Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36
      1 /*	$NetBSD: genfs_io.c,v 1.36 2010/01/30 12:06:20 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36 2010/01/30 12:06:20 uebayasi Exp $");
     35 
     36 #include <sys/param.h>
     37 #include <sys/systm.h>
     38 #include <sys/proc.h>
     39 #include <sys/kernel.h>
     40 #include <sys/mount.h>
     41 #include <sys/namei.h>
     42 #include <sys/vnode.h>
     43 #include <sys/fcntl.h>
     44 #include <sys/kmem.h>
     45 #include <sys/poll.h>
     46 #include <sys/mman.h>
     47 #include <sys/file.h>
     48 #include <sys/kauth.h>
     49 #include <sys/fstrans.h>
     50 #include <sys/buf.h>
     51 
     52 #include <miscfs/genfs/genfs.h>
     53 #include <miscfs/genfs/genfs_node.h>
     54 #include <miscfs/specfs/specdev.h>
     55 
     56 #include <uvm/uvm.h>
     57 #include <uvm/uvm_pager.h>
     58 
     59 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     60     off_t, enum uio_rw);
     61 static void genfs_dio_iodone(struct buf *);
     62 
     63 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     64     void (*)(struct buf *));
     65 static inline void genfs_rel_pages(struct vm_page **, int);
     66 
     67 int genfs_maxdio = MAXPHYS;
     68 
     69 static inline void
     70 genfs_rel_pages(struct vm_page **pgs, int npages)
     71 {
     72 	int i;
     73 
     74 	for (i = 0; i < npages; i++) {
     75 		struct vm_page *pg = pgs[i];
     76 
     77 		if (pg == NULL || pg == PGO_DONTCARE)
     78 			continue;
     79 		if (pg->flags & PG_FAKE) {
     80 			pg->flags |= PG_RELEASED;
     81 		}
     82 	}
     83 	mutex_enter(&uvm_pageqlock);
     84 	uvm_page_unbusy(pgs, npages);
     85 	mutex_exit(&uvm_pageqlock);
     86 }
     87 
     88 /*
     89  * generic VM getpages routine.
     90  * Return PG_BUSY pages for the given range,
     91  * reading from backing store if necessary.
     92  */
     93 
     94 int
     95 genfs_getpages(void *v)
     96 {
     97 	struct vop_getpages_args /* {
     98 		struct vnode *a_vp;
     99 		voff_t a_offset;
    100 		struct vm_page **a_m;
    101 		int *a_count;
    102 		int a_centeridx;
    103 		vm_prot_t a_access_type;
    104 		int a_advice;
    105 		int a_flags;
    106 	} */ * const ap = v;
    107 
    108 	off_t diskeof, memeof;
    109 	int i, error, npages;
    110 	const int flags = ap->a_flags;
    111 	struct vnode * const vp = ap->a_vp;
    112 	struct genfs_node * const gp = VTOG(vp);
    113 	struct uvm_object * const uobj = &vp->v_uobj;
    114 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    115 	const bool async = (flags & PGO_SYNCIO) == 0;
    116 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    117 	bool has_trans = false;
    118 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    119 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    120 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    121 
    122 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    123 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    124 
    125 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    126 	    vp->v_type == VLNK || vp->v_type == VBLK);
    127 
    128 startover:
    129 	error = 0;
    130 	const voff_t origvsize = vp->v_size;
    131 	const off_t origoffset = ap->a_offset;
    132 	const int orignpages = *ap->a_count;
    133 
    134 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    135 	if (flags & PGO_PASTEOF) {
    136 		off_t newsize;
    137 #if defined(DIAGNOSTIC)
    138 		off_t writeeof;
    139 #endif /* defined(DIAGNOSTIC) */
    140 
    141 		newsize = MAX(origvsize,
    142 		    origoffset + (orignpages << PAGE_SHIFT));
    143 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    144 #if defined(DIAGNOSTIC)
    145 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    146 		if (newsize > round_page(writeeof)) {
    147 			panic("%s: past eof", __func__);
    148 		}
    149 #endif /* defined(DIAGNOSTIC) */
    150 	} else {
    151 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    152 	}
    153 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    154 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    155 	KASSERT(orignpages > 0);
    156 
    157 	/*
    158 	 * Bounds-check the request.
    159 	 */
    160 
    161 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    162 		if ((flags & PGO_LOCKED) == 0) {
    163 			mutex_exit(&uobj->vmobjlock);
    164 		}
    165 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    166 		    origoffset, *ap->a_count, memeof,0);
    167 		error = EINVAL;
    168 		goto out_err;
    169 	}
    170 
    171 	/* uobj is locked */
    172 
    173 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    174 	    (vp->v_type != VBLK ||
    175 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    176 		int updflags = 0;
    177 
    178 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    179 			updflags = GOP_UPDATE_ACCESSED;
    180 		}
    181 		if (memwrite) {
    182 			updflags |= GOP_UPDATE_MODIFIED;
    183 		}
    184 		if (updflags != 0) {
    185 			GOP_MARKUPDATE(vp, updflags);
    186 		}
    187 	}
    188 
    189 	if (memwrite) {
    190 		gp->g_dirtygen++;
    191 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    192 			vn_syncer_add_to_worklist(vp, filedelay);
    193 		}
    194 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    195 			vp->v_iflag |= VI_WRMAPDIRTY;
    196 		}
    197 	}
    198 
    199 	/*
    200 	 * For PGO_LOCKED requests, just return whatever's in memory.
    201 	 */
    202 
    203 	if (flags & PGO_LOCKED) {
    204 		int nfound;
    205 		struct vm_page *pg;
    206 
    207 		npages = *ap->a_count;
    208 #if defined(DEBUG)
    209 		for (i = 0; i < npages; i++) {
    210 			pg = ap->a_m[i];
    211 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    212 		}
    213 #endif /* defined(DEBUG) */
    214 		nfound = uvn_findpages(uobj, origoffset, &npages,
    215 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    216 		KASSERT(npages == *ap->a_count);
    217 		if (nfound == 0) {
    218 			error = EBUSY;
    219 			goto out_err;
    220 		}
    221 		if (!genfs_node_rdtrylock(vp)) {
    222 			genfs_rel_pages(ap->a_m, npages);
    223 
    224 			/*
    225 			 * restore the array.
    226 			 */
    227 
    228 			for (i = 0; i < npages; i++) {
    229 				pg = ap->a_m[i];
    230 
    231 				if (pg != NULL || pg != PGO_DONTCARE) {
    232 					ap->a_m[i] = NULL;
    233 				}
    234 			}
    235 		} else {
    236 			genfs_node_unlock(vp);
    237 		}
    238 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    239 		goto out_err;
    240 	}
    241 	mutex_exit(&uobj->vmobjlock);
    242 
    243 	/*
    244 	 * find the requested pages and make some simple checks.
    245 	 * leave space in the page array for a whole block.
    246 	 */
    247 
    248 	const int fs_bshift = (vp->v_type != VBLK) ?
    249 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    250 	const int dev_bshift = (vp->v_type != VBLK) ?
