583 return;
1584 }
1585
1586 if (need_wapbl) {
1587 error = WAPBL_BEGIN(vp->v_mount);
1588 if (error)
1589 return;
1590 }
1591
1592 /*
1593 * Do as much of the uio as possible with direct I/O.
1594 */
1595
1596 vs = uio->uio_vmspace;
1597 while (uio->uio_resid) {
1598 iov = uio->uio_iov;
1599 if (iov->iov_len == 0) {
1600 uio->uio_iov++;
1601 uio->uio_iovcnt--;
1602 continue;
1603 }
1604 va = (vaddr_t)iov->iov_base;
1605 len = MIN(iov->iov_len, genfs_maxdio);
1606 len &= ~mask;
1607
1608 /*
1609 * If the next chunk is smaller than DEV_BSIZE or extends past
1610 * the current EOF, then fall back to buffered I/O.
1611 */
1612
1613 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1614 break;
1615 }
1616
1617 /*
1618 * Check alignment. The file offset must be at least
1619 * sector-aligned. The exact constraint on memory alignment
1620 * is very hardware-dependent, but requiring sector-aligned
1621 * addresses there too is safe.
1622 */
1623
1624 if (uio->uio_offset & mask || va & mask) {
1625 break;
1626 }
1627 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1628 uio->uio_rw);
1629 if (error) {
1630 break;
1631 }
1632 iov->iov_base = (char *)iov->iov_base + len;
1633 iov->iov_len -= len;
1634 uio->uio_offset += len;
1635 uio->uio_resid -= len;
1636 }
1637
1638 if (need_wapbl)
1639 WAPBL_END(vp->v_mount);
1640 }
1641
1642 /*
1643 * Iodone routine for direct I/O. We don't do much here since the request is
1644 * always synchronous, so the caller will do most of the work after biowait().
1645 */
1646
1647 static void
1648 genfs_dio_iodone(struct buf *bp)
1649 {
1650
1651 KASSERT((bp->b_flags & B_ASYNC) == 0);
1652 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1653 mutex_enter(bp->b_objlock);
1654 vwakeup(bp);
1655 mutex_exit(bp->b_objlock);
1656 }
1657 putiobuf(bp);
1658 }
1659
1660 /*
1661 * Process one chunk of a direct I/O request.
1662 */
1663
1664 static int
1665 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1666 off_t off, enum uio_rw rw)
1667 {
1668 struct vm_map *map;
1669 struct pmap *upm, *kpm;
1670 size_t klen = round_page(uva + len) - trunc_page(uva);
1671 off_t spoff, epoff;
1672 vaddr_t kva, puva;
1673 paddr_t pa;
1674 vm_prot_t prot;
1675 int error, rv, poff, koff;
1676 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1677 (rw == UIO_WRITE ? PGO_FREE : 0);
1678
1679 /*
1680 * For writes, verify that this range of the file already has fully
1681 * allocated backing store. If there are any holes, just punt and
1682 * make the caller take the buffered write path.
1683 */
1684
1685 if (rw == UIO_WRITE) {
1686 daddr_t lbn, elbn, blkno;
1687 int bsize, bshift, run;
1688
1689 bshift = vp->v_mount->mnt_fs_bshift;
1690 bsize = 1 << bshift;
1691 lbn = off >> bshift;
1692 elbn = (off + len + bsize - 1) >> bshift;
1693 while (lbn < elbn) {
1694 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1695 if (error) {
1696 return error;
1697 }
1698 if (blkno == (daddr_t)-1) {
1699 return ENOSPC;
1700 }
1701 lbn += 1 + run;
1702 }
1703 }
1704
1705 /*
1706 * Flush any cached pages for parts of the file that we're about to
1707 * access. If we're writing, invalidate pages as well.
1708 */
1709
1710 spoff = trunc_page(off);
1711 epoff = round_page(off + len);
1712 mutex_enter(&vp->v_interlock);
1713 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1714 if (error) {
1715 return error;
1716 }
1717
1718 /*
1719 * Wire the user pages and remap them into kernel memory.
1720 */
1721
1722 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1723 error = uvm_vslock(vs, (void *)uva, len, prot);
1724 if (error) {
1725 return error;
1726 }
1727
1728 map = &vs->vm_map;
1729 upm = vm_map_pmap(map);
1730 kpm = vm_map_pmap(kernel_map);
1731 kva = uvm_km_alloc(kernel_map, klen, 0,
1732 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1733 puva = trunc_page(uva);
1734 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1735 rv = pmap_extract(upm, puva + poff, &pa);
1736 KASSERT(rv);
1737 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1738 }
1739 pmap_update(kpm);
1740
1741 /*
1742 * Do the I/O.
1743 */
1744
1745 koff = uva - trunc_page(uva);
1746 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1747 genfs_dio_iodone);
1748
1749 /*
1750 * Tear down the kernel mapping.
1751 */
1752
1753 pmap_remove(kpm, kva, kva + klen);
1754 pmap_update(kpm);
1755 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1756
1757 /*
1758 * Unwire the user pages.
1759 */
1760
1761 uvm_vsunlock(vs, (void *)uva, len);
1762 return error;
1763 }
1764
1765