Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.31
      1 /*	$NetBSD: genfs_io.c,v 1.31 2010/01/28 13:43:53 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.31 2010/01/28 13:43:53 uebayasi Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 #include <sys/buf.h>
     51 
     52 #include <miscfs/genfs/genfs.h>
     53 #include <miscfs/genfs/genfs_node.h>
     54 #include <miscfs/specfs/specdev.h>
     55 
     56 #include <uvm/uvm.h>
     57 #include <uvm/uvm_pager.h>
     58 
     59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     60     off_t, enum uio_rw);
     61 static void genfs_dio_iodone(struct buf *);
     62 
     63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     64     void (*)(struct buf *));
     65 static inline void genfs_rel_pages(struct vm_page **, int);
     66 
     67 int genfs_maxdio = MAXPHYS;
     68 
     69 static inline void
     70 genfs_rel_pages(struct vm_page **pgs, int npages)
     71 {
     72 	int i;
     73 
     74 	for (i = 0; i < npages; i++) {
     75 		struct vm_page *pg = pgs[i];
     76 
     77 		if (pg == NULL || pg == PGO_DONTCARE)
     78 			continue;
     79 		if (pg->flags & PG_FAKE) {
     80 			pg->flags |= PG_RELEASED;
     81 		}
     82 	}
     83 	mutex_enter(&uvm_pageqlock);
     84 	uvm_page_unbusy(pgs, npages);
     85 	mutex_exit(&uvm_pageqlock);
     86 }
     87 
     88 /*
     89  * generic VM getpages routine.
     90  * Return PG_BUSY pages for the given range,
     91  * reading from backing store if necessary.
     92  */
     93 
     94 int
     95 genfs_getpages(void *v)
     96 {
     97 	struct vop_getpages_args /* {
     98 		struct vnode *a_vp;
     99 		voff_t a_offset;
    100 		struct vm_page **a_m;
    101 		int *a_count;
    102 		int a_centeridx;
    103 		vm_prot_t a_access_type;
    104 		int a_advice;
    105 		int a_flags;
    106 	} */ * const ap = v;
    107 
    108 	off_t diskeof, memeof;
    109 	int i, error, npages;
    110 	const int flags = ap->a_flags;
    111 	struct vnode * const vp = ap->a_vp;
    112 	struct genfs_node * const gp = VTOG(vp);
    113 	struct uvm_object * const uobj = &vp->v_uobj;
    114 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    115 	const bool async = (flags & PGO_SYNCIO) == 0;
    116 	const bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
    117 	bool has_trans = false;
    118 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    119 	const bool blockalloc = write && (flags & PGO_NOBLOCKALLOC) == 0;
    120 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    121 
    122 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    123 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    124 
    125 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    126 	    vp->v_type == VLNK || vp->v_type == VBLK);
    127 
    128 startover:
    129 	error = 0;
    130 	const voff_t origvsize = vp->v_size;
    131 	const off_t origoffset = ap->a_offset;
    132 	const int orignpages = *ap->a_count;
    133 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    134 	if (flags & PGO_PASTEOF) {
    135 		off_t newsize;
    136 #if defined(DIAGNOSTIC)
    137 		off_t writeeof;
    138 #endif /* defined(DIAGNOSTIC) */
    139 
    140 		newsize = MAX(origvsize,
    141 		    origoffset + (orignpages << PAGE_SHIFT));
    142 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    143 #if defined(DIAGNOSTIC)
    144 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    145 		if (newsize > round_page(writeeof)) {
    146 			panic("%s: past eof", __func__);
    147 		}
    148 #endif /* defined(DIAGNOSTIC) */
    149 	} else {
    150 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    151 	}
    152 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    153 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    154 	KASSERT(orignpages > 0);
    155 
    156 	/*
    157 	 * Bounds-check the request.
    158 	 */
    159 
    160 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    161 		if ((flags & PGO_LOCKED) == 0) {
    162 			mutex_exit(&uobj->vmobjlock);
    163 		}
    164 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    165 		    origoffset, *ap->a_count, memeof,0);
    166 		error = EINVAL;
    167 		goto out_err;
    168 	}
    169 
    170 	/* uobj is locked */
    171 
    172 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    173 	    (vp->v_type != VBLK ||
    174 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    175 		int updflags = 0;
    176 
    177 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    178 			updflags = GOP_UPDATE_ACCESSED;
    179 		}
    180 		if (write) {
    181 			updflags |= GOP_UPDATE_MODIFIED;
    182 		}
    183 		if (updflags != 0) {
    184 			GOP_MARKUPDATE(vp, updflags);
    185 		}
    186 	}
    187 
    188 	if (write) {
    189 		gp->g_dirtygen++;
    190 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    191 			vn_syncer_add_to_worklist(vp, filedelay);
    192 		}
    193 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    194 			vp->v_iflag |= VI_WRMAPDIRTY;
    195 		}
    196 	}
    197 
    198 	/*
    199 	 * For PGO_LOCKED requests, just return whatever's in memory.
    200 	 */
    201 
    202 	if (flags & PGO_LOCKED) {
    203 		int nfound;
    204 		struct vm_page *pg;
    205 
    206 		npages = *ap->a_count;
    207 #if defined(DEBUG)
    208 		for (i = 0; i < npages; i++) {
    209 			pg = ap->a_m[i];
    210 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    211 		}
    212 #endif /* defined(DEBUG) */
    213 		nfound = uvn_findpages(uobj, origoffset, &npages,
    214 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(write ? UFP_NORDONLY : 0));
    215 		KASSERT(npages == *ap->a_count);
    216 		if (nfound == 0) {
    217 			error = EBUSY;
    218 			goto out_err;
    219 		}
    220 		if (!genfs_node_rdtrylock(vp)) {
    221 			genfs_rel_pages(ap->a_m, npages);
    222 
    223 			/*
    224 			 * restore the array.
    225 			 */
    226 
    227 			for (i = 0; i < npages; i++) {
    228 				pg = ap->a_m[i];
    229 
    230 				if (pg != NULL || pg != PGO_DONTCARE) {
    231 					ap->a_m[i] = NULL;
    232 				}
    233 			}
    234 		} else {
    235 			genfs_node_unlock(vp);
    236 		}
    237 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    238 		goto out_err;
    239 	}
    240 	mutex_exit(&uobj->vmobjlock);
    241 
    242 	/*
    243 	 * find the requested pages and make some simple checks.
    244 	 * leave space in the page array for a whole block.
    245 	 */
    246 
    247 	const int fs_bshift = (vp->v_type != VBLK) ?
    248 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    249 	const int dev_bshift = (vp->v_type != VBLK) ?
