genfs_io.c revision 1.36.2.26 1 /* $NetBSD: genfs_io.c,v 1.36.2.26 2010/09/27 08:25:37 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.26 2010/09/27 08:25:37 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 static int genfs_do_getpages(void *);
63 #ifdef XIP
64 static int genfs_do_getpages_xip(void *);
65 static int genfs_do_getpages_xip1(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int);
67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
68 struct vm_page **);
69 #endif
70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
71 off_t, enum uio_rw);
72 static void genfs_dio_iodone(struct buf *);
73
74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
75 void (*)(struct buf *));
76 static void genfs_rel_pages(struct vm_page **, int);
77 static void genfs_markdirty(struct vnode *);
78
79 int genfs_maxdio = MAXPHYS;
80
81 static void
82 genfs_rel_pages(struct vm_page **pgs, int npages)
83 {
84 int i;
85
86 for (i = 0; i < npages; i++) {
87 struct vm_page *pg = pgs[i];
88
89 if (pg == NULL || pg == PGO_DONTCARE)
90 continue;
91 if (pg->flags & PG_FAKE) {
92 pg->flags |= PG_RELEASED;
93 }
94 }
95 mutex_enter(&uvm_pageqlock);
96 uvm_page_unbusy(pgs, npages);
97 mutex_exit(&uvm_pageqlock);
98 }
99
100 static void
101 genfs_markdirty(struct vnode *vp)
102 {
103 struct genfs_node * const gp = VTOG(vp);
104
105 KASSERT(mutex_owned(&vp->v_interlock));
106 gp->g_dirtygen++;
107 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
108 vn_syncer_add_to_worklist(vp, filedelay);
109 }
110 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
111 vp->v_iflag |= VI_WRMAPDIRTY;
112 }
113 }
114
115 /*
116 * generic VM getpages routine.
117 * Return PG_BUSY pages for the given range,
118 * reading from backing store if necessary.
119 */
120
121 int
122 genfs_getpages(void *v)
123 {
124 #ifdef XIP
125 struct vop_getpages_args /* {
126 struct vnode *a_vp;
127 voff_t a_offset;
128 struct vm_page **a_m;
129 int *a_count;
130 int a_centeridx;
131 vm_prot_t a_access_type;
132 int a_advice;
133 int a_flags;
134 } */ * const ap = v;
135
136 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
137 return genfs_do_getpages_xip(v);
138 else
139 #endif
140 return genfs_do_getpages(v);
141 }
142
143 static int
144 genfs_do_getpages(void *v)
145 {
146 struct vop_getpages_args /* {
147 struct vnode *a_vp;
148 voff_t a_offset;
149 struct vm_page **a_m;
150 int *a_count;
151 int a_centeridx;
152 vm_prot_t a_access_type;
153 int a_advice;
154 int a_flags;
155 } */ * const ap = v;
156
157 off_t diskeof, memeof;
158 int i, error, npages;
159 const int flags = ap->a_flags;
160 struct vnode * const vp = ap->a_vp;
161 struct genfs_node * const gp = VTOG(vp);
162 struct uvm_object * const uobj = &vp->v_uobj;
163 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
164 const bool async = (flags & PGO_SYNCIO) == 0;
165 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
166 bool has_trans = false;
167 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
168 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
169 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
170
171 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
172 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
173
174 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
175 vp->v_type == VLNK || vp->v_type == VBLK);
176
177 startover:
178 error = 0;
179 const voff_t origvsize = vp->v_size;
180 const off_t origoffset = ap->a_offset;
181 const int orignpages = *ap->a_count;
182
183 GOP_SIZE(vp, origvsize, &diskeof, 0);
184 if (flags & PGO_PASTEOF) {
185 off_t newsize;
186 #if defined(DIAGNOSTIC)
187 off_t writeeof;
188 #endif /* defined(DIAGNOSTIC) */
189
190 newsize = MAX(origvsize,
191 origoffset + (orignpages << PAGE_SHIFT));
192 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
193 #if defined(DIAGNOSTIC)
194 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
195 if (newsize > round_page(writeeof)) {
196 panic("%s: past eof", __func__);
197 }
198 #endif /* defined(DIAGNOSTIC) */
199 } else {
200 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
201 }
202 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
203 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
204 KASSERT(orignpages > 0);
205
206 /*
207 * Bounds-check the request.
208 */
209
210 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
211 if ((flags & PGO_LOCKED) == 0) {
212 mutex_exit(&uobj->vmobjlock);
213 }
214 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
215 origoffset, *ap->a_count, memeof,0);
216 error = EINVAL;
217 goto out_err;
218 }
219
220 /* uobj is locked */
221
222 if ((flags & PGO_NOTIMESTAMP) == 0 &&
223 (vp->v_type != VBLK ||
224 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
225 int updflags = 0;
226
227 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
228 updflags = GOP_UPDATE_ACCESSED;
229 }
230 if (memwrite) {
231 updflags |= GOP_UPDATE_MODIFIED;
232 }
233 if (updflags != 0) {
234 GOP_MARKUPDATE(vp, updflags);
235 }
236 }
237
238 /*
239 * For PGO_LOCKED requests, just return whatever's in memory.
