Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.16
      1 /*	$NetBSD: genfs_io.c,v 1.16 2008/12/01 11:22:12 joerg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.16 2008/12/01 11:22:12 joerg Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 #include <sys/buf.h>
     51 
     52 #include <miscfs/genfs/genfs.h>
     53 #include <miscfs/genfs/genfs_node.h>
     54 #include <miscfs/specfs/specdev.h>
     55 
     56 #include <uvm/uvm.h>
     57 #include <uvm/uvm_pager.h>
     58 
     59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     60     off_t, enum uio_rw);
     61 static void genfs_dio_iodone(struct buf *);
     62 
     63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     64     void (*)(struct buf *));
     65 static inline void genfs_rel_pages(struct vm_page **, int);
     66 
     67 int genfs_maxdio = MAXPHYS;
     68 
     69 static inline void
     70 genfs_rel_pages(struct vm_page **pgs, int npages)
     71 {
     72 	int i;
     73 
     74 	for (i = 0; i < npages; i++) {
     75 		struct vm_page *pg = pgs[i];
     76 
     77 		if (pg == NULL || pg == PGO_DONTCARE)
     78 			continue;
     79 		if (pg->flags & PG_FAKE) {
     80 			pg->flags |= PG_RELEASED;
     81 		}
     82 	}
     83 	mutex_enter(&uvm_pageqlock);
     84 	uvm_page_unbusy(pgs, npages);
     85 	mutex_exit(&uvm_pageqlock);
     86 }
     87 
     88 /*
     89  * generic VM getpages routine.
     90  * Return PG_BUSY pages for the given range,
     91  * reading from backing store if necessary.
     92  */
     93 
     94 int
     95 genfs_getpages(void *v)
     96 {
     97 	struct vop_getpages_args /* {
     98 		struct vnode *a_vp;
     99 		voff_t a_offset;
    100 		struct vm_page **a_m;
    101 		int *a_count;
    102 		int a_centeridx;
    103 		vm_prot_t a_access_type;
    104 		int a_advice;
    105 		int a_flags;
    106 	} */ *ap = v;
    107 
    108 	off_t newsize, diskeof, memeof;
    109 	off_t offset, origoffset, startoffset, endoffset;
    110 	daddr_t lbn, blkno;
    111 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    112 	int fs_bshift, fs_bsize, dev_bshift;
    113 	const int flags = ap->a_flags;
    114 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    115 	vaddr_t kva;
    116 	struct buf *bp, *mbp;
    117 	struct vnode *vp = ap->a_vp;
    118 	struct vnode *devvp;
    119 	struct genfs_node *gp = VTOG(vp);
    120 	struct uvm_object *uobj = &vp->v_uobj;
    121 	struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
    122 	int pgs_size;
    123 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    124 	const bool async = (flags & PGO_SYNCIO) == 0;
    125 	const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    126 	bool sawhole = false;
    127 	bool has_trans = false;
    128 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    129 	const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    130 	voff_t origvsize;
    131 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    132 
    133 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    134 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    135 
    136 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    137 	    vp->v_type == VLNK || vp->v_type == VBLK);
    138 
    139 	pgs = NULL;
    140 	pgs_size = 0;
    141 
    142 startover:
    143 	error = 0;
    144 	origvsize = vp->v_size;
    145 	origoffset = ap->a_offset;
    146 	orignpages = *ap->a_count;
    147 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    148 	if (flags & PGO_PASTEOF) {
    149 #if defined(DIAGNOSTIC)
    150 		off_t writeeof;
    151 #endif /* defined(DIAGNOSTIC) */
    152 
    153 		newsize = MAX(origvsize,
    154 		    origoffset + (orignpages << PAGE_SHIFT));
    155 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    156 #if defined(DIAGNOSTIC)
    157 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    158 		if (newsize > round_page(writeeof)) {
    159 			panic("%s: past eof", __func__);
    160 		}
    161 #endif /* defined(DIAGNOSTIC) */
    162 	} else {
    163 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    164 	}
    165 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    166 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    167 	KASSERT(orignpages > 0);
    168 
    169 	/*
    170 	 * Bounds-check the request.
    171 	 */
    172 
    173 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    174 		if ((flags & PGO_LOCKED) == 0) {
    175 			mutex_exit(&uobj->vmobjlock);
    176 		}
    177 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    178 		    origoffset, *ap->a_count, memeof,0);
    179 		error = EINVAL;
    180 		goto out_err;
    181 	}
    182 
    183 	/* uobj is locked */
    184 
    185 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    186 	    (vp->v_type != VBLK ||
    187 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    188 		int updflags = 0;
    189 
    190 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    191 			updflags = GOP_UPDATE_ACCESSED;
    192 		}
    193 		if (write) {
    194 			updflags |= GOP_UPDATE_MODIFIED;
    195 		}
    196 		if (updflags != 0) {
    197 			GOP_MARKUPDATE(vp, updflags);
    198 		}
    199 	}
    200 
    201 	if (write) {
    202 		gp->g_dirtygen++;
    203 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    204 			vn_syncer_add_to_worklist(vp, filedelay);
    205 		}
    206 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    207 			vp->v_iflag |= VI_WRMAPDIRTY;
    208 		}
    209 	}
    210 
    211 	/*
    212 	 * For PGO_LOCKED requests, just return whatever's in memory.
    213 	 */
    214 
    215 	if (flags & PGO_LOCKED) {
    216 		int nfound;
    217 
    218 		npages = *ap->a_count;
    219 #if defined(DEBUG)
    220 		for (i = 0; i < npages; i++) {
    221 			pg = ap->a_m[i];
    222 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    223 		}
    224 #endif /* defined(DEBUG) */
    225 		nfound = uvn_findpages(uobj, origoffset, &npages,
    226 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    227 		KASSERT(npages == *ap->a_count);
    228 		if (nfound == 0) {
    229 			error = EBUSY;
    230 			goto out_err;
    231 		}
    232 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
    233 			genfs_rel_pages(ap->a_m, npages);
    234 
    235 			/*
    236 			 * restore the array.
    237 			 */
    238 
    239 			for (i = 0; i < npages; i++) {
    240 				pg = ap->a_m[i];
    241 
    242 				if (pg != NULL || pg != PGO_DONTCARE) {
    243 					ap->a_m[i] = NULL;
    244 				}
    245 			}
    246 		} else {
    247 			rw_exit(&gp->g_glock);
    248 		}
    249 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    250 		goto out_err;
    251 	}
    252 	mutex_exit(&uobj->vmobjlock);
    253 
    254 	/*
    255 	 * find the requested pages and make some simple checks.
    256 	 * leave space in the page array for a whole block.
