genfs_io.c revision 1.36 1 /* $NetBSD: genfs_io.c,v 1.36 2010/01/30 12:06:20 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36 2010/01/30 12:06:20 uebayasi Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/kernel.h>
40 #include <sys/mount.h>
41 #include <sys/namei.h>
42 #include <sys/vnode.h>
43 #include <sys/fcntl.h>
44 #include <sys/kmem.h>
45 #include <sys/poll.h>
46 #include <sys/mman.h>
47 #include <sys/file.h>
48 #include <sys/kauth.h>
49 #include <sys/fstrans.h>
50 #include <sys/buf.h>
51
52 #include <miscfs/genfs/genfs.h>
53 #include <miscfs/genfs/genfs_node.h>
54 #include <miscfs/specfs/specdev.h>
55
56 #include <uvm/uvm.h>
57 #include <uvm/uvm_pager.h>
58
59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
60 off_t, enum uio_rw);
61 static void genfs_dio_iodone(struct buf *);
62
63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
64 void (*)(struct buf *));
65 static inline void genfs_rel_pages(struct vm_page **, int);
66
67 int genfs_maxdio = MAXPHYS;
68
69 static inline void
70 genfs_rel_pages(struct vm_page **pgs, int npages)
71 {
72 int i;
73
74 for (i = 0; i < npages; i++) {
75 struct vm_page *pg = pgs[i];
76
77 if (pg == NULL || pg == PGO_DONTCARE)
78 continue;
79 if (pg->flags & PG_FAKE) {
80 pg->flags |= PG_RELEASED;
81 }
82 }
83 mutex_enter(&uvm_pageqlock);
84 uvm_page_unbusy(pgs, npages);
85 mutex_exit(&uvm_pageqlock);
86 }
87
88 /*
89 * generic VM getpages routine.
90 * Return PG_BUSY pages for the given range,
91 * reading from backing store if necessary.
92 */
93
94 int
95 genfs_getpages(void *v)
96 {
97 struct vop_getpages_args /* {
98 struct vnode *a_vp;
99 voff_t a_offset;
100 struct vm_page **a_m;
101 int *a_count;
102 int a_centeridx;
103 vm_prot_t a_access_type;
104 int a_advice;
105 int a_flags;
106 } */ * const ap = v;
107
108 off_t diskeof, memeof;
109 int i, error, npages;
110 const int flags = ap->a_flags;
111 struct vnode * const vp = ap->a_vp;
112 struct genfs_node * const gp = VTOG(vp);
113 struct uvm_object * const uobj = &vp->v_uobj;
114 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
115 const bool async = (flags & PGO_SYNCIO) == 0;
116 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
117 bool has_trans = false;
118 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
119 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
120 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
121
122 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
123 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
124
125 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
126 vp->v_type == VLNK || vp->v_type == VBLK);
127
128 startover:
129 error = 0;
130 const voff_t origvsize = vp->v_size;
131 const off_t origoffset = ap->a_offset;
132 const int orignpages = *ap->a_count;
133
134 GOP_SIZE(vp, origvsize, &diskeof, 0);
135 if (flags & PGO_PASTEOF) {
136 off_t newsize;
137 #if defined(DIAGNOSTIC)
138 off_t writeeof;
139 #endif /* defined(DIAGNOSTIC) */
140
141 newsize = MAX(origvsize,
142 origoffset + (orignpages << PAGE_SHIFT));
143 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
144 #if defined(DIAGNOSTIC)
145 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
146 if (newsize > round_page(writeeof)) {
147 panic("%s: past eof", __func__);
148 }
149 #endif /* defined(DIAGNOSTIC) */
150 } else {
151 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
152 }
153 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
154 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
155 KASSERT(orignpages > 0);
156
157 /*
158 * Bounds-check the request.
159 */
160
161 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
162 if ((flags & PGO_LOCKED) == 0) {
163 mutex_exit(&uobj->vmobjlock);
164 }
165 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
166 origoffset, *ap->a_count, memeof,0);
167 error = EINVAL;
168 goto out_err;
169 }
170
171 /* uobj is locked */
172
173 if ((flags & PGO_NOTIMESTAMP) == 0 &&
174 (vp->v_type != VBLK ||
175 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
176 int updflags = 0;
177
178 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
179 updflags = GOP_UPDATE_ACCESSED;
180 }
181 if (memwrite) {
182 updflags |= GOP_UPDATE_MODIFIED;
183 }
184 if (updflags != 0) {
185 GOP_MARKUPDATE(vp, updflags);
186 }
187 }
188
189 if (memwrite) {
190 gp->g_dirtygen++;
191 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
192 vn_syncer_add_to_worklist(vp, filedelay);
193 }
194 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
195 vp->v_iflag |= VI_WRMAPDIRTY;
196 }
197 }
198
199 /*
200 * For PGO_LOCKED requests, just return whatever's in memory.
201 */
202
203 if (flags & PGO_LOCKED) {
204 int nfound;
205 struct vm_page *pg;
206
207 npages = *ap->a_count;
208 #if defined(DEBUG)
209 for (i = 0; i < npages; i++) {
210 pg = ap->a_m[i];
211 KASSERT(pg == NULL || pg == PGO_DONTCARE);
212 }
213 #endif /* defined(DEBUG) */
214 nfound = uvn_findpages(uobj, origoffset, &npages,
215 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
216 KASSERT(npages == *ap->a_count);
217 if (nfound == 0) {
218 error = EBUSY;
219 goto out_err;
220 }
221 if (!genfs_node_rdtrylock(vp)) {
222 genfs_rel_pages(ap->a_m, npages);
223
224 /*
225 * restore the array.
226 */
227
228 for (i = 0; i < npages; i++) {
229 pg = ap->a_m[i];
230
231 if (pg != NULL || pg != PGO_DONTCARE) {
232 ap->a_m[i] = NULL;
233 }
234 }
235 } else {
236 genfs_node_unlock(vp);
237 }
238 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
239 goto out_err;
240 }
241 mutex_exit(&uobj->vmobjlock);
242
243 /*
244 * find the requested pages and make some simple checks.
245 * leave space in the page array for a whole block.
246 */
247
248 const int fs_bshift = (vp->v_type != VBLK) ?
249 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
250 const int dev_bshift = (vp->v_type != VBLK) ?
