Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.10
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.10 2010/06/08 03:30:00 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.10 2010/06/08 03:30:00 uebayasi Exp $");
     35 
     36 #include "opt_direct_page.h"
     37 #include "opt_xip.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/kernel.h>
     43 #include <sys/mount.h>
     44 #include <sys/namei.h>
     45 #include <sys/vnode.h>
     46 #include <sys/fcntl.h>
     47 #include <sys/kmem.h>
     48 #include <sys/poll.h>
     49 #include <sys/mman.h>
     50 #include <sys/file.h>
     51 #include <sys/kauth.h>
     52 #include <sys/fstrans.h>
     53 #include <sys/buf.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 static int genfs_do_getpages(void *);
     63 #ifdef XIP
     64 static int genfs_do_getpages_xip(void *);
     65 #endif
     66 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     67     off_t, enum uio_rw);
     68 static void genfs_dio_iodone(struct buf *);
     69 
     70 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     71     void (*)(struct buf *));
     72 static inline void genfs_rel_pages(struct vm_page **, int);
     73 
     74 int genfs_maxdio = MAXPHYS;
     75 
     76 static inline void
     77 genfs_rel_pages(struct vm_page **pgs, int npages)
     78 {
     79 	int i;
     80 
     81 	for (i = 0; i < npages; i++) {
     82 		struct vm_page *pg = pgs[i];
     83 
     84 		if (pg == NULL || pg == PGO_DONTCARE)
     85 			continue;
     86 		if (pg->flags & PG_FAKE) {
     87 			pg->flags |= PG_RELEASED;
     88 		}
     89 	}
     90 	mutex_enter(&uvm_pageqlock);
     91 	uvm_page_unbusy(pgs, npages);
     92 	mutex_exit(&uvm_pageqlock);
     93 }
     94 
     95 /*
     96  * generic VM getpages routine.
     97  * Return PG_BUSY pages for the given range,
     98  * reading from backing store if necessary.
     99  */
    100 
    101 int
    102 genfs_getpages(void *v)
    103 {
    104 #ifdef XIP
    105 	struct vop_getpages_args /* {
    106 		struct vnode *a_vp;
    107 		voff_t a_offset;
    108 		struct vm_page **a_m;
    109 		int *a_count;
    110 		int a_centeridx;
    111 		vm_prot_t a_access_type;
    112 		int a_advice;
    113 		int a_flags;
    114 	} */ * const ap = v;
    115 	struct vnode * const vp = ap->a_vp;
    116 
    117 	if ((vp->v_vflag & VV_XIP) != 0)
    118 		return genfs_do_getpages_xip(v);
    119 	else
    120 #endif
    121 		return genfs_do_getpages(v);
    122 }
    123 
    124 static int
    125 genfs_do_getpages(void *v)
    126 {
    127 	struct vop_getpages_args /* {
    128 		struct vnode *a_vp;
    129 		voff_t a_offset;
    130 		struct vm_page **a_m;
    131 		int *a_count;
    132 		int a_centeridx;
    133 		vm_prot_t a_access_type;
    134 		int a_advice;
    135 		int a_flags;
    136 	} */ * const ap = v;
    137 
    138 	off_t diskeof, memeof;
    139 	int i, error, npages;
    140 	const int flags = ap->a_flags;
    141 	struct vnode * const vp = ap->a_vp;
    142 	struct genfs_node * const gp = VTOG(vp);
    143 	struct uvm_object * const uobj = &vp->v_uobj;
    144 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    145 	const bool async = (flags & PGO_SYNCIO) == 0;
    146 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    147 	bool has_trans = false;
    148 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    149 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    150 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    151 
    152 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    153 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    154 
    155 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    156 	    vp->v_type == VLNK || vp->v_type == VBLK);
    157 
    158 startover:
    159 	error = 0;
    160 	const voff_t origvsize = vp->v_size;
    161 	const off_t origoffset = ap->a_offset;
    162 	const int orignpages = *ap->a_count;
    163 
    164 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    165 	if (flags & PGO_PASTEOF) {
    166 		off_t newsize;
    167 #if defined(DIAGNOSTIC)
    168 		off_t writeeof;
    169 #endif /* defined(DIAGNOSTIC) */
    170 
    171 		newsize = MAX(origvsize,
    172 		    origoffset + (orignpages << PAGE_SHIFT));
    173 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    174 #if defined(DIAGNOSTIC)
    175 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    176 		if (newsize > round_page(writeeof)) {
    177 			panic("%s: past eof", __func__);
    178 		}
    179 #endif /* defined(DIAGNOSTIC) */
    180 	} else {
    181 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    182 	}
    183 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    184 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    185 	KASSERT(orignpages > 0);
    186 
    187 	/*
    188 	 * Bounds-check the request.
    189 	 */
    190 
    191 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    192 		if ((flags & PGO_LOCKED) == 0) {
    193 			mutex_exit(&uobj->vmobjlock);
    194 		}
    195 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    196 		    origoffset, *ap->a_count, memeof,0);
    197 		error = EINVAL;
    198 		goto out_err;
    199 	}
    200 
    201 	/* uobj is locked */
    202 
    203 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    204 	    (vp->v_type != VBLK ||
    205 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    206 		int updflags = 0;
    207 
    208 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    209 			updflags = GOP_UPDATE_ACCESSED;
    210 		}
    211 		if (memwrite) {
    212 			updflags |= GOP_UPDATE_MODIFIED;
    213 		}
    214 		if (updflags != 0) {
    215 			GOP_MARKUPDATE(vp, updflags);
    216 		}
    217 	}
    218 
    219 	if (memwrite) {
    220 		gp->g_dirtygen++;
    221 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    222 			vn_syncer_add_to_worklist(vp, filedelay);
    223 		}
    224 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    225 			vp->v_iflag |= VI_WRMAPDIRTY;
    226 		}
    227 	}
    228 
    229 	/*
    230 	 * For PGO_LOCKED requests, just return whatever's in memory.
    231 	 */
    232 
    233 	if (flags & PGO_LOCKED) {
    234 		int nfound;
    235 		struct vm_page *pg;
    236 
    237 		npages = *ap->a_count;
    238 #if defined(DEBUG)
    239 		for (i = 0; i < npages; i++) {
    240 			pg = ap->a_m[i];
    241 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    242 		}
    243 #endif /* defined(DEBUG) */
    244 		nfound = uvn_findpages(uobj, origoffset, &npages,
    245 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    246 		KASSERT(npages == *ap->a_count);
    247 		if (nfound == 0) {
    248 			error = EBUSY;
    249 			goto out_err;
    250 		}
    251 		if (!genfs_node_rdtrylock(vp)) {
    252 			genfs_rel_pages(ap->a_m, npages);
    253 
    254 			/*
    255 			 * restore the array.
    256 			 */
    257 
    258 			for (i = 0; i < npages; i++) {
    259 				pg = ap->a_m[i];
    260 
    261 				if (pg != NULL || pg != PGO_DONTCARE) {
    262 					ap->a_m[i] = NULL;
    263 				}
    264 			}
    265 		} else {
    266 			genfs_node_unlock(vp);
    267 		}
    268 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    269 		goto out_err;
    270 	}
    271 	mutex_exit(&uobj->vmobjlock);
    272 
    273 	/*
    274 	 * find the requested pages and make some simple checks.
    275 	 * leave space in the page array for a whole block.
    276 	 */
    277 
    278 	const int fs_bshift = (vp->v_type != VBLK) ?
    279 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    280 	const int dev_bshift = (vp->v_type != VBLK) ?
