genfs_io.c revision 1.24 1 /* $NetBSD: genfs_io.c,v 1.24 2010/01/28 07:24:55 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.24 2010/01/28 07:24:55 uebayasi Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static inline void genfs_rel_pages(struct vm_page **, int);
66
67 int genfs_maxdio = MAXPHYS;
68
69 static inline void
70 genfs_rel_pages(struct vm_page **pgs, int npages)
71 {
72 int i;
73
74 for (i = 0; i < npages; i++) {
75 struct vm_page *pg = pgs[i];
76
77 if (pg == NULL || pg == PGO_DONTCARE)
78 continue;
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 mutex_enter(&uvm_pageqlock);
84 uvm_page_unbusy(pgs, npages);
85 mutex_exit(&uvm_pageqlock);
86 }
87
88 /*
89 * generic VM getpages routine.
90 * Return PG_BUSY pages for the given range,
91 * reading from backing store if necessary.
92 */
93
94 int
95 genfs_getpages(void *v)
96 {
97 struct vop_getpages_args /* {
98 struct vnode *a_vp;
99 voff_t a_offset;
100 struct vm_page **a_m;
101 int *a_count;
102 int a_centeridx;
103 vm_prot_t a_access_type;
104 int a_advice;
105 int a_flags;
106 } */ * const ap = v;
107
108 off_t diskeof, memeof;
109 off_t offset, origoffset, startoffset, endoffset;
110 daddr_t lbn, blkno;
111 int i, error, npages, orignpages, npgs, run, ridx;
112 int fs_bshift, fs_bsize, dev_bshift;
113 const int flags = ap->a_flags;
114 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
115 vaddr_t kva;
116 struct buf *bp, *mbp;
117 struct vnode * const vp = ap->a_vp;
118 struct vnode *devvp;
119 struct genfs_node * const gp = VTOG(vp);
120 struct uvm_object * const uobj = &vp->v_uobj;
121 struct vm_page *pg, **pgs, *pgs_onstack[UBC_MAX_PAGES];
122 int pgs_size;
123 kauth_cred_t cred = curlwp->l_cred; /* XXXUBC curlwp */
124 const bool async = (flags & PGO_SYNCIO) == 0;
125 const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
126 bool sawhole = false;
127 bool has_trans = false;
128 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
129 const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
130 voff_t origvsize;
131 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
132
133 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
134 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
135
136 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
137 vp->v_type == VLNK || vp->v_type == VBLK);
138
139 pgs = NULL;
140 pgs_size = 0;
141
142 startover:
143 error = 0;
144 origvsize = vp->v_size;
145 origoffset = ap->a_offset;
146 orignpages = *ap->a_count;
147 GOP_SIZE(vp, origvsize, &diskeof, 0);
148 if (flags & PGO_PASTEOF) {
149 off_t newsize;
150 #if defined(DIAGNOSTIC)
151 off_t writeeof;
152 #endif /* defined(DIAGNOSTIC) */
153
154 newsize = MAX(origvsize,
155 origoffset + (orignpages << PAGE_SHIFT));
156 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
157 #if defined(DIAGNOSTIC)
158 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
159 if (newsize > round_page(writeeof)) {
160 panic("%s: past eof", __func__);
161 }
162 #endif /* defined(DIAGNOSTIC) */
163 } else {
164 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
165 }
166 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
167 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
168 KASSERT(orignpages > 0);
169
170 /*
171 * Bounds-check the request.
172 */
173
174 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
175 if ((flags & PGO_LOCKED) == 0) {
176 mutex_exit(&uobj->vmobjlock);
177 }
178 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
179 origoffset, *ap->a_count, memeof,0);
180 error = EINVAL;
181 goto out_err;
182 }
183
184 /* uobj is locked */
185
186 if ((flags & PGO_NOTIMESTAMP) == 0 &&
187 (vp->v_type != VBLK ||
188 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
189 int updflags = 0;
190
191 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
192 updflags = GOP_UPDATE_ACCESSED;
193 }
194 if (write) {
195 updflags |= GOP_UPDATE_MODIFIED;
196 }
197 if (updflags != 0) {
198 GOP_MARKUPDATE(vp, updflags);
199 }
200 }
201
202 if (write) {
203 gp->g_dirtygen++;
204 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
205 vn_syncer_add_to_worklist(vp, filedelay);
206 }
207 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
208 vp->v_iflag |= VI_WRMAPDIRTY;
209 }
210 }
211
212 /*
213 * For PGO_LOCKED requests, just return whatever's in memory.
214 */
215
216 if (flags & PGO_LOCKED) {
217 int nfound;
218
219 npages = *ap->a_count;
220 #if defined(DEBUG)
221 for (i = 0; i < npages; i++) {
222 pg = ap->a_m[i];
223 KASSERT(pg == NULL || pg == PGO_DONTCARE);
224 }
225 #endif /* defined(DEBUG) */
226 nfound = uvn_findpages(uobj, origoffset, &npages,
227 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
228 KASSERT(npages == *ap->a_count);
229 if (nfound == 0) {
230 error = EBUSY;
231 goto out_err;
232 }
233 if (!genfs_node_rdtrylock(vp)) {
234 genfs_rel_pages(ap->a_m, npages);
235
236 /*
237 * restore the array.
238 */
239
240 for (i = 0; i < npages; i++) {
241 pg = ap->a_m[i];
242
243 if (pg != NULL || pg != PGO_DONTCARE) {
244 ap->a_m[i] = NULL;
245 }
246 }
247 } else {
248 genfs_node_unlock(vp);
249 }
250 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
251 goto out_err;
252 }
253 mutex_exit(&uobj->vmobjlock);
254
255 /*
256 * find the requested pages and make some simple checks.
257 * leave space in the page array for a whole block.