    250 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    251 	const int fs_bsize = 1 << fs_bshift;
    252 #define	blk_mask	(fs_bsize - 1)
    253 #define	trunc_blk(x)	((x) & ~blk_mask)
    254 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    255 
    256 	const int orignmempages = MIN(orignpages,
    257 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    258 	npages = orignmempages;
    259 	const off_t startoffset = trunc_blk(origoffset);
    260 	const off_t endoffset = MIN(
    261 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    262 	    round_page(memeof));
    263 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    264 
    265 	const int pgs_size = sizeof(struct vm_page *) *
    266 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    267 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    268 
    269 	if (pgs_size > sizeof(pgs_onstack)) {
    270 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    271 		if (pgs == NULL) {
    272 			pgs = pgs_onstack;
    273 			error = ENOMEM;
    274 			goto out_err1;
    275 		}
    276 	} else {
    277 		pgs = pgs_onstack;
    278 		(void)memset(pgs, 0, pgs_size);
    279 	}
    280 
    281 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    282 	    ridx, npages, startoffset, endoffset);
    283 
    284 	if (!has_trans) {
    285 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    286 		has_trans = true;
    287 	}
    288 
    289 	/*
    290 	 * hold g_glock to prevent a race with truncate.
    291 	 *
    292 	 * check if our idea of v_size is still valid.
    293 	 */
    294 
    295 	if (blockalloc) {
    296 		rw_enter(&gp->g_glock, RW_WRITER);
    297 	} else {
    298 		rw_enter(&gp->g_glock, RW_READER);
    299 	}
    300 	mutex_enter(&uobj->vmobjlock);
    301 	if (vp->v_size < origvsize) {
    302 		genfs_node_unlock(vp);
    303 		if (pgs != pgs_onstack)
    304 			kmem_free(pgs, pgs_size);
    305 		goto startover;
    306 	}
    307 
    308 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    309 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    310 		genfs_node_unlock(vp);
    311 		KASSERT(async != 0);
    312 		genfs_rel_pages(&pgs[ridx], orignmempages);
    313 		mutex_exit(&uobj->vmobjlock);
    314 		error = EBUSY;
    315 		goto out_err1;
    316 	}
    317 
    318 	/*
    319 	 * if the pages are already resident, just return them.
    320 	 */
    321 
    322 	for (i = 0; i < npages; i++) {
    323 		struct vm_page *pg = pgs[ridx + i];
    324 
    325 		if ((pg->flags & PG_FAKE) ||
    326 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    327 			break;
    328 		}
    329 	}
    330 	if (i == npages) {
    331 		genfs_node_unlock(vp);
    332 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    333 		npages += ridx;
    334 		goto out;
    335 	}
    336 
    337 	/*
    338 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    339 	 */
    340 
    341 	if (overwrite) {
    342 		genfs_node_unlock(vp);
    343 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    344 
    345 		for (i = 0; i < npages; i++) {
    346 			struct vm_page *pg = pgs[ridx + i];
    347 
    348 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    349 		}
    350 		npages += ridx;
    351 		goto out;
    352 	}
    353 
    354     {
    355 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    356 	vaddr_t kva;
    357 	struct buf *bp, *mbp;
    358 	bool sawhole = false;
    359 
    360 	/*
    361 	 * the page wasn't resident and we're not overwriting,
    362 	 * so we're going to have to do some i/o.
    363 	 * find any additional pages needed to cover the expanded range.
    364 	 */
    365 
    366 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    367 	if (startoffset != origoffset || npages != orignmempages) {
    368 		int npgs;
    369 
    370 		/*
    371 		 * we need to avoid deadlocks caused by locking
    372 		 * additional pages at lower offsets than pages we
    373 		 * already have locked.  unlock them all and start over.
    374 		 */
    375 
    376 		genfs_rel_pages(&pgs[ridx], orignmempages);
    377 		memset(pgs, 0, pgs_size);
    378 
    379 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    380 		    startoffset, endoffset, 0,0);
    381 		npgs = npages;
    382 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    383 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    384 			genfs_node_unlock(vp);
    385 			KASSERT(async != 0);
    386 			genfs_rel_pages(pgs, npages);
    387 			mutex_exit(&uobj->vmobjlock);
    388 			error = EBUSY;
    389 			goto out_err1;
    390 		}
    391 	}
    392 	mutex_exit(&uobj->vmobjlock);
    393 
    394 	/*
    395 	 * read the desired page(s).
    396 	 */
    397 
    398 	totalbytes = npages << PAGE_SHIFT;
    399 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    400 	tailbytes = totalbytes - bytes;
    401 	skipbytes = 0;
    402 
    403 	kva = uvm_pagermapin(pgs, npages,
    404 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    405 
    406 	mbp = getiobuf(vp, true);
    407 	mbp->b_bufsize = totalbytes;
    408 	mbp->b_data = (void *)kva;
    409 	mbp->b_resid = mbp->b_bcount = bytes;
    410 	mbp->b_cflags = BC_BUSY;
    411 	if (async) {
    412 		mbp->b_flags = B_READ | B_ASYNC;
    413 		mbp->b_iodone = uvm_aio_biodone;
    414 	} else {
    415 		mbp->b_flags = B_READ;
    416 		mbp->b_iodone = NULL;
    417 	}
    418 	if (async)
    419 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    420 	else
    421 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    422 
    423 	/*
    424 	 * if EOF is in the middle of the range, zero the part past EOF.
    425 	 * skip over pages which are not PG_FAKE since in that case they have
    426 	 * valid data that we need to preserve.
    427 	 */
    428 
    429 	tailstart = bytes;
    430 	while (tailbytes > 0) {
    431 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    432 
    433 		KASSERT(len <= tailbytes);
    434 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    435 			memset((void *)(kva + tailstart), 0, len);
    436 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    437 			    kva, tailstart, len, 0);
    438 		}
    439 		tailstart += len;
    440 		tailbytes -= len;
    441 	}
    442 
    443 	/*
    444 	 * now loop over the pages, reading as needed.
    445 	 */
    446 
    447 	bp = NULL;
    448 	off_t offset;
    449 	for (offset = startoffset;
    450 	    bytes > 0;
    451 	    offset += iobytes, bytes -= iobytes) {
    452 		int run;
    453 		daddr_t lbn, blkno;
    454 		int pidx;
    455 		struct vnode *devvp;
    456 
    457 		/*
    458 		 * skip pages which don't need to be read.
    459 		 */
    460 
    461 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    462 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    463 			size_t b;
    464 
    465 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    466 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    467 				sawhole = true;
    468 			}
    469 			b = MIN(PAGE_SIZE, bytes);
    470 			offset += b;
    471 			bytes -= b;
    472 			skipbytes += b;
    473 			pidx++;
    474 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    475 			    offset, 0,0,0);
    476 			if (bytes == 0) {
    477 				goto loopdone;
    478 			}
    479 		}
    480 
    481 		/*
    482 		 * bmap the file to find out the blkno to read from and
    483 		 * how much we can read in one i/o.  if bmap returns an error,
    484 		 * skip the rest of the top-level i/o.