    251 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    252 	const int fs_bsize = 1 << fs_bshift;
    253 #define	blk_mask	(fs_bsize - 1)
    254 #define	trunc_blk(x)	((x) & ~blk_mask)
    255 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    256 
    257 	const int orignmempages = MIN(orignpages,
    258 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    259 	npages = orignmempages;
    260 	const off_t startoffset = trunc_blk(origoffset);
    261 	const off_t endoffset = MIN(
    262 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    263 	    round_page(memeof));
    264 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    265 
    266 	const int pgs_size = sizeof(struct vm_page *) *
    267 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    268 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    269 
    270 	if (pgs_size > sizeof(pgs_onstack)) {
    271 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    272 		if (pgs == NULL) {
    273 			pgs = pgs_onstack;
    274 			error = ENOMEM;
    275 			goto out_err;
    276 		}
    277 	} else {
    278 		pgs = pgs_onstack;
    279 		(void)memset(pgs, 0, pgs_size);
    280 	}
    281 
    282 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    283 	    ridx, npages, startoffset, endoffset);
    284 
    285 	if (!has_trans) {
    286 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    287 		has_trans = true;
    288 	}
    289 
    290 	/*
    291 	 * hold g_glock to prevent a race with truncate.
    292 	 *
    293 	 * check if our idea of v_size is still valid.
    294 	 */
    295 
    296 	if (blockalloc) {
    297 		rw_enter(&gp->g_glock, RW_WRITER);
    298 	} else {
    299 		rw_enter(&gp->g_glock, RW_READER);
    300 	}
    301 	mutex_enter(&uobj->vmobjlock);
    302 	if (vp->v_size < origvsize) {
    303 		genfs_node_unlock(vp);
    304 		if (pgs != pgs_onstack)
    305 			kmem_free(pgs, pgs_size);
    306 		goto startover;
    307 	}
    308 
    309 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    310 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    311 		genfs_node_unlock(vp);
    312 		KASSERT(async != 0);
    313 		genfs_rel_pages(&pgs[ridx], orignmempages);
    314 		mutex_exit(&uobj->vmobjlock);
    315 		error = EBUSY;
    316 		goto out_err_free;
    317 	}
    318 
    319 	/*
    320 	 * if the pages are already resident, just return them.
    321 	 */
    322 
    323 	for (i = 0; i < npages; i++) {
    324 		struct vm_page *pg = pgs[ridx + i];
    325 
    326 		if ((pg->flags & PG_FAKE) ||
    327 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    328 			break;
    329 		}
    330 	}
    331 	if (i == npages) {
    332 		genfs_node_unlock(vp);
    333 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    334 		npages += ridx;
    335 		goto out;
    336 	}
    337 
    338 	/*
    339 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    340 	 */
    341 
    342 	if (overwrite) {
    343 		genfs_node_unlock(vp);
    344 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    345 
    346 		for (i = 0; i < npages; i++) {
    347 			struct vm_page *pg = pgs[ridx + i];
    348 
    349 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    350 		}
    351 		npages += ridx;
    352 		goto out;
    353 	}
    354 
    355 	/*
    356 	 * the page wasn't resident and we're not overwriting,
    357 	 * so we're going to have to do some i/o.
    358 	 * find any additional pages needed to cover the expanded range.
    359 	 */
    360 
    361 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    362 	if (startoffset != origoffset || npages != orignmempages) {
    363 		int npgs;
    364 
    365 		/*
    366 		 * we need to avoid deadlocks caused by locking
    367 		 * additional pages at lower offsets than pages we
    368 		 * already have locked.  unlock them all and start over.
    369 		 */
    370 
    371 		genfs_rel_pages(&pgs[ridx], orignmempages);
    372 		memset(pgs, 0, pgs_size);
    373 
    374 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    375 		    startoffset, endoffset, 0,0);
    376 		npgs = npages;
    377 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    378 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    379 			genfs_node_unlock(vp);
    380 			KASSERT(async != 0);
    381 			genfs_rel_pages(pgs, npages);
    382 			mutex_exit(&uobj->vmobjlock);
    383 			error = EBUSY;
    384 			goto out_err_free;
    385 		}
    386 	}
    387 
    388 	mutex_exit(&uobj->vmobjlock);
    389 
    390     {
    391 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    392 	vaddr_t kva;
    393 	struct buf *bp, *mbp;
    394 	bool sawhole = false;
    395 
    396 	/*
    397 	 * read the desired page(s).
    398 	 */
    399 
    400 	totalbytes = npages << PAGE_SHIFT;
    401 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    402 	tailbytes = totalbytes - bytes;
    403 	skipbytes = 0;
    404 
    405 	kva = uvm_pagermapin(pgs, npages,
    406 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    407 
    408 	mbp = getiobuf(vp, true);
    409 	mbp->b_bufsize = totalbytes;
    410 	mbp->b_data = (void *)kva;
    411 	mbp->b_resid = mbp->b_bcount = bytes;
    412 	mbp->b_cflags = BC_BUSY;
    413 	if (async) {
    414 		mbp->b_flags = B_READ | B_ASYNC;
    415 		mbp->b_iodone = uvm_aio_biodone;
    416 	} else {
    417 		mbp->b_flags = B_READ;
    418 		mbp->b_iodone = NULL;
    419 	}
    420 	if (async)
    421 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    422 	else
    423 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    424 
    425 	/*
    426 	 * if EOF is in the middle of the range, zero the part past EOF.
    427 	 * skip over pages which are not PG_FAKE since in that case they have
    428 	 * valid data that we need to preserve.
    429 	 */
    430 
    431 	tailstart = bytes;
    432 	while (tailbytes > 0) {
    433 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    434 
    435 		KASSERT(len <= tailbytes);
    436 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    437 			memset((void *)(kva + tailstart), 0, len);
    438 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    439 			    kva, tailstart, len, 0);
    440 		}
    441 		tailstart += len;
    442 		tailbytes -= len;
    443 	}
    444 
    445 	/*
    446 	 * now loop over the pages, reading as needed.
    447 	 */
    448 
    449 	bp = NULL;
    450 	off_t offset;
    451 	for (offset = startoffset;
    452 	    bytes > 0;
    453 	    offset += iobytes, bytes -= iobytes) {
    454 		int run;
    455 		daddr_t lbn, blkno;
    456 		int pidx;
    457 		struct vnode *devvp;
    458 
    459 		/*
    460 		 * skip pages which don't need to be read.
    461 		 */
    462 
    463 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    464 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    465 			size_t b;
    466 
    467 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    468 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    469 				sawhole = true;
    470 			}
    471 			b = MIN(PAGE_SIZE, bytes);
    472 			offset += b;
    473 			bytes -= b;
    474 			skipbytes += b;
    475 			pidx++;
    476 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    477 			    offset, 0,0,0);
    478 			if (bytes == 0) {
    479 				goto loopdone;
    480 			}
    481 		}
    482 
    483 		/*
    484 		 * bmap the file to find out the blkno to read from and
    485 		 * how much we can read in one i/o.  if bmap returns an error,
    486 		 * skip the rest of the top-level i/o.
