Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.3
      1 /*	$NetBSD: genfs_io.c,v 1.3 2008/01/18 10:48:23 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.3 2008/01/18 10:48:23 yamt Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 
     51 #include <miscfs/genfs/genfs.h>
     52 #include <miscfs/genfs/genfs_node.h>
     53 #include <miscfs/specfs/specdev.h>
     54 
     55 #include <uvm/uvm.h>
     56 #include <uvm/uvm_pager.h>
     57 
     58 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     59     off_t, enum uio_rw);
     60 static void genfs_dio_iodone(struct buf *);
     61 
     62 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     63     void (*)(struct buf *));
     64 static inline void genfs_rel_pages(struct vm_page **, int);
     65 
     66 #define MAX_READ_PAGES	16 	/* XXXUBC 16 */
     67 
     68 int genfs_maxdio = MAXPHYS;
     69 
     70 static inline void
     71 genfs_rel_pages(struct vm_page **pgs, int npages)
     72 {
     73 	int i;
     74 
     75 	for (i = 0; i < npages; i++) {
     76 		struct vm_page *pg = pgs[i];
     77 
     78 		if (pg == NULL || pg == PGO_DONTCARE)
     79 			continue;
     80 		if (pg->flags & PG_FAKE) {
     81 			pg->flags |= PG_RELEASED;
     82 		}
     83 	}
     84 	mutex_enter(&uvm_pageqlock);
     85 	uvm_page_unbusy(pgs, npages);
     86 	mutex_exit(&uvm_pageqlock);
     87 }
     88 
     89 /*
     90  * generic VM getpages routine.
     91  * Return PG_BUSY pages for the given range,
     92  * reading from backing store if necessary.
     93  */
     94 
     95 int
     96 genfs_getpages(void *v)
     97 {
     98 	struct vop_getpages_args /* {
     99 		struct vnode *a_vp;
    100 		voff_t a_offset;
    101 		struct vm_page **a_m;
    102 		int *a_count;
    103 		int a_centeridx;
    104 		vm_prot_t a_access_type;
    105 		int a_advice;
    106 		int a_flags;
    107 	} */ *ap = v;
    108 
    109 	off_t newsize, diskeof, memeof;
    110 	off_t offset, origoffset, startoffset, endoffset;
    111 	daddr_t lbn, blkno;
    112 	int i, error, npages, orignpages, npgs, run, ridx, pidx, pcount;
    113 	int fs_bshift, fs_bsize, dev_bshift;
    114 	int flags = ap->a_flags;
    115 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    116 	vaddr_t kva;
    117 	struct buf *bp, *mbp;
    118 	struct vnode *vp = ap->a_vp;
    119 	struct vnode *devvp;
    120 	struct genfs_node *gp = VTOG(vp);
    121 	struct uvm_object *uobj = &vp->v_uobj;
    122 	struct vm_page *pg, **pgs, *pgs_onstack[MAX_READ_PAGES];
    123 	int pgs_size;
    124 	kauth_cred_t cred = curlwp->l_cred;		/* XXXUBC curlwp */
    125 	bool async = (flags & PGO_SYNCIO) == 0;
    126 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    127 	bool sawhole = false;
    128 	bool has_trans = false;
    129 	bool overwrite = (flags & PGO_OVERWRITE) != 0;
    130 	bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    131 	voff_t origvsize;
    132 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    133 
    134 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    135 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    136 
    137 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    138 	    vp->v_type == VLNK || vp->v_type == VBLK);
    139 
    140 	/* XXXUBC temp limit */
    141 	if (*ap->a_count > MAX_READ_PAGES) {
    142 		panic("genfs_getpages: too many pages");
    143 	}
    144 
    145 	pgs = pgs_onstack;
    146 	pgs_size = sizeof(pgs_onstack);
    147 
    148 startover:
    149 	error = 0;
    150 	origvsize = vp->v_size;
    151 	origoffset = ap->a_offset;
    152 	orignpages = *ap->a_count;
    153 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    154 	if (flags & PGO_PASTEOF) {
    155 #if defined(DIAGNOSTIC)
    156 		off_t writeeof;
    157 #endif /* defined(DIAGNOSTIC) */
    158 
    159 		newsize = MAX(origvsize,
    160 		    origoffset + (orignpages << PAGE_SHIFT));
    161 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    162 #if defined(DIAGNOSTIC)
    163 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    164 		if (newsize > round_page(writeeof)) {
    165 			panic("%s: past eof", __func__);
    166 		}
    167 #endif /* defined(DIAGNOSTIC) */
    168 	} else {
    169 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    170 	}
    171 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    172 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    173 	KASSERT(orignpages > 0);
    174 
    175 	/*
    176 	 * Bounds-check the request.
    177 	 */
    178 
    179 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    180 		if ((flags & PGO_LOCKED) == 0) {
    181 			mutex_exit(&uobj->vmobjlock);
    182 		}
    183 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    184 		    origoffset, *ap->a_count, memeof,0);
    185 		error = EINVAL;
    186 		goto out_err;
    187 	}
    188 
    189 	/* uobj is locked */
    190 
    191 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    192 	    (vp->v_type != VBLK ||
    193 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    194 		int updflags = 0;
    195 
    196 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    197 			updflags = GOP_UPDATE_ACCESSED;
    198 		}
    199 		if (write) {
    200 			updflags |= GOP_UPDATE_MODIFIED;
    201 		}
    202 		if (updflags != 0) {
    203 			GOP_MARKUPDATE(vp, updflags);
    204 		}
    205 	}
    206 
    207 	if (write) {
    208 		gp->g_dirtygen++;
    209 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    210 			vn_syncer_add_to_worklist(vp, filedelay);
    211 		}
    212 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    213 			vp->v_iflag |= VI_WRMAPDIRTY;
    214 		}
    215 	}
    216 
    217 	/*
    218 	 * For PGO_LOCKED requests, just return whatever's in memory.
    219 	 */
    220 
    221 	if (flags & PGO_LOCKED) {
    222 		int nfound;
    223 
    224 		npages = *ap->a_count;
    225 #if defined(DEBUG)
    226 		for (i = 0; i < npages; i++) {
    227 			pg = ap->a_m[i];
    228 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    229 		}
    230 #endif /* defined(DEBUG) */
    231 		nfound = uvn_findpages(uobj, origoffset, &npages,
    232 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    233 		KASSERT(npages == *ap->a_count);
    234 		if (nfound == 0) {
    235 			error = EBUSY;
    236 			goto out_err;
    237 		}
    238 		if (!rw_tryenter(&gp->g_glock, RW_READER)) {
    239 			genfs_rel_pages(ap->a_m, npages);
    240 
    241 			/*
    242 			 * restore the array.