    485 		 */
    486 
    487 		lbn = offset >> fs_bshift;
    488 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    489 		if (error) {
    490 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    491 			    lbn, error,0,0);
    492 			skipbytes += bytes;
    493 			goto loopdone;
    494 		}
    495 
    496 		/*
    497 		 * see how many pages can be read with this i/o.
    498 		 * reduce the i/o size if necessary to avoid
    499 		 * overwriting pages with valid data.
    500 		 */
    501 
    502 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    503 		    bytes);
    504 		if (offset + iobytes > round_page(offset)) {
    505 			int pcount;
    506 
    507 			pcount = 1;
    508 			while (pidx + pcount < npages &&
    509 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    510 				pcount++;
    511 			}
    512 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    513 			    (offset - trunc_page(offset)));
    514 		}
    515 
    516 		/*
    517 		 * if this block isn't allocated, zero it instead of
    518 		 * reading it.  unless we are going to allocate blocks,
    519 		 * mark the pages we zeroed PG_RDONLY.
    520 		 */
    521 
    522 		if (blkno < 0) {
    523 			int holepages = (round_page(offset + iobytes) -
    524 			    trunc_page(offset)) >> PAGE_SHIFT;
    525 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    526 
    527 			sawhole = true;
    528 			memset((char *)kva + (offset - startoffset), 0,
    529 			    iobytes);
    530 			skipbytes += iobytes;
    531 
    532 			for (i = 0; i < holepages; i++) {
    533 				if (write) {
    534 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    535 				}
    536 				if (!blockalloc) {
    537 					pgs[pidx + i]->flags |= PG_RDONLY;
    538 				}
    539 			}
    540 			continue;
    541 		}
    542 
    543 		/*
    544 		 * allocate a sub-buf for this piece of the i/o
    545 		 * (or just use mbp if there's only 1 piece),
    546 		 * and start it going.
    547 		 */
    548 
    549 		if (offset == startoffset && iobytes == bytes) {
    550 			bp = mbp;
    551 		} else {
    552 			bp = getiobuf(vp, true);
    553 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    554 		}
    555 		bp->b_lblkno = 0;
    556 
    557 		/* adjust physical blkno for partial blocks */
    558 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    559 		    dev_bshift);
    560 
    561 		UVMHIST_LOG(ubchist,
    562 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    563 		    bp, offset, iobytes, bp->b_blkno);
    564 
    565 		VOP_STRATEGY(devvp, bp);
    566 	}
    567 
    568 loopdone:
    569 	nestiobuf_done(mbp, skipbytes, error);
    570 	if (async) {
    571 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    572 		genfs_node_unlock(vp);
    573 		error = 0;
    574 		goto out_err1;
    575 	}
    576 	if (bp != NULL) {
    577 		error = biowait(mbp);
    578 	}
    579 
    580 	/* Remove the mapping (make KVA available as soon as possible) */
    581 	uvm_pagermapout(kva, npages);
    582 
    583 	/*
    584 	 * if this we encountered a hole then we have to do a little more work.
    585 	 * for read faults, we marked the page PG_RDONLY so that future
    586 	 * write accesses to the page will fault again.
    587 	 * for write faults, we must make sure that the backing store for
    588 	 * the page is completely allocated while the pages are locked.
    589 	 */
    590 
    591 	if (!error && sawhole && blockalloc) {
    592 		/*
    593 		 * XXX: This assumes that we come here only via
    594 		 * the mmio path
    595 		 */
    596 		if (vp->v_mount->mnt_wapbl) {
    597 			error = WAPBL_BEGIN(vp->v_mount);
    598 		}
    599 
    600 		if (!error) {
    601 			error = GOP_ALLOC(vp, startoffset,
    602 			    npages << PAGE_SHIFT, 0, cred);
    603 			if (vp->v_mount->mnt_wapbl) {
    604 				WAPBL_END(vp->v_mount);
    605 			}
    606 		}
    607 
    608 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    609 		    startoffset, npages << PAGE_SHIFT, error,0);
    610 		if (!error) {
    611 			for (i = 0; i < npages; i++) {
    612 				struct vm_page *pg = pgs[i];
    613 
    614 				if (pg == NULL) {
    615 					continue;
    616 				}
    617 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    618 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    619 				    pg,0,0,0);
    620 			}
    621 		}
    622 	}
    623 	genfs_node_unlock(vp);
    624 
    625 	putiobuf(mbp);
    626 
    627 	mutex_enter(&uobj->vmobjlock);
    628 
    629 	/*
    630 	 * we're almost done!  release the pages...
    631 	 * for errors, we free the pages.
    632 	 * otherwise we activate them and mark them as valid and clean.
    633 	 * also, unbusy pages that were not actually requested.
    634 	 */
    635 
    636 	if (error) {
    637 		for (i = 0; i < npages; i++) {
    638 			struct vm_page *pg = pgs[i];
    639 
    640 			if (pg == NULL) {
    641 				continue;
    642 			}
    643 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    644 			    pg, pg->flags, 0,0);
    645 			if (pg->flags & PG_FAKE) {
    646 				pg->flags |= PG_RELEASED;
    647 			}
    648 		}
    649 		mutex_enter(&uvm_pageqlock);
    650 		uvm_page_unbusy(pgs, npages);
    651 		mutex_exit(&uvm_pageqlock);
    652 		mutex_exit(&uobj->vmobjlock);
    653 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    654 		goto out_err1;
    655 	}
    656     }
    657 
    658 out:
    659 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    660 	error = 0;
    661 	mutex_enter(&uvm_pageqlock);
    662 	for (i = 0; i < npages; i++) {
    663 		struct vm_page *pg = pgs[i];
    664 		if (pg == NULL) {
    665 			continue;
    666 		}
    667 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    668 		    pg, pg->flags, 0,0);
    669 		if (pg->flags & PG_FAKE && !overwrite) {
    670 			pg->flags &= ~(PG_FAKE);
    671 			pmap_clear_modify(pgs[i]);
    672 		}
    673 		KASSERT(!write || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    674 		if (i < ridx || i >= ridx + orignmempages || async) {
    675 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    676 			    pg, pg->offset,0,0);
    677 			if (pg->flags & PG_WANTED) {
    678 				wakeup(pg);
    679 			}
    680 			if (pg->flags & PG_FAKE) {
    681 				KASSERT(overwrite);
    682 				uvm_pagezero(pg);
    683 			}
    684 			if (pg->flags & PG_RELEASED) {
    685 				uvm_pagefree(pg);
    686 				continue;
    687 			}
    688 			uvm_pageenqueue(pg);
    689 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    690 			UVM_PAGE_OWN(pg, NULL);
    691 		}
    692 	}
    693 	mutex_exit(&uvm_pageqlock);
    694 	mutex_exit(&uobj->vmobjlock);
    695 	if (ap->a_m != NULL) {
    696 		memcpy(ap->a_m, &pgs[ridx],
    697 		    orignmempages * sizeof(struct vm_page *));
    698 	}
    699 
    700 out_err1:
    701 	if (pgs != NULL && pgs != pgs_onstack)
    702 		kmem_free(pgs, pgs_size);
    703 out_err:
    704 	if (has_trans)
    705 		fstrans_done(vp->v_mount);
    706 	return (error);
    707 }
    708 
    709 /*
    710  * generic VM putpages routine.