240 */
241
242 if (flags & PGO_LOCKED) {
243 int nfound;
244 struct vm_page *pg;
245
246 npages = *ap->a_count;
247 #if defined(DEBUG)
248 for (i = 0; i < npages; i++) {
249 pg = ap->a_m[i];
250 KASSERT(pg == NULL || pg == PGO_DONTCARE);
251 }
252 #endif /* defined(DEBUG) */
253 nfound = uvn_findpages(uobj, origoffset, &npages,
254 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
255 KASSERT(npages == *ap->a_count);
256 if (nfound == 0) {
257 error = EBUSY;
258 goto out_err;
259 }
260 if (!genfs_node_rdtrylock(vp)) {
261 genfs_rel_pages(ap->a_m, npages);
262
263 /*
264 * restore the array.
265 */
266
267 for (i = 0; i < npages; i++) {
268 pg = ap->a_m[i];
269
270 if (pg != NULL || pg != PGO_DONTCARE) {
271 ap->a_m[i] = NULL;
272 }
273 }
274 } else {
275 genfs_node_unlock(vp);
276 }
277 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
278 if (error == 0 && memwrite) {
279 genfs_markdirty(vp);
280 }
281 goto out_err;
282 }
283 mutex_exit(&uobj->vmobjlock);
284
285 /*
286 * find the requested pages and make some simple checks.
287 * leave space in the page array for a whole block.
288 */
289
290 const int fs_bshift = (vp->v_type != VBLK) ?
291 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
292 const int dev_bshift = (vp->v_type != VBLK) ?
293 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
294 const int fs_bsize = 1 << fs_bshift;
295 #define blk_mask (fs_bsize - 1)
296 #define trunc_blk(x) ((x) & ~blk_mask)
297 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
298
299 const int orignmempages = MIN(orignpages,
300 round_page(memeof - origoffset) >> PAGE_SHIFT);
301 npages = orignmempages;
302 const off_t startoffset = trunc_blk(origoffset);
303 const off_t endoffset = MIN(
304 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
305 round_page(memeof));
306 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
307
308 const int pgs_size = sizeof(struct vm_page *) *
309 ((endoffset - startoffset) >> PAGE_SHIFT);
310 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
311
312 if (pgs_size > sizeof(pgs_onstack)) {
313 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
314 if (pgs == NULL) {
315 pgs = pgs_onstack;
316 error = ENOMEM;
317 goto out_err;
318 }
319 } else {
320 pgs = pgs_onstack;
321 (void)memset(pgs, 0, pgs_size);
322 }
323
324 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
325 ridx, npages, startoffset, endoffset);
326
327 if (!has_trans) {
328 fstrans_start(vp->v_mount, FSTRANS_SHARED);
329 has_trans = true;
330 }
331
332 /*
333 * hold g_glock to prevent a race with truncate.
334 *
335 * check if our idea of v_size is still valid.
336 */
337
338 if (blockalloc) {
339 rw_enter(&gp->g_glock, RW_WRITER);
340 } else {
341 rw_enter(&gp->g_glock, RW_READER);
342 }
343 mutex_enter(&uobj->vmobjlock);
344 if (vp->v_size < origvsize) {
345 genfs_node_unlock(vp);
346 if (pgs != pgs_onstack)
347 kmem_free(pgs, pgs_size);
348 goto startover;
349 }
350
351 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
352 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
353 genfs_node_unlock(vp);
354 KASSERT(async != 0);
355 genfs_rel_pages(&pgs[ridx], orignmempages);
356 mutex_exit(&uobj->vmobjlock);
357 error = EBUSY;
358 goto out_err_free;
359 }
360
361 /*
362 * if the pages are already resident, just return them.
363 */
364
365 for (i = 0; i < npages; i++) {
366 struct vm_page *pg = pgs[ridx + i];
367
368 if ((pg->flags & PG_FAKE) ||
369 (blockalloc && (pg->flags & PG_RDONLY))) {
370 break;
371 }
372 }
373 if (i == npages) {
374 genfs_node_unlock(vp);
375 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
376 npages += ridx;
377 goto out;
378 }
379
380 /*
381 * if PGO_OVERWRITE is set, don't bother reading the pages.
382 */
383
384 if (overwrite) {
385 genfs_node_unlock(vp);
386 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
387
388 for (i = 0; i < npages; i++) {
389 struct vm_page *pg = pgs[ridx + i];
390
391 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
392 }
393 npages += ridx;
394 goto out;
395 }
396
397 /*
398 * the page wasn't resident and we're not overwriting,
399 * so we're going to have to do some i/o.