251 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
252 const int fs_bsize = 1 << fs_bshift;
253 #define blk_mask (fs_bsize - 1)
254 #define trunc_blk(x) ((x) & ~blk_mask)
255 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
256
257 const int orignmempages = MIN(orignpages,
258 round_page(memeof - origoffset) >> PAGE_SHIFT);
259 npages = orignmempages;
260 const off_t startoffset = trunc_blk(origoffset);
261 const off_t endoffset = MIN(
262 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
263 round_page(memeof));
264 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
265
266 const int pgs_size = sizeof(struct vm_page *) *
267 ((endoffset - startoffset) >> PAGE_SHIFT);
268 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
269
270 if (pgs_size > sizeof(pgs_onstack)) {
271 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
272 if (pgs == NULL) {
273 pgs = pgs_onstack;
274 error = ENOMEM;
275 goto out_err;
276 }
277 } else {
278 pgs = pgs_onstack;
279 (void)memset(pgs, 0, pgs_size);
280 }
281
282 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
283 ridx, npages, startoffset, endoffset);
284
285 if (!has_trans) {
286 fstrans_start(vp->v_mount, FSTRANS_SHARED);
287 has_trans = true;
288 }
289
290 /*
291 * hold g_glock to prevent a race with truncate.
292 *
293 * check if our idea of v_size is still valid.
294 */
295
296 if (blockalloc) {
297 rw_enter(&gp->g_glock, RW_WRITER);
298 } else {
299 rw_enter(&gp->g_glock, RW_READER);
300 }
301 mutex_enter(&uobj->vmobjlock);
302 if (vp->v_size < origvsize) {
303 genfs_node_unlock(vp);
304 if (pgs != pgs_onstack)
305 kmem_free(pgs, pgs_size);
306 goto startover;
307 }
308
309 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
310 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
311 genfs_node_unlock(vp);
312 KASSERT(async != 0);
313 genfs_rel_pages(&pgs[ridx], orignmempages);
314 mutex_exit(&uobj->vmobjlock);
315 error = EBUSY;
316 goto out_err_free;
317 }
318
319 /*
320 * if the pages are already resident, just return them.
321 */
322
323 for (i = 0; i < npages; i++) {
324 struct vm_page *pg = pgs[ridx + i];
325
326 if ((pg->flags & PG_FAKE) ||
327 (blockalloc && (pg->flags & PG_RDONLY))) {
328 break;
329 }
330 }
331 if (i == npages) {
332 genfs_node_unlock(vp);
333 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
334 npages += ridx;
335 goto out;
336 }
337
338 /*
339 * if PGO_OVERWRITE is set, don't bother reading the pages.
340 */
341
342 if (overwrite) {
343 genfs_node_unlock(vp);
344 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
345
346 for (i = 0; i < npages; i++) {
347 struct vm_page *pg = pgs[ridx + i];
348
349 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
350 }
351 npages += ridx;
352 goto out;
353 }
354
355 /*
356 * the page wasn't resident and we're not overwriting,
357 * so we're going to have to do some i/o.
358 * find any additional pages needed to cover the expanded range.
359 */
360
361 npages = (endoffset - startoffset) >> PAGE_SHIFT;
362 if (startoffset != origoffset || npages != orignmempages) {
363 int npgs;
364
365 /*
366 * we need to avoid deadlocks caused by locking
367 * additional pages at lower offsets than pages we
368 * already have locked. unlock them all and start over.
369 */
370
371 genfs_rel_pages(&pgs[ridx], orignmempages);
372 memset(pgs, 0, pgs_size);
373
374 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
375 startoffset, endoffset, 0,0);
376 npgs = npages;
377 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
378 async ? UFP_NOWAIT : UFP_ALL) != npages) {
379 genfs_node_unlock(vp);
380 KASSERT(async != 0);
381 genfs_rel_pages(pgs, npages);
382 mutex_exit(&uobj->vmobjlock);
383 error = EBUSY;
384 goto out_err_free;
385 }
386 }
387
388 mutex_exit(&uobj->vmobjlock);
389
390 {
391 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
392 vaddr_t kva;
393 struct buf *bp, *mbp;
394 bool sawhole = false;
395
396 /*
397 * read the desired page(s).
398 */
399
400 totalbytes = npages << PAGE_SHIFT;
401 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
402 tailbytes = totalbytes - bytes;
403 skipbytes = 0;
404
405 kva = uvm_pagermapin(pgs, npages,
406 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
407
408 mbp = getiobuf(vp, true);
409 mbp->b_bufsize = totalbytes;
410 mbp->b_data = (void *)kva;
411 mbp->b_resid = mbp->b_bcount = bytes;
412 mbp->b_cflags = BC_BUSY;
413 if (async) {
414 mbp->b_flags = B_READ | B_ASYNC;
415 mbp->b_iodone = uvm_aio_biodone;
416 } else {
417 mbp->b_flags = B_READ;
418 mbp->b_iodone = NULL;
419 }
420 if (async)
421 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
422 else
423 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
424
425 /*
426 * if EOF is in the middle of the range, zero the part past EOF.
427 * skip over pages which are not PG_FAKE since in that case they have
428 * valid data that we need to preserve.
429 */
430
431 tailstart = bytes;
432 while (tailbytes > 0) {
433 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
434
435 KASSERT(len <= tailbytes);
436 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
437 memset((void *)(kva + tailstart), 0, len);
438 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
439 kva, tailstart, len, 0);
440 }
441 tailstart += len;
442 tailbytes -= len;
443 }
444
445 /*
446 * now loop over the pages, reading as needed.
447 */
448
449 bp = NULL;
450 off_t offset;
451 for (offset = startoffset;
452 bytes > 0;
453 offset += iobytes, bytes -= iobytes) {
454 int run;
455 daddr_t lbn, blkno;
456 int pidx;
457 struct vnode *devvp;
458
459 /*
460 * skip pages which don't need to be read.
461 */
462
463 pidx = (offset - startoffset) >> PAGE_SHIFT;
464 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
465 size_t b;
466
467 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
468 if ((pgs[pidx]->flags & PG_RDONLY)) {
469 sawhole = true;
470 }
471 b = MIN(PAGE_SIZE, bytes);
472 offset += b;
473 bytes -= b;
474 skipbytes += b;
475 pidx++;
476 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
477 offset, 0,0,0);
478 if (bytes == 0) {
479 goto loopdone;
480 }
481 }
482
483 /*
484 * bmap the file to find out the blkno to read from and
485 * how much we can read in one i/o. if bmap returns an error,
486 * skip the rest of the top-level i/o.