258 */
259
260 if (vp->v_type != VBLK) {
261 fs_bshift = vp->v_mount->mnt_fs_bshift;
262 dev_bshift = vp->v_mount->mnt_dev_bshift;
263 } else {
264 fs_bshift = DEV_BSHIFT;
265 dev_bshift = DEV_BSHIFT;
266 }
267 fs_bsize = 1 << fs_bshift;
268
269 orignpages = MIN(orignpages,
270 round_page(memeof - origoffset) >> PAGE_SHIFT);
271 npages = orignpages;
272 startoffset = origoffset & ~(fs_bsize - 1);
273 endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
274 fs_bsize - 1) & ~(fs_bsize - 1));
275 endoffset = MIN(endoffset, round_page(memeof));
276 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
277
278 pgs_size = sizeof(struct vm_page *) *
279 ((endoffset - startoffset) >> PAGE_SHIFT);
280 if (pgs_size > sizeof(pgs_onstack)) {
281 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
282 if (pgs == NULL) {
283 pgs = pgs_onstack;
284 error = ENOMEM;
285 goto out_err;
286 }
287 } else {
288 pgs = pgs_onstack;
289 (void)memset(pgs, 0, pgs_size);
290 }
291
292
293 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
294 ridx, npages, startoffset, endoffset);
295
296 if (!has_trans) {
297 fstrans_start(vp->v_mount, FSTRANS_SHARED);
298 has_trans = true;
299 }
300
301 /*
302 * hold g_glock to prevent a race with truncate.
303 *
304 * check if our idea of v_size is still valid.
305 */
306
307 if (blockalloc) {
308 rw_enter(&gp->g_glock, RW_WRITER);
309 } else {
310 rw_enter(&gp->g_glock, RW_READER);
311 }
312 mutex_enter(&uobj->vmobjlock);
313 if (vp->v_size < origvsize) {
314 genfs_node_unlock(vp);
315 if (pgs != pgs_onstack)
316 kmem_free(pgs, pgs_size);
317 goto startover;
318 }
319
320 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
321 async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
322 genfs_node_unlock(vp);
323 KASSERT(async != 0);
324 genfs_rel_pages(&pgs[ridx], orignpages);
325 mutex_exit(&uobj->vmobjlock);
326 error = EBUSY;
327 goto out_err;
328 }
329
330 /*
331 * if the pages are already resident, just return them.
332 */
333
334 for (i = 0; i < npages; i++) {
335 struct vm_page *pg1 = pgs[ridx + i];
336
337 if ((pg1->flags & PG_FAKE) ||
338 (blockalloc && (pg1->flags & PG_RDONLY))) {
339 break;
340 }
341 }
342 if (i == npages) {
343 genfs_node_unlock(vp);
344 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
345 npages += ridx;
346 goto out;
347 }
348
349 /*
350 * if PGO_OVERWRITE is set, don't bother reading the pages.
351 */
352
353 if (overwrite) {
354 genfs_node_unlock(vp);
355 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
356
357 for (i = 0; i < npages; i++) {
358 struct vm_page *pg1 = pgs[ridx + i];
359
360 pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
361 }
362 npages += ridx;
363 goto out;
364 }
365
366 /*
367 * the page wasn't resident and we're not overwriting,
368 * so we're going to have to do some i/o.
369 * find any additional pages needed to cover the expanded range.
370 */
371
372 npages = (endoffset - startoffset) >> PAGE_SHIFT;
373 if (startoffset != origoffset || npages != orignpages) {
374
375 /*
376 * we need to avoid deadlocks caused by locking
377 * additional pages at lower offsets than pages we
378 * already have locked. unlock them all and start over.
379 */
380
381 genfs_rel_pages(&pgs[ridx], orignpages);
382 memset(pgs, 0, pgs_size);
383
384 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
385 startoffset, endoffset, 0,0);
386 npgs = npages;
387 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
388 async ? UFP_NOWAIT : UFP_ALL) != npages) {
389 genfs_node_unlock(vp);
390 KASSERT(async != 0);
391 genfs_rel_pages(pgs, npages);
392 mutex_exit(&uobj->vmobjlock);
393 error = EBUSY;
394 goto out_err;
395 }
396 }
397 mutex_exit(&uobj->vmobjlock);
398
399 /*
400 * read the desired page(s).
401 */
402
403 totalbytes = npages << PAGE_SHIFT;
404 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
405 tailbytes = totalbytes - bytes;
406 skipbytes = 0;
407
408 kva = uvm_pagermapin(pgs, npages,
409 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
410
411 mbp = getiobuf(vp, true);
412 mbp->b_bufsize = totalbytes;
413 mbp->b_data = (void *)kva;
414 mbp->b_resid = mbp->b_bcount = bytes;
415 mbp->b_cflags = BC_BUSY;
416 if (async) {
417 mbp->b_flags = B_READ | B_ASYNC;
418 mbp->b_iodone = uvm_aio_biodone;
419 } else {
420 mbp->b_flags = B_READ;
421 mbp->b_iodone = NULL;
422 }
423 if (async)
424 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
425 else
426 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
427
428 /*
429 * if EOF is in the middle of the range, zero the part past EOF.
430 * skip over pages which are not PG_FAKE since in that case they have
431 * valid data that we need to preserve.
432 */
433
434 tailstart = bytes;
435 while (tailbytes > 0) {
436 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
437
438 KASSERT(len <= tailbytes);
439 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
440 memset((void *)(kva + tailstart), 0, len);
441 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
442 kva, tailstart, len, 0);
443 }
444 tailstart += len;
445 tailbytes -= len;
446 }
447
448 /*
449 * now loop over the pages, reading as needed.
450 */
451
452 bp = NULL;
453 for (offset = startoffset;
454 bytes > 0;
455 offset += iobytes, bytes -= iobytes) {
456 int pidx;
457
458 /*
459 * skip pages which don't need to be read.
460 */
461
462 pidx = (offset - startoffset) >> PAGE_SHIFT;
463 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
464 size_t b;
465
466 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
467 if ((pgs[pidx]->flags & PG_RDONLY)) {
468 sawhole = true;
469 }
470 b = MIN(PAGE_SIZE, bytes);
471 offset += b;
472 bytes -= b;
473 skipbytes += b;
474 pidx++;
475 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
476 offset, 0,0,0);
477 if (bytes == 0) {
478 goto loopdone;
479 }
480 }
481
482 /*
483 * bmap the file to find out the blkno to read from and
484 * how much we can read in one i/o. if bmap returns an error,
485 * skip the rest of the top-level i/o.
486 */
487
488 lbn = offset >> fs_bshift;
489 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
490 if (error) {
491 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
492 lbn, error,0,0);
493 skipbytes += bytes;
494 goto loopdone;
495 }
496
497 /*
498 * see how many pages can be read with this i/o.