    281 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    282 	const int fs_bsize = 1 << fs_bshift;
    283 #define	blk_mask	(fs_bsize - 1)
    284 #define	trunc_blk(x)	((x) & ~blk_mask)
    285 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    286 
    287 	const int orignmempages = MIN(orignpages,
    288 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    289 	npages = orignmempages;
    290 	const off_t startoffset = trunc_blk(origoffset);
    291 	const off_t endoffset = MIN(
    292 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    293 	    round_page(memeof));
    294 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    295 
    296 	const int pgs_size = sizeof(struct vm_page *) *
    297 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    298 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    299 
    300 	if (pgs_size > sizeof(pgs_onstack)) {
    301 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    302 		if (pgs == NULL) {
    303 			pgs = pgs_onstack;
    304 			error = ENOMEM;
    305 			goto out_err;
    306 		}
    307 	} else {
    308 		pgs = pgs_onstack;
    309 		(void)memset(pgs, 0, pgs_size);
    310 	}
    311 
    312 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    313 	    ridx, npages, startoffset, endoffset);
    314 
    315 	if (!has_trans) {
    316 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    317 		has_trans = true;
    318 	}
    319 
    320 	/*
    321 	 * hold g_glock to prevent a race with truncate.
    322 	 *
    323 	 * check if our idea of v_size is still valid.
    324 	 */
    325 
    326 	if (blockalloc) {
    327 		rw_enter(&gp->g_glock, RW_WRITER);
    328 	} else {
    329 		rw_enter(&gp->g_glock, RW_READER);
    330 	}
    331 	mutex_enter(&uobj->vmobjlock);
    332 	if (vp->v_size < origvsize) {
    333 		genfs_node_unlock(vp);
    334 		if (pgs != pgs_onstack)
    335 			kmem_free(pgs, pgs_size);
    336 		goto startover;
    337 	}
    338 
    339 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    340 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    341 		genfs_node_unlock(vp);
    342 		KASSERT(async != 0);
    343 		genfs_rel_pages(&pgs[ridx], orignmempages);
    344 		mutex_exit(&uobj->vmobjlock);
    345 		error = EBUSY;
    346 		goto out_err_free;
    347 	}
    348 
    349 	/*
    350 	 * if the pages are already resident, just return them.
    351 	 */
    352 
    353 	for (i = 0; i < npages; i++) {
    354 		struct vm_page *pg = pgs[ridx + i];
    355 
    356 		if ((pg->flags & PG_FAKE) ||
    357 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    358 			break;
    359 		}
    360 	}
    361 	if (i == npages) {
    362 		genfs_node_unlock(vp);
    363 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    364 		npages += ridx;
    365 		goto out;
    366 	}
    367 
    368 	/*
    369 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    370 	 */
    371 
    372 	if (overwrite) {
    373 		genfs_node_unlock(vp);
    374 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    375 
    376 		for (i = 0; i < npages; i++) {
    377 			struct vm_page *pg = pgs[ridx + i];
    378 
    379 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    380 		}
    381 		npages += ridx;
    382 		goto out;
    383 	}
    384 
    385 	/*
    386 	 * the page wasn't resident and we're not overwriting,
    387 	 * so we're going to have to do some i/o.
    388 	 * find any additional pages needed to cover the expanded range.
    389 	 */
    390 
    391 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    392 	if (startoffset != origoffset || npages != orignmempages) {
    393 		int npgs;
    394 
    395 		/*
    396 		 * we need to avoid deadlocks caused by locking
    397 		 * additional pages at lower offsets than pages we
    398 		 * already have locked.  unlock them all and start over.
    399 		 */
    400 
    401 		genfs_rel_pages(&pgs[ridx], orignmempages);
    402 		memset(pgs, 0, pgs_size);
    403 
    404 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    405 		    startoffset, endoffset, 0,0);
    406 		npgs = npages;
    407 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    408 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    409 			genfs_node_unlock(vp);
    410 			KASSERT(async != 0);
    411 			genfs_rel_pages(pgs, npages);
    412 			mutex_exit(&uobj->vmobjlock);
    413 			error = EBUSY;
    414 			goto out_err_free;
    415 		}
    416 	}
    417 
    418 	mutex_exit(&uobj->vmobjlock);
    419 
    420     {
    421 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    422 	vaddr_t kva;
    423 	struct buf *bp, *mbp;
    424 	bool sawhole = false;
    425 
    426 	/*
    427 	 * read the desired page(s).
    428 	 */
    429 
    430 	totalbytes = npages << PAGE_SHIFT;
    431 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    432 	tailbytes = totalbytes - bytes;
    433 	skipbytes = 0;
    434 
    435 	kva = uvm_pagermapin(pgs, npages,
    436 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    437 
    438 	mbp = getiobuf(vp, true);
    439 	mbp->b_bufsize = totalbytes;
    440 	mbp->b_data = (void *)kva;
    441 	mbp->b_resid = mbp->b_bcount = bytes;
    442 	mbp->b_cflags = BC_BUSY;
    443 	if (async) {
    444 		mbp->b_flags = B_READ | B_ASYNC;
    445 		mbp->b_iodone = uvm_aio_biodone;
    446 	} else {
    447 		mbp->b_flags = B_READ;
    448 		mbp->b_iodone = NULL;
    449 	}
    450 	if (async)
    451 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    452 	else
    453 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    454 
    455 	/*
    456 	 * if EOF is in the middle of the range, zero the part past EOF.
    457 	 * skip over pages which are not PG_FAKE since in that case they have
    458 	 * valid data that we need to preserve.
    459 	 */
    460 
    461 	tailstart = bytes;
    462 	while (tailbytes > 0) {
    463 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    464 
    465 		KASSERT(len <= tailbytes);
    466 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    467 			memset((void *)(kva + tailstart), 0, len);
    468 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    469 			    kva, tailstart, len, 0);
    470 		}
    471 		tailstart += len;
    472 		tailbytes -= len;
    473 	}
    474 
    475 	/*
    476 	 * now loop over the pages, reading as needed.
    477 	 */
    478 
    479 	bp = NULL;
    480 	off_t offset;
    481 	for (offset = startoffset;
    482 	    bytes > 0;
    483 	    offset += iobytes, bytes -= iobytes) {
    484 		int run;
    485 		daddr_t lbn, blkno;
    486 		int pidx;
    487 		struct vnode *devvp;
    488 
    489 		/*
    490 		 * skip pages which don't need to be read.
    491 		 */
    492 
    493 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    494 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    495 			size_t b;
    496 
    497 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    498 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    499 				sawhole = true;
    500 			}
    501 			b = MIN(PAGE_SIZE, bytes);
    502 			offset += b;
    503 			bytes -= b;
    504 			skipbytes += b;
    505 			pidx++;
    506 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    507 			    offset, 0,0,0);
    508 			if (bytes == 0) {
    509 				goto loopdone;
    510 			}
    511 		}
    512 
    513 		/*
    514 		 * bmap the file to find out the blkno to read from and
    515 		 * how much we can read in one i/o.  if bmap returns an error,
    516 		 * skip the rest of the top-level i/o.
    517 		 */
    518 
    519 		lbn = offset >> fs_bshift;
    520 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    521 		if (error) {
    522 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    523 			    lbn,error,0,0);
    524 			skipbytes += bytes;
    525 			bytes = 0;
    526 			goto loopdone;
    527 		}
    528 
    529 		/*
    530 		 * see how many pages can be read with this i/o.
    531 		 * reduce the i/o size if necessary to avoid
    532 		 * overwriting pages with valid data.
