genfs_io.c revision 1.18 1 /* $NetBSD: genfs_io.c,v 1.18 2009/02/04 20:32:19 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.18 2009/02/04 20:32:19 rmind Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static inline void genfs_rel_pages(struct vm_page **, int);
66
67 int genfs_maxdio = MAXPHYS;
68
69 static inline void
70 genfs_rel_pages(struct vm_page **pgs, int npages)
71 {
72 int i;
73
74 for (i = 0; i < npages; i++) {
75 struct vm_page *pg = pgs[i];
76
77 if (pg == NULL || pg == PGO_DONTCARE)
78 continue;
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 mutex_enter(&uvm_pageqlock);
84 uvm_page_unbusy(pgs, npages);
85 mutex_exit(&uvm_pageqlock);
86 }
87
88 /*
89 * generic VM getpages routine.
90 * Return PG_BUSY pages for the given range,
91 * reading from backing store if necessary.
92 */
93
94 int
95 genfs_getpages(void *v)
96 {
97 struct vop_getpages_args /* {
98 struct vnode *a_vp;
99 voff_t a_offset;
100 struct vm_page **a_m;
101 int *a_count;
102 int a_centeridx;
103 vm_prot_t a_access_type;
104 int a_advice;
105 int a_flags;
106 } */ *ap = v;
107
108 off_t newsize, diskeof, memeof;
109 off_t offset, origoffset, startoffset, endoffset;
110 daddr_t lbn, blkno;
111 int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
112 int fs_bshift, fs_bsize, dev_bshift;
113 const int flags = ap->a_flags;
114 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
115 vaddr_t kva;
116 struct buf *bp, *mbp;
117 struct vnode *vp = ap->a_vp;
118 struct vnode *devvp;
119 struct genfs_node *gp = VTOG(vp);
120 struct uvm_object *uobj = &vp->v_uobj;
121 struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
122 int pgs_size;
123 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
124 const bool async = (flags & PGO_SYNCIO) == 0;
125 const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
126 bool sawhole = false;
127 bool has_trans = false;
128 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
130 voff_t origvsize;
131 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
132
133 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
134 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
135
136 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
137 vp->v_type == VLNK || vp->v_type == VBLK);
138
139 pgs = NULL;
140 pgs_size = 0;
141
142 startover:
143 error = 0;
144 origvsize = vp->v_size;
145 origoffset = ap->a_offset;
146 orignpages = *ap->a_count;
147 GOP_SIZE(vp, origvsize, &diskeof, 0);
148 if (flags & PGO_PASTEOF) {
149 #if defined(DIAGNOSTIC)
150 off_t writeeof;
151 #endif /* defined(DIAGNOSTIC) */
152
153 newsize = MAX(origvsize,
154 origoffset + (orignpages << PAGE_SHIFT));
155 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
156 #if defined(DIAGNOSTIC)
157 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
158 if (newsize > round_page(writeeof)) {
159 panic("%s: past eof", __func__);
160 }
161 #endif /* defined(DIAGNOSTIC) */
162 } else {
163 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
164 }
165 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
166 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
167 KASSERT(orignpages > 0);
168
169 /*
170 * Bounds-check the request.
171 */
172
173 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
174 if ((flags & PGO_LOCKED) == 0) {
175 mutex_exit(&uobj->vmobjlock);
176 }
177 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
178 origoffset, *ap->a_count, memeof,0);
179 error = EINVAL;
180 goto out_err;
181 }
182
183 /* uobj is locked */
184
185 if ((flags & PGO_NOTIMESTAMP) == 0 &&
186 (vp->v_type != VBLK ||
187 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
188 int updflags = 0;
189
190 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
191 updflags = GOP_UPDATE_ACCESSED;
192 }
193 if (write) {
194 updflags |= GOP_UPDATE_MODIFIED;
195 }
196 if (updflags != 0) {
197 GOP_MARKUPDATE(vp, updflags);
198 }
199 }
200
201 if (write) {
202 gp->g_dirtygen++;
203 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
204 vn_syncer_add_to_worklist(vp, filedelay);
205 }
206 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
207 vp->v_iflag |= VI_WRMAPDIRTY;
208 }
209 }
210
211 /*
212 * For PGO_LOCKED requests, just return whatever's in memory.
213 */
214
215 if (flags & PGO_LOCKED) {
216 int nfound;
217
218 npages = *ap->a_count;
219 #if defined(DEBUG)
220 for (i = 0; i < npages; i++) {
221 pg = ap->a_m[i];
222 KASSERT(pg == NULL || pg == PGO_DONTCARE);
223 }
224 #endif /* defined(DEBUG) */
225 nfound = uvn_findpages(uobj, origoffset, &npages,
226 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
227 KASSERT(npages == *ap->a_count);
228 if (nfound == 0) {
229 error = EBUSY;
230 goto out_err;
231 }
232 if (!rw_tryenter(&gp->g_glock, RW_READER)) {
233 genfs_rel_pages(ap->a_m, npages);
234
235 /*
236 * restore the array.
237 */
238
239 for (i = 0; i < npages; i++) {
240 pg = ap->a_m[i];
241
242 if (pg != NULL || pg != PGO_DONTCARE) {
243 ap->a_m[i] = NULL;
244 }
245 }
246 } else {
247 rw_exit(&gp->g_glock);
248 }
249 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
250 goto out_err;
251 }
252 mutex_exit(&uobj->vmobjlock);
253
254 /*
255 * find the requested pages and make some simple checks.
256 * leave space in the page array for a whole block.
257 */
258
259 if (vp->v_type != VBLK) {
260 fs_bshift = vp->v_mount->mnt_fs_bshift;
261 dev_bshift = vp->v_mount->mnt_dev_bshift;
262 } else {
263 fs_bshift = DEV_BSHIFT;
264 dev_bshift = DEV_BSHIFT;
265 }
266 fs_bsize = 1 << fs_bshift;
267
268 orignpages = MIN(orignpages,
269 round_page(memeof - origoffset) >> PAGE_SHIFT);
270 npages = orignpages;
271 startoffset = origoffset & ~(fs_bsize - 1);
272 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
273 fs_bsize - 1) & ~(fs_bsize - 1));
274 endoffset = MIN(endoffset, round_page(memeof));
275 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
276
277 pgs_size = sizeof(struct vm_page *) *
278 ((endoffset - startoffset) >> PAGE_SHIFT);
279 if (pgs_size > sizeof(pgs_onstack)) {
280 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
281 if (pgs == NULL) {
282 pgs = pgs_onstack;
283 error = ENOMEM;
284 goto out_err;
285 }
286 } else {
287 pgs = pgs_onstack;
288 (void)memset(pgs, 0, pgs_size);
289 }
290
291
292 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
293 ridx, npages, startoffset, endoffset);
294
295 if (!has_trans) {
296 fstrans_start(vp->v_mount, FSTRANS_SHARED);
297 has_trans = true;
298 }
299
300 /*
301 * hold g_glock to prevent a race with truncate.