499 * reduce the i/o size if necessary to avoid
500 * overwriting pages with valid data.
501 */
502
503 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
504 bytes);
505 if (offset + iobytes > round_page(offset)) {
506 int pcount;
507
508 pcount = 1;
509 while (pidx + pcount < npages &&
510 pgs[pidx + pcount]->flags & PG_FAKE) {
511 pcount++;
512 }
513 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
514 (offset - trunc_page(offset)));
515 }
516
517 /*
518 * if this block isn't allocated, zero it instead of
519 * reading it. unless we are going to allocate blocks,
520 * mark the pages we zeroed PG_RDONLY.
521 */
522
523 if (blkno < 0) {
524 int holepages = (round_page(offset + iobytes) -
525 trunc_page(offset)) >> PAGE_SHIFT;
526 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
527
528 sawhole = true;
529 memset((char *)kva + (offset - startoffset), 0,
530 iobytes);
531 skipbytes += iobytes;
532
533 for (i = 0; i < holepages; i++) {
534 if (write) {
535 pgs[pidx + i]->flags &= ~PG_CLEAN;
536 }
537 if (!blockalloc) {
538 pgs[pidx + i]->flags |= PG_RDONLY;
539 }
540 }
541 continue;
542 }
543
544 /*
545 * allocate a sub-buf for this piece of the i/o
546 * (or just use mbp if there's only 1 piece),
547 * and start it going.
548 */
549
550 if (offset == startoffset && iobytes == bytes) {
551 bp = mbp;
552 } else {
553 bp = getiobuf(vp, true);
554 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
555 }
556 bp->b_lblkno = 0;
557
558 /* adjust physical blkno for partial blocks */
559 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
560 dev_bshift);
561
562 UVMHIST_LOG(ubchist,
563 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
564 bp, offset, iobytes, bp->b_blkno);
565
566 VOP_STRATEGY(devvp, bp);
567 }
568
569 loopdone:
570 nestiobuf_done(mbp, skipbytes, error);
571 if (async) {
572 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
573 genfs_node_unlock(vp);
574 error = 0;
575 goto out_err;
576 }
577 if (bp != NULL) {
578 error = biowait(mbp);
579 }
580
581 /* Remove the mapping (make KVA available as soon as possible) */
582 uvm_pagermapout(kva, npages);
583
584 /*
585 * if this we encountered a hole then we have to do a little more work.
586 * for read faults, we marked the page PG_RDONLY so that future
587 * write accesses to the page will fault again.
588 * for write faults, we must make sure that the backing store for
589 * the page is completely allocated while the pages are locked.
590 */
591
592 if (!error && sawhole && blockalloc) {
593 /*
594 * XXX: This assumes that we come here only via
595 * the mmio path
596 */
597 if (vp->v_mount->mnt_wapbl) {
598 error = WAPBL_BEGIN(vp->v_mount);
599 }
600
601 if (!error) {
602 error = GOP_ALLOC(vp, startoffset,
603 npages << PAGE_SHIFT, 0, cred);
604 if (vp->v_mount->mnt_wapbl) {
605 WAPBL_END(vp->v_mount);
606 }
607 }
608
609 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
610 startoffset, npages << PAGE_SHIFT, error,0);
611 if (!error) {
612 for (i = 0; i < npages; i++) {
613 if (pgs[i] == NULL) {
614 continue;
615 }
616 pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
617 UVMHIST_LOG(ubchist, "mark dirty pg %p",
618 pgs[i],0,0,0);
619 }
620 }
621 }
622 genfs_node_unlock(vp);
623
624 putiobuf(mbp);
625
626 mutex_enter(&uobj->vmobjlock);
627
628 /*
629 * we're almost done! release the pages...
630 * for errors, we free the pages.
631 * otherwise we activate them and mark them as valid and clean.
632 * also, unbusy pages that were not actually requested.
633 */
634
635 if (error) {
636 for (i = 0; i < npages; i++) {
637 if (pgs[i] == NULL) {
638 continue;
639 }
640 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
641 pgs[i], pgs[i]->flags, 0,0);
642 if (pgs[i]->flags & PG_FAKE) {
643 pgs[i]->flags |= PG_RELEASED;
644 }
645 }
646 mutex_enter(&uvm_pageqlock);
647 uvm_page_unbusy(pgs, npages);
648 mutex_exit(&uvm_pageqlock);
649 mutex_exit(&uobj->vmobjlock);
650 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
651 goto out_err;
652 }
653
654 out:
655 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
656 error = 0;
657 mutex_enter(&uvm_pageqlock);
658 for (i = 0; i < npages; i++) {
659 pg = pgs[i];
660 if (pg == NULL) {
661 continue;
662 }
663 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
664 pg, pg->flags, 0,0);
665 if (pg->flags & PG_FAKE && !overwrite) {
666 pg->flags &= ~(PG_FAKE);
667 pmap_clear_modify(pgs[i]);
668 }
669 KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
670 if (i < ridx || i >= ridx + orignpages || async) {
671 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
672 pg, pg->offset,0,0);
673 if (pg->flags & PG_WANTED) {
674 wakeup(pg);
675 }
676 if (pg->flags & PG_FAKE) {
677 KASSERT(overwrite);
678 uvm_pagezero(pg);
679 }
680 if (pg->flags & PG_RELEASED) {
681 uvm_pagefree(pg);
682 continue;
683 }
684 uvm_pageenqueue(pg);
685 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
686 UVM_PAGE_OWN(pg, NULL);
687 }
688 }
689 mutex_exit(&uvm_pageqlock);
690 mutex_exit(&uobj->vmobjlock);
691 if (ap->a_m != NULL) {
692 memcpy(ap->a_m, &pgs[ridx],
693 orignpages * sizeof(struct vm_page *));
694 }
695
696 out_err:
697 if (pgs != NULL && pgs != pgs_onstack)
698 kmem_free(pgs, pgs_size);
699 if (has_trans)
700 fstrans_done(vp->v_mount);
701 return (error);
702 }
703
704 /*
705 * generic VM putpages routine.
706 * Write the given range of pages to backing store.