    533 		 */
    534 
    535 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    536 		    bytes);
    537 		if (offset + iobytes > round_page(offset)) {
    538 			int pcount;
    539 
    540 			pcount = 1;
    541 			while (pidx + pcount < npages &&
    542 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    543 				pcount++;
    544 			}
    545 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    546 			    (offset - trunc_page(offset)));
    547 		}
    548 
    549 		/*
    550 		 * if this block isn't allocated, zero it instead of
    551 		 * reading it.  unless we are going to allocate blocks,
    552 		 * mark the pages we zeroed PG_RDONLY.
    553 		 */
    554 
    555 		if (blkno == (daddr_t)-1) {
    556 			int holepages = (round_page(offset + iobytes) -
    557 			    trunc_page(offset)) >> PAGE_SHIFT;
    558 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    559 
    560 			sawhole = true;
    561 			memset((char *)kva + (offset - startoffset), 0,
    562 			    iobytes);
    563 			skipbytes += iobytes;
    564 
    565 			for (i = 0; i < holepages; i++) {
    566 				if (memwrite) {
    567 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    568 				}
    569 				if (!blockalloc) {
    570 					pgs[pidx + i]->flags |= PG_RDONLY;
    571 				}
    572 			}
    573 			continue;
    574 		}
    575 
    576 		/*
    577 		 * allocate a sub-buf for this piece of the i/o
    578 		 * (or just use mbp if there's only 1 piece),
    579 		 * and start it going.
    580 		 */
    581 
    582 		if (offset == startoffset && iobytes == bytes) {
    583 			bp = mbp;
    584 		} else {
    585 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    586 			    vp, bp, vp->v_numoutput, 0);
    587 			bp = getiobuf(vp, true);
    588 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    589 		}
    590 		bp->b_lblkno = 0;
    591 
    592 		/* adjust physical blkno for partial blocks */
    593 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    594 		    dev_bshift);
    595 
    596 		UVMHIST_LOG(ubchist,
    597 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    598 		    bp, offset, bp->b_bcount, bp->b_blkno);
    599 
    600 		VOP_STRATEGY(devvp, bp);
    601 	}
    602 
    603 loopdone:
    604 	nestiobuf_done(mbp, skipbytes, error);
    605 	if (async) {
    606 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    607 		genfs_node_unlock(vp);
    608 		error = 0;
    609 		goto out_err_free;
    610 	}
    611 	if (bp != NULL) {
    612 		error = biowait(mbp);
    613 	}
    614 
    615 	/* Remove the mapping (make KVA available as soon as possible) */
    616 	uvm_pagermapout(kva, npages);
    617 
    618 	/*
    619 	 * if this we encountered a hole then we have to do a little more work.
    620 	 * for read faults, we marked the page PG_RDONLY so that future
    621 	 * write accesses to the page will fault again.
    622 	 * for write faults, we must make sure that the backing store for
    623 	 * the page is completely allocated while the pages are locked.
    624 	 */
    625 
    626 	if (!error && sawhole && blockalloc) {
    627 		/*
    628 		 * XXX: This assumes that we come here only via
    629 		 * the mmio path
    630 		 */
    631 		if (vp->v_mount->mnt_wapbl) {
    632 			error = WAPBL_BEGIN(vp->v_mount);
    633 		}
    634 
    635 		if (!error) {
    636 			error = GOP_ALLOC(vp, startoffset,
    637 			    npages << PAGE_SHIFT, 0, cred);
    638 			if (vp->v_mount->mnt_wapbl) {
    639 				WAPBL_END(vp->v_mount);
    640 			}
    641 		}
    642 
    643 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    644 		    startoffset, npages << PAGE_SHIFT, error,0);
    645 		if (!error) {
    646 			for (i = 0; i < npages; i++) {
    647 				struct vm_page *pg = pgs[i];
    648 
    649 				if (pg == NULL) {
    650 					continue;
    651 				}
    652 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    653 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    654 				    pg,0,0,0);
    655 			}
    656 		}
    657 	}
    658 	genfs_node_unlock(vp);
    659 
    660 	putiobuf(mbp);
    661     }
    662 
    663 	mutex_enter(&uobj->vmobjlock);
    664 
    665 	/*
    666 	 * we're almost done!  release the pages...
    667 	 * for errors, we free the pages.
    668 	 * otherwise we activate them and mark them as valid and clean.
    669 	 * also, unbusy pages that were not actually requested.
    670 	 */
    671 
    672 	if (error) {
    673 		for (i = 0; i < npages; i++) {
    674 			struct vm_page *pg = pgs[i];
    675 
    676 			if (pg == NULL) {
    677 				continue;
    678 			}
    679 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    680 			    pg, pg->flags, 0,0);
    681 			if (pg->flags & PG_FAKE) {
    682 				pg->flags |= PG_RELEASED;
    683 			}
    684 		}
    685 		mutex_enter(&uvm_pageqlock);
    686 		uvm_page_unbusy(pgs, npages);
    687 		mutex_exit(&uvm_pageqlock);
    688 		mutex_exit(&uobj->vmobjlock);
    689 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    690 		goto out_err_free;
    691 	}
    692 
    693 out:
    694 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    695 	error = 0;
    696 	mutex_enter(&uvm_pageqlock);
    697 	for (i = 0; i < npages; i++) {
    698 		struct vm_page *pg = pgs[i];
    699 		if (pg == NULL) {
    700 			continue;
    701 		}
    702 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    703 		    pg, pg->flags, 0,0);
    704 		if (pg->flags & PG_FAKE && !overwrite) {
    705 			pg->flags &= ~(PG_FAKE);
    706 			pmap_clear_modify(pgs[i]);
    707 		}
    708 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    709 		if (i < ridx || i >= ridx + orignmempages || async) {
    710 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    711 			    pg, pg->offset,0,0);
    712 			if (pg->flags & PG_WANTED) {
    713 				wakeup(pg);
    714 			}
    715 			if (pg->flags & PG_FAKE) {
    716 				KASSERT(overwrite);
    717 				uvm_pagezero(pg);
    718 			}
    719 			if (pg->flags & PG_RELEASED) {
    720 				uvm_pagefree(pg);
    721 				continue;
    722 			}
    723 			uvm_pageenqueue(pg);
    724 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    725 			UVM_PAGE_OWN(pg, NULL);
    726 		}
    727 	}
    728 	mutex_exit(&uvm_pageqlock);
    729 	mutex_exit(&uobj->vmobjlock);
    730 	if (ap->a_m != NULL) {
    731 		memcpy(ap->a_m, &pgs[ridx],
    732 		    orignmempages * sizeof(struct vm_page *));
    733 	}
    734 
    735 out_err_free:
    736 	if (pgs != NULL && pgs != pgs_onstack)
    737 		kmem_free(pgs, pgs_size);
    738 out_err:
    739 	if (has_trans)
    740 		fstrans_done(vp->v_mount);
    741 	return (error);
    742 }
    743 
    744 #ifdef XIP
    745 /*
    746  * genfs_do_getpages_xip
    747  *      Return "direct pages" of XIP vnode.  The block addresses of XIP
    748  *      vnode pages are returned back to the VM fault handler as the
    749  *	actually mapped physical addresses.
    750  *
    751  * XXX Should be merged into genfs_do_getpages() after
    752  * XXX genfs_do_getpages() and genfs_do_io() are merged.