302 *
303 * check if our idea of v_size is still valid.
304 */
305
306 if (blockalloc) {
307 rw_enter(&gp->g_glock, RW_WRITER);
308 } else {
309 rw_enter(&gp->g_glock, RW_READER);
310 }
311 mutex_enter(&uobj->vmobjlock);
312 if (vp->v_size < origvsize) {
313 rw_exit(&gp->g_glock);
314 if (pgs != pgs_onstack)
315 kmem_free(pgs, pgs_size);
316 goto startover;
317 }
318
319 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
320 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
321 rw_exit(&gp->g_glock);
322 KASSERT(async != 0);
323 genfs_rel_pages(&pgs[ridx], orignpages);
324 mutex_exit(&uobj->vmobjlock);
325 error = EBUSY;
326 goto out_err;
327 }
328
329 /*
330 * if the pages are already resident, just return them.
331 */
332
333 for (i = 0; i < npages; i++) {
334 struct vm_page *pg1 = pgs[ridx + i];
335
336 if ((pg1->flags & PG_FAKE) ||
337 (blockalloc && (pg1->flags & PG_RDONLY))) {
338 break;
339 }
340 }
341 if (i == npages) {
342 rw_exit(&gp->g_glock);
343 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
344 npages += ridx;
345 goto out;
346 }
347
348 /*
349 * if PGO_OVERWRITE is set, don't bother reading the pages.
350 */
351
352 if (overwrite) {
353 rw_exit(&gp->g_glock);
354 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
355
356 for (i = 0; i < npages; i++) {
357 struct vm_page *pg1 = pgs[ridx + i];
358
359 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
360 }
361 npages += ridx;
362 goto out;
363 }
364
365 /*
366 * the page wasn't resident and we're not overwriting,
367 * so we're going to have to do some i/o.
368 * find any additional pages needed to cover the expanded range.
369 */
370
371 npages = (endoffset - startoffset) >> PAGE_SHIFT;
372 if (startoffset != origoffset || npages != orignpages) {
373
374 /*
375 * we need to avoid deadlocks caused by locking
376 * additional pages at lower offsets than pages we
377 * already have locked. unlock them all and start over.
378 */
379
380 genfs_rel_pages(&pgs[ridx], orignpages);
381 memset(pgs, 0, pgs_size);
382
383 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
384 startoffset, endoffset, 0,0);
385 npgs = npages;
386 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
387 async ? UFP_NOWAIT : UFP_ALL) != npages) {
388 rw_exit(&gp->g_glock);
389 KASSERT(async != 0);
390 genfs_rel_pages(pgs, npages);
391 mutex_exit(&uobj->vmobjlock);
392 error = EBUSY;
393 goto out_err;
394 }
395 }
396 mutex_exit(&uobj->vmobjlock);
397
398 /*
399 * read the desired page(s).
400 */
401
402 totalbytes = npages << PAGE_SHIFT;
403 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
404 tailbytes = totalbytes - bytes;
405 skipbytes = 0;
406
407 kva = uvm_pagermapin(pgs, npages,
408 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
409
410 mbp = getiobuf(vp, true);
411 mbp->b_bufsize = totalbytes;
412 mbp->b_data = (void *)kva;
413 mbp->b_resid = mbp->b_bcount = bytes;
414 mbp->b_cflags = BC_BUSY;
415 if (async) {
416 mbp->b_flags = B_READ | B_ASYNC;
417 mbp->b_iodone = uvm_aio_biodone;
418 } else {
419 mbp->b_flags = B_READ;
420 mbp->b_iodone = NULL;
421 }
422 if (async)
423 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
424 else
425 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
426
427 /*
428 * if EOF is in the middle of the range, zero the part past EOF.
429 * skip over pages which are not PG_FAKE since in that case they have
430 * valid data that we need to preserve.
431 */
432
433 tailstart = bytes;
434 while (tailbytes > 0) {
435 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
436
437 KASSERT(len <= tailbytes);
438 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
439 memset((void *)(kva + tailstart), 0, len);
440 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
441 kva, tailstart, len, 0);
442 }
443 tailstart += len;
444 tailbytes -= len;
445 }
446
447 /*
448 * now loop over the pages, reading as needed.
449 */
450
451 bp = NULL;
452 for (offset = startoffset;
453 bytes > 0;
454 offset += iobytes, bytes -= iobytes) {
455
456 /*
457 * skip pages which don't need to be read.
458 */
459
460 pidx = (offset - startoffset) >> PAGE_SHIFT;
461 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
462 size_t b;
463
464 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
465 if ((pgs[pidx]->flags & PG_RDONLY)) {
466 sawhole = true;
467 }
468 b = MIN(PAGE_SIZE, bytes);
469 offset += b;
470 bytes -= b;
471 skipbytes += b;
472 pidx++;
473 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
474 offset, 0,0,0);
475 if (bytes == 0) {
476 goto loopdone;
477 }
478 }
479
480 /*
481 * bmap the file to find out the blkno to read from and
482 * how much we can read in one i/o. if bmap returns an error,
483 * skip the rest of the top-level i/o.
484 */
485
486 lbn = offset >> fs_bshift;
487 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
488 if (error) {
489 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
490 lbn, error,0,0);
491 skipbytes += bytes;
492 goto loopdone;
493 }
494
495 /*
496 * see how many pages can be read with this i/o.
497 * reduce the i/o size if necessary to avoid
498 * overwriting pages with valid data.