707 *
708 * => "offhi == 0" means flush all pages at or after "offlo".
709 * => object should be locked by caller. we return with the
710 * object unlocked.
711 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
712 * thus, a caller might want to unlock higher level resources
713 * (e.g. vm_map) before calling flush.
714 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
715 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
716 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
717 * that new pages are inserted on the tail end of the list. thus,
718 * we can make a complete pass through the object in one go by starting
719 * at the head and working towards the tail (new pages are put in
720 * front of us).
721 * => NOTE: we are allowed to lock the page queues, so the caller
722 * must not be holding the page queue lock.
723 *
724 * note on "cleaning" object and PG_BUSY pages:
725 * this routine is holding the lock on the object. the only time
726 * that it can run into a PG_BUSY page that it does not own is if
727 * some other process has started I/O on the page (e.g. either
728 * a pagein, or a pageout). if the PG_BUSY page is being paged
729 * in, then it can not be dirty (!PG_CLEAN) because no one has
730 * had a chance to modify it yet. if the PG_BUSY page is being
731 * paged out then it means that someone else has already started
732 * cleaning the page for us (how nice!). in this case, if we
733 * have syncio specified, then after we make our pass through the
734 * object we need to wait for the other PG_BUSY pages to clear
735 * off (i.e. we need to do an iosync). also note that once a
736 * page is PG_BUSY it must stay in its object until it is un-busyed.
737 *
738 * note on page traversal:
739 * we can traverse the pages in an object either by going down the
740 * linked list in "uobj->memq", or we can go over the address range
741 * by page doing hash table lookups for each address. depending
742 * on how many pages are in the object it may be cheaper to do one
743 * or the other. we set "by_list" to true if we are using memq.
744 * if the cost of a hash lookup was equal to the cost of the list
745 * traversal we could compare the number of pages in the start->stop
746 * range to the total number of pages in the object. however, it
747 * seems that a hash table lookup is more expensive than the linked
748 * list traversal, so we multiply the number of pages in the
749 * range by an estimate of the relatively higher cost of the hash lookup.
750 */
751
752 int
753 genfs_putpages(void *v)
754 {
755 struct vop_putpages_args /* {
756 struct vnode *a_vp;
757 voff_t a_offlo;
758 voff_t a_offhi;
759 int a_flags;
760 } */ * const ap = v;
761
762 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
763 ap->a_flags, NULL);
764 }
765
766 int
767 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
768 int origflags, struct vm_page **busypg)
769 {
770 struct uvm_object * const uobj = &vp->v_uobj;
771 kmutex_t * const slock = &uobj->vmobjlock;
772 off_t off;
773 /* Even for strange MAXPHYS, the shift rounds down to a page */
774 #define maxpages (MAXPHYS >> PAGE_SHIFT)
775 int i, error, npages, nback;
776 int freeflag;
777 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
778 bool wasclean, by_list, needs_clean, yld;
779 bool async = (origflags & PGO_SYNCIO) == 0;
780 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
781 struct lwp * const l = curlwp ? curlwp : &lwp0;
782 struct genfs_node * const gp = VTOG(vp);
783 int flags;
784 int dirtygen;
785 bool modified;
786 bool need_wapbl;
787 bool has_trans;
788 bool cleanall;
789 bool onworklst;
790
791 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
792
793 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
794 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
795 KASSERT(startoff < endoff || endoff == 0);
796
797 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
798 vp, uobj->uo_npages, startoff, endoff - startoff);
799
800 has_trans = false;
801 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
802 (origflags & PGO_JOURNALLOCKED) == 0);
803
804 retry:
805 modified = false;
806 flags = origflags;
807 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
808 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
809 if (uobj->uo_npages == 0) {
810 if (vp->v_iflag & VI_ONWORKLST) {
811 vp->v_iflag &= ~VI_WRMAPDIRTY;
812 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
813 vn_syncer_remove_from_worklist(vp);
814 }
815 if (has_trans) {
816 if (need_wapbl)
817 WAPBL_END(vp->v_mount);
818 fstrans_done(vp->v_mount);
819 }
820 mutex_exit(slock);
821 return (0);
822 }
823
824 /*
825 * the vnode has pages, set up to process the request.
826 */
827
828 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
829 mutex_exit(slock);
830 if (pagedaemon) {
831 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
832 if (error)
833 return error;
834 } else
835 fstrans_start(vp->v_mount, FSTRANS_LAZY);
836 if (need_wapbl) {
837 error = WAPBL_BEGIN(vp->v_mount);
838 if (error) {
839 fstrans_done(vp->v_mount);
840 return error;
841 }
842 }
843 has_trans = true;
844 mutex_enter(slock);
845 goto retry;
846 }
847
848 error = 0;
849 wasclean = (vp->v_numoutput == 0);
850 off = startoff;
851 if (endoff == 0 || flags & PGO_ALLPAGES) {
852 endoff = trunc_page(LLONG_MAX);
853 }
854 by_list = (uobj->uo_npages <=
855 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
856
857 #if !defined(DEBUG)
858 /*
859 * if this vnode is known not to have dirty pages,
860 * don't bother to clean it out.
861 */
862
863 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
864 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
865 goto skip_scan;
866 }
867 flags &= ~PGO_CLEANIT;
868 }
869 #endif /* !defined(DEBUG) */
870
871 /*
872 * start the loop. when scanning by list, hold the last page
873 * in the list before we start. pages allocated after we start
874 * will be added to the end of the list, so we can stop at the
875 * current last page.
876 */
877
878 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
879 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
880 (vp->v_iflag & VI_ONWORKLST) != 0;
881 dirtygen = gp->g_dirtygen;
882 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
883 if (by_list) {
884 curmp.uobject = uobj;
885 curmp.offset = (voff_t)-1;
886 curmp.flags = PG_BUSY;
887 endmp.uobject = uobj;
888 endmp.offset = (voff_t)-1;
889 endmp.flags = PG_BUSY;
890 pg = TAILQ_FIRST(&uobj->memq);
891 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
892 } else {
893 pg = uvm_pagelookup(uobj, off);
894 }
895 nextpg = NULL;
896 while (by_list || off < endoff) {
897
898 /*
899 * if the current page is not interesting, move on to the next.