400 * find any additional pages needed to cover the expanded range.
401 */
402
403 npages = (endoffset - startoffset) >> PAGE_SHIFT;
404 if (startoffset != origoffset || npages != orignmempages) {
405 int npgs;
406
407 /*
408 * we need to avoid deadlocks caused by locking
409 * additional pages at lower offsets than pages we
410 * already have locked. unlock them all and start over.
411 */
412
413 genfs_rel_pages(&pgs[ridx], orignmempages);
414 memset(pgs, 0, pgs_size);
415
416 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
417 startoffset, endoffset, 0,0);
418 npgs = npages;
419 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
420 async ? UFP_NOWAIT : UFP_ALL) != npages) {
421 genfs_node_unlock(vp);
422 KASSERT(async != 0);
423 genfs_rel_pages(pgs, npages);
424 mutex_exit(&uobj->vmobjlock);
425 error = EBUSY;
426 goto out_err_free;
427 }
428 }
429
430 mutex_exit(&uobj->vmobjlock);
431
432 {
433 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
434 vaddr_t kva;
435 struct buf *bp, *mbp;
436 bool sawhole = false;
437
438 /*
439 * read the desired page(s).
440 */
441
442 totalbytes = npages << PAGE_SHIFT;
443 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
444 tailbytes = totalbytes - bytes;
445 skipbytes = 0;
446
447 kva = uvm_pagermapin(pgs, npages,
448 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
449
450 mbp = getiobuf(vp, true);
451 mbp->b_bufsize = totalbytes;
452 mbp->b_data = (void *)kva;
453 mbp->b_resid = mbp->b_bcount = bytes;
454 mbp->b_cflags = BC_BUSY;
455 if (async) {
456 mbp->b_flags = B_READ | B_ASYNC;
457 mbp->b_iodone = uvm_aio_biodone;
458 } else {
459 mbp->b_flags = B_READ;
460 mbp->b_iodone = NULL;
461 }
462 if (async)
463 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
464 else
465 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
466
467 /*
468 * if EOF is in the middle of the range, zero the part past EOF.
469 * skip over pages which are not PG_FAKE since in that case they have
470 * valid data that we need to preserve.
471 */
472
473 tailstart = bytes;
474 while (tailbytes > 0) {
475 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
476
477 KASSERT(len <= tailbytes);
478 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
479 memset((void *)(kva + tailstart), 0, len);
480 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
481 kva, tailstart, len, 0);
482 }
483 tailstart += len;
484 tailbytes -= len;
485 }
486
487 /*
488 * now loop over the pages, reading as needed.
489 */
490
491 bp = NULL;
492 off_t offset;
493 for (offset = startoffset;
494 bytes > 0;
495 offset += iobytes, bytes -= iobytes) {
496 int run;
497 daddr_t lbn, blkno;
498 int pidx;
499 struct vnode *devvp;
500
501 /*
502 * skip pages which don't need to be read.
503 */
504
505 pidx = (offset - startoffset) >> PAGE_SHIFT;
506 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
507 size_t b;
508
509 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
510 if ((pgs[pidx]->flags & PG_RDONLY)) {
511 sawhole = true;
512 }
513 b = MIN(PAGE_SIZE, bytes);
514 offset += b;
515 bytes -= b;
516 skipbytes += b;
517 pidx++;
518 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
519 offset, 0,0,0);
520 if (bytes == 0) {
521 goto loopdone;
522 }
523 }
524
525 /*
526 * bmap the file to find out the blkno to read from and
527 * how much we can read in one i/o. if bmap returns an error,
528 * skip the rest of the top-level i/o.
529 */
530
531 lbn = offset >> fs_bshift;
532 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
533 if (error) {
534 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
535 lbn,error,0,0);
536 skipbytes += bytes;
537 bytes = 0;
538 goto loopdone;
539 }
540
541 /*
542 * see how many pages can be read with this i/o.
543 * reduce the i/o size if necessary to avoid
544 * overwriting pages with valid data.
545 */
546
547 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
548 bytes);
549 if (offset + iobytes > round_page(offset)) {
550 int pcount;
551
552 pcount = 1;
553 while (pidx + pcount < npages &&
554 pgs[pidx + pcount]->flags & PG_FAKE) {
555 pcount++;
556 }
557 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
558 (offset - trunc_page(offset)));
559 }
560
561 /*
562 * if this block isn't allocated, zero it instead of
563 * reading it. unless we are going to allocate blocks,
564 * mark the pages we zeroed PG_RDONLY.
