Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.18
      1 /*	$NetBSD: genfs_io.c,v 1.18 2009/02/04 20:32:19 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.18 2009/02/04 20:32:19 rmind Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 #include <sys/buf.h>
     51 
     52 #include <miscfs/genfs/genfs.h>
     53 #include <miscfs/genfs/genfs_node.h>
     54 #include <miscfs/specfs/specdev.h>
     55 
     56 #include <uvm/uvm.h>
     57 #include <uvm/uvm_pager.h>
     58 
     59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     60     off_t, enum uio_rw);
     61 static void genfs_dio_iodone(struct buf *);
     62 
     63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     64     void (*)(struct buf *));
     65 static inline void genfs_rel_pages(struct vm_page **, int);
     66 
     67 int genfs_maxdio = MAXPHYS;
     68 
     69 static inline void
     70 genfs_rel_pages(struct vm_page **pgs, int npages)
     71 {
     72 	int i;
     73 
     74 	for (i = 0; i < npages; i++) {
     75 		struct vm_page *pg = pgs[i];
     76 
     77 		if (pg == NULL || pg == PGO_DONTCARE)
     78 			continue;
     79 		if (pg->flags & PG_FAKE) {
     80 			pg->flags |= PG_RELEASED;
     81 		}
     82 	}
     83 	mutex_enter(&uvm_pageqlock);
     84 	uvm_page_unbusy(pgs, npages);
     85 	mutex_exit(&uvm_pageqlock);
     86 }
     87 
     88 /*
     89  * generic VM getpages routine.
     90  * Return PG_BUSY pages for the given range,
     91  * reading from backing store if necessary.
     92  */
     93 
     94 int
     95 genfs_getpages(void *v)
     96 {
     97 	struct vop_getpages_args /* {
     98 		struct vnode *a_vp;
     99 		voff_t a_offset;
    100 		struct vm_page **a_m;
    101 		int *a_count;
    102 		int a_centeridx;
    103 		vm_prot_t a_access_type;
    104 		int a_advice;
    105 		int a_flags;
    106 	} */ *ap = v;
    107 
    108 	off_t newsize, diskeof, memeof;
    109 	off_t offset, origoffset, startoffset, endoffset;
    110 	daddr_t lbn, blkno;
    111 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    112 	int fs_bshift, fs_bsize, dev_bshift;
    113 	const int flags = ap->a_flags;
    114 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    115 	vaddr_t kva;
    116 	struct buf *bp, *mbp;
    117 	struct vnode *vp = ap->a_vp;
    118 	struct vnode *devvp;
    119 	struct genfs_node *gp = VTOG(vp);
    120 	struct uvm_object *uobj = &vp->v_uobj;
    121 	struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
    122 	int pgs_size;
    123 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    124 	const bool async = (flags & PGO_SYNCIO) == 0;
    125 	const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    126 	bool sawhole = false;
    127 	bool has_trans = false;
    128 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    129 	const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    130 	voff_t origvsize;
    131 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    132 
    133 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    134 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    135 
    136 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    137 	    vp->v_type == VLNK || vp->v_type == VBLK);
    138 
    139 	pgs = NULL;
    140 	pgs_size = 0;
    141 
    142 startover:
    143 	error = 0;
    144 	origvsize = vp->v_size;
    145 	origoffset = ap->a_offset;
    146 	orignpages = *ap->a_count;
    147 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    148 	if (flags & PGO_PASTEOF) {
    149 #if defined(DIAGNOSTIC)
    150 		off_t writeeof;
    151 #endif /* defined(DIAGNOSTIC) */
    152 
    153 		newsize = MAX(origvsize,
    154 		    origoffset + (orignpages << PAGE_SHIFT));
    155 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    156 #if defined(DIAGNOSTIC)
    157 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    158 		if (newsize > round_page(writeeof)) {
    159 			panic("%s: past eof", __func__);
    160 		}
    161 #endif /* defined(DIAGNOSTIC) */
    162 	} else {
    163 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    164 	}
    165 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    166 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    167 	KASSERT(orignpages > 0);
    168 
    169 	/*
    170 	 * Bounds-check the request.
    171 	 */
    172 
    173 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    174 		if ((flags & PGO_LOCKED) == 0) {
    175 			mutex_exit(&uobj->vmobjlock);
    176 		}
    177 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    178 		    origoffset, *ap->a_count, memeof,0);
    179 		error = EINVAL;
    180 		goto out_err;
    181 	}
    182 
    183 	/* uobj is locked */
    184 
    185 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    186 	    (vp->v_type != VBLK ||
    187 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    188 		int updflags = 0;
    189 
    190 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    191 			updflags = GOP_UPDATE_ACCESSED;
    192 		}
    193 		if (write) {
    194 			updflags |= GOP_UPDATE_MODIFIED;
    195 		}
    196 		if (updflags != 0) {
    197 			GOP_MARKUPDATE(vp, updflags);
    198 		}
    199 	}
    200 
    201 	if (write) {
    202 		gp->g_dirtygen++;
    203 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    204 			vn_syncer_add_to_worklist(vp, filedelay);
    205 		}
    206 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    207 			vp->v_iflag |= VI_WRMAPDIRTY;
    208 		}
    209 	}
    210 
    211 	/*
    212 	 * For PGO_LOCKED requests, just return whatever's in memory.
    213 	 */
    214 
    215 	if (flags & PGO_LOCKED) {
    216 		int nfound;
    217 
    218 		npages = *ap->a_count;
    219 #if defined(DEBUG)
    220 		for (i = 0; i < npages; i++) {
    221 			pg = ap->a_m[i];
    222 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    223 		}
    224 #endif /* defined(DEBUG) */
    225 		nfound = uvn_findpages(uobj, origoffset, &npages,
    226 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    227 		KASSERT(npages == *ap->a_count);
    228 		if (nfound == 0) {
    229 			error = EBUSY;
    230 			goto out_err;
    231 		}
    232 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
    233 			genfs_rel_pages(ap->a_m, npages);
    234 
    235 			/*
    236 			 * restore the array.
    237 			 */
    238 
    239 			for (i = 0; i < npages; i++) {
    240 				pg = ap->a_m[i];
    241 
    242 				if (pg != NULL || pg != PGO_DONTCARE) {
    243 					ap->a_m[i] = NULL;
    244 				}
    245 			}
    246 		} else {
    247 			rw_exit(&gp->g_glock);
    248 		}
    249 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    250 		goto out_err;
    251 	}
    252 	mutex_exit(&uobj->vmobjlock);
    253 
    254 	/*
    255 	 * find the requested pages and make some simple checks.
    256 	 * leave space in the page array for a whole block.