900 */
901
902 KASSERT(pg == NULL || pg->uobject == uobj);
903 KASSERT(pg == NULL ||
904 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
905 (pg->flags & PG_BUSY) != 0);
906 if (by_list) {
907 if (pg == &endmp) {
908 break;
909 }
910 if (pg->offset < startoff || pg->offset >= endoff ||
911 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
912 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
913 wasclean = false;
914 }
915 pg = TAILQ_NEXT(pg, listq.queue);
916 continue;
917 }
918 off = pg->offset;
919 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
920 if (pg != NULL) {
921 wasclean = false;
922 }
923 off += PAGE_SIZE;
924 if (off < endoff) {
925 pg = uvm_pagelookup(uobj, off);
926 }
927 continue;
928 }
929
930 /*
931 * if the current page needs to be cleaned and it's busy,
932 * wait for it to become unbusy.
933 */
934
935 yld = (l->l_cpu->ci_schedstate.spc_flags &
936 SPCF_SHOULDYIELD) && !pagedaemon;
937 if (pg->flags & PG_BUSY || yld) {
938 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
939 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
940 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
941 error = EDEADLK;
942 if (busypg != NULL)
943 *busypg = pg;
944 break;
945 }
946 if (pagedaemon) {
947 /*
948 * someone has taken the page while we
949 * dropped the lock for fstrans_start.
950 */
951 break;
952 }
953 if (by_list) {
954 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
955 UVMHIST_LOG(ubchist, "curmp next %p",
956 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
957 }
958 if (yld) {
959 mutex_exit(slock);
960 preempt();
961 mutex_enter(slock);
962 } else {
963 pg->flags |= PG_WANTED;
964 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
965 mutex_enter(slock);
966 }
967 if (by_list) {
968 UVMHIST_LOG(ubchist, "after next %p",
969 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
970 pg = TAILQ_NEXT(&curmp, listq.queue);
971 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
972 } else {
973 pg = uvm_pagelookup(uobj, off);
974 }
975 continue;
976 }
977
978 /*
979 * if we're freeing, remove all mappings of the page now.
980 * if we're cleaning, check if the page is needs to be cleaned.
981 */
982
983 if (flags & PGO_FREE) {
984 pmap_page_protect(pg, VM_PROT_NONE);
985 } else if (flags & PGO_CLEANIT) {
986
987 /*
988 * if we still have some hope to pull this vnode off
989 * from the syncer queue, write-protect the page.
990 */
991
992 if (cleanall && wasclean &&
993 gp->g_dirtygen == dirtygen) {
994
995 /*
996 * uobj pages get wired only by uvm_fault
997 * where uobj is locked.
998 */
999
1000 if (pg->wire_count == 0) {
1001 pmap_page_protect(pg,
1002 VM_PROT_READ|VM_PROT_EXECUTE);
1003 } else {
1004 cleanall = false;
1005 }
1006 }
1007 }
1008
1009 if (flags & PGO_CLEANIT) {
1010 needs_clean = pmap_clear_modify(pg) ||
1011 (pg->flags & PG_CLEAN) == 0;
1012 pg->flags |= PG_CLEAN;
1013 } else {
1014 needs_clean = false;
1015 }
1016
1017 /*
1018 * if we're cleaning, build a cluster.
1019 * the cluster will consist of pages which are currently dirty,
1020 * but they will be returned to us marked clean.
1021 * if not cleaning, just operate on the one page.
1022 */
1023
1024 if (needs_clean) {
1025 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1026 wasclean = false;
1027 memset(pgs, 0, sizeof(pgs));
1028 pg->flags |= PG_BUSY;
1029 UVM_PAGE_OWN(pg, "genfs_putpages");
1030
1031 /*
1032 * first look backward.
1033 */
1034
1035 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1036 nback = npages;
1037 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1038 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1039 if (nback) {
1040 memmove(&pgs[0], &pgs[npages - nback],
1041 nback * sizeof(pgs[0]));
1042 if (npages - nback < nback)
1043 memset(&pgs[nback], 0,
1044 (npages - nback) * sizeof(pgs[0]));
1045 else
1046 memset(&pgs[npages - nback], 0,
1047 nback * sizeof(pgs[0]));
1048 }
1049
1050 /*
1051 * then plug in our page of interest.
1052 */
1053
1054 pgs[nback] = pg;
1055
1056 /*
1057 * then look forward to fill in the remaining space in
1058 * the array of pages.
1059 */
1060
1061 npages = maxpages - nback - 1;
1062 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1063 &pgs[nback + 1],
1064 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1065 npages += nback + 1;
1066 } else {
1067 pgs[0] = pg;
1068 npages = 1;
1069 nback = 0;
1070 }
1071
1072 /*
1073 * apply FREE or DEACTIVATE options if requested.
1074 */
1075
1076 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1077 mutex_enter(&uvm_pageqlock);
1078 }
1079 for (i = 0; i < npages; i++) {
1080 tpg = pgs[i];
1081 KASSERT(tpg->uobject == uobj);
1082 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1083 pg = tpg;
1084 if (tpg->offset < startoff || tpg->offset >= endoff)
1085 continue;
1086 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1087 uvm_pagedeactivate(tpg);
1088 } else if (flags & PGO_FREE) {
1089 pmap_page_protect(tpg, VM_PROT_NONE);
1090 if (tpg->flags & PG_BUSY) {
1091 tpg->flags |= freeflag;
1092 if (pagedaemon) {
1093 uvm_pageout_start(1);
1094 uvm_pagedequeue(tpg);
1095 }
1096 } else {
1097
1098 /*
1099 * ``page is not busy''
1100 * implies that npages is 1
1101 * and needs_clean is false.
1102 */
1103
1104 nextpg = TAILQ_NEXT(tpg, listq.queue);
1105 uvm_pagefree(tpg);
1106 if (pagedaemon)
1107 uvmexp.pdfreed++;
1108 }
1109 }
1110 }
1111 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1112 mutex_exit(&uvm_pageqlock);
1113 }
1114 if (needs_clean) {
1115 modified = true;
1116
1117 /*
1118 * start the i/o. if we're traversing by list,
1119 * keep our place in the list with a marker page.