487 */
488
489 lbn = offset >> fs_bshift;
490 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
491 if (error) {
492 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
493 lbn,error,0,0);
494 skipbytes += bytes;
495 bytes = 0;
496 goto loopdone;
497 }
498
499 /*
500 * see how many pages can be read with this i/o.
501 * reduce the i/o size if necessary to avoid
502 * overwriting pages with valid data.
503 */
504
505 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
506 bytes);
507 if (offset + iobytes > round_page(offset)) {
508 int pcount;
509
510 pcount = 1;
511 while (pidx + pcount < npages &&
512 pgs[pidx + pcount]->flags & PG_FAKE) {
513 pcount++;
514 }
515 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
516 (offset - trunc_page(offset)));
517 }
518
519 /*
520 * if this block isn't allocated, zero it instead of
521 * reading it. unless we are going to allocate blocks,
522 * mark the pages we zeroed PG_RDONLY.
523 */
524
525 if (blkno == (daddr_t)-1) {
526 int holepages = (round_page(offset + iobytes) -
527 trunc_page(offset)) >> PAGE_SHIFT;
528 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
529
530 sawhole = true;
531 memset((char *)kva + (offset - startoffset), 0,
532 iobytes);
533 skipbytes += iobytes;
534
535 for (i = 0; i < holepages; i++) {
536 if (memwrite) {
537 pgs[pidx + i]->flags &= ~PG_CLEAN;
538 }
539 if (!blockalloc) {
540 pgs[pidx + i]->flags |= PG_RDONLY;
541 }
542 }
543 continue;
544 }
545
546 /*
547 * allocate a sub-buf for this piece of the i/o
548 * (or just use mbp if there's only 1 piece),
549 * and start it going.
550 */
551
552 if (offset == startoffset && iobytes == bytes) {
553 bp = mbp;
554 } else {
555 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
556 vp, bp, vp->v_numoutput, 0);
557 bp = getiobuf(vp, true);
558 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
559 }
560 bp->b_lblkno = 0;
561
562 /* adjust physical blkno for partial blocks */
563 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
564 dev_bshift);
565
566 UVMHIST_LOG(ubchist,
567 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
568 bp, offset, bp->b_bcount, bp->b_blkno);
569
570 VOP_STRATEGY(devvp, bp);
571 }
572
573 loopdone:
574 nestiobuf_done(mbp, skipbytes, error);
575 if (async) {
576 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
577 genfs_node_unlock(vp);
578 error = 0;
579 goto out_err_free;
580 }
581 if (bp != NULL) {
582 error = biowait(mbp);
583 }
584
585 /* Remove the mapping (make KVA available as soon as possible) */
586 uvm_pagermapout(kva, npages);
587
588 /*
589 * if this we encountered a hole then we have to do a little more work.
590 * for read faults, we marked the page PG_RDONLY so that future
591 * write accesses to the page will fault again.
592 * for write faults, we must make sure that the backing store for
593 * the page is completely allocated while the pages are locked.
594 */
595
596 if (!error && sawhole && blockalloc) {
597 /*
598 * XXX: This assumes that we come here only via
599 * the mmio path
600 */
601 if (vp->v_mount->mnt_wapbl) {
602 error = WAPBL_BEGIN(vp->v_mount);
603 }
604
605 if (!error) {
606 error = GOP_ALLOC(vp, startoffset,
607 npages << PAGE_SHIFT, 0, cred);
608 if (vp->v_mount->mnt_wapbl) {
609 WAPBL_END(vp->v_mount);
610 }
611 }
612
613 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
614 startoffset, npages << PAGE_SHIFT, error,0);
615 if (!error) {
616 for (i = 0; i < npages; i++) {
617 struct vm_page *pg = pgs[i];
618
619 if (pg == NULL) {
620 continue;
621 }
622 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
623 UVMHIST_LOG(ubchist, "mark dirty pg %p",
624 pg,0,0,0);
625 }
626 }
627 }
628 genfs_node_unlock(vp);
629
630 putiobuf(mbp);
631 }
632
633 mutex_enter(&uobj->vmobjlock);
634
635 /*
636 * we're almost done! release the pages...
637 * for errors, we free the pages.
638 * otherwise we activate them and mark them as valid and clean.
639 * also, unbusy pages that were not actually requested.
640 */
641
642 if (error) {
643 for (i = 0; i < npages; i++) {
644 struct vm_page *pg = pgs[i];
645
646 if (pg == NULL) {
647 continue;
648 }
649 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
650 pg, pg->flags, 0,0);
651 if (pg->flags & PG_FAKE) {
652 pg->flags |= PG_RELEASED;
653 }
654 }
655 mutex_enter(&uvm_pageqlock);
656 uvm_page_unbusy(pgs, npages);
657 mutex_exit(&uvm_pageqlock);
658 mutex_exit(&uobj->vmobjlock);
659 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
660 goto out_err_free;
661 }
662
663 out:
664 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
665 error = 0;
666 mutex_enter(&uvm_pageqlock);
667 for (i = 0; i < npages; i++) {
668 struct vm_page *pg = pgs[i];
669 if (pg == NULL) {
670 continue;
671 }
672 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
673 pg, pg->flags, 0,0);
674 if (pg->flags & PG_FAKE && !overwrite) {
675 pg->flags &= ~(PG_FAKE);
676 pmap_clear_modify(pgs[i]);
677 }
678 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
679 if (i < ridx || i >= ridx + orignmempages || async) {
680 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
681 pg, pg->offset,0,0);
682 if (pg->flags & PG_WANTED) {
683 wakeup(pg);
684 }
685 if (pg->flags & PG_FAKE) {
686 KASSERT(overwrite);
687 uvm_pagezero(pg);
688 }
689 if (pg->flags & PG_RELEASED) {
690 uvm_pagefree(pg);
691 continue;
692 }
693 uvm_pageenqueue(pg);
694 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
695 UVM_PAGE_OWN(pg, NULL);
696 }
697 }
698 mutex_exit(&uvm_pageqlock);
699 mutex_exit(&uobj->vmobjlock);
700 if (ap->a_m != NULL) {
701 memcpy(ap->a_m, &pgs[ridx],
702 orignmempages * sizeof(struct vm_page *));
703 }
704
705 out_err_free:
706 if (pgs != NULL && pgs != pgs_onstack)
707 kmem_free(pgs, pgs_size);
708 out_err:
709 if (has_trans)
710 fstrans_done(vp->v_mount);
711 return (error);
712 }
713
714 /*
715 * generic VM putpages routine.