    243 			 */
    244 
    245 			for (i = 0; i < npages; i++) {
    246 				pg = ap->a_m[i];
    247 
    248 				if (pg != NULL || pg != PGO_DONTCARE) {
    249 					ap->a_m[i] = NULL;
    250 				}
    251 			}
    252 		} else {
    253 			rw_exit(&gp->g_glock);
    254 		}
    255 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    256 		goto out_err;
    257 	}
    258 	mutex_exit(&uobj->vmobjlock);
    259 
    260 	/*
    261 	 * find the requested pages and make some simple checks.
    262 	 * leave space in the page array for a whole block.
    263 	 */
    264 
    265 	if (vp->v_type != VBLK) {
    266 		fs_bshift = vp->v_mount->mnt_fs_bshift;
    267 		dev_bshift = vp->v_mount->mnt_dev_bshift;
    268 	} else {
    269 		fs_bshift = DEV_BSHIFT;
    270 		dev_bshift = DEV_BSHIFT;
    271 	}
    272 	fs_bsize = 1 << fs_bshift;
    273 
    274 	orignpages = MIN(orignpages,
    275 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    276 	npages = orignpages;
    277 	startoffset = origoffset & ~(fs_bsize - 1);
    278 	endoffset = round_page((origoffset + (npages << PAGE_SHIFT) +
    279 	    fs_bsize - 1) & ~(fs_bsize - 1));
    280 	endoffset = MIN(endoffset, round_page(memeof));
    281 	ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    282 
    283 	pgs_size = sizeof(struct vm_page *) *
    284 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    285 	if (pgs_size > sizeof(pgs_onstack)) {
    286 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    287 		if (pgs == NULL) {
    288 			pgs = pgs_onstack;
    289 			error = ENOMEM;
    290 			goto out_err;
    291 		}
    292 	} else {
    293 		/* pgs == pgs_onstack */
    294 		memset(pgs, 0, pgs_size);
    295 	}
    296 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    297 	    ridx, npages, startoffset, endoffset);
    298 
    299 	if (!has_trans) {
    300 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    301 		has_trans = true;
    302 	}
    303 
    304 	/*
    305 	 * hold g_glock to prevent a race with truncate.
    306 	 *
    307 	 * check if our idea of v_size is still valid.
    308 	 */
    309 
    310 	if (blockalloc) {
    311 		rw_enter(&gp->g_glock, RW_WRITER);
    312 	} else {
    313 		rw_enter(&gp->g_glock, RW_READER);
    314 	}
    315 	mutex_enter(&uobj->vmobjlock);
    316 	if (vp->v_size < origvsize) {
    317 		rw_exit(&gp->g_glock);
    318 		if (pgs != pgs_onstack)
    319 			kmem_free(pgs, pgs_size);
    320 		goto startover;
    321 	}
    322 
    323 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    324 	    async ? UFP_NOWAIT : UFP_ALL) != orignpages) {
    325 		rw_exit(&gp->g_glock);
    326 		KASSERT(async != 0);
    327 		genfs_rel_pages(&pgs[ridx], orignpages);
    328 		mutex_exit(&uobj->vmobjlock);
    329 		error = EBUSY;
    330 		goto out_err;
    331 	}
    332 
    333 	/*
    334 	 * if the pages are already resident, just return them.
    335 	 */
    336 
    337 	for (i = 0; i < npages; i++) {
    338 		struct vm_page *pg1 = pgs[ridx + i];
    339 
    340 		if ((pg1->flags & PG_FAKE) ||
    341 		    (blockalloc && (pg1->flags & PG_RDONLY))) {
    342 			break;
    343 		}
    344 	}
    345 	if (i == npages) {
    346 		rw_exit(&gp->g_glock);
    347 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    348 		npages += ridx;
    349 		goto out;
    350 	}
    351 
    352 	/*
    353 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    354 	 */
    355 
    356 	if (overwrite) {
    357 		rw_exit(&gp->g_glock);
    358 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    359 
    360 		for (i = 0; i < npages; i++) {
    361 			struct vm_page *pg1 = pgs[ridx + i];
    362 
    363 			pg1->flags &= ~(PG_RDONLY|PG_CLEAN);
    364 		}
    365 		npages += ridx;
    366 		goto out;
    367 	}
    368 
    369 	/*
    370 	 * the page wasn't resident and we're not overwriting,
    371 	 * so we're going to have to do some i/o.
    372 	 * find any additional pages needed to cover the expanded range.
    373 	 */
    374 
    375 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    376 	if (startoffset != origoffset || npages != orignpages) {
    377 
    378 		/*
    379 		 * we need to avoid deadlocks caused by locking
    380 		 * additional pages at lower offsets than pages we
    381 		 * already have locked.  unlock them all and start over.
    382 		 */
    383 
    384 		genfs_rel_pages(&pgs[ridx], orignpages);
    385 		memset(pgs, 0, pgs_size);
    386 
    387 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    388 		    startoffset, endoffset, 0,0);
    389 		npgs = npages;
    390 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    391 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    392 			rw_exit(&gp->g_glock);
    393 			KASSERT(async != 0);
    394 			genfs_rel_pages(pgs, npages);
    395 			mutex_exit(&uobj->vmobjlock);
    396 			error = EBUSY;
    397 			goto out_err;
    398 		}
    399 	}
    400 	mutex_exit(&uobj->vmobjlock);
    401 
    402 	/*
    403 	 * read the desired page(s).
    404 	 */
    405 
    406 	totalbytes = npages << PAGE_SHIFT;
    407 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    408 	tailbytes = totalbytes - bytes;
    409 	skipbytes = 0;
    410 
    411 	kva = uvm_pagermapin(pgs, npages,
    412 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    413 
    414 	mbp = getiobuf(vp, true);
    415 	mbp->b_bufsize = totalbytes;
    416 	mbp->b_data = (void *)kva;
    417 	mbp->b_resid = mbp->b_bcount = bytes;
    418 	mbp->b_cflags = BC_BUSY;
    419 	if (async) {
    420 		mbp->b_flags = B_READ | B_ASYNC;
    421 		mbp->b_iodone = uvm_aio_biodone;
    422 	} else {
    423 		mbp->b_flags = B_READ;
    424 		mbp->b_iodone = NULL;
    425 	}
    426 	if (async)
    427 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    428 	else
    429 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    430 
    431 	/*
    432 	 * if EOF is in the middle of the range, zero the part past EOF.
    433 	 * skip over pages which are not PG_FAKE since in that case they have
    434 	 * valid data that we need to preserve.
    435 	 */
    436 
    437 	tailstart = bytes;
    438 	while (tailbytes > 0) {
    439 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    440 
    441 		KASSERT(len <= tailbytes);
    442 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    443 			memset((void *)(kva + tailstart), 0, len);
    444 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    445 			    kva, tailstart, len, 0);
    446 		}
    447 		tailstart += len;
    448 		tailbytes -= len;
    449 	}
    450 
    451 	/*
    452 	 * now loop over the pages, reading as needed.