1120 */
1121
1122 if (by_list) {
1123 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1124 listq.queue);
1125 }
1126 mutex_exit(slock);
1127 error = GOP_WRITE(vp, pgs, npages, flags);
1128 mutex_enter(slock);
1129 if (by_list) {
1130 pg = TAILQ_NEXT(&curmp, listq.queue);
1131 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1132 }
1133 if (error) {
1134 break;
1135 }
1136 if (by_list) {
1137 continue;
1138 }
1139 }
1140
1141 /*
1142 * find the next page and continue if there was no error.
1143 */
1144
1145 if (by_list) {
1146 if (nextpg) {
1147 pg = nextpg;
1148 nextpg = NULL;
1149 } else {
1150 pg = TAILQ_NEXT(pg, listq.queue);
1151 }
1152 } else {
1153 off += (npages - nback) << PAGE_SHIFT;
1154 if (off < endoff) {
1155 pg = uvm_pagelookup(uobj, off);
1156 }
1157 }
1158 }
1159 if (by_list) {
1160 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1161 }
1162
1163 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1164 (vp->v_type != VBLK ||
1165 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1166 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1167 }
1168
1169 /*
1170 * if we're cleaning and there was nothing to clean,
1171 * take us off the syncer list. if we started any i/o
1172 * and we're doing sync i/o, wait for all writes to finish.
1173 */
1174
1175 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1176 (vp->v_iflag & VI_ONWORKLST) != 0) {
1177 #if defined(DEBUG)
1178 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1179 if ((pg->flags & PG_CLEAN) == 0) {
1180 printf("%s: %p: !CLEAN\n", __func__, pg);
1181 }
1182 if (pmap_is_modified(pg)) {
1183 printf("%s: %p: modified\n", __func__, pg);
1184 }
1185 }
1186 #endif /* defined(DEBUG) */
1187 vp->v_iflag &= ~VI_WRMAPDIRTY;
1188 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1189 vn_syncer_remove_from_worklist(vp);
1190 }
1191
1192 #if !defined(DEBUG)
1193 skip_scan:
1194 #endif /* !defined(DEBUG) */
1195
1196 /* Wait for output to complete. */
1197 if (!wasclean && !async && vp->v_numoutput != 0) {
1198 while (vp->v_numoutput != 0)
1199 cv_wait(&vp->v_cv, slock);
1200 }
1201 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1202 mutex_exit(slock);
1203
1204 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1205 /*
1206 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1207 * retrying is not a big deal because, in many cases,
1208 * uobj->uo_npages is already 0 here.
1209 */
1210 mutex_enter(slock);
1211 goto retry;
1212 }
1213
1214 if (has_trans) {
1215 if (need_wapbl)
1216 WAPBL_END(vp->v_mount);
1217 fstrans_done(vp->v_mount);
1218 }
1219
1220 return (error);
1221 }
1222
1223 int
1224 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1225 {
1226 off_t off;
1227 vaddr_t kva;
1228 size_t len;
1229 int error;
1230 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1231
1232 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1233 vp, pgs, npages, flags);
1234
1235 off = pgs[0]->offset;
1236 kva = uvm_pagermapin(pgs, npages,
1237 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1238 len = npages << PAGE_SHIFT;
1239
1240 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1241 uvm_aio_biodone);
1242
1243 return error;
1244 }
1245
1246 int
1247 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1248 {
1249 off_t off;
1250 vaddr_t kva;
1251 size_t len;
1252 int error;
1253 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1254
1255 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1256 vp, pgs, npages, flags);
1257
1258 off = pgs[0]->offset;
1259 kva = uvm_pagermapin(pgs, npages,
1260 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1261 len = npages << PAGE_SHIFT;
1262
1263 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1264 uvm_aio_biodone);
1265
1266 return error;
1267 }
1268
1269 /*
1270 * Backend routine for doing I/O to vnode pages. Pages are already locked
1271 * and mapped into kernel memory. Here we just look up the underlying
1272 * device block addresses and call the strategy routine.
1273 */
1274
1275 static int
1276 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1277 enum uio_rw rw, void (*iodone)(struct buf *))
1278 {
1279 int s, error, run;
1280 int fs_bshift, dev_bshift;
1281 off_t eof, offset, startoffset;
1282 size_t bytes, iobytes, skipbytes;
1283 daddr_t lbn, blkno;
1284 struct buf *mbp, *bp;
1285 struct vnode *devvp;
1286 bool async = (flags & PGO_SYNCIO) == 0;
1287 bool write = rw == UIO_WRITE;
1288 int brw = write ? B_WRITE : B_READ;
1289 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1290
1291 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1292 vp, kva, len, flags);
1293
1294 KASSERT(vp->v_size <= vp->v_writesize);
1295 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1296 if (vp->v_type != VBLK) {
1297 fs_bshift = vp->v_mount->mnt_fs_bshift;
1298 dev_bshift = vp->v_mount->mnt_dev_bshift;
1299 } else {
1300 fs_bshift = DEV_BSHIFT;
1301 dev_bshift = DEV_BSHIFT;
1302 }
1303 error = 0;
1304 startoffset = off;
1305 bytes = MIN(len, eof - startoffset);
1306 skipbytes = 0;
1307 KASSERT(bytes != 0);
1308
1309 if (write) {
1310 mutex_enter(&vp->v_interlock);
1311 vp->v_numoutput += 2;
1312 mutex_exit(&vp->v_interlock);
1313 }
1314 mbp = getiobuf(vp, true);
1315 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1316 vp, mbp, vp->v_numoutput, bytes);
1317 mbp->b_bufsize = len;
1318 mbp->b_data = (void *)kva;
1319 mbp->b_resid = mbp->b_bcount = bytes;
1320 mbp->b_cflags = BC_BUSY | BC_AGE;
1321 if (async) {
1322 mbp->b_flags = brw | B_ASYNC;
1323 mbp->b_iodone = iodone;
1324 } else {
1325 mbp->b_flags = brw;
1326 mbp->b_iodone = NULL;
1327 }
1328 if (curlwp == uvm.pagedaemon_lwp)
1329 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1330 else if (async)