565 */
566
567 if (blkno == (daddr_t)-1) {
568 int holepages = (round_page(offset + iobytes) -
569 trunc_page(offset)) >> PAGE_SHIFT;
570 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
571
572 sawhole = true;
573 memset((char *)kva + (offset - startoffset), 0,
574 iobytes);
575 skipbytes += iobytes;
576
577 for (i = 0; i < holepages; i++) {
578 if (memwrite) {
579 pgs[pidx + i]->flags &= ~PG_CLEAN;
580 }
581 if (!blockalloc) {
582 pgs[pidx + i]->flags |= PG_RDONLY;
583 }
584 }
585 continue;
586 }
587
588 /*
589 * allocate a sub-buf for this piece of the i/o
590 * (or just use mbp if there's only 1 piece),
591 * and start it going.
592 */
593
594 if (offset == startoffset && iobytes == bytes) {
595 bp = mbp;
596 } else {
597 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
598 vp, bp, vp->v_numoutput, 0);
599 bp = getiobuf(vp, true);
600 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
601 }
602 bp->b_lblkno = 0;
603
604 /* adjust physical blkno for partial blocks */
605 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
606 dev_bshift);
607
608 UVMHIST_LOG(ubchist,
609 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
610 bp, offset, bp->b_bcount, bp->b_blkno);
611
612 VOP_STRATEGY(devvp, bp);
613 }
614
615 loopdone:
616 nestiobuf_done(mbp, skipbytes, error);
617 if (async) {
618 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
619 genfs_node_unlock(vp);
620 error = 0;
621 goto out_err_free;
622 }
623 if (bp != NULL) {
624 error = biowait(mbp);
625 }
626
627 /* Remove the mapping (make KVA available as soon as possible) */
628 uvm_pagermapout(kva, npages);
629
630 /*
631 * if this we encountered a hole then we have to do a little more work.
632 * for read faults, we marked the page PG_RDONLY so that future
633 * write accesses to the page will fault again.
634 * for write faults, we must make sure that the backing store for
635 * the page is completely allocated while the pages are locked.
636 */
637
638 if (!error && sawhole && blockalloc) {
639 /*
640 * XXX: This assumes that we come here only via
641 * the mmio path
642 */
643 if (vp->v_mount->mnt_wapbl) {
644 error = WAPBL_BEGIN(vp->v_mount);
645 }
646
647 if (!error) {
648 error = GOP_ALLOC(vp, startoffset,
649 npages << PAGE_SHIFT, 0, cred);
650 if (vp->v_mount->mnt_wapbl) {
651 WAPBL_END(vp->v_mount);
652 }
653 }
654
655 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
656 startoffset, npages << PAGE_SHIFT, error,0);
657 if (!error) {
658 for (i = 0; i < npages; i++) {
659 struct vm_page *pg = pgs[i];
660
661 if (pg == NULL) {
662 continue;
663 }
664 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
665 UVMHIST_LOG(ubchist, "mark dirty pg %p",
666 pg,0,0,0);
667 }
668 }
669 }
670 genfs_node_unlock(vp);
671
672 putiobuf(mbp);
673 }
674
675 mutex_enter(&uobj->vmobjlock);
676
677 /*
678 * we're almost done! release the pages...
679 * for errors, we free the pages.
680 * otherwise we activate them and mark them as valid and clean.
681 * also, unbusy pages that were not actually requested.
682 */
683
684 if (error) {
685 for (i = 0; i < npages; i++) {
686 struct vm_page *pg = pgs[i];
687
688 if (pg == NULL) {
689 continue;
690 }
691 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
692 pg, pg->flags, 0,0);
693 if (pg->flags & PG_FAKE) {
694 pg->flags |= PG_RELEASED;
695 }
696 }
697 mutex_enter(&uvm_pageqlock);
698 uvm_page_unbusy(pgs, npages);
699 mutex_exit(&uvm_pageqlock);
700 mutex_exit(&uobj->vmobjlock);
701 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
702 goto out_err_free;
703 }
704
705 out:
706 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
707 error = 0;
708 mutex_enter(&uvm_pageqlock);
709 for (i = 0; i < npages; i++) {
710 struct vm_page *pg = pgs[i];
711 if (pg == NULL) {
712 continue;
713 }
714 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
715 pg, pg->flags, 0,0);
716 if (pg->flags & PG_FAKE && !overwrite) {
717 pg->flags &= ~(PG_FAKE);
718 pmap_clear_modify(pgs[i]);
719 }
720 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
721 if (i < ridx || i >= ridx + orignmempages || async) {
722 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
723 pg, pg->offset,0,0);
724 if (pg->flags & PG_WANTED) {
725 wakeup(pg);
726 }
727 if (pg->flags & PG_FAKE) {
728 KASSERT(overwrite);
729 uvm_pagezero(pg);
730 }
731 if (pg->flags & PG_RELEASED) {
732 uvm_pagefree(pg);
733 continue;
734 }
735 uvm_pageenqueue(pg);
736 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
737 UVM_PAGE_OWN(pg, NULL);
738 }
739 }
740 mutex_exit(&uvm_pageqlock);
741 if (memwrite) {
742 genfs_markdirty(vp);
743 }
744 mutex_exit(&uobj->vmobjlock);
745 if (ap->a_m != NULL) {
746 memcpy(ap->a_m, &pgs[ridx],
747 orignmempages * sizeof(struct vm_page *));
748 }
749
750 out_err_free:
751 if (pgs != NULL && pgs != pgs_onstack)
752 kmem_free(pgs, pgs_size);
753 out_err:
754 if (has_trans)
755 fstrans_done(vp->v_mount);
756 return error;
757 }
758
759 #ifdef XIP
760 /*
761 * genfs_do_getpages_xip
762 * Return "direct pages" of XIP vnode. The block addresses of XIP
763 * vnode pages are returned back to the VM fault handler as the
764 * actually mapped physical addresses.