    257 	 */
    258 
    259 	if (vp->v_type != VBLK) {
    260 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    261 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    262 	} else {
    263 		fs_bshift = DEV_BSHIFT;
    264 		dev_bshift = DEV_BSHIFT;
    265 	}
    266 	fs_bsize = 1 << fs_bshift;
    267 
    268 	orignpages = MIN(orignpages,
    269 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    270 	npages = orignpages;
    271 	startoffset = origoffset & ~(fs_bsize - 1);
    272 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    273 	    fs_bsize - 1) & ~(fs_bsize - 1));
    274 	endoffset = MIN(endoffset, round_page(memeof));
    275 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    276 
    277 	pgs_size = sizeof(struct vm_page *) *
    278 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    279 	if (pgs_size > sizeof(pgs_onstack)) {
    280 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    281 		if (pgs == NULL) {
    282 			pgs = pgs_onstack;
    283 			error = ENOMEM;
    284 			goto out_err;
    285 		}
    286 	} else {
    287 		pgs = pgs_onstack;
    288 		(void)memset(pgs, 0, pgs_size);
    289 	}
    290 
    291 
    292 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    293 	    ridx, npages, startoffset, endoffset);
    294 
    295 	if (!has_trans) {
    296 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    297 		has_trans = true;
    298 	}
    299 
    300 	/*
    301 	 * hold g_glock to prevent a race with truncate.
    302 	 *
    303 	 * check if our idea of v_size is still valid.
    304 	 */
    305 
    306 	if (blockalloc) {
    307 		rw_enter(&gp->g_glock, RW_WRITER);
    308 	} else {
    309 		rw_enter(&gp->g_glock, RW_READER);
    310 	}
    311 	mutex_enter(&uobj->vmobjlock);
    312 	if (vp->v_size < origvsize) {
    313 		rw_exit(&gp->g_glock);
    314 		if (pgs != pgs_onstack)
    315 			kmem_free(pgs, pgs_size);
    316 		goto startover;
    317 	}
    318 
    319 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    320 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    321 		rw_exit(&gp->g_glock);
    322 		KASSERT(async != 0);
    323 		genfs_rel_pages(&pgs[ridx], orignpages);
    324 		mutex_exit(&uobj->vmobjlock);
    325 		error = EBUSY;
    326 		goto out_err;
    327 	}
    328 
    329 	/*
    330 	 * if the pages are already resident, just return them.
    331 	 */
    332 
    333 	for (i = 0; i < npages; i++) {
    334 		struct vm_page *pg1 = pgs[ridx + i];
    335 
    336 		if ((pg1->flags & PG_FAKE) ||
    337 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    338 			break;
    339 		}
    340 	}
    341 	if (i == npages) {
    342 		rw_exit(&gp->g_glock);
    343 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    344 		npages += ridx;
    345 		goto out;
    346 	}
    347 
    348 	/*
    349 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    350 	 */
    351 
    352 	if (overwrite) {
    353 		rw_exit(&gp->g_glock);
    354 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    355 
    356 		for (i = 0; i < npages; i++) {
    357 			struct vm_page *pg1 = pgs[ridx + i];
    358 
    359 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    360 		}
    361 		npages += ridx;
    362 		goto out;
    363 	}
    364 
    365 	/*
    366 	 * the page wasn't resident and we're not overwriting,
    367 	 * so we're going to have to do some i/o.
    368 	 * find any additional pages needed to cover the expanded range.
    369 	 */
    370 
    371 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    372 	if (startoffset != origoffset || npages != orignpages) {
    373 
    374 		/*
    375 		 * we need to avoid deadlocks caused by locking
    376 		 * additional pages at lower offsets than pages we
    377 		 * already have locked.  unlock them all and start over.
    378 		 */
    379 
    380 		genfs_rel_pages(&pgs[ridx], orignpages);
    381 		memset(pgs, 0, pgs_size);
    382 
    383 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    384 		    startoffset, endoffset, 0,0);
    385 		npgs = npages;
    386 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    387 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    388 			rw_exit(&gp->g_glock);
    389 			KASSERT(async != 0);
    390 			genfs_rel_pages(pgs, npages);
    391 			mutex_exit(&uobj->vmobjlock);
    392 			error = EBUSY;
    393 			goto out_err;
    394 		}
    395 	}
    396 	mutex_exit(&uobj->vmobjlock);
    397 
    398 	/*
    399 	 * read the desired page(s).
    400 	 */
    401 
    402 	totalbytes = npages << PAGE_SHIFT;
    403 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    404 	tailbytes = totalbytes - bytes;
    405 	skipbytes = 0;
    406 
    407 	kva = uvm_pagermapin(pgs, npages,
    408 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    409 
    410 	mbp = getiobuf(vp, true);
    411 	mbp->b_bufsize = totalbytes;
    412 	mbp->b_data = (void *)kva;
    413 	mbp->b_resid = mbp->b_bcount = bytes;
    414 	mbp->b_cflags = BC_BUSY;
    415 	if (async) {
    416 		mbp->b_flags = B_READ | B_ASYNC;
    417 		mbp->b_iodone = uvm_aio_biodone;
    418 	} else {
    419 		mbp->b_flags = B_READ;
    420 		mbp->b_iodone = NULL;
    421 	}
    422 	if (async)
    423 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    424 	else
    425 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    426 
    427 	/*
    428 	 * if EOF is in the middle of the range, zero the part past EOF.
    429 	 * skip over pages which are not PG_FAKE since in that case they have
    430 	 * valid data that we need to preserve.
    431 	 */
    432 
    433 	tailstart = bytes;
    434 	while (tailbytes > 0) {
    435 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    436 
    437 		KASSERT(len <= tailbytes);
    438 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    439 			memset((void *)(kva + tailstart), 0, len);
    440 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    441 			    kva, tailstart, len, 0);
    442 		}
    443 		tailstart += len;
    444 		tailbytes -= len;
    445 	}
    446 
    447 	/*
    448 	 * now loop over the pages, reading as needed.
    449 	 */
    450 
    451 	bp = NULL;
    452 	for (offset = startoffset;
    453 	    bytes > 0;
    454 	    offset += iobytes, bytes -= iobytes) {
    455 
    456 		/*
    457 		 * skip pages which don't need to be read.
    458 		 */
    459 
    460 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    461 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    462 			size_t b;
    463 
    464 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    465 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    466 				sawhole = true;
    467 			}
    468 			b = MIN(PAGE_SIZE, bytes);
    469 			offset += b;
    470 			bytes -= b;
    471 			skipbytes += b;
    472 			pidx++;
    473 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    474 			    offset, 0,0,0);
    475 			if (bytes == 0) {
    476 				goto loopdone;
    477 			}
    478 		}
    479 
    480 		/*
    481 		 * bmap the file to find out the blkno to read from and
    482 		 * how much we can read in one i/o.  if bmap returns an error,
    483 		 * skip the rest of the top-level i/o.
    484 		 */
    485 
    486 		lbn = offset >> fs_bshift;
    487 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    488 		if (error) {
    489 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    490 			    lbn, error,0,0);
    491 			skipbytes += bytes;
    492 			goto loopdone;
    493 		}
    494 
    495 		/*
    496 		 * see how many pages can be read with this i/o.