    257 	 */
    258 
    259 	if (vp->v_type != VBLK) {
    260 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    261 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    262 	} else {
    263 		fs_bshift = DEV_BSHIFT;
    264 		dev_bshift = DEV_BSHIFT;
    265 	}
    266 	fs_bsize = 1 << fs_bshift;
    267 
    268 	orignpages = MIN(orignpages,
    269 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    270 	npages = orignpages;
    271 	startoffset = origoffset & ~(fs_bsize - 1);
    272 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    273 	    fs_bsize - 1) & ~(fs_bsize - 1));
    274 	endoffset = MIN(endoffset, round_page(memeof));
    275 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    276 
    277 	pgs_size = sizeof(struct vm_page *) *
    278 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    279 	if (pgs_size > sizeof(pgs_onstack)) {
    280 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    281 		if (pgs == NULL) {
    282 			pgs = pgs_onstack;
    283 			error = ENOMEM;
    284 			goto out_err;
    285 		}
    286 	} else {
    287 		pgs = pgs_onstack;
    288 		(void)memset(pgs, 0, pgs_size);
    289 	}
    290 
    291 
    292 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    293 	    ridx, npages, startoffset, endoffset);
    294 
    295 	if (!has_trans) {
    296 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    297 		has_trans = true;
    298 	}
    299 
    300 	/*
    301 	 * hold g_glock to prevent a race with truncate.
    302 	 *
    303 	 * check if our idea of v_size is still valid.
    304 	 */
    305 
    306 	if (blockalloc) {
    307 		rw_enter(&gp->g_glock, RW_WRITER);
    308 	} else {
    309 		rw_enter(&gp->g_glock, RW_READER);
    310 	}
    311 	mutex_enter(&uobj->vmobjlock);
    312 	if (vp->v_size < origvsize) {
    313 		rw_exit(&gp->g_glock);
    314 		if (pgs != pgs_onstack)
    315 			kmem_free(pgs, pgs_size);
    316 		goto startover;
    317 	}
    318 
    319 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    320 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    321 		rw_exit(&gp->g_glock);
    322 		KASSERT(async != 0);
    323 		genfs_rel_pages(&pgs[ridx], orignpages);
    324 		mutex_exit(&uobj->vmobjlock);
    325 		error = EBUSY;
    326 		goto out_err;
    327 	}
    328 
    329 	/*
    330 	 * if the pages are already resident, just return them.
    331 	 */
    332 
    333 	for (i = 0; i < npages; i++) {
    334 		struct vm_page *pg1 = pgs[ridx + i];
    335 
    336 		if ((pg1->flags & PG_FAKE) ||
    337 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    338 			break;
    339 		}
    340 	}
    341 	if (i == npages) {
    342 		rw_exit(&gp->g_glock);
    343 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    344 		npages += ridx;
    345 		goto out;
    346 	}
    347 
    348 	/*
    349 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    350 	 */
    351 
    352 	if (overwrite) {
    353 		rw_exit(&gp->g_glock);
    354 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    355 
    356 		for (i = 0; i < npages; i++) {
    357 			struct vm_page *pg1 = pgs[ridx + i];
    358 
    359 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    360 		}
    361 		npages += ridx;
    362 		goto out;
    363 	}
    364 
    365 	/*
    366 	 * the page wasn't resident and we're not overwriting,
    367 	 * so we're going to have to do some i/o.
    368 	 * find any additional pages needed to cover the expanded range.
    369 	 */
    370 
    371 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    372 	if (startoffset != origoffset || npages != orignpages) {
    373 
    374 		/*
    375 		 * we need to avoid deadlocks caused by locking
    376 		 * additional pages at lower offsets than pages we
    377 		 * already have locked.  unlock them all and start over.
    378 		 */
    379 
    380 		genfs_rel_pages(&pgs[ridx], orignpages);
    381 		memset(pgs, 0, pgs_size);
    382 
    383 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    384 		    startoffset, endoffset, 0,0);
    385 		npgs = npages;
    386 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    387 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    388 			rw_exit(&gp->g_glock);
    389 			KASSERT(async != 0);
    390 			genfs_rel_pages(pgs, npages);
    391 			mutex_exit(&uobj->vmobjlock);
    392 			error = EBUSY;
    393 			goto out_err;
    394 		}
    395 	}
    396 	mutex_exit(&uobj->vmobjlock);
    397 
    398 	/*
    399 	 * read the desired page(s).
    400 	 */
    401 
    402 	totalbytes = npages << PAGE_SHIFT;
    403 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    404 	tailbytes = totalbytes - bytes;
    405 	skipbytes = 0;
    406 
    407 	kva = uvm_pagermapin(pgs, npages,
    408 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    409 
    410 	mbp = getiobuf(vp, true);
    411 	mbp->b_bufsize = totalbytes;
    412 	mbp->b_data = (void *)kva;
    413 	mbp->b_resid = mbp->b_bcount = bytes;
    414 	mbp->b_cflags = BC_BUSY;
    415 	if (async) {
    416 		mbp->b_flags = B_READ | B_ASYNC;
    417 		mbp->b_iodone = uvm_aio_biodone;
    418 	} else {
    419 		mbp->b_flags = B_READ;
    420 		mbp->b_iodone = NULL;
    421 	}
    422 	if (async)
    423 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    424 	else
    425 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    426 
    427 	/*
    428 	 * if EOF is in the middle of the range, zero the part past EOF.
    429 	 * skip over pages which are not PG_FAKE since in that case they have
    430 	 * valid data that we need to preserve.
    431 	 */
    432 
    433 	tailstart = bytes;
    434 	while (tailbytes > 0) {
    435 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    436 
    437 		KASSERT(len <= tailbytes);
    438 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    439 			memset((void *)(kva + tailstart), 0, len);
    440 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    441 			    kva, tailstart, len, 0);
    442 		}
    443 		tailstart += len;
    444 		tailbytes -= len;
    445 	}
    446 
    447 	/*
    448 	 * now loop over the pages, reading as needed.
    449 	 */
    450 
    451 	bp = NULL;
    452 	for (offset = startoffset;
    453 	    bytes > 0;
    454 	    offset += iobytes, bytes -= iobytes) {
    455 
    456 		/*
    457 		 * skip pages which don't need to be read.
    458 		 */
    459 
    460 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    461 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    462 			size_t b;
    463 
    464 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    465 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    466 				sawhole = true;
    467 			}
    468 			b = MIN(PAGE_SIZE, bytes);
    469 			offset += b;
    470 			bytes -= b;
    471 			skipbytes += b;
    472 			pidx++;
    473 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    474 			    offset, 0,0,0);
    475 			if (bytes == 0) {
    476 				goto loopdone;
    477 			}
    478 		}
    479 
    480 		/*
    481 		 * bmap the file to find out the blkno to read from and
    482 		 * how much we can read in one i/o.  if bmap returns an error,
    483 		 * skip the rest of the top-level i/o.
    484 		 */
    485 
    486 		lbn = offset >> fs_bshift;
    487 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    488 		if (error) {
    489 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    490 			    lbn, error,0,0);
    491 			skipbytes += bytes;
    492 			goto loopdone;
    493 		}
    494 
    495 		/*
    496 		 * see how many pages can be read with this i/o.