765 *
766 * XXX Should be merged into genfs_do_getpages() after
767 * XXX genfs_do_getpages() and genfs_do_io() are merged.
768 */
769 static int
770 genfs_do_getpages_xip(void *v)
771 {
772 struct vop_getpages_args /* {
773 struct vnode *a_vp;
774 voff_t a_offset;
775 struct vm_page **a_m;
776 int *a_count;
777 int a_centeridx;
778 vm_prot_t a_access_type;
779 int a_advice;
780 int a_flags;
781 } */ * const ap = v;
782
783 return genfs_do_getpages_xip1(
784 ap->a_vp,
785 ap->a_offset,
786 ap->a_m,
787 ap->a_count,
788 ap->a_centeridx,
789 ap->a_access_type,
790 ap->a_advice,
791 ap->a_flags);
792 }
793
794 static int
795 genfs_do_getpages_xip1(
796 struct vnode *vp,
797 voff_t offset,
798 struct vm_page **pps,
799 int *npagesp,
800 int centeridx,
801 vm_prot_t access_type,
802 int advice,
803 int flags)
804 {
805 struct uvm_object * const uobj = &vp->v_uobj;
806
807 int error;
808 off_t eof, sbkoff, ebkoff, off;
809 int npages;
810 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
811 int i;
812 struct vm_page *zero_page;
813
814 UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
815
816 KASSERT((vp->v_vflag & VV_XIP) != 0);
817
818 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
819 npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
820
821 fs_bshift = vp->v_mount->mnt_fs_bshift;
822 fs_bsize = 1 << fs_bshift;
823 dev_bshift = vp->v_mount->mnt_dev_bshift;
824 dev_bsize = 1 << dev_bshift;
825
826 sbkoff = offset & ~(fs_bsize - 1);
827 ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
828 ~(fs_bsize - 1);
829
830 zero_page = NULL;
831
832 UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
833 npages, (long)sbkoff, (long)ebkoff, 0);
834
835 KASSERT(mutex_owned(&uobj->vmobjlock));
836 mutex_exit(&uobj->vmobjlock);
837
838 off = offset;
839 for (i = 0; i < npages; i++) {
840 daddr_t lbn, blkno;
841 int run;
842 struct vnode *devvp;
843
844 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
845
846 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
847 KASSERT(error == 0);
848 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
849 (long)lbn, (long)blkno, run, 0);
850
851 /*
852 * XIP page metadata assignment
853 * - Unallocated block is redirected to the dedicated zero'ed
854 * page.
855 * - Assume that struct vm_page *[] array of this segment is
856 * allocated and linearly ordered by physical address.
857 */
858 if (blkno < 0) {
859 zero_page = uvm_pagelookup(uobj, 0);
860
861 if (zero_page == NULL) {
862 mutex_enter(&uobj->vmobjlock);
863 zero_page = uvm_pagealloc(uobj, 0, NULL,
864 UVM_PGA_ZERO);
865 mutex_exit(&uobj->vmobjlock);
866 KASSERT(zero_page != NULL);
867 mutex_enter(&uvm_pageqlock);
868 uvm_pagewire(zero_page);
869 mutex_exit(&uvm_pageqlock);
870 }
871 pps[i] = zero_page;
872 } else {
873 struct vm_physseg *seg;
874 daddr_t seg_off;
875 struct vm_page *pg;
876
877 seg = devvp->v_physseg;
878 KASSERT(seg != NULL);
879 /* bus_space_mmap cookie -> paddr_t */
880 seg_off = (blkno << dev_bshift) +
881 (off - (lbn << fs_bshift));
882 KASSERT((seg_off & PAGE_MASK) == 0);
883 pg = seg->pgs + (seg_off >> PAGE_SHIFT);
884 KASSERT(pg->phys_addr ==
885 (seg->start << PAGE_SHIFT) + seg_off);
886
887 pps[i] = pg;
888 }
889
890 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
891 i,
892 (long)pps[i]->phys_addr,
893 pps[i],
894 0);
895
896 off += PAGE_SIZE;
897 }
898
899 mutex_enter(&uobj->vmobjlock);
900
901 for (i = 0; i < npages; i++) {
902 struct vm_page *pg = pps[i];
903
904 if (pg == zero_page) {
905 } else {
906 KASSERT((pg->flags & PG_BUSY) == 0);
907 KASSERT((pg->flags & PG_RDONLY) != 0);
908 KASSERT((pg->flags & PG_CLEAN) != 0);
909 KASSERT((pg->pqflags & PQ_FIXED) != 0);
910 pg->flags |= PG_BUSY;
911 pg->flags &= ~PG_FAKE;
912 pg->uobject = &vp->v_uobj;
913 }
914 }
915
916 if ((flags & PGO_LOCKED) == 0)
917 mutex_exit(&uobj->vmobjlock);
918
919 *npagesp = npages;
920
921 return 0;
922 }
923 #endif
924
925 /*
926 * generic VM putpages routine.