    497 		 * reduce the i/o size if necessary to avoid
    498 		 * overwriting pages with valid data.
    499 		 */
    500 
    501 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    502 		    bytes);
    503 		if (offset + iobytes > round_page(offset)) {
    504 			pcount = 1;
    505 			while (pidx + pcount < npages &&
    506 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    507 				pcount++;
    508 			}
    509 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    510 			    (offset - trunc_page(offset)));
    511 		}
    512 
    513 		/*
    514 		 * if this block isn't allocated, zero it instead of
    515 		 * reading it.  unless we are going to allocate blocks,
    516 		 * mark the pages we zeroed PG_RDONLY.
    517 		 */
    518 
    519 		if (blkno < 0) {
    520 			int holepages = (round_page(offset + iobytes) -
    521 			    trunc_page(offset)) >> PAGE_SHIFT;
    522 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    523 
    524 			sawhole = true;
    525 			memset((char *)kva + (offset - startoffset), 0,
    526 			    iobytes);
    527 			skipbytes += iobytes;
    528 
    529 			for (i = 0; i < holepages; i++) {
    530 				if (write) {
    531 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    532 				}
    533 				if (!blockalloc) {
    534 					pgs[pidx + i]->flags |= PG_RDONLY;
    535 				}
    536 			}
    537 			continue;
    538 		}
    539 
    540 		/*
    541 		 * allocate a sub-buf for this piece of the i/o
    542 		 * (or just use mbp if there's only 1 piece),
    543 		 * and start it going.
    544 		 */
    545 
    546 		if (offset == startoffset && iobytes == bytes) {
    547 			bp = mbp;
    548 		} else {
    549 			bp = getiobuf(vp, true);
    550 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    551 		}
    552 		bp->b_lblkno = 0;
    553 
    554 		/* adjust physical blkno for partial blocks */
    555 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    556 		    dev_bshift);
    557 
    558 		UVMHIST_LOG(ubchist,
    559 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    560 		    bp, offset, iobytes, bp->b_blkno);
    561 
    562 		VOP_STRATEGY(devvp, bp);
    563 	}
    564 
    565 loopdone:
    566 	nestiobuf_done(mbp, skipbytes, error);
    567 	if (async) {
    568 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    569 		rw_exit(&gp->g_glock);
    570 		error = 0;
    571 		goto out_err;
    572 	}
    573 	if (bp != NULL) {
    574 		error = biowait(mbp);
    575 	}
    576 
    577 	/*
    578 	 * if this we encountered a hole then we have to do a little more work.
    579 	 * for read faults, we marked the page PG_RDONLY so that future
    580 	 * write accesses to the page will fault again.
    581 	 * for write faults, we must make sure that the backing store for
    582 	 * the page is completely allocated while the pages are locked.
    583 	 */
    584 
    585 	if (!error && sawhole && blockalloc) {
    586 		/*
    587 		 * XXX: This assumes that we come here only via
    588 		 * the mmio path
    589 		 */
    590 		if (vp->v_mount->mnt_wapbl) {
    591 			error = WAPBL_BEGIN(vp->v_mount);
    592 		}
    593 
    594 		if (!error) {
    595 			error = GOP_ALLOC(vp, startoffset,
    596 			    npages << PAGE_SHIFT, 0, cred);
    597 			if (vp->v_mount->mnt_wapbl) {
    598 				WAPBL_END(vp->v_mount);
    599 			}
    600 		}
    601 
    602 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    603 		    startoffset, npages << PAGE_SHIFT, error,0);
    604 		if (!error) {
    605 			for (i = 0; i < npages; i++) {
    606 				if (pgs[i] == NULL) {
    607 					continue;
    608 				}
    609 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    610 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    611 				    pgs[i],0,0,0);
    612 			}
    613 		}
    614 	}
    615 	rw_exit(&gp->g_glock);
    616 
    617 	putiobuf(mbp);
    618 	uvm_pagermapout(kva, npages);
    619 
    620 	mutex_enter(&uobj->vmobjlock);
    621 
    622 	/*
    623 	 * we're almost done!  release the pages...
    624 	 * for errors, we free the pages.
    625 	 * otherwise we activate them and mark them as valid and clean.
    626 	 * also, unbusy pages that were not actually requested.
    627 	 */
    628 
    629 	if (error) {
    630 		for (i = 0; i < npages; i++) {
    631 			if (pgs[i] == NULL) {
    632 				continue;
    633 			}
    634 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    635 			    pgs[i], pgs[i]->flags, 0,0);
    636 			if (pgs[i]->flags & PG_FAKE) {
    637 				pgs[i]->flags |= PG_RELEASED;
    638 			}
    639 		}
    640 		mutex_enter(&uvm_pageqlock);
    641 		uvm_page_unbusy(pgs, npages);
    642 		mutex_exit(&uvm_pageqlock);
    643 		mutex_exit(&uobj->vmobjlock);
    644 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    645 		goto out_err;
    646 	}
    647 
    648 out:
    649 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    650 	error = 0;
    651 	mutex_enter(&uvm_pageqlock);
    652 	for (i = 0; i < npages; i++) {
    653 		pg = pgs[i];
    654 		if (pg == NULL) {
    655 			continue;
    656 		}
    657 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    658 		    pg, pg->flags, 0,0);
    659 		if (pg->flags & PG_FAKE && !overwrite) {
    660 			pg->flags &= ~(PG_FAKE);
    661 			pmap_clear_modify(pgs[i]);
    662 		}
    663 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    664 		if (i < ridx || i >= ridx + orignpages || async) {
    665 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    666 			    pg, pg->offset,0,0);
    667 			if (pg->flags & PG_WANTED) {
    668 				wakeup(pg);
    669 			}
    670 			if (pg->flags & PG_FAKE) {
    671 				KASSERT(overwrite);
    672 				uvm_pagezero(pg);
    673 			}
    674 			if (pg->flags & PG_RELEASED) {
    675 				uvm_pagefree(pg);
    676 				continue;
    677 			}
    678 			uvm_pageenqueue(pg);
    679 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    680 			UVM_PAGE_OWN(pg, NULL);
    681 		}
    682 	}
    683 	mutex_exit(&uvm_pageqlock);
    684 	mutex_exit(&uobj->vmobjlock);
    685 	if (ap->a_m != NULL) {
    686 		memcpy(ap->a_m, &pgs[ridx],
    687 		    orignpages * sizeof(struct vm_page *));
    688 	}
    689 
    690 out_err:
    691 	if (pgs != NULL && pgs != pgs_onstack)
    692 		kmem_free(pgs, pgs_size);
    693 	if (has_trans)
    694 		fstrans_done(vp->v_mount);
    695 	return (error);
    696 }
    697 
    698 /*
    699  * generic VM putpages routine.