    453 	 */
    454 
    455 	bp = NULL;
    456 	for (offset = startoffset;
    457 	    bytes > 0;
    458 	    offset += iobytes, bytes -= iobytes) {
    459 
    460 		/*
    461 		 * skip pages which don't need to be read.
    462 		 */
    463 
    464 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    465 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    466 			size_t b;
    467 
    468 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    469 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    470 				sawhole = true;
    471 			}
    472 			b = MIN(PAGE_SIZE, bytes);
    473 			offset += b;
    474 			bytes -= b;
    475 			skipbytes += b;
    476 			pidx++;
    477 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    478 			    offset, 0,0,0);
    479 			if (bytes == 0) {
    480 				goto loopdone;
    481 			}
    482 		}
    483 
    484 		/*
    485 		 * bmap the file to find out the blkno to read from and
    486 		 * how much we can read in one i/o.  if bmap returns an error,
    487 		 * skip the rest of the top-level i/o.
    488 		 */
    489 
    490 		lbn = offset >> fs_bshift;
    491 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    492 		if (error) {
    493 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    494 			    lbn, error,0,0);
    495 			skipbytes += bytes;
    496 			goto loopdone;
    497 		}
    498 
    499 		/*
    500 		 * see how many pages can be read with this i/o.
    501 		 * reduce the i/o size if necessary to avoid
    502 		 * overwriting pages with valid data.
    503 		 */
    504 
    505 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    506 		    bytes);
    507 		if (offset + iobytes > round_page(offset)) {
    508 			pcount = 1;
    509 			while (pidx + pcount < npages &&
    510 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    511 				pcount++;
    512 			}
    513 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    514 			    (offset - trunc_page(offset)));
    515 		}
    516 
    517 		/*
    518 		 * if this block isn't allocated, zero it instead of
    519 		 * reading it.  unless we are going to allocate blocks,
    520 		 * mark the pages we zeroed PG_RDONLY.
    521 		 */
    522 
    523 		if (blkno < 0) {
    524 			int holepages = (round_page(offset + iobytes) -
    525 			    trunc_page(offset)) >> PAGE_SHIFT;
    526 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    527 
    528 			sawhole = true;
    529 			memset((char *)kva + (offset - startoffset), 0,
    530 			    iobytes);
    531 			skipbytes += iobytes;
    532 
    533 			for (i = 0; i < holepages; i++) {
    534 				if (write) {
    535 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    536 				}
    537 				if (!blockalloc) {
    538 					pgs[pidx + i]->flags |= PG_RDONLY;
    539 				}
    540 			}
    541 			continue;
    542 		}
    543 
    544 		/*
    545 		 * allocate a sub-buf for this piece of the i/o
    546 		 * (or just use mbp if there's only 1 piece),
    547 		 * and start it going.
    548 		 */
    549 
    550 		if (offset == startoffset && iobytes == bytes) {
    551 			bp = mbp;
    552 		} else {
    553 			bp = getiobuf(vp, true);
    554 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    555 		}
    556 		bp->b_lblkno = 0;
    557 
    558 		/* adjust physical blkno for partial blocks */
    559 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    560 		    dev_bshift);
    561 
    562 		UVMHIST_LOG(ubchist,
    563 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    564 		    bp, offset, iobytes, bp->b_blkno);
    565 
    566 		VOP_STRATEGY(devvp, bp);
    567 	}
    568 
    569 loopdone:
    570 	nestiobuf_done(mbp, skipbytes, error);
    571 	if (async) {
    572 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    573 		rw_exit(&gp->g_glock);
    574 		error = 0;
    575 		goto out_err;
    576 	}
    577 	if (bp != NULL) {
    578 		error = biowait(mbp);
    579 	}
    580 	putiobuf(mbp);
    581 	uvm_pagermapout(kva, npages);
    582 
    583 	/*
    584 	 * if this we encountered a hole then we have to do a little more work.
    585 	 * for read faults, we marked the page PG_RDONLY so that future
    586 	 * write accesses to the page will fault again.
    587 	 * for write faults, we must make sure that the backing store for
    588 	 * the page is completely allocated while the pages are locked.
    589 	 */
    590 
    591 	if (!error && sawhole && blockalloc) {
    592 		error = GOP_ALLOC(vp, startoffset, npages << PAGE_SHIFT, 0,
    593 		    cred);
    594 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    595 		    startoffset, npages << PAGE_SHIFT, error,0);
    596 		if (!error) {
    597 			for (i = 0; i < npages; i++) {
    598 				if (pgs[i] == NULL) {
    599 					continue;
    600 				}
    601 				pgs[i]->flags &= ~(PG_CLEAN|PG_RDONLY);
    602 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    603 				    pgs[i],0,0,0);
    604 			}
    605 		}
    606 	}
    607 	rw_exit(&gp->g_glock);
    608 	mutex_enter(&uobj->vmobjlock);
    609 
    610 	/*
    611 	 * we're almost done!  release the pages...
    612 	 * for errors, we free the pages.
    613 	 * otherwise we activate them and mark them as valid and clean.
    614 	 * also, unbusy pages that were not actually requested.
    615 	 */
    616 
    617 	if (error) {
    618 		for (i = 0; i < npages; i++) {
    619 			if (pgs[i] == NULL) {
    620 				continue;
    621 			}
    622 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    623 			    pgs[i], pgs[i]->flags, 0,0);
    624 			if (pgs[i]->flags & PG_FAKE) {
    625 				pgs[i]->flags |= PG_RELEASED;
    626 			}
    627 		}
    628 		mutex_enter(&uvm_pageqlock);
    629 		uvm_page_unbusy(pgs, npages);
    630 		mutex_exit(&uvm_pageqlock);
    631 		mutex_exit(&uobj->vmobjlock);
    632 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    633 		goto out_err;
    634 	}
    635 
    636 out:
    637 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    638 	error = 0;
    639 	mutex_enter(&uvm_pageqlock);
    640 	for (i = 0; i < npages; i++) {
    641 		pg = pgs[i];
    642 		if (pg == NULL) {
    643 			continue;
    644 		}
    645 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    646 		    pg, pg->flags, 0,0);
    647 		if (pg->flags & PG_FAKE && !overwrite) {
    648 			pg->flags &= ~(PG_FAKE);
    649 			pmap_clear_modify(pgs[i]);
    650 		}
    651 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    652 		if (i < ridx || i >= ridx + orignpages || async) {
    653 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    654 			    pg, pg->offset,0,0);
    655 			if (pg->flags & PG_WANTED) {
    656 				wakeup(pg);
    657 			}
    658 			if (pg->flags & PG_FAKE) {
    659 				KASSERT(overwrite);
    660 				uvm_pagezero(pg);
    661 			}
    662 			if (pg->flags & PG_RELEASED) {
    663 				uvm_pagefree(pg);
    664 				continue;
    665 			}
    666 			uvm_pageenqueue(pg);
    667 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    668 			UVM_PAGE_OWN(pg, NULL);
    669 		}
    670 	}
    671 	mutex_exit(&uvm_pageqlock);
    672 	mutex_exit(&uobj->vmobjlock);
    673 	if (ap->a_m != NULL) {
    674 		memcpy(ap->a_m, &pgs[ridx],
    675 		    orignpages * sizeof(struct vm_page *));
    676 	}
    677 
    678 out_err:
    679 	if (pgs != pgs_onstack)
    680 		kmem_free(pgs, pgs_size);
    681 	if (has_trans)
    682 		fstrans_done(vp->v_mount);
    683 	return (error);
    684 }
    685 
    686 /*
    687  * generic VM putpages routine.