    753  */
    754 static int
    755 genfs_do_getpages_xip(void *v)
    756 {
    757 	struct vop_getpages_args /* {
    758 		struct vnode *a_vp;
    759 		voff_t a_offset;
    760 		struct vm_page **a_m;
    761 		int *a_count;
    762 		int a_centeridx;
    763 		vm_prot_t a_access_type;
    764 		int a_advice;
    765 		int a_flags;
    766 	} */ * const ap = v;
    767 
    768 	struct vnode * const vp = ap->a_vp;
    769 	int *npagesp = ap->a_count;
    770 	const off_t offset = ap->a_offset;
    771 	struct vm_page **pps = ap->a_m;
    772 	struct uvm_object * const uobj = &vp->v_uobj;
    773 	const int flags = ap->a_flags;
    774 
    775 	int error;
    776 	off_t eof, sbkoff, ebkoff, off;
    777 	int npages;
    778 	int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
    779 	int i;
    780 	paddr_t phys_addr;
    781 
    782 	UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
    783 
    784 	KASSERT((vp->v_vflag & VV_XIP) != 0);
    785 
    786 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
    787 	npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
    788 
    789 	fs_bshift = vp->v_mount->mnt_fs_bshift;
    790 	fs_bsize = 1 << fs_bshift;
    791 	dev_bshift = vp->v_mount->mnt_dev_bshift;
    792 	dev_bsize = 1 << dev_bshift;
    793 
    794 	sbkoff = offset & ~(fs_bsize - 1);
    795 	ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) & ~(fs_bsize - 1);
    796 
    797 	UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx", npages, (long)sbkoff, (long)ebkoff, 0);
    798 
    799 	if ((flags & PGO_LOCKED) == 0)
    800 		mutex_exit(&uobj->vmobjlock);
    801 
    802 	/* XXX optimize */
    803 	off = offset;
    804 	i = 0;
    805 	while (i < npages) {
    806 		daddr_t lbn, blkno;
    807 		int run;
    808 		struct vnode *devvp;
    809 
    810 		lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
    811 
    812 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    813 		KASSERT(error == 0);
    814 		UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d", (long)lbn, (long)blkno, run, 0);
    815 
    816 		if (blkno < 0) {
    817 			/* unallocated page is redirected to read-only zero-filled page */
    818 			phys_addr = uvm_pageofzero_xip_phys_addr();
    819 		} else {
    820 			struct vm_physseg *seg;
    821 
    822 			seg = devvp->v_physseg;
    823 			KASSERT(seg != NULL);
    824 			/* bus_space_mmap cookie -> paddr_t */
    825 			phys_addr = pmap_phys_address(seg->start) +
    826 			    (blkno << dev_bshift) +
    827 			    (off - (lbn << fs_bshift));
    828 		}
    829 
    830 		pps[i] = uvm_phys_to_vm_page_direct(phys_addr);
    831 
    832 		UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
    833 			i,
    834 			(long)phys_addr,
    835 			pps[i],
    836 			0);
    837 
    838 		off += PAGE_SIZE;
    839 		i++;
    840 	}
    841 
    842 	*npagesp = i;
    843 
    844 	return 0;
    845 }
    846 #endif
    847 
    848 /*
    849  * generic VM putpages routine.
    850  * Write the given range of pages to backing store.
    851  *
    852  * => "offhi == 0" means flush all pages at or after "offlo".
    853  * => object should be locked by caller.  we return with the
    854  *      object unlocked.
    855  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    856  *	thus, a caller might want to unlock higher level resources
    857  *	(e.g. vm_map) before calling flush.
    858  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    859  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    860  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    861  *	that new pages are inserted on the tail end of the list.   thus,
    862  *	we can make a complete pass through the object in one go by starting
    863  *	at the head and working towards the tail (new pages are put in
    864  *	front of us).
    865  * => NOTE: we are allowed to lock the page queues, so the caller
    866  *	must not be holding the page queue lock.
    867  *
    868  * note on "cleaning" object and PG_BUSY pages:
    869  *	this routine is holding the lock on the object.   the only time
    870  *	that it can run into a PG_BUSY page that it does not own is if
    871  *	some other process has started I/O on the page (e.g. either
    872  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    873  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    874  *	had a chance to modify it yet.    if the PG_BUSY page is being
    875  *	paged out then it means that someone else has already started
    876  *	cleaning the page for us (how nice!).    in this case, if we
    877  *	have syncio specified, then after we make our pass through the
    878  *	object we need to wait for the other PG_BUSY pages to clear
    879  *	off (i.e. we need to do an iosync).   also note that once a
    880  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    881  *
    882  * note on page traversal:
    883  *	we can traverse the pages in an object either by going down the
    884  *	linked list in "uobj->memq", or we can go over the address range
    885  *	by page doing hash table lookups for each address.    depending
    886  *	on how many pages are in the object it may be cheaper to do one
    887  *	or the other.   we set "by_list" to true if we are using memq.
    888  *	if the cost of a hash lookup was equal to the cost of the list
    889  *	traversal we could compare the number of pages in the start->stop
    890  *	range to the total number of pages in the object.   however, it
    891  *	seems that a hash table lookup is more expensive than the linked
    892  *	list traversal, so we multiply the number of pages in the
    893  *	range by an estimate of the relatively higher cost of the hash lookup.
    894  */
    895 
    896 int
    897 genfs_putpages(void *v)
    898 {
    899 	struct vop_putpages_args /* {
    900 		struct vnode *a_vp;
    901 		voff_t a_offlo;
    902 		voff_t a_offhi;
    903 		int a_flags;
    904 	} */ * const ap = v;
    905 
    906 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    907 	    ap->a_flags, NULL);
    908 }
    909 
    910 int
    911 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    912     int origflags, struct vm_page **busypg)
    913 {
    914 	struct uvm_object * const uobj = &vp->v_uobj;
    915 	kmutex_t * const slock = &uobj->vmobjlock;
    916 	off_t off;
    917 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    918 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    919 	int i, error, npages, nback;
    920 	int freeflag;
    921 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    922 	bool wasclean, by_list, needs_clean, yld;
    923 	bool async = (origflags & PGO_SYNCIO) == 0;
    924 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    925 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    926 	struct genfs_node * const gp = VTOG(vp);
    927 	int flags;
    928 	int dirtygen;
    929 	bool modified;
    930 	bool need_wapbl;
    931 	bool has_trans;
    932 	bool cleanall;
    933 	bool onworklst;
    934 
    935 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    936 
    937 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    938 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    939 	KASSERT(startoff < endoff || endoff == 0);
    940 
    941 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    942 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    943 
    944 	has_trans = false;
    945 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    946 	    (origflags & PGO_JOURNALLOCKED) == 0);
    947 
    948 retry:
    949 	modified = false;
    950 	flags = origflags;
    951 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    952 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    953 	if (uobj->uo_npages == 0) {
    954 		if (vp->v_iflag & VI_ONWORKLST) {
    955 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    956 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    957 				vn_syncer_remove_from_worklist(vp);
    958 		}
    959 		if (has_trans) {
    960 			if (need_wapbl)
    961 				WAPBL_END(vp->v_mount);
    962 			fstrans_done(vp->v_mount);
    963 		}
    964 		mutex_exit(slock);
    965 		return (0);
    966 	}
    967 
    968 	/*
    969 	 * the vnode has pages, set up to process the request.