716 * Write the given range of pages to backing store.
717 *
718 * => "offhi == 0" means flush all pages at or after "offlo".
719 * => object should be locked by caller. we return with the
720 * object unlocked.
721 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
722 * thus, a caller might want to unlock higher level resources
723 * (e.g. vm_map) before calling flush.
724 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
725 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
726 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
727 * that new pages are inserted on the tail end of the list. thus,
728 * we can make a complete pass through the object in one go by starting
729 * at the head and working towards the tail (new pages are put in
730 * front of us).
731 * => NOTE: we are allowed to lock the page queues, so the caller
732 * must not be holding the page queue lock.
733 *
734 * note on "cleaning" object and PG_BUSY pages:
735 * this routine is holding the lock on the object. the only time
736 * that it can run into a PG_BUSY page that it does not own is if
737 * some other process has started I/O on the page (e.g. either
738 * a pagein, or a pageout). if the PG_BUSY page is being paged
739 * in, then it can not be dirty (!PG_CLEAN) because no one has
740 * had a chance to modify it yet. if the PG_BUSY page is being
741 * paged out then it means that someone else has already started
742 * cleaning the page for us (how nice!). in this case, if we
743 * have syncio specified, then after we make our pass through the
744 * object we need to wait for the other PG_BUSY pages to clear
745 * off (i.e. we need to do an iosync). also note that once a
746 * page is PG_BUSY it must stay in its object until it is un-busyed.
747 *
748 * note on page traversal:
749 * we can traverse the pages in an object either by going down the
750 * linked list in "uobj->memq", or we can go over the address range
751 * by page doing hash table lookups for each address. depending
752 * on how many pages are in the object it may be cheaper to do one
753 * or the other. we set "by_list" to true if we are using memq.
754 * if the cost of a hash lookup was equal to the cost of the list
755 * traversal we could compare the number of pages in the start->stop
756 * range to the total number of pages in the object. however, it
757 * seems that a hash table lookup is more expensive than the linked
758 * list traversal, so we multiply the number of pages in the
759 * range by an estimate of the relatively higher cost of the hash lookup.
760 */
761
762 int
763 genfs_putpages(void *v)
764 {
765 struct vop_putpages_args /* {
766 struct vnode *a_vp;
767 voff_t a_offlo;
768 voff_t a_offhi;
769 int a_flags;
770 } */ * const ap = v;
771
772 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
773 ap->a_flags, NULL);
774 }
775
776 int
777 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
778 int origflags, struct vm_page **busypg)
779 {
780 struct uvm_object * const uobj = &vp->v_uobj;
781 kmutex_t * const slock = &uobj->vmobjlock;
782 off_t off;
783 /* Even for strange MAXPHYS, the shift rounds down to a page */
784 #define maxpages (MAXPHYS >> PAGE_SHIFT)
785 int i, error, npages, nback;
786 int freeflag;
787 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
788 bool wasclean, by_list, needs_clean, yld;
789 bool async = (origflags & PGO_SYNCIO) == 0;
790 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
791 struct lwp * const l = curlwp ? curlwp : &lwp0;
792 struct genfs_node * const gp = VTOG(vp);
793 int flags;
794 int dirtygen;
795 bool modified;
796 bool need_wapbl;
797 bool has_trans;
798 bool cleanall;
799 bool onworklst;
800
801 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
802
803 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
804 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
805 KASSERT(startoff < endoff || endoff == 0);
806
807 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
808 vp, uobj->uo_npages, startoff, endoff - startoff);
809
810 has_trans = false;
811 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
812 (origflags & PGO_JOURNALLOCKED) == 0);
813
814 retry:
815 modified = false;
816 flags = origflags;
817 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
818 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
819 if (uobj->uo_npages == 0) {
820 if (vp->v_iflag & VI_ONWORKLST) {
821 vp->v_iflag &= ~VI_WRMAPDIRTY;
822 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
823 vn_syncer_remove_from_worklist(vp);
824 }
825 if (has_trans) {
826 if (need_wapbl)
827 WAPBL_END(vp->v_mount);
828 fstrans_done(vp->v_mount);
829 }
830 mutex_exit(slock);
831 return (0);
832 }
833
834 /*
835 * the vnode has pages, set up to process the request.
836 */
837
838 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
839 mutex_exit(slock);
840 if (pagedaemon) {
841 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
842 if (error)
843 return error;
844 } else
845 fstrans_start(vp->v_mount, FSTRANS_LAZY);
846 if (need_wapbl) {
847 error = WAPBL_BEGIN(vp->v_mount);
848 if (error) {
849 fstrans_done(vp->v_mount);
850 return error;
851 }
852 }
853 has_trans = true;
854 mutex_enter(slock);
855 goto retry;
856 }
857
858 error = 0;
859 wasclean = (vp->v_numoutput == 0);
860 off = startoff;
861 if (endoff == 0 || flags & PGO_ALLPAGES) {
862 endoff = trunc_page(LLONG_MAX);
863 }
864 by_list = (uobj->uo_npages <=
865 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
866
867 #if !defined(DEBUG)
868 /*
869 * if this vnode is known not to have dirty pages,
870 * don't bother to clean it out.
871 */
872
873 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
874 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
875 goto skip_scan;
876 }
877 flags &= ~PGO_CLEANIT;
878 }
879 #endif /* !defined(DEBUG) */
880
881 /*
882 * start the loop. when scanning by list, hold the last page
883 * in the list before we start. pages allocated after we start
884 * will be added to the end of the list, so we can stop at the
885 * current last page.
886 */
887
888 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
889 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
890 (vp->v_iflag & VI_ONWORKLST) != 0;
891 dirtygen = gp->g_dirtygen;
892 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
893 if (by_list) {
894 curmp.uobject = uobj;
895 curmp.offset = (voff_t)-1;
896 curmp.flags = PG_BUSY;
897 endmp.uobject = uobj;
898 endmp.offset = (voff_t)-1;
899 endmp.flags = PG_BUSY;
900 pg = TAILQ_FIRST(&uobj->memq);
901 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
902 } else {
903 pg = uvm_pagelookup(uobj, off);
904 }
905 nextpg = NULL;
906 while (by_list || off < endoff) {
907
908 /*
909 * if the current page is not interesting, move on to the next.