499 */
500
501 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
502 bytes);
503 if (offset + iobytes > round_page(offset)) {
504 pcount = 1;
505 while (pidx + pcount < npages &&
506 pgs[pidx + pcount]->flags & PG_FAKE) {
507 pcount++;
508 }
509 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
510 (offset - trunc_page(offset)));
511 }
512
513 /*
514 * if this block isn't allocated, zero it instead of
515 * reading it. unless we are going to allocate blocks,
516 * mark the pages we zeroed PG_RDONLY.
517 */
518
519 if (blkno < 0) {
520 int holepages = (round_page(offset + iobytes) -
521 trunc_page(offset)) >> PAGE_SHIFT;
522 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
523
524 sawhole = true;
525 memset((char *)kva + (offset - startoffset), 0,
526 iobytes);
527 skipbytes += iobytes;
528
529 for (i = 0; i < holepages; i++) {
530 if (write) {
531 pgs[pidx + i]->flags &= ~PG_CLEAN;
532 }
533 if (!blockalloc) {
534 pgs[pidx + i]->flags |= PG_RDONLY;
535 }
536 }
537 continue;
538 }
539
540 /*
541 * allocate a sub-buf for this piece of the i/o
542 * (or just use mbp if there's only 1 piece),
543 * and start it going.
544 */
545
546 if (offset == startoffset && iobytes == bytes) {
547 bp = mbp;
548 } else {
549 bp = getiobuf(vp, true);
550 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
551 }
552 bp->b_lblkno = 0;
553
554 /* adjust physical blkno for partial blocks */
555 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
556 dev_bshift);
557
558 UVMHIST_LOG(ubchist,
559 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
560 bp, offset, iobytes, bp->b_blkno);
561
562 VOP_STRATEGY(devvp, bp);
563 }
564
565 loopdone:
566 nestiobuf_done(mbp, skipbytes, error);
567 if (async) {
568 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
569 rw_exit(&gp->g_glock);
570 error = 0;
571 goto out_err;
572 }
573 if (bp != NULL) {
574 error = biowait(mbp);
575 }
576
577 /*
578 * if this we encountered a hole then we have to do a little more work.
579 * for read faults, we marked the page PG_RDONLY so that future
580 * write accesses to the page will fault again.
581 * for write faults, we must make sure that the backing store for
582 * the page is completely allocated while the pages are locked.
583 */
584
585 if (!error && sawhole && blockalloc) {
586 /*
587 * XXX: This assumes that we come here only via
588 * the mmio path
589 */
590 if (vp->v_mount->mnt_wapbl) {
591 error = WAPBL_BEGIN(vp->v_mount);
592 }
593
594 if (!error) {
595 error = GOP_ALLOC(vp, startoffset,
596 npages << PAGE_SHIFT, 0, cred);
597 if (vp->v_mount->mnt_wapbl) {
598 WAPBL_END(vp->v_mount);
599 }
600 }
601
602 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
603 startoffset, npages << PAGE_SHIFT, error,0);
604 if (!error) {
605 for (i = 0; i < npages; i++) {
606 if (pgs[i] == NULL) {
607 continue;
608 }
609 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
610 UVMHIST_LOG(ubchist, "mark dirty pg %p",
611 pgs[i],0,0,0);
612 }
613 }
614 }
615 rw_exit(&gp->g_glock);
616
617 putiobuf(mbp);
618 uvm_pagermapout(kva, npages);
619
620 mutex_enter(&uobj->vmobjlock);
621
622 /*
623 * we're almost done! release the pages...
624 * for errors, we free the pages.
625 * otherwise we activate them and mark them as valid and clean.
626 * also, unbusy pages that were not actually requested.
627 */
628
629 if (error) {
630 for (i = 0; i < npages; i++) {
631 if (pgs[i] == NULL) {
632 continue;
633 }
634 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
635 pgs[i], pgs[i]->flags, 0,0);
636 if (pgs[i]->flags & PG_FAKE) {
637 pgs[i]->flags |= PG_RELEASED;
638 }
639 }
640 mutex_enter(&uvm_pageqlock);
641 uvm_page_unbusy(pgs, npages);
642 mutex_exit(&uvm_pageqlock);
643 mutex_exit(&uobj->vmobjlock);
644 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
645 goto out_err;
646 }
647
648 out:
649 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
650 error = 0;
651 mutex_enter(&uvm_pageqlock);
652 for (i = 0; i < npages; i++) {
653 pg = pgs[i];
654 if (pg == NULL) {
655 continue;
656 }
657 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
658 pg, pg->flags, 0,0);
659 if (pg->flags & PG_FAKE && !overwrite) {
660 pg->flags &= ~(PG_FAKE);
661 pmap_clear_modify(pgs[i]);
662 }
663 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
664 if (i < ridx || i >= ridx + orignpages || async) {
665 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
666 pg, pg->offset,0,0);
667 if (pg->flags & PG_WANTED) {
668 wakeup(pg);
669 }
670 if (pg->flags & PG_FAKE) {
671 KASSERT(overwrite);
672 uvm_pagezero(pg);
673 }
674 if (pg->flags & PG_RELEASED) {
675 uvm_pagefree(pg);
676 continue;
677 }
678 uvm_pageenqueue(pg);
679 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
680 UVM_PAGE_OWN(pg, NULL);
681 }
682 }
683 mutex_exit(&uvm_pageqlock);
684 mutex_exit(&uobj->vmobjlock);
685 if (ap->a_m != NULL) {
686 memcpy(ap->a_m, &pgs[ridx],
687 orignpages * sizeof(struct vm_page *));
688 }
689
690 out_err:
691 if (pgs != NULL && pgs != pgs_onstack)
692 kmem_free(pgs, pgs_size);
693 if (has_trans)
694 fstrans_done(vp->v_mount);
695 return (error);
696 }
697
698 /*
699 * generic VM putpages routine.
700 * Write the given range of pages to backing store.
701 *
702 * => "offhi == 0" means flush all pages at or after "offlo".
703 * => object should be locked by caller. we return with the
704 * object unlocked.
705 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
706 * thus, a caller might want to unlock higher level resources
707 * (e.g. vm_map) before calling flush.
708 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
709 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
710 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
711 * that new pages are inserted on the tail end of the list. thus,
712 * we can make a complete pass through the object in one go by starting
713 * at the head and working towards the tail (new pages are put in
714 * front of us).