    487 		 */
    488 
    489 		lbn = offset >> fs_bshift;
    490 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    491 		if (error) {
    492 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    493 			    lbn,error,0,0);
    494 			skipbytes += bytes;
    495 			bytes = 0;
    496 			goto loopdone;
    497 		}
    498 
    499 		/*
    500 		 * see how many pages can be read with this i/o.
    501 		 * reduce the i/o size if necessary to avoid
    502 		 * overwriting pages with valid data.
    503 		 */
    504 
    505 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    506 		    bytes);
    507 		if (offset + iobytes > round_page(offset)) {
    508 			int pcount;
    509 
    510 			pcount = 1;
    511 			while (pidx + pcount < npages &&
    512 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    513 				pcount++;
    514 			}
    515 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    516 			    (offset - trunc_page(offset)));
    517 		}
    518 
    519 		/*
    520 		 * if this block isn't allocated, zero it instead of
    521 		 * reading it.  unless we are going to allocate blocks,
    522 		 * mark the pages we zeroed PG_RDONLY.
    523 		 */
    524 
    525 		if (blkno == (daddr_t)-1) {
    526 			int holepages = (round_page(offset + iobytes) -
    527 			    trunc_page(offset)) >> PAGE_SHIFT;
    528 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    529 
    530 			sawhole = true;
    531 			memset((char *)kva + (offset - startoffset), 0,
    532 			    iobytes);
    533 			skipbytes += iobytes;
    534 
    535 			for (i = 0; i < holepages; i++) {
    536 				if (memwrite) {
    537 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    538 				}
    539 				if (!blockalloc) {
    540 					pgs[pidx + i]->flags |= PG_RDONLY;
    541 				}
    542 			}
    543 			continue;
    544 		}
    545 
    546 		/*
    547 		 * allocate a sub-buf for this piece of the i/o
    548 		 * (or just use mbp if there's only 1 piece),
    549 		 * and start it going.
    550 		 */
    551 
    552 		if (offset == startoffset && iobytes == bytes) {
    553 			bp = mbp;
    554 		} else {
    555 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    556 			    vp, bp, vp->v_numoutput, 0);
    557 			bp = getiobuf(vp, true);
    558 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    559 		}
    560 		bp->b_lblkno = 0;
    561 
    562 		/* adjust physical blkno for partial blocks */
    563 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    564 		    dev_bshift);
    565 
    566 		UVMHIST_LOG(ubchist,
    567 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    568 		    bp, offset, bp->b_bcount, bp->b_blkno);
    569 
    570 		VOP_STRATEGY(devvp, bp);
    571 	}
    572 
    573 loopdone:
    574 	nestiobuf_done(mbp, skipbytes, error);
    575 	if (async) {
    576 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    577 		genfs_node_unlock(vp);
    578 		error = 0;
    579 		goto out_err_free;
    580 	}
    581 	if (bp != NULL) {
    582 		error = biowait(mbp);
    583 	}
    584 
    585 	/* Remove the mapping (make KVA available as soon as possible) */
    586 	uvm_pagermapout(kva, npages);
    587 
    588 	/*
    589 	 * if this we encountered a hole then we have to do a little more work.
    590 	 * for read faults, we marked the page PG_RDONLY so that future
    591 	 * write accesses to the page will fault again.
    592 	 * for write faults, we must make sure that the backing store for
    593 	 * the page is completely allocated while the pages are locked.
    594 	 */
    595 
    596 	if (!error && sawhole && blockalloc) {
    597 		/*
    598 		 * XXX: This assumes that we come here only via
    599 		 * the mmio path
    600 		 */
    601 		if (vp->v_mount->mnt_wapbl) {
    602 			error = WAPBL_BEGIN(vp->v_mount);
    603 		}
    604 
    605 		if (!error) {
    606 			error = GOP_ALLOC(vp, startoffset,
    607 			    npages << PAGE_SHIFT, 0, cred);
    608 			if (vp->v_mount->mnt_wapbl) {
    609 				WAPBL_END(vp->v_mount);
    610 			}
    611 		}
    612 
    613 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    614 		    startoffset, npages << PAGE_SHIFT, error,0);
    615 		if (!error) {
    616 			for (i = 0; i < npages; i++) {
    617 				struct vm_page *pg = pgs[i];
    618 
    619 				if (pg == NULL) {
    620 					continue;
    621 				}
    622 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    623 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    624 				    pg,0,0,0);
    625 			}
    626 		}
    627 	}
    628 	genfs_node_unlock(vp);
    629 
    630 	putiobuf(mbp);
    631     }
    632 
    633 	mutex_enter(&uobj->vmobjlock);
    634 
    635 	/*
    636 	 * we're almost done!  release the pages...
    637 	 * for errors, we free the pages.
    638 	 * otherwise we activate them and mark them as valid and clean.
    639 	 * also, unbusy pages that were not actually requested.
    640 	 */
    641 
    642 	if (error) {
    643 		for (i = 0; i < npages; i++) {
    644 			struct vm_page *pg = pgs[i];
    645 
    646 			if (pg == NULL) {
    647 				continue;
    648 			}
    649 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    650 			    pg, pg->flags, 0,0);
    651 			if (pg->flags & PG_FAKE) {
    652 				pg->flags |= PG_RELEASED;
    653 			}
    654 		}
    655 		mutex_enter(&uvm_pageqlock);
    656 		uvm_page_unbusy(pgs, npages);
    657 		mutex_exit(&uvm_pageqlock);
    658 		mutex_exit(&uobj->vmobjlock);
    659 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    660 		goto out_err_free;
    661 	}
    662 
    663 out:
    664 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    665 	error = 0;
    666 	mutex_enter(&uvm_pageqlock);
    667 	for (i = 0; i < npages; i++) {
    668 		struct vm_page *pg = pgs[i];
    669 		if (pg == NULL) {
    670 			continue;
    671 		}
    672 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    673 		    pg, pg->flags, 0,0);
    674 		if (pg->flags & PG_FAKE && !overwrite) {
    675 			pg->flags &= ~(PG_FAKE);
    676 			pmap_clear_modify(pgs[i]);
    677 		}
    678 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    679 		if (i < ridx || i >= ridx + orignmempages || async) {
    680 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    681 			    pg, pg->offset,0,0);
    682 			if (pg->flags & PG_WANTED) {
    683 				wakeup(pg);
    684 			}
    685 			if (pg->flags & PG_FAKE) {
    686 				KASSERT(overwrite);
    687 				uvm_pagezero(pg);
    688 			}
    689 			if (pg->flags & PG_RELEASED) {
    690 				uvm_pagefree(pg);
    691 				continue;
    692 			}
    693 			uvm_pageenqueue(pg);
    694 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    695 			UVM_PAGE_OWN(pg, NULL);
    696 		}
    697 	}
    698 	mutex_exit(&uvm_pageqlock);
    699 	mutex_exit(&uobj->vmobjlock);
    700 	if (ap->a_m != NULL) {
    701 		memcpy(ap->a_m, &pgs[ridx],
    702 		    orignmempages * sizeof(struct vm_page *));
    703 	}
    704 
    705 out_err_free:
    706 	if (pgs != NULL && pgs != pgs_onstack)
    707 		kmem_free(pgs, pgs_size);
    708 out_err:
    709 	if (has_trans)
    710 		fstrans_done(vp->v_mount);
    711 	return (error);
    712 }
    713 
    714 /*
    715  * generic VM putpages routine.