    970 	 */
    971 
    972 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    973 		mutex_exit(slock);
    974 		if (pagedaemon) {
    975 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    976 			if (error)
    977 				return error;
    978 		} else
    979 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    980 		if (need_wapbl) {
    981 			error = WAPBL_BEGIN(vp->v_mount);
    982 			if (error) {
    983 				fstrans_done(vp->v_mount);
    984 				return error;
    985 			}
    986 		}
    987 		has_trans = true;
    988 		mutex_enter(slock);
    989 		goto retry;
    990 	}
    991 
    992 	error = 0;
    993 	wasclean = (vp->v_numoutput == 0);
    994 	off = startoff;
    995 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    996 		endoff = trunc_page(LLONG_MAX);
    997 	}
    998 	by_list = (uobj->uo_npages <=
    999 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
   1000 
   1001 #if !defined(DEBUG)
   1002 	/*
   1003 	 * if this vnode is known not to have dirty pages,
   1004 	 * don't bother to clean it out.
   1005 	 */
   1006 
   1007 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1008 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1009 			goto skip_scan;
   1010 		}
   1011 		flags &= ~PGO_CLEANIT;
   1012 	}
   1013 #endif /* !defined(DEBUG) */
   1014 
   1015 	/*
   1016 	 * start the loop.  when scanning by list, hold the last page
   1017 	 * in the list before we start.  pages allocated after we start
   1018 	 * will be added to the end of the list, so we can stop at the
   1019 	 * current last page.
   1020 	 */
   1021 
   1022 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1023 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1024 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1025 	dirtygen = gp->g_dirtygen;
   1026 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1027 	if (by_list) {
   1028 		curmp.uobject = uobj;
   1029 		curmp.offset = (voff_t)-1;
   1030 		curmp.flags = PG_BUSY;
   1031 		endmp.uobject = uobj;
   1032 		endmp.offset = (voff_t)-1;
   1033 		endmp.flags = PG_BUSY;
   1034 		pg = TAILQ_FIRST(&uobj->memq);
   1035 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1036 	} else {
   1037 		pg = uvm_pagelookup(uobj, off);
   1038 	}
   1039 	nextpg = NULL;
   1040 	while (by_list || off < endoff) {
   1041 
   1042 		/*
   1043 		 * if the current page is not interesting, move on to the next.
   1044 		 */
   1045 
   1046 		KASSERT(pg == NULL || pg->uobject == uobj);
   1047 		KASSERT(pg == NULL ||
   1048 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1049 		    (pg->flags & PG_BUSY) != 0);
   1050 		if (by_list) {
   1051 			if (pg == &endmp) {
   1052 				break;
   1053 			}
   1054 			if (pg->offset < startoff || pg->offset >= endoff ||
   1055 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1056 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1057 					wasclean = false;
   1058 				}
   1059 				pg = TAILQ_NEXT(pg, listq.queue);
   1060 				continue;
   1061 			}
   1062 			off = pg->offset;
   1063 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1064 			if (pg != NULL) {
   1065 				wasclean = false;
   1066 			}
   1067 			off += PAGE_SIZE;
   1068 			if (off < endoff) {
   1069 				pg = uvm_pagelookup(uobj, off);
   1070 			}
   1071 			continue;
   1072 		}
   1073 
   1074 		/*
   1075 		 * if the current page needs to be cleaned and it's busy,
   1076 		 * wait for it to become unbusy.
   1077 		 */
   1078 
   1079 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1080 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1081 		if (pg->flags & PG_BUSY || yld) {
   1082 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1083 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1084 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1085 				error = EDEADLK;
   1086 				if (busypg != NULL)
   1087 					*busypg = pg;
   1088 				break;
   1089 			}
   1090 			if (pagedaemon) {
   1091 				/*
   1092 				 * someone has taken the page while we
   1093 				 * dropped the lock for fstrans_start.
   1094 				 */
   1095 				break;
   1096 			}
   1097 			if (by_list) {
   1098 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1099 				UVMHIST_LOG(ubchist, "curmp next %p",
   1100 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1101 			}
   1102 			if (yld) {
   1103 				mutex_exit(slock);
   1104 				preempt();
   1105 				mutex_enter(slock);
   1106 			} else {
   1107 				pg->flags |= PG_WANTED;
   1108 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1109 				mutex_enter(slock);
   1110 			}
   1111 			if (by_list) {
   1112 				UVMHIST_LOG(ubchist, "after next %p",
   1113 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1114 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1115 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1116 			} else {
   1117 				pg = uvm_pagelookup(uobj, off);
   1118 			}
   1119 			continue;
   1120 		}
   1121 
   1122 		/*
   1123 		 * if we're freeing, remove all mappings of the page now.
   1124 		 * if we're cleaning, check if the page is needs to be cleaned.
   1125 		 */
   1126 
   1127 		if (flags & PGO_FREE) {
   1128 			pmap_page_protect(pg, VM_PROT_NONE);
   1129 		} else if (flags & PGO_CLEANIT) {
   1130 
   1131 			/*
   1132 			 * if we still have some hope to pull this vnode off
   1133 			 * from the syncer queue, write-protect the page.
   1134 			 */
   1135 
   1136 			if (cleanall && wasclean &&
   1137 			    gp->g_dirtygen == dirtygen) {
   1138 
   1139 				/*
   1140 				 * uobj pages get wired only by uvm_fault
   1141 				 * where uobj is locked.
   1142 				 */
   1143 
   1144 				if (pg->wire_count == 0) {
   1145 					pmap_page_protect(pg,
   1146 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1147 				} else {
   1148 					cleanall = false;
   1149 				}
   1150 			}
   1151 		}
   1152 
   1153 		if (flags & PGO_CLEANIT) {
   1154 			needs_clean = pmap_clear_modify(pg) ||
   1155 			    (pg->flags & PG_CLEAN) == 0;
   1156 			pg->flags |= PG_CLEAN;
   1157 		} else {
   1158 			needs_clean = false;
   1159 		}
   1160 
   1161 		/*
   1162 		 * if we're cleaning, build a cluster.
   1163 		 * the cluster will consist of pages which are currently dirty,
   1164 		 * but they will be returned to us marked clean.
   1165 		 * if not cleaning, just operate on the one page.
   1166 		 */
   1167 
   1168 		if (needs_clean) {
   1169 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1170 			wasclean = false;
   1171 			memset(pgs, 0, sizeof(pgs));
   1172 			pg->flags |= PG_BUSY;
   1173 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1174 
   1175 			/*
   1176 			 * first look backward.
   1177 			 */
   1178 
   1179 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1180 			nback = npages;
   1181 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1182 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1183 			if (nback) {
   1184 				memmove(&pgs[0], &pgs[npages - nback],
   1185 				    nback * sizeof(pgs[0]));
   1186 				if (npages - nback < nback)
   1187 					memset(&pgs[nback], 0,
   1188 					    (npages - nback) * sizeof(pgs[0]));
   1189 				else
   1190 					memset(&pgs[npages - nback], 0,
   1191 					    nback * sizeof(pgs[0]));
   1192 			}
   1193 
   1194 			/*
   1195 			 * then plug in our page of interest.
   1196 			 */
   1197 
   1198 			pgs[nback] = pg;
   1199 
   1200 			/*
   1201 			 * then look forward to fill in the remaining space in
   1202 			 * the array of pages.
   1203 			 */
   1204 
   1205 			npages = maxpages - nback - 1;
   1206 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1207 			    &pgs[nback + 1],
   1208 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1209 			npages += nback + 1;
   1210 		} else {
   1211 			pgs[0] = pg;
   1212 			npages = 1;
   1213 			nback = 0;
   1214 		}
   1215 
   1216 		/*
   1217 		 * apply FREE or DEACTIVATE options if requested.