    711  * Write the given range of pages to backing store.
    712  *
    713  * => "offhi == 0" means flush all pages at or after "offlo".
    714  * => object should be locked by caller.  we return with the
    715  *      object unlocked.
    716  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    717  *	thus, a caller might want to unlock higher level resources
    718  *	(e.g. vm_map) before calling flush.
    719  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    720  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    721  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    722  *	that new pages are inserted on the tail end of the list.   thus,
    723  *	we can make a complete pass through the object in one go by starting
    724  *	at the head and working towards the tail (new pages are put in
    725  *	front of us).
    726  * => NOTE: we are allowed to lock the page queues, so the caller
    727  *	must not be holding the page queue lock.
    728  *
    729  * note on "cleaning" object and PG_BUSY pages:
    730  *	this routine is holding the lock on the object.   the only time
    731  *	that it can run into a PG_BUSY page that it does not own is if
    732  *	some other process has started I/O on the page (e.g. either
    733  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    734  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    735  *	had a chance to modify it yet.    if the PG_BUSY page is being
    736  *	paged out then it means that someone else has already started
    737  *	cleaning the page for us (how nice!).    in this case, if we
    738  *	have syncio specified, then after we make our pass through the
    739  *	object we need to wait for the other PG_BUSY pages to clear
    740  *	off (i.e. we need to do an iosync).   also note that once a
    741  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    742  *
    743  * note on page traversal:
    744  *	we can traverse the pages in an object either by going down the
    745  *	linked list in "uobj->memq", or we can go over the address range
    746  *	by page doing hash table lookups for each address.    depending
    747  *	on how many pages are in the object it may be cheaper to do one
    748  *	or the other.   we set "by_list" to true if we are using memq.
    749  *	if the cost of a hash lookup was equal to the cost of the list
    750  *	traversal we could compare the number of pages in the start->stop
    751  *	range to the total number of pages in the object.   however, it
    752  *	seems that a hash table lookup is more expensive than the linked
    753  *	list traversal, so we multiply the number of pages in the
    754  *	range by an estimate of the relatively higher cost of the hash lookup.
    755  */
    756 
    757 int
    758 genfs_putpages(void *v)
    759 {
    760 	struct vop_putpages_args /* {
    761 		struct vnode *a_vp;
    762 		voff_t a_offlo;
    763 		voff_t a_offhi;
    764 		int a_flags;
    765 	} */ * const ap = v;
    766 
    767 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    768 	    ap->a_flags, NULL);
    769 }
    770 
    771 int
    772 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    773     int origflags, struct vm_page **busypg)
    774 {
    775 	struct uvm_object * const uobj = &vp->v_uobj;
    776 	kmutex_t * const slock = &uobj->vmobjlock;
    777 	off_t off;
    778 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    779 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    780 	int i, error, npages, nback;
    781 	int freeflag;
    782 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    783 	bool wasclean, by_list, needs_clean, yld;
    784 	bool async = (origflags & PGO_SYNCIO) == 0;
    785 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    786 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    787 	struct genfs_node * const gp = VTOG(vp);
    788 	int flags;
    789 	int dirtygen;
    790 	bool modified;
    791 	bool need_wapbl;
    792 	bool has_trans;
    793 	bool cleanall;
    794 	bool onworklst;
    795 
    796 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    797 
    798 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    799 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    800 	KASSERT(startoff < endoff || endoff == 0);
    801 
    802 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    803 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    804 
    805 	has_trans = false;
    806 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    807 	    (origflags & PGO_JOURNALLOCKED) == 0);
    808 
    809 retry:
    810 	modified = false;
    811 	flags = origflags;
    812 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    813 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    814 	if (uobj->uo_npages == 0) {
    815 		if (vp->v_iflag & VI_ONWORKLST) {
    816 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    817 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    818 				vn_syncer_remove_from_worklist(vp);
    819 		}
    820 		if (has_trans) {
    821 			if (need_wapbl)
    822 				WAPBL_END(vp->v_mount);
    823 			fstrans_done(vp->v_mount);
    824 		}
    825 		mutex_exit(slock);
    826 		return (0);
    827 	}
    828 
    829 	/*
    830 	 * the vnode has pages, set up to process the request.
    831 	 */
    832 
    833 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    834 		mutex_exit(slock);
    835 		if (pagedaemon) {
    836 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    837 			if (error)
    838 				return error;
    839 		} else
    840 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    841 		if (need_wapbl) {
    842 			error = WAPBL_BEGIN(vp->v_mount);
    843 			if (error) {
    844 				fstrans_done(vp->v_mount);
    845 				return error;
    846 			}
    847 		}
    848 		has_trans = true;
    849 		mutex_enter(slock);
    850 		goto retry;
    851 	}
    852 
    853 	error = 0;
    854 	wasclean = (vp->v_numoutput == 0);
    855 	off = startoff;
    856 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    857 		endoff = trunc_page(LLONG_MAX);
    858 	}
    859 	by_list = (uobj->uo_npages <=
    860 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    861 
    862 #if !defined(DEBUG)
    863 	/*
    864 	 * if this vnode is known not to have dirty pages,
    865 	 * don't bother to clean it out.
    866 	 */
    867 
    868 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    869 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    870 			goto skip_scan;
    871 		}
    872 		flags &= ~PGO_CLEANIT;
    873 	}
    874 #endif /* !defined(DEBUG) */
    875 
    876 	/*
    877 	 * start the loop.  when scanning by list, hold the last page
    878 	 * in the list before we start.  pages allocated after we start
    879 	 * will be added to the end of the list, so we can stop at the
    880 	 * current last page.
    881 	 */
    882 
    883 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    884 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    885 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    886 	dirtygen = gp->g_dirtygen;
    887 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    888 	if (by_list) {
    889 		curmp.uobject = uobj;
    890 		curmp.offset = (voff_t)-1;
    891 		curmp.flags = PG_BUSY;
    892 		endmp.uobject = uobj;
    893 		endmp.offset = (voff_t)-1;
    894 		endmp.flags = PG_BUSY;
    895 		pg = TAILQ_FIRST(&uobj->memq);
    896 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    897 	} else {
    898 		pg = uvm_pagelookup(uobj, off);
    899 	}
    900 	nextpg = NULL;
    901 	while (by_list || off < endoff) {
    902 
    903 		/*
    904 		 * if the current page is not interesting, move on to the next.