    716  * Write the given range of pages to backing store.
    717  *
    718  * => "offhi == 0" means flush all pages at or after "offlo".
    719  * => object should be locked by caller.  we return with the
    720  *      object unlocked.
    721  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    722  *	thus, a caller might want to unlock higher level resources
    723  *	(e.g. vm_map) before calling flush.
    724  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    725  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    726  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    727  *	that new pages are inserted on the tail end of the list.   thus,
    728  *	we can make a complete pass through the object in one go by starting
    729  *	at the head and working towards the tail (new pages are put in
    730  *	front of us).
    731  * => NOTE: we are allowed to lock the page queues, so the caller
    732  *	must not be holding the page queue lock.
    733  *
    734  * note on "cleaning" object and PG_BUSY pages:
    735  *	this routine is holding the lock on the object.   the only time
    736  *	that it can run into a PG_BUSY page that it does not own is if
    737  *	some other process has started I/O on the page (e.g. either
    738  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    739  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    740  *	had a chance to modify it yet.    if the PG_BUSY page is being
    741  *	paged out then it means that someone else has already started
    742  *	cleaning the page for us (how nice!).    in this case, if we
    743  *	have syncio specified, then after we make our pass through the
    744  *	object we need to wait for the other PG_BUSY pages to clear
    745  *	off (i.e. we need to do an iosync).   also note that once a
    746  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    747  *
    748  * note on page traversal:
    749  *	we can traverse the pages in an object either by going down the
    750  *	linked list in "uobj->memq", or we can go over the address range
    751  *	by page doing hash table lookups for each address.    depending
    752  *	on how many pages are in the object it may be cheaper to do one
    753  *	or the other.   we set "by_list" to true if we are using memq.
    754  *	if the cost of a hash lookup was equal to the cost of the list
    755  *	traversal we could compare the number of pages in the start->stop
    756  *	range to the total number of pages in the object.   however, it
    757  *	seems that a hash table lookup is more expensive than the linked
    758  *	list traversal, so we multiply the number of pages in the
    759  *	range by an estimate of the relatively higher cost of the hash lookup.
    760  */
    761 
    762 int
    763 genfs_putpages(void *v)
    764 {
    765 	struct vop_putpages_args /* {
    766 		struct vnode *a_vp;
    767 		voff_t a_offlo;
    768 		voff_t a_offhi;
    769 		int a_flags;
    770 	} */ * const ap = v;
    771 
    772 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    773 	    ap->a_flags, NULL);
    774 }
    775 
    776 int
    777 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    778     int origflags, struct vm_page **busypg)
    779 {
    780 	struct uvm_object * const uobj = &vp->v_uobj;
    781 	kmutex_t * const slock = &uobj->vmobjlock;
    782 	off_t off;
    783 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    784 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    785 	int i, error, npages, nback;
    786 	int freeflag;
    787 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    788 	bool wasclean, by_list, needs_clean, yld;
    789 	bool async = (origflags & PGO_SYNCIO) == 0;
    790 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    791 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    792 	struct genfs_node * const gp = VTOG(vp);
    793 	int flags;
    794 	int dirtygen;
    795 	bool modified;
    796 	bool need_wapbl;
    797 	bool has_trans;
    798 	bool cleanall;
    799 	bool onworklst;
    800 
    801 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    802 
    803 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    804 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    805 	KASSERT(startoff < endoff || endoff == 0);
    806 
    807 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    808 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    809 
    810 	has_trans = false;
    811 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    812 	    (origflags & PGO_JOURNALLOCKED) == 0);
    813 
    814 retry:
    815 	modified = false;
    816 	flags = origflags;
    817 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    818 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    819 	if (uobj->uo_npages == 0) {
    820 		if (vp->v_iflag & VI_ONWORKLST) {
    821 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    822 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    823 				vn_syncer_remove_from_worklist(vp);
    824 		}
    825 		if (has_trans) {
    826 			if (need_wapbl)
    827 				WAPBL_END(vp->v_mount);
    828 			fstrans_done(vp->v_mount);
    829 		}
    830 		mutex_exit(slock);
    831 		return (0);
    832 	}
    833 
    834 	/*
    835 	 * the vnode has pages, set up to process the request.
    836 	 */
    837 
    838 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    839 		mutex_exit(slock);
    840 		if (pagedaemon) {
    841 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    842 			if (error)
    843 				return error;
    844 		} else
    845 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    846 		if (need_wapbl) {
    847 			error = WAPBL_BEGIN(vp->v_mount);
    848 			if (error) {
    849 				fstrans_done(vp->v_mount);
    850 				return error;
    851 			}
    852 		}
    853 		has_trans = true;
    854 		mutex_enter(slock);
    855 		goto retry;
    856 	}
    857 
    858 	error = 0;
    859 	wasclean = (vp->v_numoutput == 0);
    860 	off = startoff;
    861 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    862 		endoff = trunc_page(LLONG_MAX);
    863 	}
    864 	by_list = (uobj->uo_npages <=
    865 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    866 
    867 #if !defined(DEBUG)
    868 	/*
    869 	 * if this vnode is known not to have dirty pages,
    870 	 * don't bother to clean it out.
    871 	 */
    872 
    873 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    874 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    875 			goto skip_scan;
    876 		}
    877 		flags &= ~PGO_CLEANIT;
    878 	}
    879 #endif /* !defined(DEBUG) */
    880 
    881 	/*
    882 	 * start the loop.  when scanning by list, hold the last page
    883 	 * in the list before we start.  pages allocated after we start
    884 	 * will be added to the end of the list, so we can stop at the
    885 	 * current last page.
    886 	 */
    887 
    888 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
    889 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
    890 	    (vp->v_iflag & VI_ONWORKLST) != 0;
    891 	dirtygen = gp->g_dirtygen;
    892 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
    893 	if (by_list) {
    894 		curmp.uobject = uobj;
    895 		curmp.offset = (voff_t)-1;
    896 		curmp.flags = PG_BUSY;
    897 		endmp.uobject = uobj;
    898 		endmp.offset = (voff_t)-1;
    899 		endmp.flags = PG_BUSY;
    900 		pg = TAILQ_FIRST(&uobj->memq);
    901 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    902 	} else {
    903 		pg = uvm_pagelookup(uobj, off);
    904 	}
    905 	nextpg = NULL;
    906 	while (by_list || off < endoff) {
    907 
    908 		/*
    909 		 * if the current page is not interesting, move on to the next.