   1218 		 */
   1219 
   1220 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1221 			mutex_enter(&uvm_pageqlock);
   1222 		}
   1223 		for (i = 0; i < npages; i++) {
   1224 			tpg = pgs[i];
   1225 			KASSERT(tpg->uobject == uobj);
   1226 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1227 				pg = tpg;
   1228 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1229 				continue;
   1230 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1231 				uvm_pagedeactivate(tpg);
   1232 			} else if (flags & PGO_FREE) {
   1233 				pmap_page_protect(tpg, VM_PROT_NONE);
   1234 				if (tpg->flags & PG_BUSY) {
   1235 					tpg->flags |= freeflag;
   1236 					if (pagedaemon) {
   1237 						uvm_pageout_start(1);
   1238 						uvm_pagedequeue(tpg);
   1239 					}
   1240 				} else {
   1241 
   1242 					/*
   1243 					 * ``page is not busy''
   1244 					 * implies that npages is 1
   1245 					 * and needs_clean is false.
   1246 					 */
   1247 
   1248 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1249 					uvm_pagefree(tpg);
   1250 					if (pagedaemon)
   1251 						uvmexp.pdfreed++;
   1252 				}
   1253 			}
   1254 		}
   1255 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1256 			mutex_exit(&uvm_pageqlock);
   1257 		}
   1258 		if (needs_clean) {
   1259 			modified = true;
   1260 
   1261 			/*
   1262 			 * start the i/o.  if we're traversing by list,
   1263 			 * keep our place in the list with a marker page.
   1264 			 */
   1265 
   1266 			if (by_list) {
   1267 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1268 				    listq.queue);
   1269 			}
   1270 			mutex_exit(slock);
   1271 			error = GOP_WRITE(vp, pgs, npages, flags);
   1272 			mutex_enter(slock);
   1273 			if (by_list) {
   1274 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1275 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1276 			}
   1277 			if (error) {
   1278 				break;
   1279 			}
   1280 			if (by_list) {
   1281 				continue;
   1282 			}
   1283 		}
   1284 
   1285 		/*
   1286 		 * find the next page and continue if there was no error.
   1287 		 */
   1288 
   1289 		if (by_list) {
   1290 			if (nextpg) {
   1291 				pg = nextpg;
   1292 				nextpg = NULL;
   1293 			} else {
   1294 				pg = TAILQ_NEXT(pg, listq.queue);
   1295 			}
   1296 		} else {
   1297 			off += (npages - nback) << PAGE_SHIFT;
   1298 			if (off < endoff) {
   1299 				pg = uvm_pagelookup(uobj, off);
   1300 			}
   1301 		}
   1302 	}
   1303 	if (by_list) {
   1304 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1305 	}
   1306 
   1307 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1308 	    (vp->v_type != VBLK ||
   1309 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1310 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1311 	}
   1312 
   1313 	/*
   1314 	 * if we're cleaning and there was nothing to clean,
   1315 	 * take us off the syncer list.  if we started any i/o
   1316 	 * and we're doing sync i/o, wait for all writes to finish.
   1317 	 */
   1318 
   1319 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1320 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1321 #if defined(DEBUG)
   1322 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1323 			if ((pg->flags & PG_CLEAN) == 0) {
   1324 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1325 			}
   1326 			if (pmap_is_modified(pg)) {
   1327 				printf("%s: %p: modified\n", __func__, pg);
   1328 			}
   1329 		}
   1330 #endif /* defined(DEBUG) */
   1331 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1332 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1333 			vn_syncer_remove_from_worklist(vp);
   1334 	}
   1335 
   1336 #if !defined(DEBUG)
   1337 skip_scan:
   1338 #endif /* !defined(DEBUG) */
   1339 
   1340 	/* Wait for output to complete. */
   1341 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1342 		while (vp->v_numoutput != 0)
   1343 			cv_wait(&vp->v_cv, slock);
   1344 	}
   1345 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1346 	mutex_exit(slock);
   1347 
   1348 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1349 		/*
   1350 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1351 		 * retrying is not a big deal because, in many cases,
   1352 		 * uobj->uo_npages is already 0 here.
   1353 		 */
   1354 		mutex_enter(slock);
   1355 		goto retry;
   1356 	}
   1357 
   1358 	if (has_trans) {
   1359 		if (need_wapbl)
   1360 			WAPBL_END(vp->v_mount);
   1361 		fstrans_done(vp->v_mount);
   1362 	}
   1363 
   1364 	return (error);
   1365 }
   1366 
   1367 int
   1368 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1369 {
   1370 	off_t off;
   1371 	vaddr_t kva;
   1372 	size_t len;
   1373 	int error;
   1374 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1375 
   1376 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1377 	    vp, pgs, npages, flags);
   1378 
   1379 	off = pgs[0]->offset;
   1380 	kva = uvm_pagermapin(pgs, npages,
   1381 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1382 	len = npages << PAGE_SHIFT;
   1383 
   1384 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1385 			    uvm_aio_biodone);
   1386 
   1387 	return error;
   1388 }
   1389 
   1390 int
   1391 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1392 {
   1393 	off_t off;
   1394 	vaddr_t kva;
   1395 	size_t len;
   1396 	int error;
   1397 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1398 
   1399 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1400 	    vp, pgs, npages, flags);
   1401 
   1402 	off = pgs[0]->offset;
   1403 	kva = uvm_pagermapin(pgs, npages,
   1404 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1405 	len = npages << PAGE_SHIFT;
   1406 
   1407 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1408 			    uvm_aio_biodone);
   1409 
   1410 	return error;
   1411 }
   1412 
   1413 /*
   1414  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1415  * and mapped into kernel memory.  Here we just look up the underlying
   1416  * device block addresses and call the strategy routine.
   1417  */
   1418 
   1419 static int
   1420 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1421     enum uio_rw rw, void (*iodone)(struct buf *))
   1422 {
   1423 	int s, error;
   1424 	int fs_bshift, dev_bshift;
   1425 	off_t eof, offset, startoffset;
   1426 	size_t bytes, iobytes, skipbytes;
   1427 	struct buf *mbp, *bp;
   1428 	const bool async = (flags & PGO_SYNCIO) == 0;
   1429 	const bool iowrite = rw == UIO_WRITE;
   1430 	const int brw = iowrite ? B_WRITE : B_READ;
   1431 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1432 
   1433 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1434 	    vp, kva, len, flags);
   1435 
   1436 	KASSERT(vp->v_size <= vp->v_writesize);
   1437 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1438 	if (vp->v_type != VBLK) {
   1439 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1440 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1441 	} else {
   1442 		fs_bshift = DEV_BSHIFT;
   1443 		dev_bshift = DEV_BSHIFT;
   1444 	}
   1445 	error = 0;
   1446 	startoffset = off;
   1447 	bytes = MIN(len, eof - startoffset);
   1448 	skipbytes = 0;
   1449 	KASSERT(bytes != 0);
   1450 
   1451 	if (iowrite) {
   1452 		mutex_enter(&vp->v_interlock);
   1453 		vp->v_numoutput += 2;
   1454 		mutex_exit(&vp->v_interlock);
   1455 	}
   1456 	mbp = getiobuf(vp, true);
   1457 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1458 	    vp, mbp, vp->v_numoutput, bytes);
   1459 	mbp->b_bufsize = len;
   1460 	mbp->b_data = (void *)kva;
   1461 	mbp->b_resid = mbp->b_bcount = bytes;
   1462 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1463 	if (async) {
   1464 		mbp->b_flags = brw | B_ASYNC;
   1465 		mbp->b_iodone = iodone;
   1466 	} else {
   1467 		mbp->b_flags = brw;
   1468 		mbp->b_iodone = NULL;
   1469 	}
   1470 	if (curlwp == uvm.pagedaemon_lwp)
   1471 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1472 	else if (async)
   1473 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1474 	else
   1475 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1476 
   1477 	bp = NULL;
   1478 	for (offset = startoffset;
   1479 	    bytes > 0;
   1480 	    offset += iobytes, bytes -= iobytes) {
   1481 		int run;
   1482 		daddr_t lbn, blkno;
   1483 		struct vnode *devvp;
   1484 
   1485 		/*
   1486 		 * bmap the file to find out the blkno to read from and
   1487 		 * how much we can read in one i/o.  if bmap returns an error,
   1488 		 * skip the rest of the top-level i/o.