    688  * Write the given range of pages to backing store.
    689  *
    690  * => "offhi == 0" means flush all pages at or after "offlo".
    691  * => object should be locked by caller.  we return with the
    692  *      object unlocked.
    693  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    694  *	thus, a caller might want to unlock higher level resources
    695  *	(e.g. vm_map) before calling flush.
    696  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    697  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    698  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    699  *	that new pages are inserted on the tail end of the list.   thus,
    700  *	we can make a complete pass through the object in one go by starting
    701  *	at the head and working towards the tail (new pages are put in
    702  *	front of us).
    703  * => NOTE: we are allowed to lock the page queues, so the caller
    704  *	must not be holding the page queue lock.
    705  *
    706  * note on "cleaning" object and PG_BUSY pages:
    707  *	this routine is holding the lock on the object.   the only time
    708  *	that it can run into a PG_BUSY page that it does not own is if
    709  *	some other process has started I/O on the page (e.g. either
    710  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    711  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    712  *	had a chance to modify it yet.    if the PG_BUSY page is being
    713  *	paged out then it means that someone else has already started
    714  *	cleaning the page for us (how nice!).    in this case, if we
    715  *	have syncio specified, then after we make our pass through the
    716  *	object we need to wait for the other PG_BUSY pages to clear
    717  *	off (i.e. we need to do an iosync).   also note that once a
    718  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    719  *
    720  * note on page traversal:
    721  *	we can traverse the pages in an object either by going down the
    722  *	linked list in "uobj->memq", or we can go over the address range
    723  *	by page doing hash table lookups for each address.    depending
    724  *	on how many pages are in the object it may be cheaper to do one
    725  *	or the other.   we set "by_list" to true if we are using memq.
    726  *	if the cost of a hash lookup was equal to the cost of the list
    727  *	traversal we could compare the number of pages in the start->stop
    728  *	range to the total number of pages in the object.   however, it
    729  *	seems that a hash table lookup is more expensive than the linked
    730  *	list traversal, so we multiply the number of pages in the
    731  *	range by an estimate of the relatively higher cost of the hash lookup.
    732  */
    733 
    734 int
    735 genfs_putpages(void *v)
    736 {
    737 	struct vop_putpages_args /* {
    738 		struct vnode *a_vp;
    739 		voff_t a_offlo;
    740 		voff_t a_offhi;
    741 		int a_flags;
    742 	} */ *ap = v;
    743 
    744 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    745 	    ap->a_flags, NULL);
    746 }
    747 
    748 int
    749 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
    750 	struct vm_page **busypg)
    751 {
    752 	struct uvm_object *uobj = &vp->v_uobj;
    753 	kmutex_t *slock = &uobj->vmobjlock;
    754 	off_t off;
    755 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    756 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    757 	int i, error, npages, nback;
    758 	int freeflag;
    759 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    760 	bool wasclean, by_list, needs_clean, yld;
    761 	bool async = (flags & PGO_SYNCIO) == 0;
    762 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    763 	struct lwp *l = curlwp ? curlwp : &lwp0;
    764 	struct genfs_node *gp = VTOG(vp);
    765 	int dirtygen;
    766 	bool modified = false;
    767 	bool has_trans = false;
    768 	bool cleanall;
    769 
    770 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    771 
    772 	KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    773 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    774 	KASSERT(startoff < endoff || endoff == 0);
    775 
    776 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    777 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    778 
    779 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    780 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    781 	if (uobj->uo_npages == 0) {
    782 		if (vp->v_iflag & VI_ONWORKLST) {
    783 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    784 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    785 				vn_syncer_remove_from_worklist(vp);
    786 		}
    787 		mutex_exit(slock);
    788 		return (0);
    789 	}
    790 
    791 	/*
    792 	 * the vnode has pages, set up to process the request.
    793 	 */
    794 
    795 	if ((flags & PGO_CLEANIT) != 0) {
    796 		mutex_exit(slock);
    797 		if (pagedaemon) {
    798 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    799 			if (error)
    800 				return error;
    801 		} else
    802 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    803 		has_trans = true;
    804 		mutex_enter(slock);
    805 	}
    806 
    807 	error = 0;
    808 	wasclean = (vp->v_numoutput == 0);
    809 	off = startoff;
    810 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    811 		endoff = trunc_page(LLONG_MAX);
    812 	}
    813 	by_list = (uobj->uo_npages <=
    814 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    815 
    816 #if !defined(DEBUG)
    817 	/*
    818 	 * if this vnode is known not to have dirty pages,
    819 	 * don't bother to clean it out.
    820 	 */
    821 
    822 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    823 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    824 			goto skip_scan;
    825 		}
    826 		flags &= ~PGO_CLEANIT;
    827 	}
    828 #endif /* !defined(DEBUG) */
    829 
    830 	/*
    831 	 * start the loop.  when scanning by list, hold the last page
    832 	 * in the list before we start.  pages allocated after we start
    833 	 * will be added to the end of the list, so we can stop at the
    834 	 * current last page.
    835 	 */
    836 
    837 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    838 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    839 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    840 	dirtygen = gp->g_dirtygen;
    841 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    842 	if (by_list) {
    843 		curmp.uobject = uobj;
    844 		curmp.offset = (voff_t)-1;
    845 		curmp.flags = PG_BUSY;
    846 		endmp.uobject = uobj;
    847 		endmp.offset = (voff_t)-1;
    848 		endmp.flags = PG_BUSY;
    849 		pg = TAILQ_FIRST(&uobj->memq);
    850 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
    851 		uvm_lwp_hold(l);
    852 	} else {
    853 		pg = uvm_pagelookup(uobj, off);
    854 	}
    855 	nextpg = NULL;
    856 	while (by_list || off < endoff) {
    857 
    858 		/*
    859 		 * if the current page is not interesting, move on to the next.