    910 		 */
    911 
    912 		KASSERT(pg == NULL || pg->uobject == uobj);
    913 		KASSERT(pg == NULL ||
    914 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
    915 		    (pg->flags & PG_BUSY) != 0);
    916 		if (by_list) {
    917 			if (pg == &endmp) {
    918 				break;
    919 			}
    920 			if (pg->offset < startoff || pg->offset >= endoff ||
    921 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    922 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    923 					wasclean = false;
    924 				}
    925 				pg = TAILQ_NEXT(pg, listq.queue);
    926 				continue;
    927 			}
    928 			off = pg->offset;
    929 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
    930 			if (pg != NULL) {
    931 				wasclean = false;
    932 			}
    933 			off += PAGE_SIZE;
    934 			if (off < endoff) {
    935 				pg = uvm_pagelookup(uobj, off);
    936 			}
    937 			continue;
    938 		}
    939 
    940 		/*
    941 		 * if the current page needs to be cleaned and it's busy,
    942 		 * wait for it to become unbusy.
    943 		 */
    944 
    945 		yld = (l->l_cpu->ci_schedstate.spc_flags &
    946 		    SPCF_SHOULDYIELD) && !pagedaemon;
    947 		if (pg->flags & PG_BUSY || yld) {
    948 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
    949 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
    950 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
    951 				error = EDEADLK;
    952 				if (busypg != NULL)
    953 					*busypg = pg;
    954 				break;
    955 			}
    956 			if (pagedaemon) {
    957 				/*
    958 				 * someone has taken the page while we
    959 				 * dropped the lock for fstrans_start.
    960 				 */
    961 				break;
    962 			}
    963 			if (by_list) {
    964 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    965 				UVMHIST_LOG(ubchist, "curmp next %p",
    966 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    967 			}
    968 			if (yld) {
    969 				mutex_exit(slock);
    970 				preempt();
    971 				mutex_enter(slock);
    972 			} else {
    973 				pg->flags |= PG_WANTED;
    974 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
    975 				mutex_enter(slock);
    976 			}
    977 			if (by_list) {
    978 				UVMHIST_LOG(ubchist, "after next %p",
    979 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
    980 				pg = TAILQ_NEXT(&curmp, listq.queue);
    981 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
    982 			} else {
    983 				pg = uvm_pagelookup(uobj, off);
    984 			}
    985 			continue;
    986 		}
    987 
    988 		/*
    989 		 * if we're freeing, remove all mappings of the page now.
    990 		 * if we're cleaning, check if the page is needs to be cleaned.
    991 		 */
    992 
    993 		if (flags & PGO_FREE) {
    994 			pmap_page_protect(pg, VM_PROT_NONE);
    995 		} else if (flags & PGO_CLEANIT) {
    996 
    997 			/*
    998 			 * if we still have some hope to pull this vnode off
    999 			 * from the syncer queue, write-protect the page.
   1000 			 */
   1001 
   1002 			if (cleanall && wasclean &&
   1003 			    gp->g_dirtygen == dirtygen) {
   1004 
   1005 				/*
   1006 				 * uobj pages get wired only by uvm_fault
   1007 				 * where uobj is locked.
   1008 				 */
   1009 
   1010 				if (pg->wire_count == 0) {
   1011 					pmap_page_protect(pg,
   1012 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1013 				} else {
   1014 					cleanall = false;
   1015 				}
   1016 			}
   1017 		}
   1018 
   1019 		if (flags & PGO_CLEANIT) {
   1020 			needs_clean = pmap_clear_modify(pg) ||
   1021 			    (pg->flags & PG_CLEAN) == 0;
   1022 			pg->flags |= PG_CLEAN;
   1023 		} else {
   1024 			needs_clean = false;
   1025 		}
   1026 
   1027 		/*
   1028 		 * if we're cleaning, build a cluster.
   1029 		 * the cluster will consist of pages which are currently dirty,
   1030 		 * but they will be returned to us marked clean.
   1031 		 * if not cleaning, just operate on the one page.
   1032 		 */
   1033 
   1034 		if (needs_clean) {
   1035 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1036 			wasclean = false;
   1037 			memset(pgs, 0, sizeof(pgs));
   1038 			pg->flags |= PG_BUSY;
   1039 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1040 
   1041 			/*
   1042 			 * first look backward.
   1043 			 */
   1044 
   1045 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1046 			nback = npages;
   1047 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1048 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1049 			if (nback) {
   1050 				memmove(&pgs[0], &pgs[npages - nback],
   1051 				    nback * sizeof(pgs[0]));
   1052 				if (npages - nback < nback)
   1053 					memset(&pgs[nback], 0,
   1054 					    (npages - nback) * sizeof(pgs[0]));
   1055 				else
   1056 					memset(&pgs[npages - nback], 0,
   1057 					    nback * sizeof(pgs[0]));
   1058 			}
   1059 
   1060 			/*
   1061 			 * then plug in our page of interest.
   1062 			 */
   1063 
   1064 			pgs[nback] = pg;
   1065 
   1066 			/*
   1067 			 * then look forward to fill in the remaining space in
   1068 			 * the array of pages.
   1069 			 */
   1070 
   1071 			npages = maxpages - nback - 1;
   1072 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1073 			    &pgs[nback + 1],
   1074 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1075 			npages += nback + 1;
   1076 		} else {
   1077 			pgs[0] = pg;
   1078 			npages = 1;
   1079 			nback = 0;
   1080 		}
   1081 
   1082 		/*
   1083 		 * apply FREE or DEACTIVATE options if requested.
   1084 		 */
   1085 
   1086 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1087 			mutex_enter(&uvm_pageqlock);
   1088 		}
   1089 		for (i = 0; i < npages; i++) {
   1090 			tpg = pgs[i];
   1091 			KASSERT(tpg->uobject == uobj);
   1092 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1093 				pg = tpg;
   1094 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1095 				continue;
   1096 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1097 				uvm_pagedeactivate(tpg);
   1098 			} else if (flags & PGO_FREE) {
   1099 				pmap_page_protect(tpg, VM_PROT_NONE);
   1100 				if (tpg->flags & PG_BUSY) {
   1101 					tpg->flags |= freeflag;
   1102 					if (pagedaemon) {
   1103 						uvm_pageout_start(1);
   1104 						uvm_pagedequeue(tpg);
   1105 					}
   1106 				} else {
   1107 
   1108 					/*
   1109 					 * ``page is not busy''
   1110 					 * implies that npages is 1
   1111 					 * and needs_clean is false.
   1112 					 */
   1113 
   1114 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1115 					uvm_pagefree(tpg);
   1116 					if (pagedaemon)
   1117 						uvmexp.pdfreed++;
   1118 				}
   1119 			}
   1120 		}
   1121 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1122 			mutex_exit(&uvm_pageqlock);
   1123 		}
   1124 		if (needs_clean) {
   1125 			modified = true;
   1126 
   1127 			/*
   1128 			 * start the i/o.  if we're traversing by list,
   1129 			 * keep our place in the list with a marker page.