715 * => NOTE: we are allowed to lock the page queues, so the caller
716 * must not be holding the page queue lock.
717 *
718 * note on "cleaning" object and PG_BUSY pages:
719 * this routine is holding the lock on the object. the only time
720 * that it can run into a PG_BUSY page that it does not own is if
721 * some other process has started I/O on the page (e.g. either
722 * a pagein, or a pageout). if the PG_BUSY page is being paged
723 * in, then it can not be dirty (!PG_CLEAN) because no one has
724 * had a chance to modify it yet. if the PG_BUSY page is being
725 * paged out then it means that someone else has already started
726 * cleaning the page for us (how nice!). in this case, if we
727 * have syncio specified, then after we make our pass through the
728 * object we need to wait for the other PG_BUSY pages to clear
729 * off (i.e. we need to do an iosync). also note that once a
730 * page is PG_BUSY it must stay in its object until it is un-busyed.
731 *
732 * note on page traversal:
733 * we can traverse the pages in an object either by going down the
734 * linked list in "uobj->memq", or we can go over the address range
735 * by page doing hash table lookups for each address. depending
736 * on how many pages are in the object it may be cheaper to do one
737 * or the other. we set "by_list" to true if we are using memq.
738 * if the cost of a hash lookup was equal to the cost of the list
739 * traversal we could compare the number of pages in the start->stop
740 * range to the total number of pages in the object. however, it
741 * seems that a hash table lookup is more expensive than the linked
742 * list traversal, so we multiply the number of pages in the
743 * range by an estimate of the relatively higher cost of the hash lookup.
744 */
745
746 int
747 genfs_putpages(void *v)
748 {
749 struct vop_putpages_args /* {
750 struct vnode *a_vp;
751 voff_t a_offlo;
752 voff_t a_offhi;
753 int a_flags;
754 } */ *ap = v;
755
756 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
757 ap->a_flags, NULL);
758 }
759
760 int
761 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
762 int origflags, struct vm_page **busypg)
763 {
764 struct uvm_object *uobj = &vp->v_uobj;
765 kmutex_t *slock = &uobj->vmobjlock;
766 off_t off;
767 /* Even for strange MAXPHYS, the shift rounds down to a page */
768 #define maxpages (MAXPHYS >> PAGE_SHIFT)
769 int i, error, npages, nback;
770 int freeflag;
771 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
772 bool wasclean, by_list, needs_clean, yld;
773 bool async = (origflags & PGO_SYNCIO) == 0;
774 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
775 struct lwp *l = curlwp ? curlwp : &lwp0;
776 struct genfs_node *gp = VTOG(vp);
777 int flags;
778 int dirtygen;
779 bool modified;
780 bool need_wapbl;
781 bool has_trans;
782 bool cleanall;
783 bool onworklst;
784
785 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
786
787 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
788 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
789 KASSERT(startoff < endoff || endoff == 0);
790
791 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
792 vp, uobj->uo_npages, startoff, endoff - startoff);
793
794 has_trans = false;
795 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
796 (origflags & PGO_JOURNALLOCKED) == 0);
797
798 retry:
799 modified = false;
800 flags = origflags;
801 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
802 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
803 if (uobj->uo_npages == 0) {
804 if (vp->v_iflag & VI_ONWORKLST) {
805 vp->v_iflag &= ~VI_WRMAPDIRTY;
806 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
807 vn_syncer_remove_from_worklist(vp);
808 }
809 if (has_trans) {
810 if (need_wapbl)
811 WAPBL_END(vp->v_mount);
812 fstrans_done(vp->v_mount);
813 }
814 mutex_exit(slock);
815 return (0);
816 }
817
818 /*
819 * the vnode has pages, set up to process the request.
820 */
821
822 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
823 mutex_exit(slock);
824 if (pagedaemon) {
825 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
826 if (error)
827 return error;
828 } else
829 fstrans_start(vp->v_mount, FSTRANS_LAZY);
830 if (need_wapbl) {
831 error = WAPBL_BEGIN(vp->v_mount);
832 if (error) {
833 fstrans_done(vp->v_mount);
834 return error;
835 }
836 }
837 has_trans = true;
838 mutex_enter(slock);
839 goto retry;
840 }
841
842 error = 0;
843 wasclean = (vp->v_numoutput == 0);
844 off = startoff;
845 if (endoff == 0 || flags & PGO_ALLPAGES) {
846 endoff = trunc_page(LLONG_MAX);
847 }
848 by_list = (uobj->uo_npages <=
849 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
850
851 #if !defined(DEBUG)
852 /*
853 * if this vnode is known not to have dirty pages,
854 * don't bother to clean it out.
855 */
856
857 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
858 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
859 goto skip_scan;
860 }
861 flags &= ~PGO_CLEANIT;
862 }
863 #endif /* !defined(DEBUG) */
864
865 /*
866 * start the loop. when scanning by list, hold the last page
867 * in the list before we start. pages allocated after we start
868 * will be added to the end of the list, so we can stop at the
869 * current last page.
870 */
871
872 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
873 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
874 (vp->v_iflag & VI_ONWORKLST) != 0;
875 dirtygen = gp->g_dirtygen;
876 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
877 if (by_list) {
878 curmp.uobject = uobj;
879 curmp.offset = (voff_t)-1;
880 curmp.flags = PG_BUSY;
881 endmp.uobject = uobj;
882 endmp.offset = (voff_t)-1;
883 endmp.flags = PG_BUSY;
884 pg = TAILQ_FIRST(&uobj->memq);
885 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
886 uvm_lwp_hold(l);
887 } else {
888 pg = uvm_pagelookup(uobj, off);
889 }
890 nextpg = NULL;
891 while (by_list || off < endoff) {
892
893 /*
894 * if the current page is not interesting, move on to the next.
895 */
896
897 KASSERT(pg == NULL || pg->uobject == uobj);
898 KASSERT(pg == NULL ||
899 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
900 (pg->flags & PG_BUSY) != 0);
901 if (by_list) {
902 if (pg == &endmp) {
903 break;
904 }
905 if (pg->offset < startoff || pg->offset >= endoff ||
906 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
907 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
908 wasclean = false;
909 }
910 pg = TAILQ_NEXT(pg, listq.queue);
911 continue;
912 }
913 off = pg->offset;
914 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
915 if (pg != NULL) {
916 wasclean = false;
917 }
918 off += PAGE_SIZE;
919 if (off < endoff) {
920 pg = uvm_pagelookup(uobj, off);
921 }
922 continue;
923 }
924
925 /*
926 * if the current page needs to be cleaned and it's busy,
927 * wait for it to become unbusy.