   1489 		 */
   1490 
   1491 		lbn = offset >> fs_bshift;
   1492 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1493 		if (error) {
   1494 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1495 			    lbn,error,0,0);
   1496 			skipbytes += bytes;
   1497 			bytes = 0;
   1498 			goto loopdone;
   1499 		}
   1500 
   1501 		/*
   1502 		 * see how many pages can be read with this i/o.
   1503 		 * reduce the i/o size if necessary to avoid
   1504 		 * overwriting pages with valid data.
   1505 		 */
   1506 
   1507 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1508 		    bytes);
   1509 
   1510 		/*
   1511 		 * if this block isn't allocated, zero it instead of
   1512 		 * reading it.  unless we are going to allocate blocks,
   1513 		 * mark the pages we zeroed PG_RDONLY.
   1514 		 */
   1515 
   1516 		if (blkno == (daddr_t)-1) {
   1517 			if (!iowrite) {
   1518 				memset((char *)kva + (offset - startoffset), 0,
   1519 				    iobytes);
   1520 			}
   1521 			skipbytes += iobytes;
   1522 			continue;
   1523 		}
   1524 
   1525 		/*
   1526 		 * allocate a sub-buf for this piece of the i/o
   1527 		 * (or just use mbp if there's only 1 piece),
   1528 		 * and start it going.
   1529 		 */
   1530 
   1531 		if (offset == startoffset && iobytes == bytes) {
   1532 			bp = mbp;
   1533 		} else {
   1534 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1535 			    vp, bp, vp->v_numoutput, 0);
   1536 			bp = getiobuf(vp, true);
   1537 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1538 		}
   1539 		bp->b_lblkno = 0;
   1540 
   1541 		/* adjust physical blkno for partial blocks */
   1542 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1543 		    dev_bshift);
   1544 
   1545 		UVMHIST_LOG(ubchist,
   1546 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1547 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1548 
   1549 		VOP_STRATEGY(devvp, bp);
   1550 	}
   1551 
   1552 loopdone:
   1553 	if (skipbytes) {
   1554 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1555 	}
   1556 	nestiobuf_done(mbp, skipbytes, error);
   1557 	if (async) {
   1558 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1559 		return (0);
   1560 	}
   1561 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1562 	error = biowait(mbp);
   1563 	s = splbio();
   1564 	(*iodone)(mbp);
   1565 	splx(s);
   1566 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1567 	return (error);
   1568 }
   1569 
   1570 int
   1571 genfs_compat_getpages(void *v)
   1572 {
   1573 	struct vop_getpages_args /* {
   1574 		struct vnode *a_vp;
   1575 		voff_t a_offset;
   1576 		struct vm_page **a_m;
   1577 		int *a_count;
   1578 		int a_centeridx;
   1579 		vm_prot_t a_access_type;
   1580 		int a_advice;
   1581 		int a_flags;
   1582 	} */ *ap = v;
   1583 
   1584 	off_t origoffset;
   1585 	struct vnode *vp = ap->a_vp;
   1586 	struct uvm_object *uobj = &vp->v_uobj;
   1587 	struct vm_page *pg, **pgs;
   1588 	vaddr_t kva;
   1589 	int i, error, orignpages, npages;
   1590 	struct iovec iov;
   1591 	struct uio uio;
   1592 	kauth_cred_t cred = curlwp->l_cred;
   1593 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1594 
   1595 	error = 0;
   1596 	origoffset = ap->a_offset;
   1597 	orignpages = *ap->a_count;
   1598 	pgs = ap->a_m;
   1599 
   1600 	if (memwrite && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1601 		vn_syncer_add_to_worklist(vp, filedelay);
   1602 	}
   1603 	if (ap->a_flags & PGO_LOCKED) {
   1604 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1605 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1606 
   1607 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1608 	}
   1609 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1610 		mutex_exit(&uobj->vmobjlock);
   1611 		return (EINVAL);
   1612 	}
   1613 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1614 		mutex_exit(&uobj->vmobjlock);
   1615 		return 0;
   1616 	}
   1617 	npages = orignpages;
   1618 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1619 	mutex_exit(&uobj->vmobjlock);
   1620 	kva = uvm_pagermapin(pgs, npages,
   1621 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1622 	for (i = 0; i < npages; i++) {
   1623 		pg = pgs[i];
   1624 		if ((pg->flags & PG_FAKE) == 0) {
   1625 			continue;
   1626 		}
   1627 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1628 		iov.iov_len = PAGE_SIZE;
   1629 		uio.uio_iov = &iov;
   1630 		uio.uio_iovcnt = 1;
   1631 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1632 		uio.uio_rw = UIO_READ;
   1633 		uio.uio_resid = PAGE_SIZE;
   1634 		UIO_SETUP_SYSSPACE(&uio);
   1635 		/* XXX vn_lock */
   1636 		error = VOP_READ(vp, &uio, 0, cred);
   1637 		if (error) {
   1638 			break;
   1639 		}
   1640 		if (uio.uio_resid) {
   1641 			memset(iov.iov_base, 0, uio.uio_resid);
   1642 		}
   1643 	}
   1644 	uvm_pagermapout(kva, npages);
   1645 	mutex_enter(&uobj->vmobjlock);
   1646 	mutex_enter(&uvm_pageqlock);
   1647 	for (i = 0; i < npages; i++) {
   1648 		pg = pgs[i];
   1649 		if (error && (pg->flags & PG_FAKE) != 0) {
   1650 			pg->flags |= PG_RELEASED;
   1651 		} else {
   1652 			pmap_clear_modify(pg);
   1653 			uvm_pageactivate(pg);
   1654 		}
   1655 	}
   1656 	if (error) {
   1657 		uvm_page_unbusy(pgs, npages);
   1658 	}
   1659 	mutex_exit(&uvm_pageqlock);
   1660 	mutex_exit(&uobj->vmobjlock);
   1661 	return (error);
   1662 }
   1663 
   1664 int
   1665 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1666     int flags)
   1667 {
   1668 	off_t offset;
   1669 	struct iovec iov;
   1670 	struct uio uio;
   1671 	kauth_cred_t cred = curlwp->l_cred;
   1672 	struct buf *bp;
   1673 	vaddr_t kva;
   1674 	int error;
   1675 
   1676 	offset = pgs[0]->offset;
   1677 	kva = uvm_pagermapin(pgs, npages,
   1678 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1679 
   1680 	iov.iov_base = (void *)kva;
   1681 	iov.iov_len = npages << PAGE_SHIFT;
   1682 	uio.uio_iov = &iov;
   1683 	uio.uio_iovcnt = 1;
   1684 	uio.uio_offset = offset;
   1685 	uio.uio_rw = UIO_WRITE;
   1686 	uio.uio_resid = npages << PAGE_SHIFT;
   1687 	UIO_SETUP_SYSSPACE(&uio);
   1688 	/* XXX vn_lock */
   1689 	error = VOP_WRITE(vp, &uio, 0, cred);
   1690 
   1691 	mutex_enter(&vp->v_interlock);
   1692 	vp->v_numoutput++;
   1693 	mutex_exit(&vp->v_interlock);
   1694 
   1695 	bp = getiobuf(vp, true);
   1696 	bp->b_cflags = BC_BUSY | BC_AGE;
   1697 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1698 	bp->b_data = (char *)kva;
   1699 	bp->b_bcount = npages << PAGE_SHIFT;
   1700 	bp->b_bufsize = npages << PAGE_SHIFT;
   1701 	bp->b_resid = 0;
   1702 	bp->b_error = error;
   1703 	uvm_aio_aiodone(bp);
   1704 	return (error);
   1705 }
   1706 
   1707 /*
   1708  * Process a uio using direct I/O.  If we reach a part of the request
   1709  * which cannot be processed in this fashion for some reason, just return.