    497 		 * reduce the i/o size if necessary to avoid
    498 		 * overwriting pages with valid data.
    499 		 */
    500 
    501 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    502 		    bytes);
    503 		if (offset + iobytes > round_page(offset)) {
    504 			pcount = 1;
    505 			while (pidx + pcount < npages &&
    506 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    507 				pcount++;
    508 			}
    509 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    510 			    (offset - trunc_page(offset)));
    511 		}
    512 
    513 		/*
    514 		 * if this block isn't allocated, zero it instead of
    515 		 * reading it.  unless we are going to allocate blocks,
    516 		 * mark the pages we zeroed PG_RDONLY.
    517 		 */
    518 
    519 		if (blkno < 0) {
    520 			int holepages = (round_page(offset + iobytes) -
    521 			    trunc_page(offset)) >> PAGE_SHIFT;
    522 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    523 
    524 			sawhole = true;
    525 			memset((char *)kva + (offset - startoffset), 0,
    526 			    iobytes);
    527 			skipbytes += iobytes;
    528 
    529 			for (i = 0; i < holepages; i++) {
    530 				if (write) {
    531 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    532 				}
    533 				if (!blockalloc) {
    534 					pgs[pidx + i]->flags |= PG_RDONLY;
    535 				}
    536 			}
    537 			continue;
    538 		}
    539 
    540 		/*
    541 		 * allocate a sub-buf for this piece of the i/o
    542 		 * (or just use mbp if there's only 1 piece),
    543 		 * and start it going.
    544 		 */
    545 
    546 		if (offset == startoffset && iobytes == bytes) {
    547 			bp = mbp;
    548 		} else {
    549 			bp = getiobuf(vp, true);
    550 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    551 		}
    552 		bp->b_lblkno = 0;
    553 
    554 		/* adjust physical blkno for partial blocks */
    555 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    556 		    dev_bshift);
    557 
    558 		UVMHIST_LOG(ubchist,
    559 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    560 		    bp, offset, iobytes, bp->b_blkno);
    561 
    562 		VOP_STRATEGY(devvp, bp);
    563 	}
    564 
    565 loopdone:
    566 	nestiobuf_done(mbp, skipbytes, error);
    567 	if (async) {
    568 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    569 		rw_exit(&gp->g_glock);
    570 		error = 0;
    571 		goto out_err;
    572 	}
    573 	if (bp != NULL) {
    574 		error = biowait(mbp);
    575 	}
    576 	putiobuf(mbp);
    577 	uvm_pagermapout(kva, npages);
    578 
    579 	/*
    580 	 * if this we encountered a hole then we have to do a little more work.
    581 	 * for read faults, we marked the page PG_RDONLY so that future
    582 	 * write accesses to the page will fault again.
    583 	 * for write faults, we must make sure that the backing store for
    584 	 * the page is completely allocated while the pages are locked.
    585 	 */
    586 
    587 	if (!error && sawhole && blockalloc) {
    588 		/*
    589 		 * XXX: This assumes that we come here only via
    590 		 * the mmio path
    591 		 */
    592 		if (vp->v_mount->mnt_wapbl) {
    593 			error = WAPBL_BEGIN(vp->v_mount);
    594 		}
    595 
    596 		if (!error) {
    597 			error = GOP_ALLOC(vp, startoffset,
    598 			    npages << PAGE_SHIFT, 0, cred);
    599 			if (vp->v_mount->mnt_wapbl) {
    600 				WAPBL_END(vp->v_mount);
    601 			}
    602 		}
    603 
    604 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    605 		    startoffset, npages << PAGE_SHIFT, error,0);
    606 		if (!error) {
    607 			for (i = 0; i < npages; i++) {
    608 				if (pgs[i] == NULL) {
    609 					continue;
    610 				}
    611 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    612 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    613 				    pgs[i],0,0,0);
    614 			}
    615 		}
    616 	}
    617 	rw_exit(&gp->g_glock);
    618 	mutex_enter(&uobj->vmobjlock);
    619 
    620 	/*
    621 	 * we're almost done!  release the pages...
    622 	 * for errors, we free the pages.
    623 	 * otherwise we activate them and mark them as valid and clean.
    624 	 * also, unbusy pages that were not actually requested.
    625 	 */
    626 
    627 	if (error) {
    628 		for (i = 0; i < npages; i++) {
    629 			if (pgs[i] == NULL) {
    630 				continue;
    631 			}
    632 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    633 			    pgs[i], pgs[i]->flags, 0,0);
    634 			if (pgs[i]->flags & PG_FAKE) {
    635 				pgs[i]->flags |= PG_RELEASED;
    636 			}
    637 		}
    638 		mutex_enter(&uvm_pageqlock);
    639 		uvm_page_unbusy(pgs, npages);
    640 		mutex_exit(&uvm_pageqlock);
    641 		mutex_exit(&uobj->vmobjlock);
    642 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    643 		goto out_err;
    644 	}
    645 
    646 out:
    647 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    648 	error = 0;
    649 	mutex_enter(&uvm_pageqlock);
    650 	for (i = 0; i < npages; i++) {
    651 		pg = pgs[i];
    652 		if (pg == NULL) {
    653 			continue;
    654 		}
    655 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    656 		    pg, pg->flags, 0,0);
    657 		if (pg->flags & PG_FAKE && !overwrite) {
    658 			pg->flags &= ~(PG_FAKE);
    659 			pmap_clear_modify(pgs[i]);
    660 		}
    661 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    662 		if (i < ridx || i >= ridx + orignpages || async) {
    663 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    664 			    pg, pg->offset,0,0);
    665 			if (pg->flags & PG_WANTED) {
    666 				wakeup(pg);
    667 			}
    668 			if (pg->flags & PG_FAKE) {
    669 				KASSERT(overwrite);
    670 				uvm_pagezero(pg);
    671 			}
    672 			if (pg->flags & PG_RELEASED) {
    673 				uvm_pagefree(pg);
    674 				continue;
    675 			}
    676 			uvm_pageenqueue(pg);
    677 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    678 			UVM_PAGE_OWN(pg, NULL);
    679 		}
    680 	}
    681 	mutex_exit(&uvm_pageqlock);
    682 	mutex_exit(&uobj->vmobjlock);
    683 	if (ap->a_m != NULL) {
    684 		memcpy(ap->a_m, &pgs[ridx],
    685 		    orignpages * sizeof(struct vm_page *));
    686 	}
    687 
    688 out_err:
    689 	if (pgs != NULL && pgs != pgs_onstack)
    690 		kmem_free(pgs, pgs_size);
    691 	if (has_trans)
    692 		fstrans_done(vp->v_mount);
    693 	return (error);
    694 }
    695 
    696 /*
    697  * generic VM putpages routine.