    905 		 */
    906 
    907 		KASSERT(pg == NULL || pg->uobject == uobj);
    908 		KASSERT(pg == NULL ||
    909 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    910 		    (pg->flags & PG_BUSY) != 0);
    911 		if (by_list) {
    912 			if (pg == &endmp) {
    913 				break;
    914 			}
    915 			if (pg->offset < startoff || pg->offset >= endoff ||
    916 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    917 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    918 					wasclean = false;
    919 				}
    920 				pg = TAILQ_NEXT(pg, listq.queue);
    921 				continue;
    922 			}
    923 			off = pg->offset;
    924 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    925 			if (pg != NULL) {
    926 				wasclean = false;
    927 			}
    928 			off += PAGE_SIZE;
    929 			if (off < endoff) {
    930 				pg = uvm_pagelookup(uobj, off);
    931 			}
    932 			continue;
    933 		}
    934 
    935 		/*
    936 		 * if the current page needs to be cleaned and it's busy,
    937 		 * wait for it to become unbusy.
    938 		 */
    939 
    940 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    941 		    SPCF_SHOULDYIELD) && !pagedaemon;
    942 		if (pg->flags & PG_BUSY || yld) {
    943 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    944 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    945 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    946 				error = EDEADLK;
    947 				if (busypg != NULL)
    948 					*busypg = pg;
    949 				break;
    950 			}
    951 			if (pagedaemon) {
    952 				/*
    953 				 * someone has taken the page while we
    954 				 * dropped the lock for fstrans_start.
    955 				 */
    956 				break;
    957 			}
    958 			if (by_list) {
    959 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    960 				UVMHIST_LOG(ubchist, "curmp next %p",
    961 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    962 			}
    963 			if (yld) {
    964 				mutex_exit(slock);
    965 				preempt();
    966 				mutex_enter(slock);
    967 			} else {
    968 				pg->flags |= PG_WANTED;
    969 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    970 				mutex_enter(slock);
    971 			}
    972 			if (by_list) {
    973 				UVMHIST_LOG(ubchist, "after next %p",
    974 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    975 				pg = TAILQ_NEXT(&curmp, listq.queue);
    976 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
    977 			} else {
    978 				pg = uvm_pagelookup(uobj, off);
    979 			}
    980 			continue;
    981 		}
    982 
    983 		/*
    984 		 * if we're freeing, remove all mappings of the page now.
    985 		 * if we're cleaning, check if the page is needs to be cleaned.
    986 		 */
    987 
    988 		if (flags & PGO_FREE) {
    989 			pmap_page_protect(pg, VM_PROT_NONE);
    990 		} else if (flags & PGO_CLEANIT) {
    991 
    992 			/*
    993 			 * if we still have some hope to pull this vnode off
    994 			 * from the syncer queue, write-protect the page.
    995 			 */
    996 
    997 			if (cleanall && wasclean &&
    998 			    gp->g_dirtygen == dirtygen) {
    999 
   1000 				/*
   1001 				 * uobj pages get wired only by uvm_fault
   1002 				 * where uobj is locked.
   1003 				 */
   1004 
   1005 				if (pg->wire_count == 0) {
   1006 					pmap_page_protect(pg,
   1007 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1008 				} else {
   1009 					cleanall = false;
   1010 				}
   1011 			}
   1012 		}
   1013 
   1014 		if (flags & PGO_CLEANIT) {
   1015 			needs_clean = pmap_clear_modify(pg) ||
   1016 			    (pg->flags & PG_CLEAN) == 0;
   1017 			pg->flags |= PG_CLEAN;
   1018 		} else {
   1019 			needs_clean = false;
   1020 		}
   1021 
   1022 		/*
   1023 		 * if we're cleaning, build a cluster.
   1024 		 * the cluster will consist of pages which are currently dirty,
   1025 		 * but they will be returned to us marked clean.
   1026 		 * if not cleaning, just operate on the one page.
   1027 		 */
   1028 
   1029 		if (needs_clean) {
   1030 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1031 			wasclean = false;
   1032 			memset(pgs, 0, sizeof(pgs));
   1033 			pg->flags |= PG_BUSY;
   1034 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1035 
   1036 			/*
   1037 			 * first look backward.
   1038 			 */
   1039 
   1040 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1041 			nback = npages;
   1042 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1043 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1044 			if (nback) {
   1045 				memmove(&pgs[0], &pgs[npages - nback],
   1046 				    nback * sizeof(pgs[0]));
   1047 				if (npages - nback < nback)
   1048 					memset(&pgs[nback], 0,
   1049 					    (npages - nback) * sizeof(pgs[0]));
   1050 				else
   1051 					memset(&pgs[npages - nback], 0,
   1052 					    nback * sizeof(pgs[0]));
   1053 			}
   1054 
   1055 			/*
   1056 			 * then plug in our page of interest.
   1057 			 */
   1058 
   1059 			pgs[nback] = pg;
   1060 
   1061 			/*
   1062 			 * then look forward to fill in the remaining space in
   1063 			 * the array of pages.
   1064 			 */
   1065 
   1066 			npages = maxpages - nback - 1;
   1067 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1068 			    &pgs[nback + 1],
   1069 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1070 			npages += nback + 1;
   1071 		} else {
   1072 			pgs[0] = pg;
   1073 			npages = 1;
   1074 			nback = 0;
   1075 		}
   1076 
   1077 		/*
   1078 		 * apply FREE or DEACTIVATE options if requested.
   1079 		 */
   1080 
   1081 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1082 			mutex_enter(&uvm_pageqlock);
   1083 		}
   1084 		for (i = 0; i < npages; i++) {
   1085 			tpg = pgs[i];
   1086 			KASSERT(tpg->uobject == uobj);
   1087 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1088 				pg = tpg;
   1089 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1090 				continue;
   1091 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1092 				uvm_pagedeactivate(tpg);
   1093 			} else if (flags & PGO_FREE) {
   1094 				pmap_page_protect(tpg, VM_PROT_NONE);
   1095 				if (tpg->flags & PG_BUSY) {
   1096 					tpg->flags |= freeflag;
   1097 					if (pagedaemon) {
   1098 						uvm_pageout_start(1);
   1099 						uvm_pagedequeue(tpg);
   1100 					}
   1101 				} else {
   1102 
   1103 					/*
   1104 					 * ``page is not busy''
   1105 					 * implies that npages is 1
   1106 					 * and needs_clean is false.
   1107 					 */
   1108 
   1109 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1110 					uvm_pagefree(tpg);
   1111 					if (pagedaemon)
   1112 						uvmexp.pdfreed++;
   1113 				}
   1114 			}
   1115 		}
   1116 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1117 			mutex_exit(&uvm_pageqlock);
   1118 		}
   1119 		if (needs_clean) {
   1120 			modified = true;
   1121 
   1122 			/*
   1123 			 * start the i/o.  if we're traversing by list,
   1124 			 * keep our place in the list with a marker page.