    860 		 */
    861 
    862 		KASSERT(pg == NULL || pg->uobject == uobj);
    863 		KASSERT(pg == NULL ||
    864 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    865 		    (pg->flags & PG_BUSY) != 0);
    866 		if (by_list) {
    867 			if (pg == &endmp) {
    868 				break;
    869 			}
    870 			if (pg->offset < startoff || pg->offset >= endoff ||
    871 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    872 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    873 					wasclean = false;
    874 				}
    875 				pg = TAILQ_NEXT(pg, listq);
    876 				continue;
    877 			}
    878 			off = pg->offset;
    879 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    880 			if (pg != NULL) {
    881 				wasclean = false;
    882 			}
    883 			off += PAGE_SIZE;
    884 			if (off < endoff) {
    885 				pg = uvm_pagelookup(uobj, off);
    886 			}
    887 			continue;
    888 		}
    889 
    890 		/*
    891 		 * if the current page needs to be cleaned and it's busy,
    892 		 * wait for it to become unbusy.
    893 		 */
    894 
    895 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    896 		    SPCF_SHOULDYIELD) && !pagedaemon;
    897 		if (pg->flags & PG_BUSY || yld) {
    898 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    899 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    900 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    901 				error = EDEADLK;
    902 				if (busypg != NULL)
    903 					*busypg = pg;
    904 				break;
    905 			}
    906 			if (pagedaemon) {
    907 				/*
    908 				 * someone has taken the page while we
    909 				 * dropped the lock for fstrans_start.
    910 				 */
    911 				break;
    912 			}
    913 			if (by_list) {
    914 				TAILQ_INSERT_BEFORE(pg, &curmp, listq);
    915 				UVMHIST_LOG(ubchist, "curmp next %p",
    916 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
    917 			}
    918 			if (yld) {
    919 				mutex_exit(slock);
    920 				preempt();
    921 				mutex_enter(slock);
    922 			} else {
    923 				pg->flags |= PG_WANTED;
    924 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    925 				mutex_enter(slock);
    926 			}
    927 			if (by_list) {
    928 				UVMHIST_LOG(ubchist, "after next %p",
    929 				    TAILQ_NEXT(&curmp, listq), 0,0,0);
    930 				pg = TAILQ_NEXT(&curmp, listq);
    931 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
    932 			} else {
    933 				pg = uvm_pagelookup(uobj, off);
    934 			}
    935 			continue;
    936 		}
    937 
    938 		/*
    939 		 * if we're freeing, remove all mappings of the page now.
    940 		 * if we're cleaning, check if the page is needs to be cleaned.
    941 		 */
    942 
    943 		if (flags & PGO_FREE) {
    944 			pmap_page_protect(pg, VM_PROT_NONE);
    945 		} else if (flags & PGO_CLEANIT) {
    946 
    947 			/*
    948 			 * if we still have some hope to pull this vnode off
    949 			 * from the syncer queue, write-protect the page.
    950 			 */
    951 
    952 			if (cleanall && wasclean &&
    953 			    gp->g_dirtygen == dirtygen) {
    954 
    955 				/*
    956 				 * uobj pages get wired only by uvm_fault
    957 				 * where uobj is locked.
    958 				 */
    959 
    960 				if (pg->wire_count == 0) {
    961 					pmap_page_protect(pg,
    962 					    VM_PROT_READ|VM_PROT_EXECUTE);
    963 				} else {
    964 					cleanall = false;
    965 				}
    966 			}
    967 		}
    968 
    969 		if (flags & PGO_CLEANIT) {
    970 			needs_clean = pmap_clear_modify(pg) ||
    971 			    (pg->flags & PG_CLEAN) == 0;
    972 			pg->flags |= PG_CLEAN;
    973 		} else {
    974 			needs_clean = false;
    975 		}
    976 
    977 		/*
    978 		 * if we're cleaning, build a cluster.
    979 		 * the cluster will consist of pages which are currently dirty,
    980 		 * but they will be returned to us marked clean.
    981 		 * if not cleaning, just operate on the one page.
    982 		 */
    983 
    984 		if (needs_clean) {
    985 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
    986 			wasclean = false;
    987 			memset(pgs, 0, sizeof(pgs));
    988 			pg->flags |= PG_BUSY;
    989 			UVM_PAGE_OWN(pg, "genfs_putpages");
    990 
    991 			/*
    992 			 * first look backward.
    993 			 */
    994 
    995 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
    996 			nback = npages;
    997 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
    998 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
    999 			if (nback) {
   1000 				memmove(&pgs[0], &pgs[npages - nback],
   1001 				    nback * sizeof(pgs[0]));
   1002 				if (npages - nback < nback)
   1003 					memset(&pgs[nback], 0,
   1004 					    (npages - nback) * sizeof(pgs[0]));
   1005 				else
   1006 					memset(&pgs[npages - nback], 0,
   1007 					    nback * sizeof(pgs[0]));
   1008 			}
   1009 
   1010 			/*
   1011 			 * then plug in our page of interest.
   1012 			 */
   1013 
   1014 			pgs[nback] = pg;
   1015 
   1016 			/*
   1017 			 * then look forward to fill in the remaining space in
   1018 			 * the array of pages.
   1019 			 */
   1020 
   1021 			npages = maxpages - nback - 1;
   1022 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1023 			    &pgs[nback + 1],
   1024 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1025 			npages += nback + 1;
   1026 		} else {
   1027 			pgs[0] = pg;
   1028 			npages = 1;
   1029 			nback = 0;
   1030 		}
   1031 
   1032 		/*
   1033 		 * apply FREE or DEACTIVATE options if requested.
   1034 		 */
   1035 
   1036 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1037 			mutex_enter(&uvm_pageqlock);
   1038 		}
   1039 		for (i = 0; i < npages; i++) {
   1040 			tpg = pgs[i];
   1041 			KASSERT(tpg->uobject == uobj);
   1042 			if (by_list && tpg == TAILQ_NEXT(pg, listq))
   1043 				pg = tpg;
   1044 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1045 				continue;
   1046 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1047 				uvm_pagedeactivate(tpg);
   1048 			} else if (flags & PGO_FREE) {
   1049 				pmap_page_protect(tpg, VM_PROT_NONE);
   1050 				if (tpg->flags & PG_BUSY) {
   1051 					tpg->flags |= freeflag;
   1052 					if (pagedaemon) {
   1053 						uvm_pageout_start(1);
   1054 						uvm_pagedequeue(tpg);
   1055 					}
   1056 				} else {
   1057 
   1058 					/*
   1059 					 * ``page is not busy''
   1060 					 * implies that npages is 1
   1061 					 * and needs_clean is false.