    700  * Write the given range of pages to backing store.
    701  *
    702  * => "offhi == 0" means flush all pages at or after "offlo".
    703  * => object should be locked by caller.  we return with the
    704  *      object unlocked.
    705  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    706  *	thus, a caller might want to unlock higher level resources
    707  *	(e.g. vm_map) before calling flush.
    708  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    709  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    710  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    711  *	that new pages are inserted on the tail end of the list.   thus,
    712  *	we can make a complete pass through the object in one go by starting
    713  *	at the head and working towards the tail (new pages are put in
    714  *	front of us).
    715  * => NOTE: we are allowed to lock the page queues, so the caller
    716  *	must not be holding the page queue lock.
    717  *
    718  * note on "cleaning" object and PG_BUSY pages:
    719  *	this routine is holding the lock on the object.   the only time
    720  *	that it can run into a PG_BUSY page that it does not own is if
    721  *	some other process has started I/O on the page (e.g. either
    722  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    723  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    724  *	had a chance to modify it yet.    if the PG_BUSY page is being
    725  *	paged out then it means that someone else has already started
    726  *	cleaning the page for us (how nice!).    in this case, if we
    727  *	have syncio specified, then after we make our pass through the
    728  *	object we need to wait for the other PG_BUSY pages to clear
    729  *	off (i.e. we need to do an iosync).   also note that once a
    730  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    731  *
    732  * note on page traversal:
    733  *	we can traverse the pages in an object either by going down the
    734  *	linked list in "uobj->memq", or we can go over the address range
    735  *	by page doing hash table lookups for each address.    depending
    736  *	on how many pages are in the object it may be cheaper to do one
    737  *	or the other.   we set "by_list" to true if we are using memq.
    738  *	if the cost of a hash lookup was equal to the cost of the list
    739  *	traversal we could compare the number of pages in the start->stop
    740  *	range to the total number of pages in the object.   however, it
    741  *	seems that a hash table lookup is more expensive than the linked
    742  *	list traversal, so we multiply the number of pages in the
    743  *	range by an estimate of the relatively higher cost of the hash lookup.
    744  */
    745 
    746 int
    747 genfs_putpages(void *v)
    748 {
    749 	struct vop_putpages_args /* {
    750 		struct vnode *a_vp;
    751 		voff_t a_offlo;
    752 		voff_t a_offhi;
    753 		int a_flags;
    754 	} */ *ap = v;
    755 
    756 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    757 	    ap->a_flags, NULL);
    758 }
    759 
    760 int
    761 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    762     int origflags, struct vm_page **busypg)
    763 {
    764 	struct uvm_object *uobj = &vp->v_uobj;
    765 	kmutex_t *slock = &uobj->vmobjlock;
    766 	off_t off;
    767 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    768 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    769 	int i, error, npages, nback;
    770 	int freeflag;
    771 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    772 	bool wasclean, by_list, needs_clean, yld;
    773 	bool async = (origflags & PGO_SYNCIO) == 0;
    774 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    775 	struct lwp *l = curlwp ? curlwp : &lwp0;
    776 	struct genfs_node *gp = VTOG(vp);
    777 	int flags;
    778 	int dirtygen;
    779 	bool modified;
    780 	bool need_wapbl;
    781 	bool has_trans;
    782 	bool cleanall;
    783 	bool onworklst;
    784 
    785 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    786 
    787 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    788 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    789 	KASSERT(startoff < endoff || endoff == 0);
    790 
    791 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    792 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    793 
    794 	has_trans = false;
    795 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    796 	    (origflags & PGO_JOURNALLOCKED) == 0);
    797 
    798 retry:
    799 	modified = false;
    800 	flags = origflags;
    801 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    802 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    803 	if (uobj->uo_npages == 0) {
    804 		if (vp->v_iflag & VI_ONWORKLST) {
    805 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    806 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    807 				vn_syncer_remove_from_worklist(vp);
    808 		}
    809 		if (has_trans) {
    810 			if (need_wapbl)
    811 				WAPBL_END(vp->v_mount);
    812 			fstrans_done(vp->v_mount);
    813 		}
    814 		mutex_exit(slock);
    815 		return (0);
    816 	}
    817 
    818 	/*
    819 	 * the vnode has pages, set up to process the request.
    820 	 */
    821 
    822 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    823 		mutex_exit(slock);
    824 		if (pagedaemon) {
    825 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    826 			if (error)
    827 				return error;
    828 		} else
    829 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    830 		if (need_wapbl) {
    831 			error = WAPBL_BEGIN(vp->v_mount);
    832 			if (error) {
    833 				fstrans_done(vp->v_mount);
    834 				return error;
    835 			}
    836 		}
    837 		has_trans = true;
    838 		mutex_enter(slock);
    839 		goto retry;
    840 	}
    841 
    842 	error = 0;
    843 	wasclean = (vp->v_numoutput == 0);
    844 	off = startoff;
    845 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    846 		endoff = trunc_page(LLONG_MAX);
    847 	}
    848 	by_list = (uobj->uo_npages <=
    849 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    850 
    851 #if !defined(DEBUG)
    852 	/*
    853 	 * if this vnode is known not to have dirty pages,
    854 	 * don't bother to clean it out.
    855 	 */
    856 
    857 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    858 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    859 			goto skip_scan;
    860 		}
    861 		flags &= ~PGO_CLEANIT;
    862 	}
    863 #endif /* !defined(DEBUG) */
    864 
    865 	/*
    866 	 * start the loop.  when scanning by list, hold the last page
    867 	 * in the list before we start.  pages allocated after we start
    868 	 * will be added to the end of the list, so we can stop at the
    869 	 * current last page.
    870 	 */
    871 
    872 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    873 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    874 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    875 	dirtygen = gp->g_dirtygen;
    876 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    877 	if (by_list) {
    878 		curmp.uobject = uobj;
    879 		curmp.offset = (voff_t)-1;
    880 		curmp.flags = PG_BUSY;
    881 		endmp.uobject = uobj;
    882 		endmp.offset = (voff_t)-1;
    883 		endmp.flags = PG_BUSY;
    884 		pg = TAILQ_FIRST(&uobj->memq);
    885 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    886 		uvm_lwp_hold(l);
    887 	} else {
    888 		pg = uvm_pagelookup(uobj, off);
    889 	}
    890 	nextpg = NULL;
    891 	while (by_list || off < endoff) {
    892 
    893 		/*
    894 		 * if the current page is not interesting, move on to the next.