   1125 			 */
   1126 
   1127 			if (by_list) {
   1128 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1129 				    listq.queue);
   1130 			}
   1131 			mutex_exit(slock);
   1132 			error = GOP_WRITE(vp, pgs, npages, flags);
   1133 			mutex_enter(slock);
   1134 			if (by_list) {
   1135 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1136 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1137 			}
   1138 			if (error) {
   1139 				break;
   1140 			}
   1141 			if (by_list) {
   1142 				continue;
   1143 			}
   1144 		}
   1145 
   1146 		/*
   1147 		 * find the next page and continue if there was no error.
   1148 		 */
   1149 
   1150 		if (by_list) {
   1151 			if (nextpg) {
   1152 				pg = nextpg;
   1153 				nextpg = NULL;
   1154 			} else {
   1155 				pg = TAILQ_NEXT(pg, listq.queue);
   1156 			}
   1157 		} else {
   1158 			off += (npages - nback) << PAGE_SHIFT;
   1159 			if (off < endoff) {
   1160 				pg = uvm_pagelookup(uobj, off);
   1161 			}
   1162 		}
   1163 	}
   1164 	if (by_list) {
   1165 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1166 	}
   1167 
   1168 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1169 	    (vp->v_type != VBLK ||
   1170 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1171 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1172 	}
   1173 
   1174 	/*
   1175 	 * if we're cleaning and there was nothing to clean,
   1176 	 * take us off the syncer list.  if we started any i/o
   1177 	 * and we're doing sync i/o, wait for all writes to finish.
   1178 	 */
   1179 
   1180 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1181 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1182 #if defined(DEBUG)
   1183 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1184 			if ((pg->flags & PG_CLEAN) == 0) {
   1185 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1186 			}
   1187 			if (pmap_is_modified(pg)) {
   1188 				printf("%s: %p: modified\n", __func__, pg);
   1189 			}
   1190 		}
   1191 #endif /* defined(DEBUG) */
   1192 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1193 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1194 			vn_syncer_remove_from_worklist(vp);
   1195 	}
   1196 
   1197 #if !defined(DEBUG)
   1198 skip_scan:
   1199 #endif /* !defined(DEBUG) */
   1200 
   1201 	/* Wait for output to complete. */
   1202 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1203 		while (vp->v_numoutput != 0)
   1204 			cv_wait(&vp->v_cv, slock);
   1205 	}
   1206 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1207 	mutex_exit(slock);
   1208 
   1209 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1210 		/*
   1211 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1212 		 * retrying is not a big deal because, in many cases,
   1213 		 * uobj->uo_npages is already 0 here.
   1214 		 */
   1215 		mutex_enter(slock);
   1216 		goto retry;
   1217 	}
   1218 
   1219 	if (has_trans) {
   1220 		if (need_wapbl)
   1221 			WAPBL_END(vp->v_mount);
   1222 		fstrans_done(vp->v_mount);
   1223 	}
   1224 
   1225 	return (error);
   1226 }
   1227 
   1228 int
   1229 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1230 {
   1231 	off_t off;
   1232 	vaddr_t kva;
   1233 	size_t len;
   1234 	int error;
   1235 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1236 
   1237 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1238 	    vp, pgs, npages, flags);
   1239 
   1240 	off = pgs[0]->offset;
   1241 	kva = uvm_pagermapin(pgs, npages,
   1242 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1243 	len = npages << PAGE_SHIFT;
   1244 
   1245 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1246 			    uvm_aio_biodone);
   1247 
   1248 	return error;
   1249 }
   1250 
   1251 int
   1252 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1253 {
   1254 	off_t off;
   1255 	vaddr_t kva;
   1256 	size_t len;
   1257 	int error;
   1258 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1259 
   1260 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1261 	    vp, pgs, npages, flags);
   1262 
   1263 	off = pgs[0]->offset;
   1264 	kva = uvm_pagermapin(pgs, npages,
   1265 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1266 	len = npages << PAGE_SHIFT;
   1267 
   1268 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1269 			    uvm_aio_biodone);
   1270 
   1271 	return error;
   1272 }
   1273 
   1274 /*
   1275  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1276  * and mapped into kernel memory.  Here we just look up the underlying
   1277  * device block addresses and call the strategy routine.
   1278  */
   1279 
   1280 static int
   1281 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1282     enum uio_rw rw, void (*iodone)(struct buf *))
   1283 {
   1284 	int s, error, run;
   1285 	int fs_bshift, dev_bshift;
   1286 	off_t eof, offset, startoffset;
   1287 	size_t bytes, iobytes, skipbytes;
   1288 	daddr_t lbn, blkno;
   1289 	struct buf *mbp, *bp;
   1290 	struct vnode *devvp;
   1291 	bool async = (flags & PGO_SYNCIO) == 0;
   1292 	bool write = rw == UIO_WRITE;
   1293 	int brw = write ? B_WRITE : B_READ;
   1294 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1295 
   1296 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1297 	    vp, kva, len, flags);
   1298 
   1299 	KASSERT(vp->v_size <= vp->v_writesize);
   1300 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1301 	if (vp->v_type != VBLK) {
   1302 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1303 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1304 	} else {
   1305 		fs_bshift = DEV_BSHIFT;
   1306 		dev_bshift = DEV_BSHIFT;
   1307 	}
   1308 	error = 0;
   1309 	startoffset = off;
   1310 	bytes = MIN(len, eof - startoffset);
   1311 	skipbytes = 0;
   1312 	KASSERT(bytes != 0);
   1313 
   1314 	if (write) {
   1315 		mutex_enter(&vp->v_interlock);
   1316 		vp->v_numoutput += 2;
   1317 		mutex_exit(&vp->v_interlock);
   1318 	}
   1319 	mbp = getiobuf(vp, true);
   1320 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1321 	    vp, mbp, vp->v_numoutput, bytes);
   1322 	mbp->b_bufsize = len;
   1323 	mbp->b_data = (void *)kva;
   1324 	mbp->b_resid = mbp->b_bcount = bytes;
   1325 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1326 	if (async) {
   1327 		mbp->b_flags = brw | B_ASYNC;
   1328 		mbp->b_iodone = iodone;
   1329 	} else {
   1330 		mbp->b_flags = brw;
   1331 		mbp->b_iodone = NULL;
   1332 	}
   1333 	if (curlwp == uvm.pagedaemon_lwp)
   1334 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1335 	else if (async)