928 */
929
930 yld = (l->l_cpu->ci_schedstate.spc_flags &
931 SPCF_SHOULDYIELD) && !pagedaemon;
932 if (pg->flags & PG_BUSY || yld) {
933 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
934 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
935 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
936 error = EDEADLK;
937 if (busypg != NULL)
938 *busypg = pg;
939 break;
940 }
941 if (pagedaemon) {
942 /*
943 * someone has taken the page while we
944 * dropped the lock for fstrans_start.
945 */
946 break;
947 }
948 if (by_list) {
949 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
950 UVMHIST_LOG(ubchist, "curmp next %p",
951 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
952 }
953 if (yld) {
954 mutex_exit(slock);
955 preempt();
956 mutex_enter(slock);
957 } else {
958 pg->flags |= PG_WANTED;
959 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
960 mutex_enter(slock);
961 }
962 if (by_list) {
963 UVMHIST_LOG(ubchist, "after next %p",
964 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
965 pg = TAILQ_NEXT(&curmp, listq.queue);
966 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
967 } else {
968 pg = uvm_pagelookup(uobj, off);
969 }
970 continue;
971 }
972
973 /*
974 * if we're freeing, remove all mappings of the page now.
975 * if we're cleaning, check if the page is needs to be cleaned.
976 */
977
978 if (flags & PGO_FREE) {
979 pmap_page_protect(pg, VM_PROT_NONE);
980 } else if (flags & PGO_CLEANIT) {
981
982 /*
983 * if we still have some hope to pull this vnode off
984 * from the syncer queue, write-protect the page.
985 */
986
987 if (cleanall && wasclean &&
988 gp->g_dirtygen == dirtygen) {
989
990 /*
991 * uobj pages get wired only by uvm_fault
992 * where uobj is locked.
993 */
994
995 if (pg->wire_count == 0) {
996 pmap_page_protect(pg,
997 VM_PROT_READ|VM_PROT_EXECUTE);
998 } else {
999 cleanall = false;
1000 }
1001 }
1002 }
1003
1004 if (flags & PGO_CLEANIT) {
1005 needs_clean = pmap_clear_modify(pg) ||
1006 (pg->flags & PG_CLEAN) == 0;
1007 pg->flags |= PG_CLEAN;
1008 } else {
1009 needs_clean = false;
1010 }
1011
1012 /*
1013 * if we're cleaning, build a cluster.
1014 * the cluster will consist of pages which are currently dirty,
1015 * but they will be returned to us marked clean.
1016 * if not cleaning, just operate on the one page.
1017 */
1018
1019 if (needs_clean) {
1020 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1021 wasclean = false;
1022 memset(pgs, 0, sizeof(pgs));
1023 pg->flags |= PG_BUSY;
1024 UVM_PAGE_OWN(pg, "genfs_putpages");
1025
1026 /*
1027 * first look backward.
1028 */
1029
1030 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1031 nback = npages;
1032 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1033 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1034 if (nback) {
1035 memmove(&pgs[0], &pgs[npages - nback],
1036 nback * sizeof(pgs[0]));
1037 if (npages - nback < nback)
1038 memset(&pgs[nback], 0,
1039 (npages - nback) * sizeof(pgs[0]));
1040 else
1041 memset(&pgs[npages - nback], 0,
1042 nback * sizeof(pgs[0]));
1043 }
1044
1045 /*
1046 * then plug in our page of interest.
1047 */
1048
1049 pgs[nback] = pg;
1050
1051 /*
1052 * then look forward to fill in the remaining space in
1053 * the array of pages.
1054 */
1055
1056 npages = maxpages - nback - 1;
1057 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1058 &pgs[nback + 1],
1059 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1060 npages += nback + 1;
1061 } else {
1062 pgs[0] = pg;
1063 npages = 1;
1064 nback = 0;
1065 }
1066
1067 /*
1068 * apply FREE or DEACTIVATE options if requested.
1069 */
1070
1071 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1072 mutex_enter(&uvm_pageqlock);
1073 }
1074 for (i = 0; i < npages; i++) {
1075 tpg = pgs[i];
1076 KASSERT(tpg->uobject == uobj);
1077 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1078 pg = tpg;
1079 if (tpg->offset < startoff || tpg->offset >= endoff)
1080 continue;
1081 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1082 uvm_pagedeactivate(tpg);
1083 } else if (flags & PGO_FREE) {
1084 pmap_page_protect(tpg, VM_PROT_NONE);
1085 if (tpg->flags & PG_BUSY) {
1086 tpg->flags |= freeflag;
1087 if (pagedaemon) {
1088 uvm_pageout_start(1);
1089 uvm_pagedequeue(tpg);
1090 }
1091 } else {
1092
1093 /*
1094 * ``page is not busy''
1095 * implies that npages is 1
1096 * and needs_clean is false.
1097 */
1098
1099 nextpg = TAILQ_NEXT(tpg, listq.queue);
1100 uvm_pagefree(tpg);
1101 if (pagedaemon)
1102 uvmexp.pdfreed++;
1103 }
1104 }
1105 }
1106 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1107 mutex_exit(&uvm_pageqlock);
1108 }
1109 if (needs_clean) {
1110 modified = true;
1111
1112 /*
1113 * start the i/o. if we're traversing by list,
1114 * keep our place in the list with a marker page.
1115 */
1116
1117 if (by_list) {
1118 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1119 listq.queue);
1120 }
1121 mutex_exit(slock);
1122 error = GOP_WRITE(vp, pgs, npages, flags);
1123 mutex_enter(slock);
1124 if (by_list) {
1125 pg = TAILQ_NEXT(&curmp, listq.queue);
1126 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1127 }
1128 if (error) {
1129 break;
1130 }
1131 if (by_list) {
1132 continue;
1133 }
1134 }
1135
1136 /*
1137 * find the next page and continue if there was no error.