910 */
911
912 KASSERT(pg == NULL || pg->uobject == uobj);
913 KASSERT(pg == NULL ||
914 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
915 (pg->flags & PG_BUSY) != 0);
916 if (by_list) {
917 if (pg == &endmp) {
918 break;
919 }
920 if (pg->offset < startoff || pg->offset >= endoff ||
921 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
922 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
923 wasclean = false;
924 }
925 pg = TAILQ_NEXT(pg, listq.queue);
926 continue;
927 }
928 off = pg->offset;
929 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
930 if (pg != NULL) {
931 wasclean = false;
932 }
933 off += PAGE_SIZE;
934 if (off < endoff) {
935 pg = uvm_pagelookup(uobj, off);
936 }
937 continue;
938 }
939
940 /*
941 * if the current page needs to be cleaned and it's busy,
942 * wait for it to become unbusy.
943 */
944
945 yld = (l->l_cpu->ci_schedstate.spc_flags &
946 SPCF_SHOULDYIELD) && !pagedaemon;
947 if (pg->flags & PG_BUSY || yld) {
948 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
949 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
950 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
951 error = EDEADLK;
952 if (busypg != NULL)
953 *busypg = pg;
954 break;
955 }
956 if (pagedaemon) {
957 /*
958 * someone has taken the page while we
959 * dropped the lock for fstrans_start.
960 */
961 break;
962 }
963 if (by_list) {
964 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
965 UVMHIST_LOG(ubchist, "curmp next %p",
966 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
967 }
968 if (yld) {
969 mutex_exit(slock);
970 preempt();
971 mutex_enter(slock);
972 } else {
973 pg->flags |= PG_WANTED;
974 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
975 mutex_enter(slock);
976 }
977 if (by_list) {
978 UVMHIST_LOG(ubchist, "after next %p",
979 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
980 pg = TAILQ_NEXT(&curmp, listq.queue);
981 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
982 } else {
983 pg = uvm_pagelookup(uobj, off);
984 }
985 continue;
986 }
987
988 /*
989 * if we're freeing, remove all mappings of the page now.
990 * if we're cleaning, check if the page is needs to be cleaned.
991 */
992
993 if (flags & PGO_FREE) {
994 pmap_page_protect(pg, VM_PROT_NONE);
995 } else if (flags & PGO_CLEANIT) {
996
997 /*
998 * if we still have some hope to pull this vnode off
999 * from the syncer queue, write-protect the page.
1000 */
1001
1002 if (cleanall && wasclean &&
1003 gp->g_dirtygen == dirtygen) {
1004
1005 /*
1006 * uobj pages get wired only by uvm_fault
1007 * where uobj is locked.
1008 */
1009
1010 if (pg->wire_count == 0) {
1011 pmap_page_protect(pg,
1012 VM_PROT_READ|VM_PROT_EXECUTE);
1013 } else {
1014 cleanall = false;
1015 }
1016 }
1017 }
1018
1019 if (flags & PGO_CLEANIT) {
1020 needs_clean = pmap_clear_modify(pg) ||
1021 (pg->flags & PG_CLEAN) == 0;
1022 pg->flags |= PG_CLEAN;
1023 } else {
1024 needs_clean = false;
1025 }
1026
1027 /*
1028 * if we're cleaning, build a cluster.
1029 * the cluster will consist of pages which are currently dirty,
1030 * but they will be returned to us marked clean.
1031 * if not cleaning, just operate on the one page.
1032 */
1033
1034 if (needs_clean) {
1035 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1036 wasclean = false;
1037 memset(pgs, 0, sizeof(pgs));
1038 pg->flags |= PG_BUSY;
1039 UVM_PAGE_OWN(pg, "genfs_putpages");
1040
1041 /*
1042 * first look backward.
1043 */
1044
1045 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1046 nback = npages;
1047 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1048 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1049 if (nback) {
1050 memmove(&pgs[0], &pgs[npages - nback],
1051 nback * sizeof(pgs[0]));
1052 if (npages - nback < nback)
1053 memset(&pgs[nback], 0,
1054 (npages - nback) * sizeof(pgs[0]));
1055 else
1056 memset(&pgs[npages - nback], 0,
1057 nback * sizeof(pgs[0]));
1058 }
1059
1060 /*
1061 * then plug in our page of interest.
1062 */
1063
1064 pgs[nback] = pg;
1065
1066 /*
1067 * then look forward to fill in the remaining space in
1068 * the array of pages.
1069 */
1070
1071 npages = maxpages - nback - 1;
1072 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1073 &pgs[nback + 1],
1074 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1075 npages += nback + 1;
1076 } else {
1077 pgs[0] = pg;
1078 npages = 1;
1079 nback = 0;
1080 }
1081
1082 /*
1083 * apply FREE or DEACTIVATE options if requested.
1084 */
1085
1086 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1087 mutex_enter(&uvm_pageqlock);
1088 }
1089 for (i = 0; i < npages; i++) {
1090 tpg = pgs[i];
1091 KASSERT(tpg->uobject == uobj);
1092 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1093 pg = tpg;
1094 if (tpg->offset < startoff || tpg->offset >= endoff)
1095 continue;
1096 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1097 uvm_pagedeactivate(tpg);
1098 } else if (flags & PGO_FREE) {
1099 pmap_page_protect(tpg, VM_PROT_NONE);
1100 if (tpg->flags & PG_BUSY) {
1101 tpg->flags |= freeflag;
1102 if (pagedaemon) {
1103 uvm_pageout_start(1);
1104 uvm_pagedequeue(tpg);
1105 }
1106 } else {
1107
1108 /*
1109 * ``page is not busy''
1110 * implies that npages is 1
1111 * and needs_clean is false.
1112 */
1113
1114 nextpg = TAILQ_NEXT(tpg, listq.queue);
1115 uvm_pagefree(tpg);
1116 if (pagedaemon)
1117 uvmexp.pdfreed++;
1118 }
1119 }
1120 }
1121 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1122 mutex_exit(&uvm_pageqlock);
1123 }
1124 if (needs_clean) {
1125 modified = true;
1126
1127 /*
1128 * start the i/o. if we're traversing by list,
1129 * keep our place in the list with a marker page.
1130 */
1131
1132 if (by_list) {
1133 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1134 listq.queue);
1135 }
1136 mutex_exit(slock);
1137 error = GOP_WRITE(vp, pgs, npages, flags);
1138 mutex_enter(slock);
1139 if (by_list) {
1140 pg = TAILQ_NEXT(&curmp, listq.queue);
1141 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1142 }
1143 if (error) {
1144 break;
1145 }
1146 if (by_list) {
1147 continue;
1148 }
1149 }
1150
1151 /*
1152 * find the next page and continue if there was no error.