    698  * Write the given range of pages to backing store.
    699  *
    700  * => "offhi == 0" means flush all pages at or after "offlo".
    701  * => object should be locked by caller.  we return with the
    702  *      object unlocked.
    703  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    704  *	thus, a caller might want to unlock higher level resources
    705  *	(e.g. vm_map) before calling flush.
    706  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    707  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    708  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    709  *	that new pages are inserted on the tail end of the list.   thus,
    710  *	we can make a complete pass through the object in one go by starting
    711  *	at the head and working towards the tail (new pages are put in
    712  *	front of us).
    713  * => NOTE: we are allowed to lock the page queues, so the caller
    714  *	must not be holding the page queue lock.
    715  *
    716  * note on "cleaning" object and PG_BUSY pages:
    717  *	this routine is holding the lock on the object.   the only time
    718  *	that it can run into a PG_BUSY page that it does not own is if
    719  *	some other process has started I/O on the page (e.g. either
    720  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    721  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    722  *	had a chance to modify it yet.    if the PG_BUSY page is being
    723  *	paged out then it means that someone else has already started
    724  *	cleaning the page for us (how nice!).    in this case, if we
    725  *	have syncio specified, then after we make our pass through the
    726  *	object we need to wait for the other PG_BUSY pages to clear
    727  *	off (i.e. we need to do an iosync).   also note that once a
    728  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    729  *
    730  * note on page traversal:
    731  *	we can traverse the pages in an object either by going down the
    732  *	linked list in "uobj->memq", or we can go over the address range
    733  *	by page doing hash table lookups for each address.    depending
    734  *	on how many pages are in the object it may be cheaper to do one
    735  *	or the other.   we set "by_list" to true if we are using memq.
    736  *	if the cost of a hash lookup was equal to the cost of the list
    737  *	traversal we could compare the number of pages in the start->stop
    738  *	range to the total number of pages in the object.   however, it
    739  *	seems that a hash table lookup is more expensive than the linked
    740  *	list traversal, so we multiply the number of pages in the
    741  *	range by an estimate of the relatively higher cost of the hash lookup.
    742  */
    743 
    744 int
    745 genfs_putpages(void *v)
    746 {
    747 	struct vop_putpages_args /* {
    748 		struct vnode *a_vp;
    749 		voff_t a_offlo;
    750 		voff_t a_offhi;
    751 		int a_flags;
    752 	} */ *ap = v;
    753 
    754 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    755 	    ap->a_flags, NULL);
    756 }
    757 
    758 int
    759 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    760     int origflags, struct vm_page **busypg)
    761 {
    762 	struct uvm_object *uobj = &vp->v_uobj;
    763 	kmutex_t *slock = &uobj->vmobjlock;
    764 	off_t off;
    765 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    766 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    767 	int i, error, npages, nback;
    768 	int freeflag;
    769 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    770 	bool wasclean, by_list, needs_clean, yld;
    771 	bool async = (origflags & PGO_SYNCIO) == 0;
    772 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    773 	struct lwp *l = curlwp ? curlwp : &lwp0;
    774 	struct genfs_node *gp = VTOG(vp);
    775 	int flags;
    776 	int dirtygen;
    777 	bool modified;
    778 	bool need_wapbl;
    779 	bool has_trans;
    780 	bool cleanall;
    781 	bool onworklst;
    782 
    783 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    784 
    785 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    786 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    787 	KASSERT(startoff < endoff || endoff == 0);
    788 
    789 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    790 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    791 
    792 	has_trans = false;
    793 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    794 	    (origflags & PGO_JOURNALLOCKED) == 0);
    795 
    796 retry:
    797 	modified = false;
    798 	flags = origflags;
    799 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    800 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    801 	if (uobj->uo_npages == 0) {
    802 		if (vp->v_iflag & VI_ONWORKLST) {
    803 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    804 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    805 				vn_syncer_remove_from_worklist(vp);
    806 		}
    807 		if (has_trans) {
    808 			if (need_wapbl)
    809 				WAPBL_END(vp->v_mount);
    810 			fstrans_done(vp->v_mount);
    811 		}
    812 		mutex_exit(slock);
    813 		return (0);
    814 	}
    815 
    816 	/*
    817 	 * the vnode has pages, set up to process the request.
    818 	 */
    819 
    820 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    821 		mutex_exit(slock);
    822 		if (pagedaemon) {
    823 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    824 			if (error)
    825 				return error;
    826 		} else
    827 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    828 		if (need_wapbl) {
    829 			error = WAPBL_BEGIN(vp->v_mount);
    830 			if (error) {
    831 				fstrans_done(vp->v_mount);
    832 				return error;
    833 			}
    834 		}
    835 		has_trans = true;
    836 		mutex_enter(slock);
    837 		goto retry;
    838 	}
    839 
    840 	error = 0;
    841 	wasclean = (vp->v_numoutput == 0);
    842 	off = startoff;
    843 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    844 		endoff = trunc_page(LLONG_MAX);
    845 	}
    846 	by_list = (uobj->uo_npages <=
    847 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    848 
    849 #if !defined(DEBUG)
    850 	/*
    851 	 * if this vnode is known not to have dirty pages,
    852 	 * don't bother to clean it out.
    853 	 */
    854 
    855 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    856 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    857 			goto skip_scan;
    858 		}
    859 		flags &= ~PGO_CLEANIT;
    860 	}
    861 #endif /* !defined(DEBUG) */
    862 
    863 	/*
    864 	 * start the loop.  when scanning by list, hold the last page
    865 	 * in the list before we start.  pages allocated after we start
    866 	 * will be added to the end of the list, so we can stop at the
    867 	 * current last page.
    868 	 */
    869 
    870 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    871 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    872 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    873 	dirtygen = gp->g_dirtygen;
    874 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    875 	if (by_list) {
    876 		curmp.uobject = uobj;
    877 		curmp.offset = (voff_t)-1;
    878 		curmp.flags = PG_BUSY;
    879 		endmp.uobject = uobj;
    880 		endmp.offset = (voff_t)-1;
    881 		endmp.flags = PG_BUSY;
    882 		pg = TAILQ_FIRST(&uobj->memq);
    883 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    884 		uvm_lwp_hold(l);
    885 	} else {
    886 		pg = uvm_pagelookup(uobj, off);
    887 	}
    888 	nextpg = NULL;
    889 	while (by_list || off < endoff) {
    890 
    891 		/*
    892 		 * if the current page is not interesting, move on to the next.