927 * Write the given range of pages to backing store.
928 *
929 * => "offhi == 0" means flush all pages at or after "offlo".
930 * => object should be locked by caller. we return with the
931 * object unlocked.
932 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
933 * thus, a caller might want to unlock higher level resources
934 * (e.g. vm_map) before calling flush.
935 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
936 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
937 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
938 * that new pages are inserted on the tail end of the list. thus,
939 * we can make a complete pass through the object in one go by starting
940 * at the head and working towards the tail (new pages are put in
941 * front of us).
942 * => NOTE: we are allowed to lock the page queues, so the caller
943 * must not be holding the page queue lock.
944 *
945 * note on "cleaning" object and PG_BUSY pages:
946 * this routine is holding the lock on the object. the only time
947 * that it can run into a PG_BUSY page that it does not own is if
948 * some other process has started I/O on the page (e.g. either
949 * a pagein, or a pageout). if the PG_BUSY page is being paged
950 * in, then it can not be dirty (!PG_CLEAN) because no one has
951 * had a chance to modify it yet. if the PG_BUSY page is being
952 * paged out then it means that someone else has already started
953 * cleaning the page for us (how nice!). in this case, if we
954 * have syncio specified, then after we make our pass through the
955 * object we need to wait for the other PG_BUSY pages to clear
956 * off (i.e. we need to do an iosync). also note that once a
957 * page is PG_BUSY it must stay in its object until it is un-busyed.
958 *
959 * note on page traversal:
960 * we can traverse the pages in an object either by going down the
961 * linked list in "uobj->memq", or we can go over the address range
962 * by page doing hash table lookups for each address. depending
963 * on how many pages are in the object it may be cheaper to do one
964 * or the other. we set "by_list" to true if we are using memq.
965 * if the cost of a hash lookup was equal to the cost of the list
966 * traversal we could compare the number of pages in the start->stop
967 * range to the total number of pages in the object. however, it
968 * seems that a hash table lookup is more expensive than the linked
969 * list traversal, so we multiply the number of pages in the
970 * range by an estimate of the relatively higher cost of the hash lookup.
971 */
972
973 int
974 genfs_putpages(void *v)
975 {
976 struct vop_putpages_args /* {
977 struct vnode *a_vp;
978 voff_t a_offlo;
979 voff_t a_offhi;
980 int a_flags;
981 } */ * const ap = v;
982
983 #ifdef XIP
984 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
985 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
986 ap->a_flags, NULL);
987 else
988 #endif
989 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
990 ap->a_flags, NULL);
991 }
992
993 int
994 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
995 int origflags, struct vm_page **busypg)
996 {
997 struct uvm_object * const uobj = &vp->v_uobj;
998 kmutex_t * const slock = &uobj->vmobjlock;
999 off_t off;
1000 /* Even for strange MAXPHYS, the shift rounds down to a page */
1001 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1002 int i, error, npages, nback;
1003 int freeflag;
1004 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1005 bool wasclean, by_list, needs_clean, yld;
1006 bool async = (origflags & PGO_SYNCIO) == 0;
1007 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1008 struct lwp * const l = curlwp ? curlwp : &lwp0;
1009 struct genfs_node * const gp = VTOG(vp);
1010 int flags;
1011 int dirtygen;
1012 bool modified;
1013 bool need_wapbl;
1014 bool has_trans;
1015 bool cleanall;
1016 bool onworklst;
1017
1018 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1019
1020 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1021 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1022 KASSERT(startoff < endoff || endoff == 0);
1023
1024 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1025 vp, uobj->uo_npages, startoff, endoff - startoff);
1026
1027 has_trans = false;
1028 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1029 (origflags & PGO_JOURNALLOCKED) == 0);
1030
1031 retry:
1032 modified = false;
1033 flags = origflags;
1034 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1035 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1036 if (uobj->uo_npages == 0) {
1037 if (vp->v_iflag & VI_ONWORKLST) {
1038 vp->v_iflag &= ~VI_WRMAPDIRTY;
1039 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1040 vn_syncer_remove_from_worklist(vp);
1041 }
1042 if (has_trans) {
1043 if (need_wapbl)
1044 WAPBL_END(vp->v_mount);
1045 fstrans_done(vp->v_mount);
1046 }
1047 mutex_exit(slock);
1048 return (0);
1049 }
1050
1051 /*
1052 * the vnode has pages, set up to process the request.