   1130 			 */
   1131 
   1132 			if (by_list) {
   1133 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1134 				    listq.queue);
   1135 			}
   1136 			mutex_exit(slock);
   1137 			error = GOP_WRITE(vp, pgs, npages, flags);
   1138 			mutex_enter(slock);
   1139 			if (by_list) {
   1140 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1141 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1142 			}
   1143 			if (error) {
   1144 				break;
   1145 			}
   1146 			if (by_list) {
   1147 				continue;
   1148 			}
   1149 		}
   1150 
   1151 		/*
   1152 		 * find the next page and continue if there was no error.
   1153 		 */
   1154 
   1155 		if (by_list) {
   1156 			if (nextpg) {
   1157 				pg = nextpg;
   1158 				nextpg = NULL;
   1159 			} else {
   1160 				pg = TAILQ_NEXT(pg, listq.queue);
   1161 			}
   1162 		} else {
   1163 			off += (npages - nback) << PAGE_SHIFT;
   1164 			if (off < endoff) {
   1165 				pg = uvm_pagelookup(uobj, off);
   1166 			}
   1167 		}
   1168 	}
   1169 	if (by_list) {
   1170 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1171 	}
   1172 
   1173 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1174 	    (vp->v_type != VBLK ||
   1175 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1176 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1177 	}
   1178 
   1179 	/*
   1180 	 * if we're cleaning and there was nothing to clean,
   1181 	 * take us off the syncer list.  if we started any i/o
   1182 	 * and we're doing sync i/o, wait for all writes to finish.
   1183 	 */
   1184 
   1185 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1186 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1187 #if defined(DEBUG)
   1188 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1189 			if ((pg->flags & PG_CLEAN) == 0) {
   1190 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1191 			}
   1192 			if (pmap_is_modified(pg)) {
   1193 				printf("%s: %p: modified\n", __func__, pg);
   1194 			}
   1195 		}
   1196 #endif /* defined(DEBUG) */
   1197 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1198 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1199 			vn_syncer_remove_from_worklist(vp);
   1200 	}
   1201 
   1202 #if !defined(DEBUG)
   1203 skip_scan:
   1204 #endif /* !defined(DEBUG) */
   1205 
   1206 	/* Wait for output to complete. */
   1207 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1208 		while (vp->v_numoutput != 0)
   1209 			cv_wait(&vp->v_cv, slock);
   1210 	}
   1211 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1212 	mutex_exit(slock);
   1213 
   1214 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1215 		/*
   1216 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1217 		 * retrying is not a big deal because, in many cases,
   1218 		 * uobj->uo_npages is already 0 here.
   1219 		 */
   1220 		mutex_enter(slock);
   1221 		goto retry;
   1222 	}
   1223 
   1224 	if (has_trans) {
   1225 		if (need_wapbl)
   1226 			WAPBL_END(vp->v_mount);
   1227 		fstrans_done(vp->v_mount);
   1228 	}
   1229 
   1230 	return (error);
   1231 }
   1232 
   1233 int
   1234 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1235 {
   1236 	off_t off;
   1237 	vaddr_t kva;
   1238 	size_t len;
   1239 	int error;
   1240 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1241 
   1242 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1243 	    vp, pgs, npages, flags);
   1244 
   1245 	off = pgs[0]->offset;
   1246 	kva = uvm_pagermapin(pgs, npages,
   1247 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1248 	len = npages << PAGE_SHIFT;
   1249 
   1250 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1251 			    uvm_aio_biodone);
   1252 
   1253 	return error;
   1254 }
   1255 
   1256 int
   1257 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1258 {
   1259 	off_t off;
   1260 	vaddr_t kva;
   1261 	size_t len;
   1262 	int error;
   1263 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1264 
   1265 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1266 	    vp, pgs, npages, flags);
   1267 
   1268 	off = pgs[0]->offset;
   1269 	kva = uvm_pagermapin(pgs, npages,
   1270 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1271 	len = npages << PAGE_SHIFT;
   1272 
   1273 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1274 			    uvm_aio_biodone);
   1275 
   1276 	return error;
   1277 }
   1278 
   1279 /*
   1280  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1281  * and mapped into kernel memory.  Here we just look up the underlying
   1282  * device block addresses and call the strategy routine.
   1283  */
   1284 
   1285 static int
   1286 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1287     enum uio_rw rw, void (*iodone)(struct buf *))
   1288 {
   1289 	int s, error;
   1290 	int fs_bshift, dev_bshift;
   1291 	off_t eof, offset, startoffset;
   1292 	size_t bytes, iobytes, skipbytes;
   1293 	struct buf *mbp, *bp;
   1294 	const bool async = (flags & PGO_SYNCIO) == 0;
   1295 	const bool iowrite = rw == UIO_WRITE;
   1296 	const int brw = iowrite ? B_WRITE : B_READ;
   1297 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1298 
   1299 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1300 	    vp, kva, len, flags);
   1301 
   1302 	KASSERT(vp->v_size <= vp->v_writesize);
   1303 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1304 	if (vp->v_type != VBLK) {
   1305 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1306 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1307 	} else {
   1308 		fs_bshift = DEV_BSHIFT;
   1309 		dev_bshift = DEV_BSHIFT;
   1310 	}
   1311 	error = 0;
   1312 	startoffset = off;
   1313 	bytes = MIN(len, eof - startoffset);
   1314 	skipbytes = 0;
   1315 	KASSERT(bytes != 0);
   1316 
   1317 	if (iowrite) {
   1318 		mutex_enter(&vp->v_interlock);
   1319 		vp->v_numoutput += 2;
   1320 		mutex_exit(&vp->v_interlock);
   1321 	}
   1322 	mbp = getiobuf(vp, true);
   1323 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1324 	    vp, mbp, vp->v_numoutput, bytes);
   1325 	mbp->b_bufsize = len;
   1326 	mbp->b_data = (void *)kva;
   1327 	mbp->b_resid = mbp->b_bcount = bytes;
   1328 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1329 	if (async) {
   1330 		mbp->b_flags = brw | B_ASYNC;
   1331 		mbp->b_iodone = iodone;
   1332 	} else {
   1333 		mbp->b_flags = brw;
   1334 		mbp->b_iodone = NULL;
   1335 	}
   1336 	if (curlwp == uvm.pagedaemon_lwp)
   1337 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1338 	else if (async)
   1339 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1340 	else
   1341 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1342 
   1343 	bp = NULL;
   1344 	for (offset = startoffset;
   1345 	    bytes > 0;
   1346 	    offset += iobytes, bytes -= iobytes) {
   1347 		int run;
   1348 		daddr_t lbn, blkno;
   1349 		struct vnode *devvp;
   1350 
   1351 		/*
   1352 		 * bmap the file to find out the blkno to read from and
   1353 		 * how much we can read in one i/o.  if bmap returns an error,
   1354 		 * skip the rest of the top-level i/o.
   1355 		 */
   1356 
   1357 		lbn = offset >> fs_bshift;
   1358 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1359 		if (error) {
   1360 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1361 			    lbn,error,0,0);
   1362 			skipbytes += bytes;
   1363 			bytes = 0;
   1364 			goto loopdone;
   1365 		}
   1366 
   1367 		/*
   1368 		 * see how many pages can be read with this i/o.