1138 */
1139
1140 if (by_list) {
1141 if (nextpg) {
1142 pg = nextpg;
1143 nextpg = NULL;
1144 } else {
1145 pg = TAILQ_NEXT(pg, listq.queue);
1146 }
1147 } else {
1148 off += (npages - nback) << PAGE_SHIFT;
1149 if (off < endoff) {
1150 pg = uvm_pagelookup(uobj, off);
1151 }
1152 }
1153 }
1154 if (by_list) {
1155 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1156 uvm_lwp_rele(l);
1157 }
1158
1159 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1160 (vp->v_type != VBLK ||
1161 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1162 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1163 }
1164
1165 /*
1166 * if we're cleaning and there was nothing to clean,
1167 * take us off the syncer list. if we started any i/o
1168 * and we're doing sync i/o, wait for all writes to finish.
1169 */
1170
1171 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1172 (vp->v_iflag & VI_ONWORKLST) != 0) {
1173 #if defined(DEBUG)
1174 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1175 if ((pg->flags & PG_CLEAN) == 0) {
1176 printf("%s: %p: !CLEAN\n", __func__, pg);
1177 }
1178 if (pmap_is_modified(pg)) {
1179 printf("%s: %p: modified\n", __func__, pg);
1180 }
1181 }
1182 #endif /* defined(DEBUG) */
1183 vp->v_iflag &= ~VI_WRMAPDIRTY;
1184 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1185 vn_syncer_remove_from_worklist(vp);
1186 }
1187
1188 #if !defined(DEBUG)
1189 skip_scan:
1190 #endif /* !defined(DEBUG) */
1191
1192 /* Wait for output to complete. */
1193 if (!wasclean && !async && vp->v_numoutput != 0) {
1194 while (vp->v_numoutput != 0)
1195 cv_wait(&vp->v_cv, slock);
1196 }
1197 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1198 mutex_exit(slock);
1199
1200 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1201 /*
1202 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1203 * retrying is not a big deal because, in many cases,
1204 * uobj->uo_npages is already 0 here.
1205 */
1206 mutex_enter(slock);
1207 goto retry;
1208 }
1209
1210 if (has_trans) {
1211 if (need_wapbl)
1212 WAPBL_END(vp->v_mount);
1213 fstrans_done(vp->v_mount);
1214 }
1215
1216 return (error);
1217 }
1218
1219 int
1220 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1221 {
1222 off_t off;
1223 vaddr_t kva;
1224 size_t len;
1225 int error;
1226 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1227
1228 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1229 vp, pgs, npages, flags);
1230
1231 off = pgs[0]->offset;
1232 kva = uvm_pagermapin(pgs, npages,
1233 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1234 len = npages << PAGE_SHIFT;
1235
1236 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1237 uvm_aio_biodone);
1238
1239 return error;
1240 }
1241
1242 int
1243 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1244 {
1245 off_t off;
1246 vaddr_t kva;
1247 size_t len;
1248 int error;
1249 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1250
1251 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1252 vp, pgs, npages, flags);
1253
1254 off = pgs[0]->offset;
1255 kva = uvm_pagermapin(pgs, npages,
1256 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1257 len = npages << PAGE_SHIFT;
1258
1259 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1260 uvm_aio_biodone);
1261
1262 return error;
1263 }
1264
1265 /*
1266 * Backend routine for doing I/O to vnode pages. Pages are already locked
1267 * and mapped into kernel memory. Here we just look up the underlying
1268 * device block addresses and call the strategy routine.
1269 */
1270
1271 static int
1272 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1273 enum uio_rw rw, void (*iodone)(struct buf *))
1274 {
1275 int s, error, run;
1276 int fs_bshift, dev_bshift;
1277 off_t eof, offset, startoffset;
1278 size_t bytes, iobytes, skipbytes;
1279 daddr_t lbn, blkno;
1280 struct buf *mbp, *bp;
1281 struct vnode *devvp;
1282 bool async = (flags & PGO_SYNCIO) == 0;
1283 bool write = rw == UIO_WRITE;
1284 int brw = write ? B_WRITE : B_READ;
1285 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1286
1287 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1288 vp, kva, len, flags);
1289
1290 KASSERT(vp->v_size <= vp->v_writesize);
1291 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1292 if (vp->v_type != VBLK) {
1293 fs_bshift = vp->v_mount->mnt_fs_bshift;
1294 dev_bshift = vp->v_mount->mnt_dev_bshift;
1295 } else {
1296 fs_bshift = DEV_BSHIFT;
1297 dev_bshift = DEV_BSHIFT;
1298 }
1299 error = 0;
1300 startoffset = off;
1301 bytes = MIN(len, eof - startoffset);
1302 skipbytes = 0;
1303 KASSERT(bytes != 0);
1304
1305 if (write) {
1306 mutex_enter(&vp->v_interlock);
1307 vp->v_numoutput += 2;
1308 mutex_exit(&vp->v_interlock);
1309 }
1310 mbp = getiobuf(vp, true);
1311 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1312 vp, mbp, vp->v_numoutput, bytes);
1313 mbp->b_bufsize = len;
1314 mbp->b_data = (void *)kva;
1315 mbp->b_resid = mbp->b_bcount = bytes;
1316 mbp->b_cflags = BC_BUSY | BC_AGE;
1317 if (async) {
1318 mbp->b_flags = brw | B_ASYNC;
1319 mbp->b_iodone = iodone;
1320 } else {
1321 mbp->b_flags = brw;
1322 mbp->b_iodone = NULL;
1323 }
1324 if (curlwp == uvm.pagedaemon_lwp)
1325 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1326 else if (async)
1327 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1328 else
1329 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1330
1331 bp = NULL;
1332 for (offset = startoffset;
1333 bytes > 0;
1334 offset += iobytes, bytes -= iobytes) {
1335 lbn = offset >> fs_bshift;
1336 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1337 if (error) {
1338 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1339 skipbytes += bytes;
1340 bytes = 0;
1341 break;
1342 }
1343
1344 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1345 bytes);
1346 if (blkno == (daddr_t)-1) {
1347 if (!write) {
1348 memset((char *)kva + (offset - startoffset), 0,
1349 iobytes);
1350 }
1351 skipbytes += iobytes;
1352 continue;
1353 }
1354
1355 /* if it's really one i/o, don't make a second buf */
1356 if (offset == startoffset && iobytes == bytes) {
1357 bp = mbp;
1358 } else {
1359 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1360 vp, bp, vp->v_numoutput, 0);
1361 bp = getiobuf(vp, true);
1362 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1363 }
1364 bp->b_lblkno = 0;
1365
1366 /* adjust physical blkno for partial blocks */
1367 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1368 dev_bshift);
1369 UVMHIST_LOG(ubchist,
1370 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1371 vp, offset, bp->b_bcount, bp->b_blkno);
1372
1373 VOP_STRATEGY(devvp, bp);
1374 }
1375 if (skipbytes) {
1376 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1377 }
1378 nestiobuf_done(mbp, skipbytes, error);
1379 if (async) {
1380 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1381 return (0);
1382 }
1383 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1384 error = biowait(mbp);
1385 s = splbio();
1386 (*iodone)(mbp);
1387 splx(s);
1388 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1389 return (error);
1390 }
1391
1392 /*
1393 * VOP_PUTPAGES() for vnodes which never have pages.