    895 		 */
    896 
    897 		KASSERT(pg == NULL || pg->uobject == uobj);
    898 		KASSERT(pg == NULL ||
    899 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    900 		    (pg->flags & PG_BUSY) != 0);
    901 		if (by_list) {
    902 			if (pg == &endmp) {
    903 				break;
    904 			}
    905 			if (pg->offset < startoff || pg->offset >= endoff ||
    906 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    907 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    908 					wasclean = false;
    909 				}
    910 				pg = TAILQ_NEXT(pg, listq.queue);
    911 				continue;
    912 			}
    913 			off = pg->offset;
    914 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    915 			if (pg != NULL) {
    916 				wasclean = false;
    917 			}
    918 			off += PAGE_SIZE;
    919 			if (off < endoff) {
    920 				pg = uvm_pagelookup(uobj, off);
    921 			}
    922 			continue;
    923 		}
    924 
    925 		/*
    926 		 * if the current page needs to be cleaned and it's busy,
    927 		 * wait for it to become unbusy.
    928 		 */
    929 
    930 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    931 		    SPCF_SHOULDYIELD) && !pagedaemon;
    932 		if (pg->flags & PG_BUSY || yld) {
    933 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    934 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    935 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    936 				error = EDEADLK;
    937 				if (busypg != NULL)
    938 					*busypg = pg;
    939 				break;
    940 			}
    941 			if (pagedaemon) {
    942 				/*
    943 				 * someone has taken the page while we
    944 				 * dropped the lock for fstrans_start.
    945 				 */
    946 				break;
    947 			}
    948 			if (by_list) {
    949 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    950 				UVMHIST_LOG(ubchist, "curmp next %p",
    951 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    952 			}
    953 			if (yld) {
    954 				mutex_exit(slock);
    955 				preempt();
    956 				mutex_enter(slock);
    957 			} else {
    958 				pg->flags |= PG_WANTED;
    959 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    960 				mutex_enter(slock);
    961 			}
    962 			if (by_list) {
    963 				UVMHIST_LOG(ubchist, "after next %p",
    964 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    965 				pg = TAILQ_NEXT(&curmp, listq.queue);
    966 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
    967 			} else {
    968 				pg = uvm_pagelookup(uobj, off);
    969 			}
    970 			continue;
    971 		}
    972 
    973 		/*
    974 		 * if we're freeing, remove all mappings of the page now.
    975 		 * if we're cleaning, check if the page is needs to be cleaned.
    976 		 */
    977 
    978 		if (flags & PGO_FREE) {
    979 			pmap_page_protect(pg, VM_PROT_NONE);
    980 		} else if (flags & PGO_CLEANIT) {
    981 
    982 			/*
    983 			 * if we still have some hope to pull this vnode off
    984 			 * from the syncer queue, write-protect the page.
    985 			 */
    986 
    987 			if (cleanall && wasclean &&
    988 			    gp->g_dirtygen == dirtygen) {
    989 
    990 				/*
    991 				 * uobj pages get wired only by uvm_fault
    992 				 * where uobj is locked.
    993 				 */
    994 
    995 				if (pg->wire_count == 0) {
    996 					pmap_page_protect(pg,
    997 					    VM_PROT_READ|VM_PROT_EXECUTE);
    998 				} else {
    999 					cleanall = false;
   1000 				}
   1001 			}
   1002 		}
   1003 
   1004 		if (flags & PGO_CLEANIT) {
   1005 			needs_clean = pmap_clear_modify(pg) ||
   1006 			    (pg->flags & PG_CLEAN) == 0;
   1007 			pg->flags |= PG_CLEAN;
   1008 		} else {
   1009 			needs_clean = false;
   1010 		}
   1011 
   1012 		/*
   1013 		 * if we're cleaning, build a cluster.
   1014 		 * the cluster will consist of pages which are currently dirty,
   1015 		 * but they will be returned to us marked clean.
   1016 		 * if not cleaning, just operate on the one page.
   1017 		 */
   1018 
   1019 		if (needs_clean) {
   1020 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1021 			wasclean = false;
   1022 			memset(pgs, 0, sizeof(pgs));
   1023 			pg->flags |= PG_BUSY;
   1024 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1025 
   1026 			/*
   1027 			 * first look backward.
   1028 			 */
   1029 
   1030 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1031 			nback = npages;
   1032 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1033 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1034 			if (nback) {
   1035 				memmove(&pgs[0], &pgs[npages - nback],
   1036 				    nback * sizeof(pgs[0]));
   1037 				if (npages - nback < nback)
   1038 					memset(&pgs[nback], 0,
   1039 					    (npages - nback) * sizeof(pgs[0]));
   1040 				else
   1041 					memset(&pgs[npages - nback], 0,
   1042 					    nback * sizeof(pgs[0]));
   1043 			}
   1044 
   1045 			/*
   1046 			 * then plug in our page of interest.
   1047 			 */
   1048 
   1049 			pgs[nback] = pg;
   1050 
   1051 			/*
   1052 			 * then look forward to fill in the remaining space in
   1053 			 * the array of pages.
   1054 			 */
   1055 
   1056 			npages = maxpages - nback - 1;
   1057 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1058 			    &pgs[nback + 1],
   1059 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1060 			npages += nback + 1;
   1061 		} else {
   1062 			pgs[0] = pg;
   1063 			npages = 1;
   1064 			nback = 0;
   1065 		}
   1066 
   1067 		/*
   1068 		 * apply FREE or DEACTIVATE options if requested.
   1069 		 */
   1070 
   1071 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1072 			mutex_enter(&uvm_pageqlock);
   1073 		}
   1074 		for (i = 0; i < npages; i++) {
   1075 			tpg = pgs[i];
   1076 			KASSERT(tpg->uobject == uobj);
   1077 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1078 				pg = tpg;
   1079 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1080 				continue;
   1081 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1082 				uvm_pagedeactivate(tpg);
   1083 			} else if (flags & PGO_FREE) {
   1084 				pmap_page_protect(tpg, VM_PROT_NONE);
   1085 				if (tpg->flags & PG_BUSY) {
   1086 					tpg->flags |= freeflag;
   1087 					if (pagedaemon) {
   1088 						uvm_pageout_start(1);
   1089 						uvm_pagedequeue(tpg);
   1090 					}
   1091 				} else {
   1092 
   1093 					/*
   1094 					 * ``page is not busy''
   1095 					 * implies that npages is 1
   1096 					 * and needs_clean is false.
   1097 					 */
   1098 
   1099 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1100 					uvm_pagefree(tpg);
   1101 					if (pagedaemon)
   1102 						uvmexp.pdfreed++;
   1103 				}
   1104 			}
   1105 		}
   1106 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1107 			mutex_exit(&uvm_pageqlock);
   1108 		}
   1109 		if (needs_clean) {
   1110 			modified = true;
   1111 
   1112 			/*
   1113 			 * start the i/o.  if we're traversing by list,
   1114 			 * keep our place in the list with a marker page.
   1115 			 */
   1116 
   1117 			if (by_list) {
   1118 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1119 				    listq.queue);
   1120 			}
   1121 			mutex_exit(slock);
   1122 			error = GOP_WRITE(vp, pgs, npages, flags);
   1123 			mutex_enter(slock);
   1124 			if (by_list) {
   1125 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1126 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1127 			}
   1128 			if (error) {
   1129 				break;
   1130 			}
   1131 			if (by_list) {
   1132 				continue;
   1133 			}
   1134 		}
   1135 
   1136 		/*
   1137 		 * find the next page and continue if there was no error.