1331 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1332 else
1333 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1334
1335 bp = NULL;
1336 for (offset = startoffset;
1337 bytes > 0;
1338 offset += iobytes, bytes -= iobytes) {
1339 lbn = offset >> fs_bshift;
1340 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1341 if (error) {
1342 UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
1343 skipbytes += bytes;
1344 bytes = 0;
1345 break;
1346 }
1347
1348 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1349 bytes);
1350 if (blkno == (daddr_t)-1) {
1351 if (!write) {
1352 memset((char *)kva + (offset - startoffset), 0,
1353 iobytes);
1354 }
1355 skipbytes += iobytes;
1356 continue;
1357 }
1358
1359 /* if it's really one i/o, don't make a second buf */
1360 if (offset == startoffset && iobytes == bytes) {
1361 bp = mbp;
1362 } else {
1363 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1364 vp, bp, vp->v_numoutput, 0);
1365 bp = getiobuf(vp, true);
1366 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1367 }
1368 bp->b_lblkno = 0;
1369
1370 /* adjust physical blkno for partial blocks */
1371 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1372 dev_bshift);
1373 UVMHIST_LOG(ubchist,
1374 "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
1375 vp, offset, bp->b_bcount, bp->b_blkno);
1376
1377 VOP_STRATEGY(devvp, bp);
1378 }
1379 if (skipbytes) {
1380 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1381 }
1382 nestiobuf_done(mbp, skipbytes, error);
1383 if (async) {
1384 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1385 return (0);
1386 }
1387 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1388 error = biowait(mbp);
1389 s = splbio();
1390 (*iodone)(mbp);
1391 splx(s);
1392 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1393 return (error);
1394 }
1395
1396 int
1397 genfs_compat_getpages(void *v)
1398 {
1399 struct vop_getpages_args /* {
1400 struct vnode *a_vp;
1401 voff_t a_offset;
1402 struct vm_page **a_m;
1403 int *a_count;
1404 int a_centeridx;
1405 vm_prot_t a_access_type;
1406 int a_advice;
1407 int a_flags;
1408 } */ *ap = v;
1409
1410 off_t origoffset;
1411 struct vnode *vp = ap->a_vp;
1412 struct uvm_object *uobj = &vp->v_uobj;
1413 struct vm_page *pg, **pgs;
1414 vaddr_t kva;
1415 int i, error, orignpages, npages;
1416 struct iovec iov;
1417 struct uio uio;
1418 kauth_cred_t cred = curlwp->l_cred;
1419 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1420
1421 error = 0;
1422 origoffset = ap->a_offset;
1423 orignpages = *ap->a_count;
1424 pgs = ap->a_m;
1425
1426 if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
1427 vn_syncer_add_to_worklist(vp, filedelay);
1428 }
1429 if (ap->a_flags & PGO_LOCKED) {
1430 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1431 UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
1432
1433 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1434 }
1435 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1436 mutex_exit(&uobj->vmobjlock);
1437 return (EINVAL);
1438 }
1439 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1440 mutex_exit(&uobj->vmobjlock);
1441 return 0;
1442 }
1443 npages = orignpages;
1444 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1445 mutex_exit(&uobj->vmobjlock);
1446 kva = uvm_pagermapin(pgs, npages,
1447 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1448 for (i = 0; i < npages; i++) {
1449 pg = pgs[i];
1450 if ((pg->flags & PG_FAKE) == 0) {
1451 continue;
1452 }
1453 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1454 iov.iov_len = PAGE_SIZE;
1455 uio.uio_iov = &iov;
1456 uio.uio_iovcnt = 1;
1457 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1458 uio.uio_rw = UIO_READ;
1459 uio.uio_resid = PAGE_SIZE;
1460 UIO_SETUP_SYSSPACE(&uio);
1461 /* XXX vn_lock */
1462 error = VOP_READ(vp, &uio, 0, cred);
1463 if (error) {
1464 break;
1465 }
1466 if (uio.uio_resid) {
1467 memset(iov.iov_base, 0, uio.uio_resid);
1468 }
1469 }
1470 uvm_pagermapout(kva, npages);
1471 mutex_enter(&uobj->vmobjlock);
1472 mutex_enter(&uvm_pageqlock);
1473 for (i = 0; i < npages; i++) {
1474 pg = pgs[i];
1475 if (error && (pg->flags & PG_FAKE) != 0) {
1476 pg->flags |= PG_RELEASED;
1477 } else {
1478 pmap_clear_modify(pg);
1479 uvm_pageactivate(pg);
1480 }
1481 }
1482 if (error) {
1483 uvm_page_unbusy(pgs, npages);
1484 }
1485 mutex_exit(&uvm_pageqlock);
1486 mutex_exit(&uobj->vmobjlock);
1487 return (error);
1488 }
1489
1490 int
1491 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1492 int flags)
1493 {
1494 off_t offset;
1495 struct iovec iov;
1496 struct uio uio;
1497 kauth_cred_t cred = curlwp->l_cred;
1498 struct buf *bp;
1499 vaddr_t kva;
1500 int error;
1501
1502 offset = pgs[0]->offset;
1503 kva = uvm_pagermapin(pgs, npages,
1504 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1505
1506 iov.iov_base = (void *)kva;
1507 iov.iov_len = npages << PAGE_SHIFT;
1508 uio.uio_iov = &iov;
1509 uio.uio_iovcnt = 1;
1510 uio.uio_offset = offset;
1511 uio.uio_rw = UIO_WRITE;
1512 uio.uio_resid = npages << PAGE_SHIFT;
1513 UIO_SETUP_SYSSPACE(&uio);
1514 /* XXX vn_lock */
1515 error = VOP_WRITE(vp, &uio, 0, cred);
1516
1517 mutex_enter(&vp->v_interlock);
1518 vp->v_numoutput++;
1519 mutex_exit(&vp->v_interlock);
1520
1521 bp = getiobuf(vp, true);
1522 bp->b_cflags = BC_BUSY | BC_AGE;
1523 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1524 bp->b_data = (char *)kva;
1525 bp->b_bcount = npages << PAGE_SHIFT;
1526 bp->b_bufsize = npages << PAGE_SHIFT;
1527 bp->b_resid = 0;
1528 bp->b_error = error;
1529 uvm_aio_aiodone(bp);
1530 return (error);
1531 }
1532
1533 /*
1534 * Process a uio using direct I/O. If we reach a part of the request
1535 * which cannot be processed in this fashion for some reason, just return.