1394 */
1395
1396 int
1397 genfs_null_putpages(void *v)
1398 {
1399 struct vop_putpages_args /* {
1400 struct vnode *a_vp;
1401 voff_t a_offlo;
1402 voff_t a_offhi;
1403 int a_flags;
1404 } */ *ap = v;
1405 struct vnode *vp = ap->a_vp;
1406
1407 KASSERT(vp->v_uobj.uo_npages == 0);
1408 mutex_exit(&vp->v_interlock);
1409 return (0);
1410 }
1411
1412 int
1413 genfs_compat_getpages(void *v)
1414 {
1415 struct vop_getpages_args /* {
1416 struct vnode *a_vp;
1417 voff_t a_offset;
1418 struct vm_page **a_m;
1419 int *a_count;
1420 int a_centeridx;
1421 vm_prot_t a_access_type;
1422 int a_advice;
1423 int a_flags;
1424 } */ *ap = v;
1425
1426 off_t origoffset;
1427 struct vnode *vp = ap->a_vp;
1428 struct uvm_object *uobj = &vp->v_uobj;
1429 struct vm_page *pg, **pgs;
1430 vaddr_t kva;
1431 int i, error, orignpages, npages;
1432 struct iovec iov;
1433 struct uio uio;
1434 kauth_cred_t cred = curlwp->l_cred;
1435 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1436
1437 error = 0;
1438 origoffset = ap->a_offset;
1439 orignpages = *ap->a_count;
1440 pgs = ap->a_m;
1441
1442 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1443 vn_syncer_add_to_worklist(vp, filedelay);
1444 }
1445 if (ap->a_flags & PGO_LOCKED) {
1446 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1447 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1448
1449 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1450 }
1451 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1452 mutex_exit(&uobj->vmobjlock);
1453 return (EINVAL);
1454 }
1455 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1456 mutex_exit(&uobj->vmobjlock);
1457 return 0;
1458 }
1459 npages = orignpages;
1460 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1461 mutex_exit(&uobj->vmobjlock);
1462 kva = uvm_pagermapin(pgs, npages,
1463 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1464 for (i = 0; i < npages; i++) {
1465 pg = pgs[i];
1466 if ((pg->flags & PG_FAKE) == 0) {
1467 continue;
1468 }
1469 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1470 iov.iov_len = PAGE_SIZE;
1471 uio.uio_iov = &iov;
1472 uio.uio_iovcnt = 1;
1473 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1474 uio.uio_rw = UIO_READ;
1475 uio.uio_resid = PAGE_SIZE;
1476 UIO_SETUP_SYSSPACE(&uio);
1477 /* XXX vn_lock */
1478 error = VOP_READ(vp, &uio, 0, cred);
1479 if (error) {
1480 break;
1481 }
1482 if (uio.uio_resid) {
1483 memset(iov.iov_base, 0, uio.uio_resid);
1484 }
1485 }
1486 uvm_pagermapout(kva, npages);
1487 mutex_enter(&uobj->vmobjlock);
1488 mutex_enter(&uvm_pageqlock);
1489 for (i = 0; i < npages; i++) {
1490 pg = pgs[i];
1491 if (error && (pg->flags & PG_FAKE) != 0) {
1492 pg->flags |= PG_RELEASED;
1493 } else {
1494 pmap_clear_modify(pg);
1495 uvm_pageactivate(pg);
1496 }
1497 }
1498 if (error) {
1499 uvm_page_unbusy(pgs, npages);
1500 }
1501 mutex_exit(&uvm_pageqlock);
1502 mutex_exit(&uobj->vmobjlock);
1503 return (error);
1504 }
1505
1506 int
1507 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1508 int flags)
1509 {
1510 off_t offset;
1511 struct iovec iov;
1512 struct uio uio;
1513 kauth_cred_t cred = curlwp->l_cred;
1514 struct buf *bp;
1515 vaddr_t kva;
1516 int error;
1517
1518 offset = pgs[0]->offset;
1519 kva = uvm_pagermapin(pgs, npages,
1520 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1521
1522 iov.iov_base = (void *)kva;
1523 iov.iov_len = npages << PAGE_SHIFT;
1524 uio.uio_iov = &iov;
1525 uio.uio_iovcnt = 1;
1526 uio.uio_offset = offset;
1527 uio.uio_rw = UIO_WRITE;
1528 uio.uio_resid = npages << PAGE_SHIFT;
1529 UIO_SETUP_SYSSPACE(&uio);
1530 /* XXX vn_lock */
1531 error = VOP_WRITE(vp, &uio, 0, cred);
1532
1533 mutex_enter(&vp->v_interlock);
1534 vp->v_numoutput++;
1535 mutex_exit(&vp->v_interlock);
1536
1537 bp = getiobuf(vp, true);
1538 bp->b_cflags = BC_BUSY | BC_AGE;
1539 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1540 bp->b_data = (char *)kva;
1541 bp->b_bcount = npages << PAGE_SHIFT;
1542 bp->b_bufsize = npages << PAGE_SHIFT;
1543 bp->b_resid = 0;
1544 bp->b_error = error;
1545 uvm_aio_aiodone(bp);
1546 return (error);
1547 }
1548
1549 /*
1550 * Process a uio using direct I/O. If we reach a part of the request
1551 * which cannot be processed in this fashion for some reason, just return.