   1138 		 */
   1139 
   1140 		if (by_list) {
   1141 			if (nextpg) {
   1142 				pg = nextpg;
   1143 				nextpg = NULL;
   1144 			} else {
   1145 				pg = TAILQ_NEXT(pg, listq.queue);
   1146 			}
   1147 		} else {
   1148 			off += (npages - nback) << PAGE_SHIFT;
   1149 			if (off < endoff) {
   1150 				pg = uvm_pagelookup(uobj, off);
   1151 			}
   1152 		}
   1153 	}
   1154 	if (by_list) {
   1155 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1156 		uvm_lwp_rele(l);
   1157 	}
   1158 
   1159 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1160 	    (vp->v_type != VBLK ||
   1161 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1162 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1163 	}
   1164 
   1165 	/*
   1166 	 * if we're cleaning and there was nothing to clean,
   1167 	 * take us off the syncer list.  if we started any i/o
   1168 	 * and we're doing sync i/o, wait for all writes to finish.
   1169 	 */
   1170 
   1171 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1172 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1173 #if defined(DEBUG)
   1174 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1175 			if ((pg->flags & PG_CLEAN) == 0) {
   1176 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1177 			}
   1178 			if (pmap_is_modified(pg)) {
   1179 				printf("%s: %p: modified\n", __func__, pg);
   1180 			}
   1181 		}
   1182 #endif /* defined(DEBUG) */
   1183 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1184 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1185 			vn_syncer_remove_from_worklist(vp);
   1186 	}
   1187 
   1188 #if !defined(DEBUG)
   1189 skip_scan:
   1190 #endif /* !defined(DEBUG) */
   1191 
   1192 	/* Wait for output to complete. */
   1193 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1194 		while (vp->v_numoutput != 0)
   1195 			cv_wait(&vp->v_cv, slock);
   1196 	}
   1197 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1198 	mutex_exit(slock);
   1199 
   1200 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1201 		/*
   1202 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1203 		 * retrying is not a big deal because, in many cases,
   1204 		 * uobj->uo_npages is already 0 here.
   1205 		 */
   1206 		mutex_enter(slock);
   1207 		goto retry;
   1208 	}
   1209 
   1210 	if (has_trans) {
   1211 		if (need_wapbl)
   1212 			WAPBL_END(vp->v_mount);
   1213 		fstrans_done(vp->v_mount);
   1214 	}
   1215 
   1216 	return (error);
   1217 }
   1218 
   1219 int
   1220 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1221 {
   1222 	off_t off;
   1223 	vaddr_t kva;
   1224 	size_t len;
   1225 	int error;
   1226 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1227 
   1228 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1229 	    vp, pgs, npages, flags);
   1230 
   1231 	off = pgs[0]->offset;
   1232 	kva = uvm_pagermapin(pgs, npages,
   1233 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1234 	len = npages << PAGE_SHIFT;
   1235 
   1236 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1237 			    uvm_aio_biodone);
   1238 
   1239 	return error;
   1240 }
   1241 
   1242 int
   1243 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1244 {
   1245 	off_t off;
   1246 	vaddr_t kva;
   1247 	size_t len;
   1248 	int error;
   1249 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1250 
   1251 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1252 	    vp, pgs, npages, flags);
   1253 
   1254 	off = pgs[0]->offset;
   1255 	kva = uvm_pagermapin(pgs, npages,
   1256 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1257 	len = npages << PAGE_SHIFT;
   1258 
   1259 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1260 			    uvm_aio_biodone);
   1261 
   1262 	return error;
   1263 }
   1264 
   1265 /*
   1266  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1267  * and mapped into kernel memory.  Here we just look up the underlying
   1268  * device block addresses and call the strategy routine.
   1269  */
   1270 
   1271 static int
   1272 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1273     enum uio_rw rw, void (*iodone)(struct buf *))
   1274 {
   1275 	int s, error, run;
   1276 	int fs_bshift, dev_bshift;
   1277 	off_t eof, offset, startoffset;
   1278 	size_t bytes, iobytes, skipbytes;
   1279 	daddr_t lbn, blkno;
   1280 	struct buf *mbp, *bp;
   1281 	struct vnode *devvp;
   1282 	bool async = (flags & PGO_SYNCIO) == 0;
   1283 	bool write = rw == UIO_WRITE;
   1284 	int brw = write ? B_WRITE : B_READ;
   1285 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1286 
   1287 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1288 	    vp, kva, len, flags);
   1289 
   1290 	KASSERT(vp->v_size <= vp->v_writesize);
   1291 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1292 	if (vp->v_type != VBLK) {
   1293 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1294 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1295 	} else {
   1296 		fs_bshift = DEV_BSHIFT;
   1297 		dev_bshift = DEV_BSHIFT;
   1298 	}
   1299 	error = 0;
   1300 	startoffset = off;
   1301 	bytes = MIN(len, eof - startoffset);
   1302 	skipbytes = 0;
   1303 	KASSERT(bytes != 0);
   1304 
   1305 	if (write) {
   1306 		mutex_enter(&vp->v_interlock);
   1307 		vp->v_numoutput += 2;
   1308 		mutex_exit(&vp->v_interlock);
   1309 	}
   1310 	mbp = getiobuf(vp, true);
   1311 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1312 	    vp, mbp, vp->v_numoutput, bytes);
   1313 	mbp->b_bufsize = len;
   1314 	mbp->b_data = (void *)kva;
   1315 	mbp->b_resid = mbp->b_bcount = bytes;
   1316 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1317 	if (async) {
   1318 		mbp->b_flags = brw | B_ASYNC;
   1319 		mbp->b_iodone = iodone;
   1320 	} else {
   1321 		mbp->b_flags = brw;
   1322 		mbp->b_iodone = NULL;
   1323 	}
   1324 	if (curlwp == uvm.pagedaemon_lwp)
   1325 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1326 	else if (async)
   1327 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1328 	else
   1329 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1330 
   1331 	bp = NULL;
   1332 	for (offset = startoffset;
   1333 	    bytes > 0;
   1334 	    offset += iobytes, bytes -= iobytes) {
   1335 		lbn = offset >> fs_bshift;
   1336 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1337 		if (error) {
   1338 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1339 			skipbytes += bytes;
   1340 			bytes = 0;
   1341 			break;
   1342 		}
   1343 
   1344 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1345 		    bytes);
   1346 		if (blkno == (daddr_t)-1) {
   1347 			if (!write) {
   1348 				memset((char *)kva + (offset - startoffset), 0,
   1349 				   iobytes);
   1350 			}
   1351 			skipbytes += iobytes;
   1352 			continue;
   1353 		}
   1354 
   1355 		/* if it's really one i/o, don't make a second buf */
   1356 		if (offset == startoffset && iobytes == bytes) {
   1357 			bp = mbp;
   1358 		} else {
   1359 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1360 			    vp, bp, vp->v_numoutput, 0);
   1361 			bp = getiobuf(vp, true);
   1362 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1363 		}
   1364 		bp->b_lblkno = 0;
   1365 
   1366 		/* adjust physical blkno for partial blocks */
   1367 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1368 		    dev_bshift);
   1369 		UVMHIST_LOG(ubchist,
   1370 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1371 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1372 
   1373 		VOP_STRATEGY(devvp, bp);
   1374 	}
   1375 	if (skipbytes) {
   1376 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1377 	}
   1378 	nestiobuf_done(mbp, skipbytes, error);
   1379 	if (async) {
   1380 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1381 		return (0);
   1382 	}
   1383 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1384 	error = biowait(mbp);
   1385 	s = splbio();
   1386 	(*iodone)(mbp);
   1387 	splx(s);
   1388 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1389 	return (error);
   1390 }
   1391 
   1392 /*
   1393  * VOP_PUTPAGES() for vnodes which never have pages.