1153 */
1154
1155 if (by_list) {
1156 if (nextpg) {
1157 pg = nextpg;
1158 nextpg = NULL;
1159 } else {
1160 pg = TAILQ_NEXT(pg, listq.queue);
1161 }
1162 } else {
1163 off += (npages - nback) << PAGE_SHIFT;
1164 if (off < endoff) {
1165 pg = uvm_pagelookup(uobj, off);
1166 }
1167 }
1168 }
1169 if (by_list) {
1170 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1171 }
1172
1173 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1174 (vp->v_type != VBLK ||
1175 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1176 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1177 }
1178
1179 /*
1180 * if we're cleaning and there was nothing to clean,
1181 * take us off the syncer list. if we started any i/o
1182 * and we're doing sync i/o, wait for all writes to finish.
1183 */
1184
1185 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1186 (vp->v_iflag & VI_ONWORKLST) != 0) {
1187 #if defined(DEBUG)
1188 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1189 if ((pg->flags & PG_CLEAN) == 0) {
1190 printf("%s: %p: !CLEAN\n", __func__, pg);
1191 }
1192 if (pmap_is_modified(pg)) {
1193 printf("%s: %p: modified\n", __func__, pg);
1194 }
1195 }
1196 #endif /* defined(DEBUG) */
1197 vp->v_iflag &= ~VI_WRMAPDIRTY;
1198 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1199 vn_syncer_remove_from_worklist(vp);
1200 }
1201
1202 #if !defined(DEBUG)
1203 skip_scan:
1204 #endif /* !defined(DEBUG) */
1205
1206 /* Wait for output to complete. */
1207 if (!wasclean && !async && vp->v_numoutput != 0) {
1208 while (vp->v_numoutput != 0)
1209 cv_wait(&vp->v_cv, slock);
1210 }
1211 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1212 mutex_exit(slock);
1213
1214 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1215 /*
1216 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1217 * retrying is not a big deal because, in many cases,
1218 * uobj->uo_npages is already 0 here.
1219 */
1220 mutex_enter(slock);
1221 goto retry;
1222 }
1223
1224 if (has_trans) {
1225 if (need_wapbl)
1226 WAPBL_END(vp->v_mount);
1227 fstrans_done(vp->v_mount);
1228 }
1229
1230 return (error);
1231 }
1232
1233 int
1234 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1235 {
1236 off_t off;
1237 vaddr_t kva;
1238 size_t len;
1239 int error;
1240 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1241
1242 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1243 vp, pgs, npages, flags);
1244
1245 off = pgs[0]->offset;
1246 kva = uvm_pagermapin(pgs, npages,
1247 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1248 len = npages << PAGE_SHIFT;
1249
1250 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1251 uvm_aio_biodone);
1252
1253 return error;
1254 }
1255
1256 int
1257 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1258 {
1259 off_t off;
1260 vaddr_t kva;
1261 size_t len;
1262 int error;
1263 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1264
1265 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1266 vp, pgs, npages, flags);
1267
1268 off = pgs[0]->offset;
1269 kva = uvm_pagermapin(pgs, npages,
1270 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1271 len = npages << PAGE_SHIFT;
1272
1273 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1274 uvm_aio_biodone);
1275
1276 return error;
1277 }
1278
1279 /*
1280 * Backend routine for doing I/O to vnode pages. Pages are already locked
1281 * and mapped into kernel memory. Here we just look up the underlying
1282 * device block addresses and call the strategy routine.
1283 */
1284
1285 static int
1286 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1287 enum uio_rw rw, void (*iodone)(struct buf *))
1288 {
1289 int s, error;
1290 int fs_bshift, dev_bshift;
1291 off_t eof, offset, startoffset;
1292 size_t bytes, iobytes, skipbytes;
1293 struct buf *mbp, *bp;
1294 const bool async = (flags & PGO_SYNCIO) == 0;
1295 const bool iowrite = rw == UIO_WRITE;
1296 const int brw = iowrite ? B_WRITE : B_READ;
1297 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1298
1299 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1300 vp, kva, len, flags);
1301
1302 KASSERT(vp->v_size <= vp->v_writesize);
1303 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1304 if (vp->v_type != VBLK) {
1305 fs_bshift = vp->v_mount->mnt_fs_bshift;
1306 dev_bshift = vp->v_mount->mnt_dev_bshift;
1307 } else {
1308 fs_bshift = DEV_BSHIFT;
1309 dev_bshift = DEV_BSHIFT;
1310 }
1311 error = 0;
1312 startoffset = off;
1313 bytes = MIN(len, eof - startoffset);
1314 skipbytes = 0;
1315 KASSERT(bytes != 0);
1316
1317 if (iowrite) {
1318 mutex_enter(&vp->v_interlock);
1319 vp->v_numoutput += 2;
1320 mutex_exit(&vp->v_interlock);
1321 }
1322 mbp = getiobuf(vp, true);
1323 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1324 vp, mbp, vp->v_numoutput, bytes);
1325 mbp->b_bufsize = len;
1326 mbp->b_data = (void *)kva;
1327 mbp->b_resid = mbp->b_bcount = bytes;
1328 mbp->b_cflags = BC_BUSY | BC_AGE;
1329 if (async) {
1330 mbp->b_flags = brw | B_ASYNC;
1331 mbp->b_iodone = iodone;
1332 } else {
1333 mbp->b_flags = brw;
1334 mbp->b_iodone = NULL;
1335 }
1336 if (curlwp == uvm.pagedaemon_lwp)
1337 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1338 else if (async)
1339 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1340 else
1341 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1342
1343 bp = NULL;
1344 for (offset = startoffset;
1345 bytes > 0;
1346 offset += iobytes, bytes -= iobytes) {
1347 int run;
1348 daddr_t lbn, blkno;
1349 struct vnode *devvp;
1350
1351 /*
1352 * bmap the file to find out the blkno to read from and
1353 * how much we can read in one i/o. if bmap returns an error,
1354 * skip the rest of the top-level i/o.
1355 */
1356
1357 lbn = offset >> fs_bshift;
1358 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1359 if (error) {
1360 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1361 lbn,error,0,0);
1362 skipbytes += bytes;
1363 bytes = 0;
1364 goto loopdone;
1365 }
1366
1367 /*
1368 * see how many pages can be read with this i/o.