   1062 					 */
   1063 
   1064 					nextpg = TAILQ_NEXT(tpg, listq);
   1065 					uvm_pagefree(tpg);
   1066 					if (pagedaemon)
   1067 						uvmexp.pdfreed++;
   1068 				}
   1069 			}
   1070 		}
   1071 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1072 			mutex_exit(&uvm_pageqlock);
   1073 		}
   1074 		if (needs_clean) {
   1075 			modified = true;
   1076 
   1077 			/*
   1078 			 * start the i/o.  if we're traversing by list,
   1079 			 * keep our place in the list with a marker page.
   1080 			 */
   1081 
   1082 			if (by_list) {
   1083 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1084 				    listq);
   1085 			}
   1086 			mutex_exit(slock);
   1087 			error = GOP_WRITE(vp, pgs, npages, flags);
   1088 			mutex_enter(slock);
   1089 			if (by_list) {
   1090 				pg = TAILQ_NEXT(&curmp, listq);
   1091 				TAILQ_REMOVE(&uobj->memq, &curmp, listq);
   1092 			}
   1093 			if (error) {
   1094 				break;
   1095 			}
   1096 			if (by_list) {
   1097 				continue;
   1098 			}
   1099 		}
   1100 
   1101 		/*
   1102 		 * find the next page and continue if there was no error.
   1103 		 */
   1104 
   1105 		if (by_list) {
   1106 			if (nextpg) {
   1107 				pg = nextpg;
   1108 				nextpg = NULL;
   1109 			} else {
   1110 				pg = TAILQ_NEXT(pg, listq);
   1111 			}
   1112 		} else {
   1113 			off += (npages - nback) << PAGE_SHIFT;
   1114 			if (off < endoff) {
   1115 				pg = uvm_pagelookup(uobj, off);
   1116 			}
   1117 		}
   1118 	}
   1119 	if (by_list) {
   1120 		TAILQ_REMOVE(&uobj->memq, &endmp, listq);
   1121 		uvm_lwp_rele(l);
   1122 	}
   1123 
   1124 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1125 	    (vp->v_type != VBLK ||
   1126 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1127 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1128 	}
   1129 
   1130 	/*
   1131 	 * if we're cleaning and there was nothing to clean,
   1132 	 * take us off the syncer list.  if we started any i/o
   1133 	 * and we're doing sync i/o, wait for all writes to finish.
   1134 	 */
   1135 
   1136 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1137 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1138 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1139 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1140 			vn_syncer_remove_from_worklist(vp);
   1141 	}
   1142 
   1143 #if !defined(DEBUG)
   1144 skip_scan:
   1145 #endif /* !defined(DEBUG) */
   1146 
   1147 	/* Wait for output to complete. */
   1148 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1149 		while (vp->v_numoutput != 0)
   1150 			cv_wait(&vp->v_cv, slock);
   1151 	}
   1152 	mutex_exit(slock);
   1153 
   1154 	if (has_trans)
   1155 		fstrans_done(vp->v_mount);
   1156 
   1157 	return (error);
   1158 }
   1159 
   1160 int
   1161 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1162 {
   1163 	off_t off;
   1164 	vaddr_t kva;
   1165 	size_t len;
   1166 	int error;
   1167 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1168 
   1169 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1170 	    vp, pgs, npages, flags);
   1171 
   1172 	off = pgs[0]->offset;
   1173 	kva = uvm_pagermapin(pgs, npages,
   1174 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1175 	len = npages << PAGE_SHIFT;
   1176 
   1177 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1178 			    uvm_aio_biodone);
   1179 
   1180 	return error;
   1181 }
   1182 
   1183 /*
   1184  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1185  * and mapped into kernel memory.  Here we just look up the underlying
   1186  * device block addresses and call the strategy routine.
   1187  */
   1188 
   1189 static int
   1190 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1191     enum uio_rw rw, void (*iodone)(struct buf *))
   1192 {
   1193 	int s, error, run;
   1194 	int fs_bshift, dev_bshift;
   1195 	off_t eof, offset, startoffset;
   1196 	size_t bytes, iobytes, skipbytes;
   1197 	daddr_t lbn, blkno;
   1198 	struct buf *mbp, *bp;
   1199 	struct vnode *devvp;
   1200 	bool async = (flags & PGO_SYNCIO) == 0;
   1201 	bool write = rw == UIO_WRITE;
   1202 	int brw = write ? B_WRITE : B_READ;
   1203 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1204 
   1205 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1206 	    vp, kva, len, flags);
   1207 
   1208 	KASSERT(vp->v_size <= vp->v_writesize);
   1209 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1210 	if (vp->v_type != VBLK) {
   1211 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1212 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1213 	} else {
   1214 		fs_bshift = DEV_BSHIFT;
   1215 		dev_bshift = DEV_BSHIFT;
   1216 	}
   1217 	error = 0;
   1218 	startoffset = off;
   1219 	bytes = MIN(len, eof - startoffset);
   1220 	skipbytes = 0;
   1221 	KASSERT(bytes != 0);
   1222 
   1223 	if (write) {
   1224 		mutex_enter(&vp->v_interlock);
   1225 		vp->v_numoutput += 2;
   1226 		mutex_exit(&vp->v_interlock);
   1227 	}
   1228 	mbp = getiobuf(vp, true);
   1229 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1230 	    vp, mbp, vp->v_numoutput, bytes);
   1231 	mbp->b_bufsize = len;
   1232 	mbp->b_data = (void *)kva;
   1233 	mbp->b_resid = mbp->b_bcount = bytes;
   1234 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1235 	if (async) {
   1236 		mbp->b_flags = brw | B_ASYNC;
   1237 		mbp->b_iodone = iodone;
   1238 	} else {
   1239 		mbp->b_flags = brw;
   1240 		mbp->b_iodone = NULL;
   1241 	}
   1242 	if (curlwp == uvm.pagedaemon_lwp)
   1243 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1244 	else if (async)
   1245 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1246 	else
   1247 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1248 
   1249 	bp = NULL;
   1250 	for (offset = startoffset;
   1251 	    bytes > 0;
   1252 	    offset += iobytes, bytes -= iobytes) {
   1253 		lbn = offset >> fs_bshift;
   1254 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1255 		if (error) {
   1256 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1257 			skipbytes += bytes;
   1258 			bytes = 0;
   1259 			break;
   1260 		}
   1261 
   1262 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1263 		    bytes);
   1264 		if (blkno == (daddr_t)-1) {
   1265 			if (!write) {
   1266 				memset((char *)kva + (offset - startoffset), 0,
   1267 				   iobytes);
   1268 			}
   1269 			skipbytes += iobytes;
   1270 			continue;
   1271 		}
   1272 
   1273 		/* if it's really one i/o, don't make a second buf */
   1274 		if (offset == startoffset && iobytes == bytes) {
   1275 			bp = mbp;
   1276 		} else {
   1277 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1278 			    vp, bp, vp->v_numoutput, 0);
   1279 			bp = getiobuf(vp, true);
   1280 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1281 		}
   1282 		bp->b_lblkno = 0;
   1283 
   1284 		/* adjust physical blkno for partial blocks */
   1285 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1286 		    dev_bshift);
   1287 		UVMHIST_LOG(ubchist,
   1288 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1289 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1290 
   1291 		VOP_STRATEGY(devvp, bp);
   1292 	}
   1293 	if (skipbytes) {
   1294 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1295 	}
   1296 	nestiobuf_done(mbp, skipbytes, error);
   1297 	if (async) {
   1298 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1299 		return (0);
   1300 	}
   1301 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1302 	error = biowait(mbp);
   1303 	s = splbio();
   1304 	(*iodone)(mbp);
   1305 	splx(s);
   1306 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1307 	return (error);
   1308 }
   1309 
   1310 /*
   1311  * VOP_PUTPAGES() for vnodes which never have pages.