1552 * The caller must handle some additional part of the request using
1553 * buffered I/O before trying direct I/O again.
1554 */
1555
1556 void
1557 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1558 {
1559 struct vmspace *vs;
1560 struct iovec *iov;
1561 vaddr_t va;
1562 size_t len;
1563 const int mask = DEV_BSIZE - 1;
1564 int error;
1565 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1566 (ioflag & IO_JOURNALLOCKED) == 0);
1567
1568 /*
1569 * We only support direct I/O to user space for now.
1570 */
1571
1572 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1573 return;
1574 }
1575
1576 /*
1577 * If the vnode is mapped, we would need to get the getpages lock
1578 * to stabilize the bmap, but then we would get into trouble whil e
1579 * locking the pages if the pages belong to this same vnode (or a
1580 * multi-vnode cascade to the same effect). Just fall back to
1581 * buffered I/O if the vnode is mapped to avoid this mess.
1582 */
1583
1584 if (vp->v_vflag & VV_MAPPED) {
1585 return;
1586 }
1587
1588 if (need_wapbl) {
1589 error = WAPBL_BEGIN(vp->v_mount);
1590 if (error)
1591 return;
1592 }
1593
1594 /*
1595 * Do as much of the uio as possible with direct I/O.
1596 */
1597
1598 vs = uio->uio_vmspace;
1599 while (uio->uio_resid) {
1600 iov = uio->uio_iov;
1601 if (iov->iov_len == 0) {
1602 uio->uio_iov++;
1603 uio->uio_iovcnt--;
1604 continue;
1605 }
1606 va = (vaddr_t)iov->iov_base;
1607 len = MIN(iov->iov_len, genfs_maxdio);
1608 len &= ~mask;
1609
1610 /*
1611 * If the next chunk is smaller than DEV_BSIZE or extends past
1612 * the current EOF, then fall back to buffered I/O.
1613 */
1614
1615 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1616 break;
1617 }
1618
1619 /*
1620 * Check alignment. The file offset must be at least
1621 * sector-aligned. The exact constraint on memory alignment
1622 * is very hardware-dependent, but requiring sector-aligned
1623 * addresses there too is safe.
1624 */
1625
1626 if (uio->uio_offset & mask || va & mask) {
1627 break;
1628 }
1629 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1630 uio->uio_rw);
1631 if (error) {
1632 break;
1633 }
1634 iov->iov_base = (char *)iov->iov_base + len;
1635 iov->iov_len -= len;
1636 uio->uio_offset += len;
1637 uio->uio_resid -= len;
1638 }
1639
1640 if (need_wapbl)
1641 WAPBL_END(vp->v_mount);
1642 }
1643
1644 /*
1645 * Iodone routine for direct I/O. We don't do much here since the request is
1646 * always synchronous, so the caller will do most of the work after biowait().
1647 */
1648
1649 static void
1650 genfs_dio_iodone(struct buf *bp)
1651 {
1652
1653 KASSERT((bp->b_flags & B_ASYNC) == 0);
1654 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1655 mutex_enter(bp->b_objlock);
1656 vwakeup(bp);
1657 mutex_exit(bp->b_objlock);
1658 }
1659 putiobuf(bp);
1660 }
1661
1662 /*
1663 * Process one chunk of a direct I/O request.
1664 */
1665
1666 static int
1667 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1668 off_t off, enum uio_rw rw)
1669 {
1670 struct vm_map *map;
1671 struct pmap *upm, *kpm;
1672 size_t klen = round_page(uva + len) - trunc_page(uva);
1673 off_t spoff, epoff;
1674 vaddr_t kva, puva;
1675 paddr_t pa;
1676 vm_prot_t prot;
1677 int error, rv, poff, koff;
1678 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1679 (rw == UIO_WRITE ? PGO_FREE : 0);
1680
1681 /*
1682 * For writes, verify that this range of the file already has fully
1683 * allocated backing store. If there are any holes, just punt and
1684 * make the caller take the buffered write path.
1685 */
1686
1687 if (rw == UIO_WRITE) {
1688 daddr_t lbn, elbn, blkno;
1689 int bsize, bshift, run;
1690
1691 bshift = vp->v_mount->mnt_fs_bshift;
1692 bsize = 1 << bshift;
1693 lbn = off >> bshift;
1694 elbn = (off + len + bsize - 1) >> bshift;
1695 while (lbn < elbn) {
1696 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1697 if (error) {
1698 return error;
1699 }
1700 if (blkno == (daddr_t)-1) {
1701 return ENOSPC;
1702 }
1703 lbn += 1 + run;
1704 }
1705 }
1706
1707 /*
1708 * Flush any cached pages for parts of the file that we're about to
1709 * access. If we're writing, invalidate pages as well.
1710 */
1711
1712 spoff = trunc_page(off);
1713 epoff = round_page(off + len);
1714 mutex_enter(&vp->v_interlock);
1715 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1716 if (error) {
1717 return error;
1718 }
1719
1720 /*
1721 * Wire the user pages and remap them into kernel memory.
1722 */
1723
1724 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1725 error = uvm_vslock(vs, (void *)uva, len, prot);
1726 if (error) {
1727 return error;
1728 }
1729
1730 map = &vs->vm_map;
1731 upm = vm_map_pmap(map);
1732 kpm = vm_map_pmap(kernel_map);
1733 kva = uvm_km_alloc(kernel_map, klen, 0,
1734 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1735 puva = trunc_page(uva);
1736 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1737 rv = pmap_extract(upm, puva + poff, &pa);
1738 KASSERT(rv);
1739 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1740 }
1741 pmap_update(kpm);
1742
1743 /*
1744 * Do the I/O.
1745 */
1746
1747 koff = uva - trunc_page(uva);
1748 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1749 genfs_dio_iodone);
1750
1751 /*
1752 * Tear down the kernel mapping.
1753 */
1754
1755 pmap_remove(kpm, kva, kva + klen);
1756 pmap_update(kpm);
1757 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1758
1759 /*
1760 * Unwire the user pages.
1761 */
1762
1763 uvm_vsunlock(vs, (void *)uva, len);
1764 return error;
1765 }
1766
1767