1369 * reduce the i/o size if necessary to avoid
1370 * overwriting pages with valid data.
1371 */
1372
1373 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1374 bytes);
1375
1376 /*
1377 * if this block isn't allocated, zero it instead of
1378 * reading it. unless we are going to allocate blocks,
1379 * mark the pages we zeroed PG_RDONLY.
1380 */
1381
1382 if (blkno == (daddr_t)-1) {
1383 if (!iowrite) {
1384 memset((char *)kva + (offset - startoffset), 0,
1385 iobytes);
1386 }
1387 skipbytes += iobytes;
1388 continue;
1389 }
1390
1391 /*
1392 * allocate a sub-buf for this piece of the i/o
1393 * (or just use mbp if there's only 1 piece),
1394 * and start it going.
1395 */
1396
1397 if (offset == startoffset && iobytes == bytes) {
1398 bp = mbp;
1399 } else {
1400 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1401 vp, bp, vp->v_numoutput, 0);
1402 bp = getiobuf(vp, true);
1403 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1404 }
1405 bp->b_lblkno = 0;
1406
1407 /* adjust physical blkno for partial blocks */
1408 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1409 dev_bshift);
1410
1411 UVMHIST_LOG(ubchist,
1412 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1413 bp, offset, bp->b_bcount, bp->b_blkno);
1414
1415 VOP_STRATEGY(devvp, bp);
1416 }
1417
1418 loopdone:
1419 if (skipbytes) {
1420 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1421 }
1422 nestiobuf_done(mbp, skipbytes, error);
1423 if (async) {
1424 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1425 return (0);
1426 }
1427 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1428 error = biowait(mbp);
1429 s = splbio();
1430 (*iodone)(mbp);
1431 splx(s);
1432 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1433 return (error);
1434 }
1435
1436 int
1437 genfs_compat_getpages(void *v)
1438 {
1439 struct vop_getpages_args /* {
1440 struct vnode *a_vp;
1441 voff_t a_offset;
1442 struct vm_page **a_m;
1443 int *a_count;
1444 int a_centeridx;
1445 vm_prot_t a_access_type;
1446 int a_advice;
1447 int a_flags;
1448 } */ *ap = v;
1449
1450 off_t origoffset;
1451 struct vnode *vp = ap->a_vp;
1452 struct uvm_object *uobj = &vp->v_uobj;
1453 struct vm_page *pg, **pgs;
1454 vaddr_t kva;
1455 int i, error, orignpages, npages;
1456 struct iovec iov;
1457 struct uio uio;
1458 kauth_cred_t cred = curlwp->l_cred;
1459 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1460
1461 error = 0;
1462 origoffset = ap->a_offset;
1463 orignpages = *ap->a_count;
1464 pgs = ap->a_m;
1465
1466 if (memwrite && (vp->v_iflag & VI_ONWORKLST) == 0) {
1467 vn_syncer_add_to_worklist(vp, filedelay);
1468 }
1469 if (ap->a_flags & PGO_LOCKED) {
1470 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1471 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1472
1473 return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
1474 }
1475 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1476 mutex_exit(&uobj->vmobjlock);
1477 return (EINVAL);
1478 }
1479 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1480 mutex_exit(&uobj->vmobjlock);
1481 return 0;
1482 }
1483 npages = orignpages;
1484 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1485 mutex_exit(&uobj->vmobjlock);
1486 kva = uvm_pagermapin(pgs, npages,
1487 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1488 for (i = 0; i < npages; i++) {
1489 pg = pgs[i];
1490 if ((pg->flags & PG_FAKE) == 0) {
1491 continue;
1492 }
1493 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1494 iov.iov_len = PAGE_SIZE;
1495 uio.uio_iov = &iov;
1496 uio.uio_iovcnt = 1;
1497 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1498 uio.uio_rw = UIO_READ;
1499 uio.uio_resid = PAGE_SIZE;
1500 UIO_SETUP_SYSSPACE(&uio);
1501 /* XXX vn_lock */
1502 error = VOP_READ(vp, &uio, 0, cred);
1503 if (error) {
1504 break;
1505 }
1506 if (uio.uio_resid) {
1507 memset(iov.iov_base, 0, uio.uio_resid);
1508 }
1509 }
1510 uvm_pagermapout(kva, npages);
1511 mutex_enter(&uobj->vmobjlock);
1512 mutex_enter(&uvm_pageqlock);
1513 for (i = 0; i < npages; i++) {
1514 pg = pgs[i];
1515 if (error && (pg->flags & PG_FAKE) != 0) {
1516 pg->flags |= PG_RELEASED;
1517 } else {
1518 pmap_clear_modify(pg);
1519 uvm_pageactivate(pg);
1520 }
1521 }
1522 if (error) {
1523 uvm_page_unbusy(pgs, npages);
1524 }
1525 mutex_exit(&uvm_pageqlock);
1526 mutex_exit(&uobj->vmobjlock);
1527 return (error);
1528 }
1529
1530 int
1531 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1532 int flags)
1533 {
1534 off_t offset;
1535 struct iovec iov;
1536 struct uio uio;
1537 kauth_cred_t cred = curlwp->l_cred;
1538 struct buf *bp;
1539 vaddr_t kva;
1540 int error;
1541
1542 offset = pgs[0]->offset;
1543 kva = uvm_pagermapin(pgs, npages,
1544 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1545
1546 iov.iov_base = (void *)kva;
1547 iov.iov_len = npages << PAGE_SHIFT;
1548 uio.uio_iov = &iov;
1549 uio.uio_iovcnt = 1;
1550 uio.uio_offset = offset;
1551 uio.uio_rw = UIO_WRITE;
1552 uio.uio_resid = npages << PAGE_SHIFT;
1553 UIO_SETUP_SYSSPACE(&uio);
1554 /* XXX vn_lock */
1555 error = VOP_WRITE(vp, &uio, 0, cred);
1556
1557 mutex_enter(&vp->v_interlock);
1558 vp->v_numoutput++;
1559 mutex_exit(&vp->v_interlock);
1560
1561 bp = getiobuf(vp, true);
1562 bp->b_cflags = BC_BUSY | BC_AGE;
1563 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1564 bp->b_data = (char *)kva;
1565 bp->b_bcount = npages << PAGE_SHIFT;
1566 bp->b_bufsize = npages << PAGE_SHIFT;
1567 bp->b_resid = 0;
1568 bp->b_error = error;
1569 uvm_aio_aiodone(bp);
1570 return (error);
1571 }
1572
1573 /*
1574 * Process a uio using direct I/O. If we reach a part of the request
1575 * which cannot be processed in this fashion for some reason, just return.