   1710  * The caller must handle some additional part of the request using
   1711  * buffered I/O before trying direct I/O again.
   1712  */
   1713 
   1714 void
   1715 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1716 {
   1717 	struct vmspace *vs;
   1718 	struct iovec *iov;
   1719 	vaddr_t va;
   1720 	size_t len;
   1721 	const int mask = DEV_BSIZE - 1;
   1722 	int error;
   1723 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1724 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1725 
   1726 	/*
   1727 	 * We only support direct I/O to user space for now.
   1728 	 */
   1729 
   1730 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1731 		return;
   1732 	}
   1733 
   1734 	/*
   1735 	 * If the vnode is mapped, we would need to get the getpages lock
   1736 	 * to stabilize the bmap, but then we would get into trouble whil e
   1737 	 * locking the pages if the pages belong to this same vnode (or a
   1738 	 * multi-vnode cascade to the same effect).  Just fall back to
   1739 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1740 	 */
   1741 
   1742 	if (vp->v_vflag & VV_MAPPED) {
   1743 		return;
   1744 	}
   1745 
   1746 	if (need_wapbl) {
   1747 		error = WAPBL_BEGIN(vp->v_mount);
   1748 		if (error)
   1749 			return;
   1750 	}
   1751 
   1752 	/*
   1753 	 * Do as much of the uio as possible with direct I/O.
   1754 	 */
   1755 
   1756 	vs = uio->uio_vmspace;
   1757 	while (uio->uio_resid) {
   1758 		iov = uio->uio_iov;
   1759 		if (iov->iov_len == 0) {
   1760 			uio->uio_iov++;
   1761 			uio->uio_iovcnt--;
   1762 			continue;
   1763 		}
   1764 		va = (vaddr_t)iov->iov_base;
   1765 		len = MIN(iov->iov_len, genfs_maxdio);
   1766 		len &= ~mask;
   1767 
   1768 		/*
   1769 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1770 		 * the current EOF, then fall back to buffered I/O.
   1771 		 */
   1772 
   1773 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1774 			break;
   1775 		}
   1776 
   1777 		/*
   1778 		 * Check alignment.  The file offset must be at least
   1779 		 * sector-aligned.  The exact constraint on memory alignment
   1780 		 * is very hardware-dependent, but requiring sector-aligned
   1781 		 * addresses there too is safe.
   1782 		 */
   1783 
   1784 		if (uio->uio_offset & mask || va & mask) {
   1785 			break;
   1786 		}
   1787 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1788 					  uio->uio_rw);
   1789 		if (error) {
   1790 			break;
   1791 		}
   1792 		iov->iov_base = (char *)iov->iov_base + len;
   1793 		iov->iov_len -= len;
   1794 		uio->uio_offset += len;
   1795 		uio->uio_resid -= len;
   1796 	}
   1797 
   1798 	if (need_wapbl)
   1799 		WAPBL_END(vp->v_mount);
   1800 }
   1801 
   1802 /*
   1803  * Iodone routine for direct I/O.  We don't do much here since the request is
   1804  * always synchronous, so the caller will do most of the work after biowait().
   1805  */
   1806 
   1807 static void
   1808 genfs_dio_iodone(struct buf *bp)
   1809 {
   1810 
   1811 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1812 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1813 		mutex_enter(bp->b_objlock);
   1814 		vwakeup(bp);
   1815 		mutex_exit(bp->b_objlock);
   1816 	}
   1817 	putiobuf(bp);
   1818 }
   1819 
   1820 /*
   1821  * Process one chunk of a direct I/O request.
   1822  */
   1823 
   1824 static int
   1825 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1826     off_t off, enum uio_rw rw)
   1827 {
   1828 	struct vm_map *map;
   1829 	struct pmap *upm, *kpm;
   1830 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1831 	off_t spoff, epoff;
   1832 	vaddr_t kva, puva;
   1833 	paddr_t pa;
   1834 	vm_prot_t prot;
   1835 	int error, rv, poff, koff;
   1836 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1837 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1838 
   1839 	/*
   1840 	 * For writes, verify that this range of the file already has fully
   1841 	 * allocated backing store.  If there are any holes, just punt and
   1842 	 * make the caller take the buffered write path.
   1843 	 */
   1844 
   1845 	if (rw == UIO_WRITE) {
   1846 		daddr_t lbn, elbn, blkno;
   1847 		int bsize, bshift, run;
   1848 
   1849 		bshift = vp->v_mount->mnt_fs_bshift;
   1850 		bsize = 1 << bshift;
   1851 		lbn = off >> bshift;
   1852 		elbn = (off + len + bsize - 1) >> bshift;
   1853 		while (lbn < elbn) {
   1854 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1855 			if (error) {
   1856 				return error;
   1857 			}
   1858 			if (blkno == (daddr_t)-1) {
   1859 				return ENOSPC;
   1860 			}
   1861 			lbn += 1 + run;
   1862 		}
   1863 	}
   1864 
   1865 	/*
   1866 	 * Flush any cached pages for parts of the file that we're about to
   1867 	 * access.  If we're writing, invalidate pages as well.
   1868 	 */
   1869 
   1870 	spoff = trunc_page(off);
   1871 	epoff = round_page(off + len);
   1872 	mutex_enter(&vp->v_interlock);
   1873 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1874 	if (error) {
   1875 		return error;
   1876 	}
   1877 
   1878 	/*
   1879 	 * Wire the user pages and remap them into kernel memory.
   1880 	 */
   1881 
   1882 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1883 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1884 	if (error) {
   1885 		return error;
   1886 	}
   1887 
   1888 	map = &vs->vm_map;
   1889 	upm = vm_map_pmap(map);
   1890 	kpm = vm_map_pmap(kernel_map);
   1891 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1892 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1893 	puva = trunc_page(uva);
   1894 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1895 		rv = pmap_extract(upm, puva + poff, &pa);
   1896 		KASSERT(rv);
   1897 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1898 	}
   1899 	pmap_update(kpm);
   1900 
   1901 	/*
   1902 	 * Do the I/O.
   1903 	 */
   1904 
   1905 	koff = uva - trunc_page(uva);
   1906 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1907 			    genfs_dio_iodone);
   1908 
   1909 	/*
   1910 	 * Tear down the kernel mapping.
   1911 	 */
   1912 
   1913 	pmap_remove(kpm, kva, kva + klen);
   1914 	pmap_update(kpm);
   1915 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1916 
   1917 	/*
   1918 	 * Unwire the user pages.
   1919 	 */
   1920 
   1921 	uvm_vsunlock(vs, (void *)uva, len);
   1922 	return error;
   1923 }
   1924 
   1925