    893 		 */
    894 
    895 		KASSERT(pg == NULL || pg->uobject == uobj);
    896 		KASSERT(pg == NULL ||
    897 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    898 		    (pg->flags & PG_BUSY) != 0);
    899 		if (by_list) {
    900 			if (pg == &endmp) {
    901 				break;
    902 			}
    903 			if (pg->offset < startoff || pg->offset >= endoff ||
    904 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    905 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    906 					wasclean = false;
    907 				}
    908 				pg = TAILQ_NEXT(pg, listq.queue);
    909 				continue;
    910 			}
    911 			off = pg->offset;
    912 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    913 			if (pg != NULL) {
    914 				wasclean = false;
    915 			}
    916 			off += PAGE_SIZE;
    917 			if (off < endoff) {
    918 				pg = uvm_pagelookup(uobj, off);
    919 			}
    920 			continue;
    921 		}
    922 
    923 		/*
    924 		 * if the current page needs to be cleaned and it's busy,
    925 		 * wait for it to become unbusy.
    926 		 */
    927 
    928 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    929 		    SPCF_SHOULDYIELD) && !pagedaemon;
    930 		if (pg->flags & PG_BUSY || yld) {
    931 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    932 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    933 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    934 				error = EDEADLK;
    935 				if (busypg != NULL)
    936 					*busypg = pg;
    937 				break;
    938 			}
    939 			if (pagedaemon) {
    940 				/*
    941 				 * someone has taken the page while we
    942 				 * dropped the lock for fstrans_start.
    943 				 */
    944 				break;
    945 			}
    946 			if (by_list) {
    947 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    948 				UVMHIST_LOG(ubchist, "curmp next %p",
    949 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    950 			}
    951 			if (yld) {
    952 				mutex_exit(slock);
    953 				preempt();
    954 				mutex_enter(slock);
    955 			} else {
    956 				pg->flags |= PG_WANTED;
    957 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    958 				mutex_enter(slock);
    959 			}
    960 			if (by_list) {
    961 				UVMHIST_LOG(ubchist, "after next %p",
    962 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    963 				pg = TAILQ_NEXT(&curmp, listq.queue);
    964 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
    965 			} else {
    966 				pg = uvm_pagelookup(uobj, off);
    967 			}
    968 			continue;
    969 		}
    970 
    971 		/*
    972 		 * if we're freeing, remove all mappings of the page now.
    973 		 * if we're cleaning, check if the page is needs to be cleaned.
    974 		 */
    975 
    976 		if (flags & PGO_FREE) {
    977 			pmap_page_protect(pg, VM_PROT_NONE);
    978 		} else if (flags & PGO_CLEANIT) {
    979 
    980 			/*
    981 			 * if we still have some hope to pull this vnode off
    982 			 * from the syncer queue, write-protect the page.
    983 			 */
    984 
    985 			if (cleanall && wasclean &&
    986 			    gp->g_dirtygen == dirtygen) {
    987 
    988 				/*
    989 				 * uobj pages get wired only by uvm_fault
    990 				 * where uobj is locked.
    991 				 */
    992 
    993 				if (pg->wire_count == 0) {
    994 					pmap_page_protect(pg,
    995 					    VM_PROT_READ|VM_PROT_EXECUTE);
    996 				} else {
    997 					cleanall = false;
    998 				}
    999 			}
   1000 		}
   1001 
   1002 		if (flags & PGO_CLEANIT) {
   1003 			needs_clean = pmap_clear_modify(pg) ||
   1004 			    (pg->flags & PG_CLEAN) == 0;
   1005 			pg->flags |= PG_CLEAN;
   1006 		} else {
   1007 			needs_clean = false;
   1008 		}
   1009 
   1010 		/*
   1011 		 * if we're cleaning, build a cluster.
   1012 		 * the cluster will consist of pages which are currently dirty,
   1013 		 * but they will be returned to us marked clean.
   1014 		 * if not cleaning, just operate on the one page.
   1015 		 */
   1016 
   1017 		if (needs_clean) {
   1018 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1019 			wasclean = false;
   1020 			memset(pgs, 0, sizeof(pgs));
   1021 			pg->flags |= PG_BUSY;
   1022 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1023 
   1024 			/*
   1025 			 * first look backward.
   1026 			 */
   1027 
   1028 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1029 			nback = npages;
   1030 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1031 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1032 			if (nback) {
   1033 				memmove(&pgs[0], &pgs[npages - nback],
   1034 				    nback * sizeof(pgs[0]));
   1035 				if (npages - nback < nback)
   1036 					memset(&pgs[nback], 0,
   1037 					    (npages - nback) * sizeof(pgs[0]));
   1038 				else
   1039 					memset(&pgs[npages - nback], 0,
   1040 					    nback * sizeof(pgs[0]));
   1041 			}
   1042 
   1043 			/*
   1044 			 * then plug in our page of interest.
   1045 			 */
   1046 
   1047 			pgs[nback] = pg;
   1048 
   1049 			/*
   1050 			 * then look forward to fill in the remaining space in
   1051 			 * the array of pages.
   1052 			 */
   1053 
   1054 			npages = maxpages - nback - 1;
   1055 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1056 			    &pgs[nback + 1],
   1057 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1058 			npages += nback + 1;
   1059 		} else {
   1060 			pgs[0] = pg;
   1061 			npages = 1;
   1062 			nback = 0;
   1063 		}
   1064 
   1065 		/*
   1066 		 * apply FREE or DEACTIVATE options if requested.
   1067 		 */
   1068 
   1069 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1070 			mutex_enter(&uvm_pageqlock);
   1071 		}
   1072 		for (i = 0; i < npages; i++) {
   1073 			tpg = pgs[i];
   1074 			KASSERT(tpg->uobject == uobj);
   1075 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1076 				pg = tpg;
   1077 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1078 				continue;
   1079 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1080 				uvm_pagedeactivate(tpg);
   1081 			} else if (flags & PGO_FREE) {
   1082 				pmap_page_protect(tpg, VM_PROT_NONE);
   1083 				if (tpg->flags & PG_BUSY) {
   1084 					tpg->flags |= freeflag;
   1085 					if (pagedaemon) {
   1086 						uvm_pageout_start(1);
   1087 						uvm_pagedequeue(tpg);
   1088 					}
   1089 				} else {
   1090 
   1091 					/*
   1092 					 * ``page is not busy''
   1093 					 * implies that npages is 1
   1094 					 * and needs_clean is false.
   1095 					 */
   1096 
   1097 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1098 					uvm_pagefree(tpg);
   1099 					if (pagedaemon)
   1100 						uvmexp.pdfreed++;
   1101 				}
   1102 			}
   1103 		}
   1104 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1105 			mutex_exit(&uvm_pageqlock);
   1106 		}
   1107 		if (needs_clean) {
   1108 			modified = true;
   1109 
   1110 			/*
   1111 			 * start the i/o.  if we're traversing by list,
   1112 			 * keep our place in the list with a marker page.
   1113 			 */
   1114 
   1115 			if (by_list) {
   1116 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1117 				    listq.queue);
   1118 			}
   1119 			mutex_exit(slock);
   1120 			error = GOP_WRITE(vp, pgs, npages, flags);
   1121 			mutex_enter(slock);
   1122 			if (by_list) {
   1123 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1124 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1125 			}
   1126 			if (error) {
   1127 				break;
   1128 			}
   1129 			if (by_list) {
   1130 				continue;
   1131 			}
   1132 		}
   1133 
   1134 		/*
   1135 		 * find the next page and continue if there was no error.