1053 */
1054
1055 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1056 mutex_exit(slock);
1057 if (pagedaemon) {
1058 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1059 if (error)
1060 return error;
1061 } else
1062 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1063 if (need_wapbl) {
1064 error = WAPBL_BEGIN(vp->v_mount);
1065 if (error) {
1066 fstrans_done(vp->v_mount);
1067 return error;
1068 }
1069 }
1070 has_trans = true;
1071 mutex_enter(slock);
1072 goto retry;
1073 }
1074
1075 error = 0;
1076 wasclean = (vp->v_numoutput == 0);
1077 off = startoff;
1078 if (endoff == 0 || flags & PGO_ALLPAGES) {
1079 endoff = trunc_page(LLONG_MAX);
1080 }
1081 by_list = (uobj->uo_npages <=
1082 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1083
1084 #if !defined(DEBUG)
1085 /*
1086 * if this vnode is known not to have dirty pages,
1087 * don't bother to clean it out.
1088 */
1089
1090 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1091 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1092 goto skip_scan;
1093 }
1094 flags &= ~PGO_CLEANIT;
1095 }
1096 #endif /* !defined(DEBUG) */
1097
1098 /*
1099 * start the loop. when scanning by list, hold the last page
1100 * in the list before we start. pages allocated after we start
1101 * will be added to the end of the list, so we can stop at the
1102 * current last page.
1103 */
1104
1105 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1106 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1107 (vp->v_iflag & VI_ONWORKLST) != 0;
1108 dirtygen = gp->g_dirtygen;
1109 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1110 if (by_list) {
1111 curmp.flags = PG_MARKER;
1112 endmp.flags = PG_MARKER;
1113 pg = TAILQ_FIRST(&uobj->memq);
1114 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1115 } else {
1116 pg = uvm_pagelookup(uobj, off);
1117 }
1118 nextpg = NULL;
1119 while (by_list || off < endoff) {
1120
1121 /*
1122 * if the current page is not interesting, move on to the next.
1123 */
1124
1125 KASSERT(pg == NULL || pg->uobject == uobj ||
1126 (pg->flags & PG_MARKER) != 0);
1127 KASSERT(pg == NULL ||
1128 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1129 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1130 if (by_list) {
1131 if (pg == &endmp) {
1132 break;
1133 }
1134 if (pg->flags & PG_MARKER) {
1135 pg = TAILQ_NEXT(pg, listq.queue);
1136 continue;
1137 }
1138 if (pg->offset < startoff || pg->offset >= endoff ||
1139 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1140 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1141 wasclean = false;
1142 }
1143 pg = TAILQ_NEXT(pg, listq.queue);
1144 continue;
1145 }
1146 off = pg->offset;
1147 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1148 if (pg != NULL) {
1149 wasclean = false;
1150 }
1151 off += PAGE_SIZE;
1152 if (off < endoff) {
1153 pg = uvm_pagelookup(uobj, off);
1154 }
1155 continue;
1156 }
1157
1158 /*
1159 * if the current page needs to be cleaned and it's busy,
1160 * wait for it to become unbusy.
1161 */
1162
1163 yld = (l->l_cpu->ci_schedstate.spc_flags &
1164 SPCF_SHOULDYIELD) && !pagedaemon;
1165 if (pg->flags & PG_BUSY || yld) {
1166 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1167 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1168 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1169 error = EDEADLK;
1170 if (busypg != NULL)
1171 *busypg = pg;
1172 break;
1173 }
1174 if (pagedaemon) {
1175 /*
1176 * someone has taken the page while we
1177 * dropped the lock for fstrans_start.
1178 */
1179 break;
1180 }
1181 if (by_list) {
1182 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1183 UVMHIST_LOG(ubchist, "curmp next %p",
1184 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1185 }
1186 if (yld) {
1187 mutex_exit(slock);
1188 preempt();
1189 mutex_enter(slock);
1190 } else {
1191 pg->flags |= PG_WANTED;
1192 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1193 mutex_enter(slock);
1194 }
1195 if (by_list) {
1196 UVMHIST_LOG(ubchist, "after next %p",
1197 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1198 pg = TAILQ_NEXT(&curmp, listq.queue);
1199 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1200 } else {
1201 pg = uvm_pagelookup(uobj, off);
1202 }
1203 continue;
1204 }
1205
1206 /*
1207 * if we're freeing, remove all mappings of the page now.
1208 * if we're cleaning, check if the page is needs to be cleaned.