   1394  */
   1395 
   1396 int
   1397 genfs_null_putpages(void *v)
   1398 {
   1399 	struct vop_putpages_args /* {
   1400 		struct vnode *a_vp;
   1401 		voff_t a_offlo;
   1402 		voff_t a_offhi;
   1403 		int a_flags;
   1404 	} */ *ap = v;
   1405 	struct vnode *vp = ap->a_vp;
   1406 
   1407 	KASSERT(vp->v_uobj.uo_npages == 0);
   1408 	mutex_exit(&vp->v_interlock);
   1409 	return (0);
   1410 }
   1411 
   1412 int
   1413 genfs_compat_getpages(void *v)
   1414 {
   1415 	struct vop_getpages_args /* {
   1416 		struct vnode *a_vp;
   1417 		voff_t a_offset;
   1418 		struct vm_page **a_m;
   1419 		int *a_count;
   1420 		int a_centeridx;
   1421 		vm_prot_t a_access_type;
   1422 		int a_advice;
   1423 		int a_flags;
   1424 	} */ *ap = v;
   1425 
   1426 	off_t origoffset;
   1427 	struct vnode *vp = ap->a_vp;
   1428 	struct uvm_object *uobj = &vp->v_uobj;
   1429 	struct vm_page *pg, **pgs;
   1430 	vaddr_t kva;
   1431 	int i, error, orignpages, npages;
   1432 	struct iovec iov;
   1433 	struct uio uio;
   1434 	kauth_cred_t cred = curlwp->l_cred;
   1435 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1436 
   1437 	error = 0;
   1438 	origoffset = ap->a_offset;
   1439 	orignpages = *ap->a_count;
   1440 	pgs = ap->a_m;
   1441 
   1442 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1443 		vn_syncer_add_to_worklist(vp, filedelay);
   1444 	}
   1445 	if (ap->a_flags & PGO_LOCKED) {
   1446 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1447 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1448 
   1449 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1450 	}
   1451 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1452 		mutex_exit(&uobj->vmobjlock);
   1453 		return (EINVAL);
   1454 	}
   1455 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1456 		mutex_exit(&uobj->vmobjlock);
   1457 		return 0;
   1458 	}
   1459 	npages = orignpages;
   1460 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1461 	mutex_exit(&uobj->vmobjlock);
   1462 	kva = uvm_pagermapin(pgs, npages,
   1463 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1464 	for (i = 0; i < npages; i++) {
   1465 		pg = pgs[i];
   1466 		if ((pg->flags & PG_FAKE) == 0) {
   1467 			continue;
   1468 		}
   1469 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1470 		iov.iov_len = PAGE_SIZE;
   1471 		uio.uio_iov = &iov;
   1472 		uio.uio_iovcnt = 1;
   1473 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1474 		uio.uio_rw = UIO_READ;
   1475 		uio.uio_resid = PAGE_SIZE;
   1476 		UIO_SETUP_SYSSPACE(&uio);
   1477 		/* XXX vn_lock */
   1478 		error = VOP_READ(vp, &uio, 0, cred);
   1479 		if (error) {
   1480 			break;
   1481 		}
   1482 		if (uio.uio_resid) {
   1483 			memset(iov.iov_base, 0, uio.uio_resid);
   1484 		}
   1485 	}
   1486 	uvm_pagermapout(kva, npages);
   1487 	mutex_enter(&uobj->vmobjlock);
   1488 	mutex_enter(&uvm_pageqlock);
   1489 	for (i = 0; i < npages; i++) {
   1490 		pg = pgs[i];
   1491 		if (error && (pg->flags & PG_FAKE) != 0) {
   1492 			pg->flags |= PG_RELEASED;
   1493 		} else {
   1494 			pmap_clear_modify(pg);
   1495 			uvm_pageactivate(pg);
   1496 		}
   1497 	}
   1498 	if (error) {
   1499 		uvm_page_unbusy(pgs, npages);
   1500 	}
   1501 	mutex_exit(&uvm_pageqlock);
   1502 	mutex_exit(&uobj->vmobjlock);
   1503 	return (error);
   1504 }
   1505 
   1506 int
   1507 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1508     int flags)
   1509 {
   1510 	off_t offset;
   1511 	struct iovec iov;
   1512 	struct uio uio;
   1513 	kauth_cred_t cred = curlwp->l_cred;
   1514 	struct buf *bp;
   1515 	vaddr_t kva;
   1516 	int error;
   1517 
   1518 	offset = pgs[0]->offset;
   1519 	kva = uvm_pagermapin(pgs, npages,
   1520 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1521 
   1522 	iov.iov_base = (void *)kva;
   1523 	iov.iov_len = npages << PAGE_SHIFT;
   1524 	uio.uio_iov = &iov;
   1525 	uio.uio_iovcnt = 1;
   1526 	uio.uio_offset = offset;
   1527 	uio.uio_rw = UIO_WRITE;
   1528 	uio.uio_resid = npages << PAGE_SHIFT;
   1529 	UIO_SETUP_SYSSPACE(&uio);
   1530 	/* XXX vn_lock */
   1531 	error = VOP_WRITE(vp, &uio, 0, cred);
   1532 
   1533 	mutex_enter(&vp->v_interlock);
   1534 	vp->v_numoutput++;
   1535 	mutex_exit(&vp->v_interlock);
   1536 
   1537 	bp = getiobuf(vp, true);
   1538 	bp->b_cflags = BC_BUSY | BC_AGE;
   1539 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1540 	bp->b_data = (char *)kva;
   1541 	bp->b_bcount = npages << PAGE_SHIFT;
   1542 	bp->b_bufsize = npages << PAGE_SHIFT;
   1543 	bp->b_resid = 0;
   1544 	bp->b_error = error;
   1545 	uvm_aio_aiodone(bp);
   1546 	return (error);
   1547 }
   1548 
   1549 /*
   1550  * Process a uio using direct I/O.  If we reach a part of the request
   1551  * which cannot be processed in this fashion for some reason, just return.