   1136 		 */
   1137 
   1138 		if (by_list) {
   1139 			if (nextpg) {
   1140 				pg = nextpg;
   1141 				nextpg = NULL;
   1142 			} else {
   1143 				pg = TAILQ_NEXT(pg, listq.queue);
   1144 			}
   1145 		} else {
   1146 			off += (npages - nback) << PAGE_SHIFT;
   1147 			if (off < endoff) {
   1148 				pg = uvm_pagelookup(uobj, off);
   1149 			}
   1150 		}
   1151 	}
   1152 	if (by_list) {
   1153 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1154 		uvm_lwp_rele(l);
   1155 	}
   1156 
   1157 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1158 	    (vp->v_type != VBLK ||
   1159 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1160 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1161 	}
   1162 
   1163 	/*
   1164 	 * if we're cleaning and there was nothing to clean,
   1165 	 * take us off the syncer list.  if we started any i/o
   1166 	 * and we're doing sync i/o, wait for all writes to finish.
   1167 	 */
   1168 
   1169 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1170 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1171 #if defined(DEBUG)
   1172 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1173 			if ((pg->flags & PG_CLEAN) == 0) {
   1174 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1175 			}
   1176 			if (pmap_is_modified(pg)) {
   1177 				printf("%s: %p: modified\n", __func__, pg);
   1178 			}
   1179 		}
   1180 #endif /* defined(DEBUG) */
   1181 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1182 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1183 			vn_syncer_remove_from_worklist(vp);
   1184 	}
   1185 
   1186 #if !defined(DEBUG)
   1187 skip_scan:
   1188 #endif /* !defined(DEBUG) */
   1189 
   1190 	/* Wait for output to complete. */
   1191 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1192 		while (vp->v_numoutput != 0)
   1193 			cv_wait(&vp->v_cv, slock);
   1194 	}
   1195 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1196 	mutex_exit(slock);
   1197 
   1198 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1199 		/*
   1200 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1201 		 * retrying is not a big deal because, in many cases,
   1202 		 * uobj->uo_npages is already 0 here.
   1203 		 */
   1204 		mutex_enter(slock);
   1205 		goto retry;
   1206 	}
   1207 
   1208 	if (has_trans) {
   1209 		if (need_wapbl)
   1210 			WAPBL_END(vp->v_mount);
   1211 		fstrans_done(vp->v_mount);
   1212 	}
   1213 
   1214 	return (error);
   1215 }
   1216 
   1217 int
   1218 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1219 {
   1220 	off_t off;
   1221 	vaddr_t kva;
   1222 	size_t len;
   1223 	int error;
   1224 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1225 
   1226 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1227 	    vp, pgs, npages, flags);
   1228 
   1229 	off = pgs[0]->offset;
   1230 	kva = uvm_pagermapin(pgs, npages,
   1231 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1232 	len = npages << PAGE_SHIFT;
   1233 
   1234 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1235 			    uvm_aio_biodone);
   1236 
   1237 	return error;
   1238 }
   1239 
   1240 int
   1241 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1242 {
   1243 	off_t off;
   1244 	vaddr_t kva;
   1245 	size_t len;
   1246 	int error;
   1247 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1248 
   1249 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1250 	    vp, pgs, npages, flags);
   1251 
   1252 	off = pgs[0]->offset;
   1253 	kva = uvm_pagermapin(pgs, npages,
   1254 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1255 	len = npages << PAGE_SHIFT;
   1256 
   1257 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1258 			    uvm_aio_biodone);
   1259 
   1260 	return error;
   1261 }
   1262 
   1263 /*
   1264  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1265  * and mapped into kernel memory.  Here we just look up the underlying
   1266  * device block addresses and call the strategy routine.
   1267  */
   1268 
   1269 static int
   1270 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1271     enum uio_rw rw, void (*iodone)(struct buf *))
   1272 {
   1273 	int s, error, run;
   1274 	int fs_bshift, dev_bshift;
   1275 	off_t eof, offset, startoffset;
   1276 	size_t bytes, iobytes, skipbytes;
   1277 	daddr_t lbn, blkno;
   1278 	struct buf *mbp, *bp;
   1279 	struct vnode *devvp;
   1280 	bool async = (flags & PGO_SYNCIO) == 0;
   1281 	bool write = rw == UIO_WRITE;
   1282 	int brw = write ? B_WRITE : B_READ;
   1283 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1284 
   1285 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1286 	    vp, kva, len, flags);
   1287 
   1288 	KASSERT(vp->v_size <= vp->v_writesize);
   1289 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1290 	if (vp->v_type != VBLK) {
   1291 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1292 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1293 	} else {
   1294 		fs_bshift = DEV_BSHIFT;
   1295 		dev_bshift = DEV_BSHIFT;
   1296 	}
   1297 	error = 0;
   1298 	startoffset = off;
   1299 	bytes = MIN(len, eof - startoffset);
   1300 	skipbytes = 0;
   1301 	KASSERT(bytes != 0);
   1302 
   1303 	if (write) {
   1304 		mutex_enter(&vp->v_interlock);
   1305 		vp->v_numoutput += 2;
   1306 		mutex_exit(&vp->v_interlock);
   1307 	}
   1308 	mbp = getiobuf(vp, true);
   1309 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1310 	    vp, mbp, vp->v_numoutput, bytes);
   1311 	mbp->b_bufsize = len;
   1312 	mbp->b_data = (void *)kva;
   1313 	mbp->b_resid = mbp->b_bcount = bytes;
   1314 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1315 	if (async) {
   1316 		mbp->b_flags = brw | B_ASYNC;
   1317 		mbp->b_iodone = iodone;
   1318 	} else {
   1319 		mbp->b_flags = brw;
   1320 		mbp->b_iodone = NULL;
   1321 	}
   1322 	if (curlwp == uvm.pagedaemon_lwp)
   1323 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1324 	else if (async)
   1325 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1326 	else
   1327 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1328 
   1329 	bp = NULL;
   1330 	for (offset = startoffset;
   1331 	    bytes > 0;
   1332 	    offset += iobytes, bytes -= iobytes) {
   1333 		lbn = offset >> fs_bshift;
   1334 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1335 		if (error) {
   1336 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1337 			skipbytes += bytes;
   1338 			bytes = 0;
   1339 			break;
   1340 		}
   1341 
   1342 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1343 		    bytes);
   1344 		if (blkno == (daddr_t)-1) {
   1345 			if (!write) {
   1346 				memset((char *)kva + (offset - startoffset), 0,
   1347 				   iobytes);
   1348 			}
   1349 			skipbytes += iobytes;
   1350 			continue;
   1351 		}
   1352 
   1353 		/* if it's really one i/o, don't make a second buf */
   1354 		if (offset == startoffset && iobytes == bytes) {
   1355 			bp = mbp;
   1356 		} else {
   1357 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1358 			    vp, bp, vp->v_numoutput, 0);
   1359 			bp = getiobuf(vp, true);
   1360 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1361 		}
   1362 		bp->b_lblkno = 0;
   1363 
   1364 		/* adjust physical blkno for partial blocks */
   1365 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1366 		    dev_bshift);
   1367 		UVMHIST_LOG(ubchist,
   1368 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1369 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1370 
   1371 		VOP_STRATEGY(devvp, bp);
   1372 	}
   1373 	if (skipbytes) {
   1374 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1375 	}
   1376 	nestiobuf_done(mbp, skipbytes, error);
   1377 	if (async) {
   1378 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1379 		return (0);
   1380 	}
   1381 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1382 	error = biowait(mbp);
   1383 	s = splbio();
   1384 	(*iodone)(mbp);
   1385 	splx(s);
   1386 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1387 	return (error);
   1388 }
   1389 
   1390 /*
   1391  * VOP_PUTPAGES() for vnodes which never have pages.