   1312  */
   1313 
   1314 int
   1315 genfs_null_putpages(void *v)
   1316 {
   1317 	struct vop_putpages_args /* {
   1318 		struct vnode *a_vp;
   1319 		voff_t a_offlo;
   1320 		voff_t a_offhi;
   1321 		int a_flags;
   1322 	} */ *ap = v;
   1323 	struct vnode *vp = ap->a_vp;
   1324 
   1325 	KASSERT(vp->v_uobj.uo_npages == 0);
   1326 	mutex_exit(&vp->v_interlock);
   1327 	return (0);
   1328 }
   1329 
   1330 int
   1331 genfs_compat_getpages(void *v)
   1332 {
   1333 	struct vop_getpages_args /* {
   1334 		struct vnode *a_vp;
   1335 		voff_t a_offset;
   1336 		struct vm_page **a_m;
   1337 		int *a_count;
   1338 		int a_centeridx;
   1339 		vm_prot_t a_access_type;
   1340 		int a_advice;
   1341 		int a_flags;
   1342 	} */ *ap = v;
   1343 
   1344 	off_t origoffset;
   1345 	struct vnode *vp = ap->a_vp;
   1346 	struct uvm_object *uobj = &vp->v_uobj;
   1347 	struct vm_page *pg, **pgs;
   1348 	vaddr_t kva;
   1349 	int i, error, orignpages, npages;
   1350 	struct iovec iov;
   1351 	struct uio uio;
   1352 	kauth_cred_t cred = curlwp->l_cred;
   1353 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1354 
   1355 	error = 0;
   1356 	origoffset = ap->a_offset;
   1357 	orignpages = *ap->a_count;
   1358 	pgs = ap->a_m;
   1359 
   1360 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1361 		vn_syncer_add_to_worklist(vp, filedelay);
   1362 	}
   1363 	if (ap->a_flags & PGO_LOCKED) {
   1364 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1365 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1366 
   1367 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1368 	}
   1369 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1370 		mutex_exit(&uobj->vmobjlock);
   1371 		return (EINVAL);
   1372 	}
   1373 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1374 		mutex_exit(&uobj->vmobjlock);
   1375 		return 0;
   1376 	}
   1377 	npages = orignpages;
   1378 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1379 	mutex_exit(&uobj->vmobjlock);
   1380 	kva = uvm_pagermapin(pgs, npages,
   1381 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1382 	for (i = 0; i < npages; i++) {
   1383 		pg = pgs[i];
   1384 		if ((pg->flags & PG_FAKE) == 0) {
   1385 			continue;
   1386 		}
   1387 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1388 		iov.iov_len = PAGE_SIZE;
   1389 		uio.uio_iov = &iov;
   1390 		uio.uio_iovcnt = 1;
   1391 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1392 		uio.uio_rw = UIO_READ;
   1393 		uio.uio_resid = PAGE_SIZE;
   1394 		UIO_SETUP_SYSSPACE(&uio);
   1395 		/* XXX vn_lock */
   1396 		error = VOP_READ(vp, &uio, 0, cred);
   1397 		if (error) {
   1398 			break;
   1399 		}
   1400 		if (uio.uio_resid) {
   1401 			memset(iov.iov_base, 0, uio.uio_resid);
   1402 		}
   1403 	}
   1404 	uvm_pagermapout(kva, npages);
   1405 	mutex_enter(&uobj->vmobjlock);
   1406 	mutex_enter(&uvm_pageqlock);
   1407 	for (i = 0; i < npages; i++) {
   1408 		pg = pgs[i];
   1409 		if (error && (pg->flags & PG_FAKE) != 0) {
   1410 			pg->flags |= PG_RELEASED;
   1411 		} else {
   1412 			pmap_clear_modify(pg);
   1413 			uvm_pageactivate(pg);
   1414 		}
   1415 	}
   1416 	if (error) {
   1417 		uvm_page_unbusy(pgs, npages);
   1418 	}
   1419 	mutex_exit(&uvm_pageqlock);
   1420 	mutex_exit(&uobj->vmobjlock);
   1421 	return (error);
   1422 }
   1423 
   1424 int
   1425 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1426     int flags)
   1427 {
   1428 	off_t offset;
   1429 	struct iovec iov;
   1430 	struct uio uio;
   1431 	kauth_cred_t cred = curlwp->l_cred;
   1432 	struct buf *bp;
   1433 	vaddr_t kva;
   1434 	int error;
   1435 
   1436 	offset = pgs[0]->offset;
   1437 	kva = uvm_pagermapin(pgs, npages,
   1438 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1439 
   1440 	iov.iov_base = (void *)kva;
   1441 	iov.iov_len = npages << PAGE_SHIFT;
   1442 	uio.uio_iov = &iov;
   1443 	uio.uio_iovcnt = 1;
   1444 	uio.uio_offset = offset;
   1445 	uio.uio_rw = UIO_WRITE;
   1446 	uio.uio_resid = npages << PAGE_SHIFT;
   1447 	UIO_SETUP_SYSSPACE(&uio);
   1448 	/* XXX vn_lock */
   1449 	error = VOP_WRITE(vp, &uio, 0, cred);
   1450 
   1451 	mutex_enter(&vp->v_interlock);
   1452 	vp->v_numoutput++;
   1453 	mutex_exit(&vp->v_interlock);
   1454 
   1455 	bp = getiobuf(vp, true);
   1456 	bp->b_cflags = BC_BUSY | BC_AGE;
   1457 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1458 	bp->b_data = (char *)kva;
   1459 	bp->b_bcount = npages << PAGE_SHIFT;
   1460 	bp->b_bufsize = npages << PAGE_SHIFT;
   1461 	bp->b_resid = 0;
   1462 	bp->b_error = error;
   1463 	uvm_aio_aiodone(bp);
   1464 	return (error);
   1465 }
   1466 
   1467 /*
   1468  * Process a uio using direct I/O.  If we reach a part of the request
   1469  * which cannot be processed in this fashion for some reason, just return.