   1552  * The caller must handle some additional part of the request using
   1553  * buffered I/O before trying direct I/O again.
   1554  */
   1555 
   1556 void
   1557 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1558 {
   1559 	struct vmspace *vs;
   1560 	struct iovec *iov;
   1561 	vaddr_t va;
   1562 	size_t len;
   1563 	const int mask = DEV_BSIZE - 1;
   1564 	int error;
   1565 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1566 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1567 
   1568 	/*
   1569 	 * We only support direct I/O to user space for now.
   1570 	 */
   1571 
   1572 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1573 		return;
   1574 	}
   1575 
   1576 	/*
   1577 	 * If the vnode is mapped, we would need to get the getpages lock
   1578 	 * to stabilize the bmap, but then we would get into trouble whil e
   1579 	 * locking the pages if the pages belong to this same vnode (or a
   1580 	 * multi-vnode cascade to the same effect).  Just fall back to
   1581 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1582 	 */
   1583 
   1584 	if (vp->v_vflag & VV_MAPPED) {
   1585 		return;
   1586 	}
   1587 
   1588 	if (need_wapbl) {
   1589 		error = WAPBL_BEGIN(vp->v_mount);
   1590 		if (error)
   1591 			return;
   1592 	}
   1593 
   1594 	/*
   1595 	 * Do as much of the uio as possible with direct I/O.
   1596 	 */
   1597 
   1598 	vs = uio->uio_vmspace;
   1599 	while (uio->uio_resid) {
   1600 		iov = uio->uio_iov;
   1601 		if (iov->iov_len == 0) {
   1602 			uio->uio_iov++;
   1603 			uio->uio_iovcnt--;
   1604 			continue;
   1605 		}
   1606 		va = (vaddr_t)iov->iov_base;
   1607 		len = MIN(iov->iov_len, genfs_maxdio);
   1608 		len &= ~mask;
   1609 
   1610 		/*
   1611 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1612 		 * the current EOF, then fall back to buffered I/O.
   1613 		 */
   1614 
   1615 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1616 			break;
   1617 		}
   1618 
   1619 		/*
   1620 		 * Check alignment.  The file offset must be at least
   1621 		 * sector-aligned.  The exact constraint on memory alignment
   1622 		 * is very hardware-dependent, but requiring sector-aligned
   1623 		 * addresses there too is safe.
   1624 		 */
   1625 
   1626 		if (uio->uio_offset & mask || va & mask) {
   1627 			break;
   1628 		}
   1629 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1630 					  uio->uio_rw);
   1631 		if (error) {
   1632 			break;
   1633 		}
   1634 		iov->iov_base = (char *)iov->iov_base + len;
   1635 		iov->iov_len -= len;
   1636 		uio->uio_offset += len;
   1637 		uio->uio_resid -= len;
   1638 	}
   1639 
   1640 	if (need_wapbl)
   1641 		WAPBL_END(vp->v_mount);
   1642 }
   1643 
   1644 /*
   1645  * Iodone routine for direct I/O.  We don't do much here since the request is
   1646  * always synchronous, so the caller will do most of the work after biowait().
   1647  */
   1648 
   1649 static void
   1650 genfs_dio_iodone(struct buf *bp)
   1651 {
   1652 
   1653 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1654 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1655 		mutex_enter(bp->b_objlock);
   1656 		vwakeup(bp);
   1657 		mutex_exit(bp->b_objlock);
   1658 	}
   1659 	putiobuf(bp);
   1660 }
   1661 
   1662 /*
   1663  * Process one chunk of a direct I/O request.
   1664  */
   1665 
   1666 static int
   1667 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1668     off_t off, enum uio_rw rw)
   1669 {
   1670 	struct vm_map *map;
   1671 	struct pmap *upm, *kpm;
   1672 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1673 	off_t spoff, epoff;
   1674 	vaddr_t kva, puva;
   1675 	paddr_t pa;
   1676 	vm_prot_t prot;
   1677 	int error, rv, poff, koff;
   1678 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1679 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1680 
   1681 	/*
   1682 	 * For writes, verify that this range of the file already has fully
   1683 	 * allocated backing store.  If there are any holes, just punt and
   1684 	 * make the caller take the buffered write path.
   1685 	 */
   1686 
   1687 	if (rw == UIO_WRITE) {
   1688 		daddr_t lbn, elbn, blkno;
   1689 		int bsize, bshift, run;
   1690 
   1691 		bshift = vp->v_mount->mnt_fs_bshift;
   1692 		bsize = 1 << bshift;
   1693 		lbn = off >> bshift;
   1694 		elbn = (off + len + bsize - 1) >> bshift;
   1695 		while (lbn < elbn) {
   1696 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1697 			if (error) {
   1698 				return error;
   1699 			}
   1700 			if (blkno == (daddr_t)-1) {
   1701 				return ENOSPC;
   1702 			}
   1703 			lbn += 1 + run;
   1704 		}
   1705 	}
   1706 
   1707 	/*
   1708 	 * Flush any cached pages for parts of the file that we're about to
   1709 	 * access.  If we're writing, invalidate pages as well.
   1710 	 */
   1711 
   1712 	spoff = trunc_page(off);
   1713 	epoff = round_page(off + len);
   1714 	mutex_enter(&vp->v_interlock);
   1715 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1716 	if (error) {
   1717 		return error;
   1718 	}
   1719 
   1720 	/*
   1721 	 * Wire the user pages and remap them into kernel memory.
   1722 	 */
   1723 
   1724 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1725 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1726 	if (error) {
   1727 		return error;
   1728 	}
   1729 
   1730 	map = &vs->vm_map;
   1731 	upm = vm_map_pmap(map);
   1732 	kpm = vm_map_pmap(kernel_map);
   1733 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1734 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1735 	puva = trunc_page(uva);
   1736 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1737 		rv = pmap_extract(upm, puva + poff, &pa);
   1738 		KASSERT(rv);
   1739 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1740 	}
   1741 	pmap_update(kpm);
   1742 
   1743 	/*
   1744 	 * Do the I/O.
   1745 	 */
   1746 
   1747 	koff = uva - trunc_page(uva);
   1748 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1749 			    genfs_dio_iodone);
   1750 
   1751 	/*
   1752 	 * Tear down the kernel mapping.
   1753 	 */
   1754 
   1755 	pmap_remove(kpm, kva, kva + klen);
   1756 	pmap_update(kpm);
   1757 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1758 
   1759 	/*
   1760 	 * Unwire the user pages.
   1761 	 */
   1762 
   1763 	uvm_vsunlock(vs, (void *)uva, len);
   1764 	return error;
   1765 }
   1766 
   1767