   1392  */
   1393 
   1394 int
   1395 genfs_null_putpages(void *v)
   1396 {
   1397 	struct vop_putpages_args /* {
   1398 		struct vnode *a_vp;
   1399 		voff_t a_offlo;
   1400 		voff_t a_offhi;
   1401 		int a_flags;
   1402 	} */ *ap = v;
   1403 	struct vnode *vp = ap->a_vp;
   1404 
   1405 	KASSERT(vp->v_uobj.uo_npages == 0);
   1406 	mutex_exit(&vp->v_interlock);
   1407 	return (0);
   1408 }
   1409 
   1410 int
   1411 genfs_compat_getpages(void *v)
   1412 {
   1413 	struct vop_getpages_args /* {
   1414 		struct vnode *a_vp;
   1415 		voff_t a_offset;
   1416 		struct vm_page **a_m;
   1417 		int *a_count;
   1418 		int a_centeridx;
   1419 		vm_prot_t a_access_type;
   1420 		int a_advice;
   1421 		int a_flags;
   1422 	} */ *ap = v;
   1423 
   1424 	off_t origoffset;
   1425 	struct vnode *vp = ap->a_vp;
   1426 	struct uvm_object *uobj = &vp->v_uobj;
   1427 	struct vm_page *pg, **pgs;
   1428 	vaddr_t kva;
   1429 	int i, error, orignpages, npages;
   1430 	struct iovec iov;
   1431 	struct uio uio;
   1432 	kauth_cred_t cred = curlwp->l_cred;
   1433 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1434 
   1435 	error = 0;
   1436 	origoffset = ap->a_offset;
   1437 	orignpages = *ap->a_count;
   1438 	pgs = ap->a_m;
   1439 
   1440 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1441 		vn_syncer_add_to_worklist(vp, filedelay);
   1442 	}
   1443 	if (ap->a_flags & PGO_LOCKED) {
   1444 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1445 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1446 
   1447 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1448 	}
   1449 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1450 		mutex_exit(&uobj->vmobjlock);
   1451 		return (EINVAL);
   1452 	}
   1453 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1454 		mutex_exit(&uobj->vmobjlock);
   1455 		return 0;
   1456 	}
   1457 	npages = orignpages;
   1458 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1459 	mutex_exit(&uobj->vmobjlock);
   1460 	kva = uvm_pagermapin(pgs, npages,
   1461 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1462 	for (i = 0; i < npages; i++) {
   1463 		pg = pgs[i];
   1464 		if ((pg->flags & PG_FAKE) == 0) {
   1465 			continue;
   1466 		}
   1467 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1468 		iov.iov_len = PAGE_SIZE;
   1469 		uio.uio_iov = &iov;
   1470 		uio.uio_iovcnt = 1;
   1471 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1472 		uio.uio_rw = UIO_READ;
   1473 		uio.uio_resid = PAGE_SIZE;
   1474 		UIO_SETUP_SYSSPACE(&uio);
   1475 		/* XXX vn_lock */
   1476 		error = VOP_READ(vp, &uio, 0, cred);
   1477 		if (error) {
   1478 			break;
   1479 		}
   1480 		if (uio.uio_resid) {
   1481 			memset(iov.iov_base, 0, uio.uio_resid);
   1482 		}
   1483 	}
   1484 	uvm_pagermapout(kva, npages);
   1485 	mutex_enter(&uobj->vmobjlock);
   1486 	mutex_enter(&uvm_pageqlock);
   1487 	for (i = 0; i < npages; i++) {
   1488 		pg = pgs[i];
   1489 		if (error && (pg->flags & PG_FAKE) != 0) {
   1490 			pg->flags |= PG_RELEASED;
   1491 		} else {
   1492 			pmap_clear_modify(pg);
   1493 			uvm_pageactivate(pg);
   1494 		}
   1495 	}
   1496 	if (error) {
   1497 		uvm_page_unbusy(pgs, npages);
   1498 	}
   1499 	mutex_exit(&uvm_pageqlock);
   1500 	mutex_exit(&uobj->vmobjlock);
   1501 	return (error);
   1502 }
   1503 
   1504 int
   1505 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1506     int flags)
   1507 {
   1508 	off_t offset;
   1509 	struct iovec iov;
   1510 	struct uio uio;
   1511 	kauth_cred_t cred = curlwp->l_cred;
   1512 	struct buf *bp;
   1513 	vaddr_t kva;
   1514 	int error;
   1515 
   1516 	offset = pgs[0]->offset;
   1517 	kva = uvm_pagermapin(pgs, npages,
   1518 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1519 
   1520 	iov.iov_base = (void *)kva;
   1521 	iov.iov_len = npages << PAGE_SHIFT;
   1522 	uio.uio_iov = &iov;
   1523 	uio.uio_iovcnt = 1;
   1524 	uio.uio_offset = offset;
   1525 	uio.uio_rw = UIO_WRITE;
   1526 	uio.uio_resid = npages << PAGE_SHIFT;
   1527 	UIO_SETUP_SYSSPACE(&uio);
   1528 	/* XXX vn_lock */
   1529 	error = VOP_WRITE(vp, &uio, 0, cred);
   1530 
   1531 	mutex_enter(&vp->v_interlock);
   1532 	vp->v_numoutput++;
   1533 	mutex_exit(&vp->v_interlock);
   1534 
   1535 	bp = getiobuf(vp, true);
   1536 	bp->b_cflags = BC_BUSY | BC_AGE;
   1537 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1538 	bp->b_data = (char *)kva;
   1539 	bp->b_bcount = npages << PAGE_SHIFT;
   1540 	bp->b_bufsize = npages << PAGE_SHIFT;
   1541 	bp->b_resid = 0;
   1542 	bp->b_error = error;
   1543 	uvm_aio_aiodone(bp);
   1544 	return (error);
   1545 }
   1546 
   1547 /*
   1548  * Process a uio using direct I/O.  If we reach a part of the request
   1549  * which cannot be processed in this fashion for some reason, just return.