   1369 		 * reduce the i/o size if necessary to avoid
   1370 		 * overwriting pages with valid data.
   1371 		 */
   1372 
   1373 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1374 		    bytes);
   1375 
   1376 		/*
   1377 		 * if this block isn't allocated, zero it instead of
   1378 		 * reading it.  unless we are going to allocate blocks,
   1379 		 * mark the pages we zeroed PG_RDONLY.
   1380 		 */
   1381 
   1382 		if (blkno == (daddr_t)-1) {
   1383 			if (!iowrite) {
   1384 				memset((char *)kva + (offset - startoffset), 0,
   1385 				    iobytes);
   1386 			}
   1387 			skipbytes += iobytes;
   1388 			continue;
   1389 		}
   1390 
   1391 		/*
   1392 		 * allocate a sub-buf for this piece of the i/o
   1393 		 * (or just use mbp if there's only 1 piece),
   1394 		 * and start it going.
   1395 		 */
   1396 
   1397 		if (offset == startoffset && iobytes == bytes) {
   1398 			bp = mbp;
   1399 		} else {
   1400 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1401 			    vp, bp, vp->v_numoutput, 0);
   1402 			bp = getiobuf(vp, true);
   1403 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1404 		}
   1405 		bp->b_lblkno = 0;
   1406 
   1407 		/* adjust physical blkno for partial blocks */
   1408 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1409 		    dev_bshift);
   1410 
   1411 		UVMHIST_LOG(ubchist,
   1412 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1413 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1414 
   1415 		VOP_STRATEGY(devvp, bp);
   1416 	}
   1417 
   1418 loopdone:
   1419 	if (skipbytes) {
   1420 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1421 	}
   1422 	nestiobuf_done(mbp, skipbytes, error);
   1423 	if (async) {
   1424 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1425 		return (0);
   1426 	}
   1427 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1428 	error = biowait(mbp);
   1429 	s = splbio();
   1430 	(*iodone)(mbp);
   1431 	splx(s);
   1432 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1433 	return (error);
   1434 }
   1435 
   1436 int
   1437 genfs_compat_getpages(void *v)
   1438 {
   1439 	struct vop_getpages_args /* {
   1440 		struct vnode *a_vp;
   1441 		voff_t a_offset;
   1442 		struct vm_page **a_m;
   1443 		int *a_count;
   1444 		int a_centeridx;
   1445 		vm_prot_t a_access_type;
   1446 		int a_advice;
   1447 		int a_flags;
   1448 	} */ *ap = v;
   1449 
   1450 	off_t origoffset;
   1451 	struct vnode *vp = ap->a_vp;
   1452 	struct uvm_object *uobj = &vp->v_uobj;
   1453 	struct vm_page *pg, **pgs;
   1454 	vaddr_t kva;
   1455 	int i, error, orignpages, npages;
   1456 	struct iovec iov;
   1457 	struct uio uio;
   1458 	kauth_cred_t cred = curlwp->l_cred;
   1459 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1460 
   1461 	error = 0;
   1462 	origoffset = ap->a_offset;
   1463 	orignpages = *ap->a_count;
   1464 	pgs = ap->a_m;
   1465 
   1466 	if (memwrite && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1467 		vn_syncer_add_to_worklist(vp, filedelay);
   1468 	}
   1469 	if (ap->a_flags & PGO_LOCKED) {
   1470 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1471 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1472 
   1473 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1474 	}
   1475 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1476 		mutex_exit(&uobj->vmobjlock);
   1477 		return (EINVAL);
   1478 	}
   1479 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1480 		mutex_exit(&uobj->vmobjlock);
   1481 		return 0;
   1482 	}
   1483 	npages = orignpages;
   1484 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1485 	mutex_exit(&uobj->vmobjlock);
   1486 	kva = uvm_pagermapin(pgs, npages,
   1487 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1488 	for (i = 0; i < npages; i++) {
   1489 		pg = pgs[i];
   1490 		if ((pg->flags & PG_FAKE) == 0) {
   1491 			continue;
   1492 		}
   1493 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1494 		iov.iov_len = PAGE_SIZE;
   1495 		uio.uio_iov = &iov;
   1496 		uio.uio_iovcnt = 1;
   1497 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1498 		uio.uio_rw = UIO_READ;
   1499 		uio.uio_resid = PAGE_SIZE;
   1500 		UIO_SETUP_SYSSPACE(&uio);
   1501 		/* XXX vn_lock */
   1502 		error = VOP_READ(vp, &uio, 0, cred);
   1503 		if (error) {
   1504 			break;
   1505 		}
   1506 		if (uio.uio_resid) {
   1507 			memset(iov.iov_base, 0, uio.uio_resid);
   1508 		}
   1509 	}
   1510 	uvm_pagermapout(kva, npages);
   1511 	mutex_enter(&uobj->vmobjlock);
   1512 	mutex_enter(&uvm_pageqlock);
   1513 	for (i = 0; i < npages; i++) {
   1514 		pg = pgs[i];
   1515 		if (error && (pg->flags & PG_FAKE) != 0) {
   1516 			pg->flags |= PG_RELEASED;
   1517 		} else {
   1518 			pmap_clear_modify(pg);
   1519 			uvm_pageactivate(pg);
   1520 		}
   1521 	}
   1522 	if (error) {
   1523 		uvm_page_unbusy(pgs, npages);
   1524 	}
   1525 	mutex_exit(&uvm_pageqlock);
   1526 	mutex_exit(&uobj->vmobjlock);
   1527 	return (error);
   1528 }
   1529 
   1530 int
   1531 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1532     int flags)
   1533 {
   1534 	off_t offset;
   1535 	struct iovec iov;
   1536 	struct uio uio;
   1537 	kauth_cred_t cred = curlwp->l_cred;
   1538 	struct buf *bp;
   1539 	vaddr_t kva;
   1540 	int error;
   1541 
   1542 	offset = pgs[0]->offset;
   1543 	kva = uvm_pagermapin(pgs, npages,
   1544 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1545 
   1546 	iov.iov_base = (void *)kva;
   1547 	iov.iov_len = npages << PAGE_SHIFT;
   1548 	uio.uio_iov = &iov;
   1549 	uio.uio_iovcnt = 1;
   1550 	uio.uio_offset = offset;
   1551 	uio.uio_rw = UIO_WRITE;
   1552 	uio.uio_resid = npages << PAGE_SHIFT;
   1553 	UIO_SETUP_SYSSPACE(&uio);
   1554 	/* XXX vn_lock */
   1555 	error = VOP_WRITE(vp, &uio, 0, cred);
   1556 
   1557 	mutex_enter(&vp->v_interlock);
   1558 	vp->v_numoutput++;
   1559 	mutex_exit(&vp->v_interlock);
   1560 
   1561 	bp = getiobuf(vp, true);
   1562 	bp->b_cflags = BC_BUSY | BC_AGE;
   1563 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1564 	bp->b_data = (char *)kva;
   1565 	bp->b_bcount = npages << PAGE_SHIFT;
   1566 	bp->b_bufsize = npages << PAGE_SHIFT;
   1567 	bp->b_resid = 0;
   1568 	bp->b_error = error;
   1569 	uvm_aio_aiodone(bp);
   1570 	return (error);
   1571 }
   1572 
   1573 /*
   1574  * Process a uio using direct I/O.  If we reach a part of the request
   1575  * which cannot be processed in this fashion for some reason, just return.