   1336 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1337 	else
   1338 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1339 
   1340 	bp = NULL;
   1341 	for (offset = startoffset;
   1342 	    bytes > 0;
   1343 	    offset += iobytes, bytes -= iobytes) {
   1344 		lbn = offset >> fs_bshift;
   1345 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1346 		if (error) {
   1347 			UVMHIST_LOG(ubchist, "VOP_BMAP() -> %d", error,0,0,0);
   1348 			skipbytes += bytes;
   1349 			bytes = 0;
   1350 			break;
   1351 		}
   1352 
   1353 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1354 		    bytes);
   1355 		if (blkno == (daddr_t)-1) {
   1356 			if (!write) {
   1357 				memset((char *)kva + (offset - startoffset), 0,
   1358 				   iobytes);
   1359 			}
   1360 			skipbytes += iobytes;
   1361 			continue;
   1362 		}
   1363 
   1364 		/* if it's really one i/o, don't make a second buf */
   1365 		if (offset == startoffset && iobytes == bytes) {
   1366 			bp = mbp;
   1367 		} else {
   1368 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1369 			    vp, bp, vp->v_numoutput, 0);
   1370 			bp = getiobuf(vp, true);
   1371 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1372 		}
   1373 		bp->b_lblkno = 0;
   1374 
   1375 		/* adjust physical blkno for partial blocks */
   1376 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1377 		    dev_bshift);
   1378 		UVMHIST_LOG(ubchist,
   1379 		    "vp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1380 		    vp, offset, bp->b_bcount, bp->b_blkno);
   1381 
   1382 		VOP_STRATEGY(devvp, bp);
   1383 	}
   1384 	if (skipbytes) {
   1385 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1386 	}
   1387 	nestiobuf_done(mbp, skipbytes, error);
   1388 	if (async) {
   1389 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1390 		return (0);
   1391 	}
   1392 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1393 	error = biowait(mbp);
   1394 	s = splbio();
   1395 	(*iodone)(mbp);
   1396 	splx(s);
   1397 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1398 	return (error);
   1399 }
   1400 
   1401 int
   1402 genfs_compat_getpages(void *v)
   1403 {
   1404 	struct vop_getpages_args /* {
   1405 		struct vnode *a_vp;
   1406 		voff_t a_offset;
   1407 		struct vm_page **a_m;
   1408 		int *a_count;
   1409 		int a_centeridx;
   1410 		vm_prot_t a_access_type;
   1411 		int a_advice;
   1412 		int a_flags;
   1413 	} */ *ap = v;
   1414 
   1415 	off_t origoffset;
   1416 	struct vnode *vp = ap->a_vp;
   1417 	struct uvm_object *uobj = &vp->v_uobj;
   1418 	struct vm_page *pg, **pgs;
   1419 	vaddr_t kva;
   1420 	int i, error, orignpages, npages;
   1421 	struct iovec iov;
   1422 	struct uio uio;
   1423 	kauth_cred_t cred = curlwp->l_cred;
   1424 	bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1425 
   1426 	error = 0;
   1427 	origoffset = ap->a_offset;
   1428 	orignpages = *ap->a_count;
   1429 	pgs = ap->a_m;
   1430 
   1431 	if (write && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1432 		vn_syncer_add_to_worklist(vp, filedelay);
   1433 	}
   1434 	if (ap->a_flags & PGO_LOCKED) {
   1435 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1436 		    UFP_NOWAIT|UFP_NOALLOC| (write ? UFP_NORDONLY : 0));
   1437 
   1438 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1439 	}
   1440 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1441 		mutex_exit(&uobj->vmobjlock);
   1442 		return (EINVAL);
   1443 	}
   1444 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1445 		mutex_exit(&uobj->vmobjlock);
   1446 		return 0;
   1447 	}
   1448 	npages = orignpages;
   1449 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1450 	mutex_exit(&uobj->vmobjlock);
   1451 	kva = uvm_pagermapin(pgs, npages,
   1452 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1453 	for (i = 0; i < npages; i++) {
   1454 		pg = pgs[i];
   1455 		if ((pg->flags & PG_FAKE) == 0) {
   1456 			continue;
   1457 		}
   1458 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1459 		iov.iov_len = PAGE_SIZE;
   1460 		uio.uio_iov = &iov;
   1461 		uio.uio_iovcnt = 1;
   1462 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1463 		uio.uio_rw = UIO_READ;
   1464 		uio.uio_resid = PAGE_SIZE;
   1465 		UIO_SETUP_SYSSPACE(&uio);
   1466 		/* XXX vn_lock */
   1467 		error = VOP_READ(vp, &uio, 0, cred);
   1468 		if (error) {
   1469 			break;
   1470 		}
   1471 		if (uio.uio_resid) {
   1472 			memset(iov.iov_base, 0, uio.uio_resid);
   1473 		}
   1474 	}
   1475 	uvm_pagermapout(kva, npages);
   1476 	mutex_enter(&uobj->vmobjlock);
   1477 	mutex_enter(&uvm_pageqlock);
   1478 	for (i = 0; i < npages; i++) {
   1479 		pg = pgs[i];
   1480 		if (error && (pg->flags & PG_FAKE) != 0) {
   1481 			pg->flags |= PG_RELEASED;
   1482 		} else {
   1483 			pmap_clear_modify(pg);
   1484 			uvm_pageactivate(pg);
   1485 		}
   1486 	}
   1487 	if (error) {
   1488 		uvm_page_unbusy(pgs, npages);
   1489 	}
   1490 	mutex_exit(&uvm_pageqlock);
   1491 	mutex_exit(&uobj->vmobjlock);
   1492 	return (error);
   1493 }
   1494 
   1495 int
   1496 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1497     int flags)
   1498 {
   1499 	off_t offset;
   1500 	struct iovec iov;
   1501 	struct uio uio;
   1502 	kauth_cred_t cred = curlwp->l_cred;
   1503 	struct buf *bp;
   1504 	vaddr_t kva;
   1505 	int error;
   1506 
   1507 	offset = pgs[0]->offset;
   1508 	kva = uvm_pagermapin(pgs, npages,
   1509 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1510 
   1511 	iov.iov_base = (void *)kva;
   1512 	iov.iov_len = npages << PAGE_SHIFT;
   1513 	uio.uio_iov = &iov;
   1514 	uio.uio_iovcnt = 1;
   1515 	uio.uio_offset = offset;
   1516 	uio.uio_rw = UIO_WRITE;
   1517 	uio.uio_resid = npages << PAGE_SHIFT;
   1518 	UIO_SETUP_SYSSPACE(&uio);
   1519 	/* XXX vn_lock */
   1520 	error = VOP_WRITE(vp, &uio, 0, cred);
   1521 
   1522 	mutex_enter(&vp->v_interlock);
   1523 	vp->v_numoutput++;
   1524 	mutex_exit(&vp->v_interlock);
   1525 
   1526 	bp = getiobuf(vp, true);
   1527 	bp->b_cflags = BC_BUSY | BC_AGE;
   1528 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1529 	bp->b_data = (char *)kva;
   1530 	bp->b_bcount = npages << PAGE_SHIFT;
   1531 	bp->b_bufsize = npages << PAGE_SHIFT;
   1532 	bp->b_resid = 0;
   1533 	bp->b_error = error;
   1534 	uvm_aio_aiodone(bp);
   1535 	return (error);
   1536 }
   1537 
   1538 /*
   1539  * Process a uio using direct I/O.  If we reach a part of the request
   1540  * which cannot be processed in this fashion for some reason, just return.