1576 * The caller must handle some additional part of the request using
1577 * buffered I/O before trying direct I/O again.
1578 */
1579
1580 void
1581 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1582 {
1583 struct vmspace *vs;
1584 struct iovec *iov;
1585 vaddr_t va;
1586 size_t len;
1587 const int mask = DEV_BSIZE - 1;
1588 int error;
1589 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1590 (ioflag & IO_JOURNALLOCKED) == 0);
1591
1592 /*
1593 * We only support direct I/O to user space for now.
1594 */
1595
1596 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1597 return;
1598 }
1599
1600 /*
1601 * If the vnode is mapped, we would need to get the getpages lock
1602 * to stabilize the bmap, but then we would get into trouble whil e
1603 * locking the pages if the pages belong to this same vnode (or a
1604 * multi-vnode cascade to the same effect). Just fall back to
1605 * buffered I/O if the vnode is mapped to avoid this mess.
1606 */
1607
1608 if (vp->v_vflag & VV_MAPPED) {
1609 return;
1610 }
1611
1612 if (need_wapbl) {
1613 error = WAPBL_BEGIN(vp->v_mount);
1614 if (error)
1615 return;
1616 }
1617
1618 /*
1619 * Do as much of the uio as possible with direct I/O.
1620 */
1621
1622 vs = uio->uio_vmspace;
1623 while (uio->uio_resid) {
1624 iov = uio->uio_iov;
1625 if (iov->iov_len == 0) {
1626 uio->uio_iov++;
1627 uio->uio_iovcnt--;
1628 continue;
1629 }
1630 va = (vaddr_t)iov->iov_base;
1631 len = MIN(iov->iov_len, genfs_maxdio);
1632 len &= ~mask;
1633
1634 /*
1635 * If the next chunk is smaller than DEV_BSIZE or extends past
1636 * the current EOF, then fall back to buffered I/O.
1637 */
1638
1639 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1640 break;
1641 }
1642
1643 /*
1644 * Check alignment. The file offset must be at least
1645 * sector-aligned. The exact constraint on memory alignment
1646 * is very hardware-dependent, but requiring sector-aligned
1647 * addresses there too is safe.
1648 */
1649
1650 if (uio->uio_offset & mask || va & mask) {
1651 break;
1652 }
1653 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1654 uio->uio_rw);
1655 if (error) {
1656 break;
1657 }
1658 iov->iov_base = (char *)iov->iov_base + len;
1659 iov->iov_len -= len;
1660 uio->uio_offset += len;
1661 uio->uio_resid -= len;
1662 }
1663
1664 if (need_wapbl)
1665 WAPBL_END(vp->v_mount);
1666 }
1667
1668 /*
1669 * Iodone routine for direct I/O. We don't do much here since the request is
1670 * always synchronous, so the caller will do most of the work after biowait().
1671 */
1672
1673 static void
1674 genfs_dio_iodone(struct buf *bp)
1675 {
1676
1677 KASSERT((bp->b_flags & B_ASYNC) == 0);
1678 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1679 mutex_enter(bp->b_objlock);
1680 vwakeup(bp);
1681 mutex_exit(bp->b_objlock);
1682 }
1683 putiobuf(bp);
1684 }
1685
1686 /*
1687 * Process one chunk of a direct I/O request.
1688 */
1689
1690 static int
1691 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1692 off_t off, enum uio_rw rw)
1693 {
1694 struct vm_map *map;
1695 struct pmap *upm, *kpm;
1696 size_t klen = round_page(uva + len) - trunc_page(uva);
1697 off_t spoff, epoff;
1698 vaddr_t kva, puva;
1699 paddr_t pa;
1700 vm_prot_t prot;
1701 int error, rv, poff, koff;
1702 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
1703 (rw == UIO_WRITE ? PGO_FREE : 0);
1704
1705 /*
1706 * For writes, verify that this range of the file already has fully
1707 * allocated backing store. If there are any holes, just punt and
1708 * make the caller take the buffered write path.
1709 */
1710
1711 if (rw == UIO_WRITE) {
1712 daddr_t lbn, elbn, blkno;
1713 int bsize, bshift, run;
1714
1715 bshift = vp->v_mount->mnt_fs_bshift;
1716 bsize = 1 << bshift;
1717 lbn = off >> bshift;
1718 elbn = (off + len + bsize - 1) >> bshift;
1719 while (lbn < elbn) {
1720 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
1721 if (error) {
1722 return error;
1723 }
1724 if (blkno == (daddr_t)-1) {
1725 return ENOSPC;
1726 }
1727 lbn += 1 + run;
1728 }
1729 }
1730
1731 /*
1732 * Flush any cached pages for parts of the file that we're about to
1733 * access. If we're writing, invalidate pages as well.
1734 */
1735
1736 spoff = trunc_page(off);
1737 epoff = round_page(off + len);
1738 mutex_enter(&vp->v_interlock);
1739 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
1740 if (error) {
1741 return error;
1742 }
1743
1744 /*
1745 * Wire the user pages and remap them into kernel memory.
1746 */
1747
1748 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
1749 error = uvm_vslock(vs, (void *)uva, len, prot);
1750 if (error) {
1751 return error;
1752 }
1753
1754 map = &vs->vm_map;
1755 upm = vm_map_pmap(map);
1756 kpm = vm_map_pmap(kernel_map);
1757 kva = uvm_km_alloc(kernel_map, klen, 0,
1758 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
1759 puva = trunc_page(uva);
1760 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
1761 rv = pmap_extract(upm, puva + poff, &pa);
1762 KASSERT(rv);
1763 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
1764 }
1765 pmap_update(kpm);
1766
1767 /*
1768 * Do the I/O.
1769 */
1770
1771 koff = uva - trunc_page(uva);
1772 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
1773 genfs_dio_iodone);
1774
1775 /*
1776 * Tear down the kernel mapping.
1777 */
1778
1779 pmap_remove(kpm, kva, kva + klen);
1780 pmap_update(kpm);
1781 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
1782
1783 /*
1784 * Unwire the user pages.
1785 */
1786
1787 uvm_vsunlock(vs, (void *)uva, len);
1788 return error;
1789 }
1790
1791