   1576  * The caller must handle some additional part of the request using
   1577  * buffered I/O before trying direct I/O again.
   1578  */
   1579 
   1580 void
   1581 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1582 {
   1583 	struct vmspace *vs;
   1584 	struct iovec *iov;
   1585 	vaddr_t va;
   1586 	size_t len;
   1587 	const int mask = DEV_BSIZE - 1;
   1588 	int error;
   1589 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1590 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1591 
   1592 	/*
   1593 	 * We only support direct I/O to user space for now.
   1594 	 */
   1595 
   1596 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1597 		return;
   1598 	}
   1599 
   1600 	/*
   1601 	 * If the vnode is mapped, we would need to get the getpages lock
   1602 	 * to stabilize the bmap, but then we would get into trouble whil e
   1603 	 * locking the pages if the pages belong to this same vnode (or a
   1604 	 * multi-vnode cascade to the same effect).  Just fall back to
   1605 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1606 	 */
   1607 
   1608 	if (vp->v_vflag & VV_MAPPED) {
   1609 		return;
   1610 	}
   1611 
   1612 	if (need_wapbl) {
   1613 		error = WAPBL_BEGIN(vp->v_mount);
   1614 		if (error)
   1615 			return;
   1616 	}
   1617 
   1618 	/*
   1619 	 * Do as much of the uio as possible with direct I/O.
   1620 	 */
   1621 
   1622 	vs = uio->uio_vmspace;
   1623 	while (uio->uio_resid) {
   1624 		iov = uio->uio_iov;
   1625 		if (iov->iov_len == 0) {
   1626 			uio->uio_iov++;
   1627 			uio->uio_iovcnt--;
   1628 			continue;
   1629 		}
   1630 		va = (vaddr_t)iov->iov_base;
   1631 		len = MIN(iov->iov_len, genfs_maxdio);
   1632 		len &= ~mask;
   1633 
   1634 		/*
   1635 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1636 		 * the current EOF, then fall back to buffered I/O.
   1637 		 */
   1638 
   1639 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1640 			break;
   1641 		}
   1642 
   1643 		/*
   1644 		 * Check alignment.  The file offset must be at least
   1645 		 * sector-aligned.  The exact constraint on memory alignment
   1646 		 * is very hardware-dependent, but requiring sector-aligned
   1647 		 * addresses there too is safe.
   1648 		 */
   1649 
   1650 		if (uio->uio_offset & mask || va & mask) {
   1651 			break;
   1652 		}
   1653 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1654 					  uio->uio_rw);
   1655 		if (error) {
   1656 			break;
   1657 		}
   1658 		iov->iov_base = (char *)iov->iov_base + len;
   1659 		iov->iov_len -= len;
   1660 		uio->uio_offset += len;
   1661 		uio->uio_resid -= len;
   1662 	}
   1663 
   1664 	if (need_wapbl)
   1665 		WAPBL_END(vp->v_mount);
   1666 }
   1667 
   1668 /*
   1669  * Iodone routine for direct I/O.  We don't do much here since the request is
   1670  * always synchronous, so the caller will do most of the work after biowait().
   1671  */
   1672 
   1673 static void
   1674 genfs_dio_iodone(struct buf *bp)
   1675 {
   1676 
   1677 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1678 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1679 		mutex_enter(bp->b_objlock);
   1680 		vwakeup(bp);
   1681 		mutex_exit(bp->b_objlock);
   1682 	}
   1683 	putiobuf(bp);
   1684 }
   1685 
   1686 /*
   1687  * Process one chunk of a direct I/O request.
   1688  */
   1689 
   1690 static int
   1691 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1692     off_t off, enum uio_rw rw)
   1693 {
   1694 	struct vm_map *map;
   1695 	struct pmap *upm, *kpm;
   1696 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1697 	off_t spoff, epoff;
   1698 	vaddr_t kva, puva;
   1699 	paddr_t pa;
   1700 	vm_prot_t prot;
   1701 	int error, rv, poff, koff;
   1702 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1703 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1704 
   1705 	/*
   1706 	 * For writes, verify that this range of the file already has fully
   1707 	 * allocated backing store.  If there are any holes, just punt and
   1708 	 * make the caller take the buffered write path.
   1709 	 */
   1710 
   1711 	if (rw == UIO_WRITE) {
   1712 		daddr_t lbn, elbn, blkno;
   1713 		int bsize, bshift, run;
   1714 
   1715 		bshift = vp->v_mount->mnt_fs_bshift;
   1716 		bsize = 1 << bshift;
   1717 		lbn = off >> bshift;
   1718 		elbn = (off + len + bsize - 1) >> bshift;
   1719 		while (lbn < elbn) {
   1720 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1721 			if (error) {
   1722 				return error;
   1723 			}
   1724 			if (blkno == (daddr_t)-1) {
   1725 				return ENOSPC;
   1726 			}
   1727 			lbn += 1 + run;
   1728 		}
   1729 	}
   1730 
   1731 	/*
   1732 	 * Flush any cached pages for parts of the file that we're about to
   1733 	 * access.  If we're writing, invalidate pages as well.
   1734 	 */
   1735 
   1736 	spoff = trunc_page(off);
   1737 	epoff = round_page(off + len);
   1738 	mutex_enter(&vp->v_interlock);
   1739 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1740 	if (error) {
   1741 		return error;
   1742 	}
   1743 
   1744 	/*
   1745 	 * Wire the user pages and remap them into kernel memory.
   1746 	 */
   1747 
   1748 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1749 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1750 	if (error) {
   1751 		return error;
   1752 	}
   1753 
   1754 	map = &vs->vm_map;
   1755 	upm = vm_map_pmap(map);
   1756 	kpm = vm_map_pmap(kernel_map);
   1757 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1758 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1759 	puva = trunc_page(uva);
   1760 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1761 		rv = pmap_extract(upm, puva + poff, &pa);
   1762 		KASSERT(rv);
   1763 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1764 	}
   1765 	pmap_update(kpm);
   1766 
   1767 	/*
   1768 	 * Do the I/O.
   1769 	 */
   1770 
   1771 	koff = uva - trunc_page(uva);
   1772 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1773 			    genfs_dio_iodone);
   1774 
   1775 	/*
   1776 	 * Tear down the kernel mapping.
   1777 	 */
   1778 
   1779 	pmap_remove(kpm, kva, kva + klen);
   1780 	pmap_update(kpm);
   1781 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1782 
   1783 	/*
   1784 	 * Unwire the user pages.
   1785 	 */
   1786 
   1787 	uvm_vsunlock(vs, (void *)uva, len);
   1788 	return error;
   1789 }
   1790 
   1791