   1541  * The caller must handle some additional part of the request using
   1542  * buffered I/O before trying direct I/O again.
   1543  */
   1544 
   1545 void
   1546 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1547 {
   1548 	struct vmspace *vs;
   1549 	struct iovec *iov;
   1550 	vaddr_t va;
   1551 	size_t len;
   1552 	const int mask = DEV_BSIZE - 1;
   1553 	int error;
   1554 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1555 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1556 
   1557 	/*
   1558 	 * We only support direct I/O to user space for now.
   1559 	 */
   1560 
   1561 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1562 		return;
   1563 	}
   1564 
   1565 	/*
   1566 	 * If the vnode is mapped, we would need to get the getpages lock
   1567 	 * to stabilize the bmap, but then we would get into trouble whil e
   1568 	 * locking the pages if the pages belong to this same vnode (or a
   1569 	 * multi-vnode cascade to the same effect).  Just fall back to
   1570 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1571 	 */
   1572 
   1573 	if (vp->v_vflag & VV_MAPPED) {
   1574 		return;
   1575 	}
   1576 
   1577 	if (need_wapbl) {
   1578 		error = WAPBL_BEGIN(vp->v_mount);
   1579 		if (error)
   1580 			return;
   1581 	}
   1582 
   1583 	/*
   1584 	 * Do as much of the uio as possible with direct I/O.
   1585 	 */
   1586 
   1587 	vs = uio->uio_vmspace;
   1588 	while (uio->uio_resid) {
   1589 		iov = uio->uio_iov;
   1590 		if (iov->iov_len == 0) {
   1591 			uio->uio_iov++;
   1592 			uio->uio_iovcnt--;
   1593 			continue;
   1594 		}
   1595 		va = (vaddr_t)iov->iov_base;
   1596 		len = MIN(iov->iov_len, genfs_maxdio);
   1597 		len &= ~mask;
   1598 
   1599 		/*
   1600 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1601 		 * the current EOF, then fall back to buffered I/O.
   1602 		 */
   1603 
   1604 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1605 			break;
   1606 		}
   1607 
   1608 		/*
   1609 		 * Check alignment.  The file offset must be at least
   1610 		 * sector-aligned.  The exact constraint on memory alignment
   1611 		 * is very hardware-dependent, but requiring sector-aligned
   1612 		 * addresses there too is safe.
   1613 		 */
   1614 
   1615 		if (uio->uio_offset & mask || va & mask) {
   1616 			break;
   1617 		}
   1618 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1619 					  uio->uio_rw);
   1620 		if (error) {
   1621 			break;
   1622 		}
   1623 		iov->iov_base = (char *)iov->iov_base + len;
   1624 		iov->iov_len -= len;
   1625 		uio->uio_offset += len;
   1626 		uio->uio_resid -= len;
   1627 	}
   1628 
   1629 	if (need_wapbl)
   1630 		WAPBL_END(vp->v_mount);
   1631 }
   1632 
   1633 /*
   1634  * Iodone routine for direct I/O.  We don't do much here since the request is
   1635  * always synchronous, so the caller will do most of the work after biowait().
   1636  */
   1637 
   1638 static void
   1639 genfs_dio_iodone(struct buf *bp)
   1640 {
   1641 
   1642 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1643 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1644 		mutex_enter(bp->b_objlock);
   1645 		vwakeup(bp);
   1646 		mutex_exit(bp->b_objlock);
   1647 	}
   1648 	putiobuf(bp);
   1649 }
   1650 
   1651 /*
   1652  * Process one chunk of a direct I/O request.
   1653  */
   1654 
   1655 static int
   1656 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1657     off_t off, enum uio_rw rw)
   1658 {
   1659 	struct vm_map *map;
   1660 	struct pmap *upm, *kpm;
   1661 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1662 	off_t spoff, epoff;
   1663 	vaddr_t kva, puva;
   1664 	paddr_t pa;
   1665 	vm_prot_t prot;
   1666 	int error, rv, poff, koff;
   1667 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1668 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1669 
   1670 	/*
   1671 	 * For writes, verify that this range of the file already has fully
   1672 	 * allocated backing store.  If there are any holes, just punt and
   1673 	 * make the caller take the buffered write path.
   1674 	 */
   1675 
   1676 	if (rw == UIO_WRITE) {
   1677 		daddr_t lbn, elbn, blkno;
   1678 		int bsize, bshift, run;
   1679 
   1680 		bshift = vp->v_mount->mnt_fs_bshift;
   1681 		bsize = 1 << bshift;
   1682 		lbn = off >> bshift;
   1683 		elbn = (off + len + bsize - 1) >> bshift;
   1684 		while (lbn < elbn) {
   1685 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1686 			if (error) {
   1687 				return error;
   1688 			}
   1689 			if (blkno == (daddr_t)-1) {
   1690 				return ENOSPC;
   1691 			}
   1692 			lbn += 1 + run;
   1693 		}
   1694 	}
   1695 
   1696 	/*
   1697 	 * Flush any cached pages for parts of the file that we're about to
   1698 	 * access.  If we're writing, invalidate pages as well.
   1699 	 */
   1700 
   1701 	spoff = trunc_page(off);
   1702 	epoff = round_page(off + len);
   1703 	mutex_enter(&vp->v_interlock);
   1704 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1705 	if (error) {
   1706 		return error;
   1707 	}
   1708 
   1709 	/*
   1710 	 * Wire the user pages and remap them into kernel memory.
   1711 	 */
   1712 
   1713 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1714 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1715 	if (error) {
   1716 		return error;
   1717 	}
   1718 
   1719 	map = &vs->vm_map;
   1720 	upm = vm_map_pmap(map);
   1721 	kpm = vm_map_pmap(kernel_map);
   1722 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1723 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1724 	puva = trunc_page(uva);
   1725 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1726 		rv = pmap_extract(upm, puva + poff, &pa);
   1727 		KASSERT(rv);
   1728 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1729 	}
   1730 	pmap_update(kpm);
   1731 
   1732 	/*
   1733 	 * Do the I/O.
   1734 	 */
   1735 
   1736 	koff = uva - trunc_page(uva);
   1737 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1738 			    genfs_dio_iodone);
   1739 
   1740 	/*
   1741 	 * Tear down the kernel mapping.
   1742 	 */
   1743 
   1744 	pmap_remove(kpm, kva, kva + klen);
   1745 	pmap_update(kpm);
   1746 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1747 
   1748 	/*
   1749 	 * Unwire the user pages.
   1750 	 */
   1751 
   1752 	uvm_vsunlock(vs, (void *)uva, len);
   1753 	return error;
   1754 }
   1755 
   1756