   1470  * The caller must handle some additional part of the request using
   1471  * buffered I/O before trying direct I/O again.
   1472  */
   1473 
   1474 void
   1475 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1476 {
   1477 	struct vmspace *vs;
   1478 	struct iovec *iov;
   1479 	vaddr_t va;
   1480 	size_t len;
   1481 	const int mask = DEV_BSIZE - 1;
   1482 	int error;
   1483 
   1484 	/*
   1485 	 * We only support direct I/O to user space for now.
   1486 	 */
   1487 
   1488 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1489 		return;
   1490 	}
   1491 
   1492 	/*
   1493 	 * If the vnode is mapped, we would need to get the getpages lock
   1494 	 * to stabilize the bmap, but then we would get into trouble whil e
   1495 	 * locking the pages if the pages belong to this same vnode (or a
   1496 	 * multi-vnode cascade to the same effect).  Just fall back to
   1497 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1498 	 */
   1499 
   1500 	if (vp->v_vflag & VV_MAPPED) {
   1501 		return;
   1502 	}
   1503 
   1504 	/*
   1505 	 * Do as much of the uio as possible with direct I/O.
   1506 	 */
   1507 
   1508 	vs = uio->uio_vmspace;
   1509 	while (uio->uio_resid) {
   1510 		iov = uio->uio_iov;
   1511 		if (iov->iov_len == 0) {
   1512 			uio->uio_iov++;
   1513 			uio->uio_iovcnt--;
   1514 			continue;
   1515 		}
   1516 		va = (vaddr_t)iov->iov_base;
   1517 		len = MIN(iov->iov_len, genfs_maxdio);
   1518 		len &= ~mask;
   1519 
   1520 		/*
   1521 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1522 		 * the current EOF, then fall back to buffered I/O.
   1523 		 */
   1524 
   1525 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1526 			return;
   1527 		}
   1528 
   1529 		/*
   1530 		 * Check alignment.  The file offset must be at least
   1531 		 * sector-aligned.  The exact constraint on memory alignment
   1532 		 * is very hardware-dependent, but requiring sector-aligned
   1533 		 * addresses there too is safe.
   1534 		 */
   1535 
   1536 		if (uio->uio_offset & mask || va & mask) {
   1537 			return;
   1538 		}
   1539 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1540 					  uio->uio_rw);
   1541 		if (error) {
   1542 			break;
   1543 		}
   1544 		iov->iov_base = (char *)iov->iov_base + len;
   1545 		iov->iov_len -= len;
   1546 		uio->uio_offset += len;
   1547 		uio->uio_resid -= len;
   1548 	}
   1549 }
   1550 
   1551 /*
   1552  * Iodone routine for direct I/O.  We don't do much here since the request is
   1553  * always synchronous, so the caller will do most of the work after biowait().
   1554  */
   1555 
   1556 static void
   1557 genfs_dio_iodone(struct buf *bp)
   1558 {
   1559 
   1560 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1561 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1562 		mutex_enter(bp->b_objlock);
   1563 		vwakeup(bp);
   1564 		mutex_exit(bp->b_objlock);
   1565 	}
   1566 	putiobuf(bp);
   1567 }
   1568 
   1569 /*
   1570  * Process one chunk of a direct I/O request.
   1571  */
   1572 
   1573 static int
   1574 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1575     off_t off, enum uio_rw rw)
   1576 {
   1577 	struct vm_map *map;
   1578 	struct pmap *upm, *kpm;
   1579 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1580 	off_t spoff, epoff;
   1581 	vaddr_t kva, puva;
   1582 	paddr_t pa;
   1583 	vm_prot_t prot;
   1584 	int error, rv, poff, koff;
   1585 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO |
   1586 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1587 
   1588 	/*
   1589 	 * For writes, verify that this range of the file already has fully
   1590 	 * allocated backing store.  If there are any holes, just punt and
   1591 	 * make the caller take the buffered write path.
   1592 	 */
   1593 
   1594 	if (rw == UIO_WRITE) {
   1595 		daddr_t lbn, elbn, blkno;
   1596 		int bsize, bshift, run;
   1597 
   1598 		bshift = vp->v_mount->mnt_fs_bshift;
   1599 		bsize = 1 << bshift;
   1600 		lbn = off >> bshift;
   1601 		elbn = (off + len + bsize - 1) >> bshift;
   1602 		while (lbn < elbn) {
   1603 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1604 			if (error) {
   1605 				return error;
   1606 			}
   1607 			if (blkno == (daddr_t)-1) {
   1608 				return ENOSPC;
   1609 			}
   1610 			lbn += 1 + run;
   1611 		}
   1612 	}
   1613 
   1614 	/*
   1615 	 * Flush any cached pages for parts of the file that we're about to
   1616 	 * access.  If we're writing, invalidate pages as well.
   1617 	 */
   1618 
   1619 	spoff = trunc_page(off);
   1620 	epoff = round_page(off + len);
   1621 	mutex_enter(&vp->v_interlock);
   1622 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1623 	if (error) {
   1624 		return error;
   1625 	}
   1626 
   1627 	/*
   1628 	 * Wire the user pages and remap them into kernel memory.
   1629 	 */
   1630 
   1631 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1632 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1633 	if (error) {
   1634 		return error;
   1635 	}
   1636 
   1637 	map = &vs->vm_map;
   1638 	upm = vm_map_pmap(map);
   1639 	kpm = vm_map_pmap(kernel_map);
   1640 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1641 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1642 	puva = trunc_page(uva);
   1643 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1644 		rv = pmap_extract(upm, puva + poff, &pa);
   1645 		KASSERT(rv);
   1646 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1647 	}
   1648 	pmap_update(kpm);
   1649 
   1650 	/*
   1651 	 * Do the I/O.
   1652 	 */
   1653 
   1654 	koff = uva - trunc_page(uva);
   1655 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1656 			    genfs_dio_iodone);
   1657 
   1658 	/*
   1659 	 * Tear down the kernel mapping.
   1660 	 */
   1661 
   1662 	pmap_remove(kpm, kva, kva + klen);
   1663 	pmap_update(kpm);
   1664 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1665 
   1666 	/*
   1667 	 * Unwire the user pages.
   1668 	 */
   1669 
   1670 	uvm_vsunlock(vs, (void *)uva, len);
   1671 	return error;
   1672 }
   1673 
   1674