   1550  * The caller must handle some additional part of the request using
   1551  * buffered I/O before trying direct I/O again.
   1552  */
   1553 
   1554 void
   1555 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1556 {
   1557 	struct vmspace *vs;
   1558 	struct iovec *iov;
   1559 	vaddr_t va;
   1560 	size_t len;
   1561 	const int mask = DEV_BSIZE - 1;
   1562 	int error;
   1563 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1564 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1565 
   1566 	/*
   1567 	 * We only support direct I/O to user space for now.
   1568 	 */
   1569 
   1570 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1571 		return;
   1572 	}
   1573 
   1574 	/*
   1575 	 * If the vnode is mapped, we would need to get the getpages lock
   1576 	 * to stabilize the bmap, but then we would get into trouble whil e
   1577 	 * locking the pages if the pages belong to this same vnode (or a
   1578 	 * multi-vnode cascade to the same effect).  Just fall back to
   1579 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1580 	 */
   1581 
   1582 	if (vp->v_vflag & VV_MAPPED) {
   1583 		return;
   1584 	}
   1585 
   1586 	if (need_wapbl) {
   1587 		error = WAPBL_BEGIN(vp->v_mount);
   1588 		if (error)
   1589 			return;
   1590 	}
   1591 
   1592 	/*
   1593 	 * Do as much of the uio as possible with direct I/O.
   1594 	 */
   1595 
   1596 	vs = uio->uio_vmspace;
   1597 	while (uio->uio_resid) {
   1598 		iov = uio->uio_iov;
   1599 		if (iov->iov_len == 0) {
   1600 			uio->uio_iov++;
   1601 			uio->uio_iovcnt--;
   1602 			continue;
   1603 		}
   1604 		va = (vaddr_t)iov->iov_base;
   1605 		len = MIN(iov->iov_len, genfs_maxdio);
   1606 		len &= ~mask;
   1607 
   1608 		/*
   1609 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1610 		 * the current EOF, then fall back to buffered I/O.
   1611 		 */
   1612 
   1613 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1614 			break;
   1615 		}
   1616 
   1617 		/*
   1618 		 * Check alignment.  The file offset must be at least
   1619 		 * sector-aligned.  The exact constraint on memory alignment
   1620 		 * is very hardware-dependent, but requiring sector-aligned
   1621 		 * addresses there too is safe.
   1622 		 */
   1623 
   1624 		if (uio->uio_offset & mask || va & mask) {
   1625 			break;
   1626 		}
   1627 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1628 					  uio->uio_rw);
   1629 		if (error) {
   1630 			break;
   1631 		}
   1632 		iov->iov_base = (char *)iov->iov_base + len;
   1633 		iov->iov_len -= len;
   1634 		uio->uio_offset += len;
   1635 		uio->uio_resid -= len;
   1636 	}
   1637 
   1638 	if (need_wapbl)
   1639 		WAPBL_END(vp->v_mount);
   1640 }
   1641 
   1642 /*
   1643  * Iodone routine for direct I/O.  We don't do much here since the request is
   1644  * always synchronous, so the caller will do most of the work after biowait().
   1645  */
   1646 
   1647 static void
   1648 genfs_dio_iodone(struct buf *bp)
   1649 {
   1650 
   1651 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1652 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1653 		mutex_enter(bp->b_objlock);
   1654 		vwakeup(bp);
   1655 		mutex_exit(bp->b_objlock);
   1656 	}
   1657 	putiobuf(bp);
   1658 }
   1659 
   1660 /*
   1661  * Process one chunk of a direct I/O request.
   1662  */
   1663 
   1664 static int
   1665 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1666     off_t off, enum uio_rw rw)
   1667 {
   1668 	struct vm_map *map;
   1669 	struct pmap *upm, *kpm;
   1670 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1671 	off_t spoff, epoff;
   1672 	vaddr_t kva, puva;
   1673 	paddr_t pa;
   1674 	vm_prot_t prot;
   1675 	int error, rv, poff, koff;
   1676 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1677 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1678 
   1679 	/*
   1680 	 * For writes, verify that this range of the file already has fully
   1681 	 * allocated backing store.  If there are any holes, just punt and
   1682 	 * make the caller take the buffered write path.
   1683 	 */
   1684 
   1685 	if (rw == UIO_WRITE) {
   1686 		daddr_t lbn, elbn, blkno;
   1687 		int bsize, bshift, run;
   1688 
   1689 		bshift = vp->v_mount->mnt_fs_bshift;
   1690 		bsize = 1 << bshift;
   1691 		lbn = off >> bshift;
   1692 		elbn = (off + len + bsize - 1) >> bshift;
   1693 		while (lbn < elbn) {
   1694 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1695 			if (error) {
   1696 				return error;
   1697 			}
   1698 			if (blkno == (daddr_t)-1) {
   1699 				return ENOSPC;
   1700 			}
   1701 			lbn += 1 + run;
   1702 		}
   1703 	}
   1704 
   1705 	/*
   1706 	 * Flush any cached pages for parts of the file that we're about to
   1707 	 * access.  If we're writing, invalidate pages as well.
   1708 	 */
   1709 
   1710 	spoff = trunc_page(off);
   1711 	epoff = round_page(off + len);
   1712 	mutex_enter(&vp->v_interlock);
   1713 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1714 	if (error) {
   1715 		return error;
   1716 	}
   1717 
   1718 	/*
   1719 	 * Wire the user pages and remap them into kernel memory.
   1720 	 */
   1721 
   1722 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1723 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1724 	if (error) {
   1725 		return error;
   1726 	}
   1727 
   1728 	map = &vs->vm_map;
   1729 	upm = vm_map_pmap(map);
   1730 	kpm = vm_map_pmap(kernel_map);
   1731 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1732 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1733 	puva = trunc_page(uva);
   1734 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1735 		rv = pmap_extract(upm, puva + poff, &pa);
   1736 		KASSERT(rv);
   1737 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1738 	}
   1739 	pmap_update(kpm);
   1740 
   1741 	/*
   1742 	 * Do the I/O.
   1743 	 */
   1744 
   1745 	koff = uva - trunc_page(uva);
   1746 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1747 			    genfs_dio_iodone);
   1748 
   1749 	/*
   1750 	 * Tear down the kernel mapping.
   1751 	 */
   1752 
   1753 	pmap_remove(kpm, kva, kva + klen);
   1754 	pmap_update(kpm);
   1755 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1756 
   1757 	/*
   1758 	 * Unwire the user pages.
   1759 	 */
   1760 
   1761 	uvm_vsunlock(vs, (void *)uva, len);
   1762 	return error;
   1763 }
   1764 
   1765