1536 * The caller must handle some additional part of the request using
1537 * buffered I/O before trying direct I/O again.
1538 */
1539
1540 void
1541 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1542 {
1543 struct vmspace *vs;
1544 struct iovec *iov;
1545 vaddr_t va;
1546 size_t len;
1547 const int mask = DEV_BSIZE - 1;
1548 int error;
1549 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1550 (ioflag & IO_JOURNALLOCKED) == 0);
1551
1552 /*
1553 * We only support direct I/O to user space for now.
1554 */
1555
1556 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1557 return;
1558 }
1559
1560 /*
1561 * If the vnode is mapped, we would need to get the getpages lock
1562 * to stabilize the bmap, but then we would get into trouble whil e
1563 * locking the pages if the pages belong to this same vnode (or a
1564 * multi-vnode cascade to the same effect). Just fall back to
1565 * buffered I/O if the vnode is mapped to avoid this mess.
1566 */
1567
1568 if (vp->v_vflag & VV_MAPPED) {
1569 return;
1570 }
1571
1572 if (need_wapbl) {
1573 error = WAPBL_BEGIN(vp->v_mount);
1574 if (error)
1575 return;
1576 }
1577
1578 /*
1579 * Do as much of the uio as possible with direct I/O.
1580 */
1581
1582 vs = uio->uio_vmspace;
1583 while (uio->uio_resid) {
1584 iov = uio->uio_iov;
1585 if (iov->iov_len == 0) {
1586 uio->uio_iov++;
1587 uio->uio_iovcnt--;
1588 continue;
1589 }
1590 va = (vaddr_t)iov->iov_base;
1591 len = MIN(iov->iov_len, genfs_maxdio);
1592 len &= ~mask;
1593
1594 /*
1595 * If the next chunk is smaller than DEV_BSIZE or extends past
1596 * the current EOF, then fall back to buffered I/O.
1597 */
1598
1599 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1600 break;
1601 }
1602
1603 /*
1604 * Check alignment. The file offset must be at least
1605 * sector-aligned. The exact constraint on memory alignment
1606 * is very hardware-dependent, but requiring sector-aligned
1607 * addresses there too is safe.
1608 */
1609
1610 if (uio->uio_offset & mask || va & mask) {
1611 break;
1612 }
1613 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1614 uio->uio_rw);
1615 if (error) {
1616 break;
1617 }
1618 iov->iov_base = (char *)iov->iov_base + len;
1619 iov->iov_len -= len;
1620 uio->uio_offset += len;
1621 uio->uio_resid -= len;
1622 }
1623
1624 if (need_wapbl)
1625 WAPBL_END(vp->v_mount);
1626 }
1627
1628 /*
1629 * Iodone routine for direct I/O. We don't do much here since the request is
1630 * always synchronous, so the caller will do most of the work after biowait().
1631 */
1632
1633 static void
1634 genfs_dio_iodone(struct buf *bp)
1635 {
1636
1637 KASSERT((bp->b_flags & B_ASYNC) == 0);
1638 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1639 mutex_enter(bp->b_objlock);
1640 vwakeup(bp);
1641 mutex_exit(bp->b_objlock);
1642 }
1643 putiobuf(bp);
1644 }
1645
1646 /*
1647 * Process one chunk of a direct I/O request.
1648 */
1649
1650 static int
1651 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1652 off_t off, enum uio_rw rw)
1653 {
1654 struct vm_map *map;
1655 struct pmap *upm, *kpm;
1656 size_t klen = round_page(uva + len) - trunc_page(uva);
1657 off_t spoff, epoff;
1658 vaddr_t kva, puva;
1659 paddr_t pa;
1660 vm_prot_t prot;
1661 int error, rv, poff, koff;
1662 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1663 (rw == UIO_WRITE ? PGO_FREE : 0);
1664
1665 /*
1666 * For writes, verify that this range of the file already has fully
1667 * allocated backing store. If there are any holes, just punt and
1668 * make the caller take the buffered write path.
1669 */
1670
1671 if (rw == UIO_WRITE) {
1672 daddr_t lbn, elbn, blkno;
1673 int bsize, bshift, run;
1674
1675 bshift = vp->v_mount->mnt_fs_bshift;
1676 bsize = 1 << bshift;
1677 lbn = off >> bshift;
1678 elbn = (off + len + bsize - 1) >> bshift;
1679 while (lbn < elbn) {
1680 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1681 if (error) {
1682 return error;
1683 }
1684 if (blkno == (daddr_t)-1) {
1685 return ENOSPC;
1686 }
1687 lbn += 1 + run;
1688 }
1689 }
1690
1691 /*
1692 * Flush any cached pages for parts of the file that we're about to
1693 * access. If we're writing, invalidate pages as well.
1694 */
1695
1696 spoff = trunc_page(off);
1697 epoff = round_page(off + len);
1698 mutex_enter(&vp->v_interlock);
1699 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1700 if (error) {
1701 return error;
1702 }
1703
1704 /*
1705 * Wire the user pages and remap them into kernel memory.
1706 */
1707
1708 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1709 error = uvm_vslock(vs, (void *)uva, len, prot);
1710 if (error) {
1711 return error;
1712 }
1713
1714 map = &vs->vm_map;
1715 upm = vm_map_pmap(map);
1716 kpm = vm_map_pmap(kernel_map);
1717 kva = uvm_km_alloc(kernel_map, klen, 0,
1718 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1719 puva = trunc_page(uva);
1720 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1721 rv = pmap_extract(upm, puva + poff, &pa);
1722 KASSERT(rv);
1723 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1724 }
1725 pmap_update(kpm);
1726
1727 /*
1728 * Do the I/O.
1729 */
1730
1731 koff = uva - trunc_page(uva);
1732 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1733 genfs_dio_iodone);
1734
1735 /*
1736 * Tear down the kernel mapping.
1737 */
1738
1739 pmap_remove(kpm, kva, kva + klen);
1740 pmap_update(kpm);
1741 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1742
1743 /*
1744 * Unwire the user pages.
1745 */
1746
1747 uvm_vsunlock(vs, (void *)uva, len);
1748 return error;
1749 }
1750
1751