1209 */
1210
1211 if (flags & PGO_FREE) {
1212 pmap_page_protect(pg, VM_PROT_NONE);
1213 } else if (flags & PGO_CLEANIT) {
1214
1215 /*
1216 * if we still have some hope to pull this vnode off
1217 * from the syncer queue, write-protect the page.
1218 */
1219
1220 if (cleanall && wasclean &&
1221 gp->g_dirtygen == dirtygen) {
1222
1223 /*
1224 * uobj pages get wired only by uvm_fault
1225 * where uobj is locked.
1226 */
1227
1228 if (pg->wire_count == 0) {
1229 pmap_page_protect(pg,
1230 VM_PROT_READ|VM_PROT_EXECUTE);
1231 } else {
1232 cleanall = false;
1233 }
1234 }
1235 }
1236
1237 if (flags & PGO_CLEANIT) {
1238 needs_clean = pmap_clear_modify(pg) ||
1239 (pg->flags & PG_CLEAN) == 0;
1240 pg->flags |= PG_CLEAN;
1241 } else {
1242 needs_clean = false;
1243 }
1244
1245 /*
1246 * if we're cleaning, build a cluster.
1247 * the cluster will consist of pages which are currently dirty,
1248 * but they will be returned to us marked clean.
1249 * if not cleaning, just operate on the one page.
1250 */
1251
1252 if (needs_clean) {
1253 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1254 wasclean = false;
1255 memset(pgs, 0, sizeof(pgs));
1256 pg->flags |= PG_BUSY;
1257 UVM_PAGE_OWN(pg, "genfs_putpages");
1258
1259 /*
1260 * first look backward.
1261 */
1262
1263 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1264 nback = npages;
1265 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1266 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1267 if (nback) {
1268 memmove(&pgs[0], &pgs[npages - nback],
1269 nback * sizeof(pgs[0]));
1270 if (npages - nback < nback)
1271 memset(&pgs[nback], 0,
1272 (npages - nback) * sizeof(pgs[0]));
1273 else
1274 memset(&pgs[npages - nback], 0,
1275 nback * sizeof(pgs[0]));
1276 }
1277
1278 /*
1279 * then plug in our page of interest.
1280 */
1281
1282 pgs[nback] = pg;
1283
1284 /*
1285 * then look forward to fill in the remaining space in
1286 * the array of pages.
1287 */
1288
1289 npages = maxpages - nback - 1;
1290 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1291 &pgs[nback + 1],
1292 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1293 npages += nback + 1;
1294 } else {
1295 pgs[0] = pg;
1296 npages = 1;
1297 nback = 0;
1298 }
1299
1300 /*
1301 * apply FREE or DEACTIVATE options if requested.
1302 */
1303
1304 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1305 mutex_enter(&uvm_pageqlock);
1306 }
1307 for (i = 0; i < npages; i++) {
1308 tpg = pgs[i];
1309 KASSERT(tpg->uobject == uobj);
1310 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1311 pg = tpg;
1312 if (tpg->offset < startoff || tpg->offset >= endoff)
1313 continue;
1314 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1315 uvm_pagedeactivate(tpg);
1316 } else if (flags & PGO_FREE) {
1317 pmap_page_protect(tpg, VM_PROT_NONE);
1318 if (tpg->flags & PG_BUSY) {
1319 tpg->flags |= freeflag;
1320 if (pagedaemon) {
1321 uvm_pageout_start(1);
1322 uvm_pagedequeue(tpg);
1323 }
1324 } else {
1325
1326 /*
1327 * ``page is not busy''
1328 * implies that npages is 1
1329 * and needs_clean is false.
1330 */
1331
1332 nextpg = TAILQ_NEXT(tpg, listq.queue);
1333 uvm_pagefree(tpg);
1334 if (pagedaemon)
1335 uvmexp.pdfreed++;
1336 }
1337 }
1338 }
1339 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1340 mutex_exit(&uvm_pageqlock);
1341 }
1342 if (needs_clean) {
1343 modified = true;
1344
1345 /*
1346 * start the i/o. if we're traversing by list,
1347 * keep our place in the list with a marker page.
1348 */
1349
1350 if (by_list) {
1351 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1352 listq.queue);
1353 }
1354 mutex_exit(slock);
1355 error = GOP_WRITE(vp, pgs, npages, flags);
1356 mutex_enter(slock);
1357 if (by_list) {
1358 pg = TAILQ_NEXT(&curmp, listq.queue);
1359 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1360 }
1361 if (error) {
1362 break;
1363 }
1364 if (by_list) {
1365 continue;
1366 }
1367 }
1368
1369 /*
1370 * find the next page and continue if there was no error.
1371 */
1372
1373 if (by_list) {
1374 if (nextpg) {
1375 pg = nextpg;
1376 nextpg = NULL;
1377 } else {
1378 pg = TAILQ_NEXT(pg, listq.queue);
1379 }
1380 } else {
1381 off += (npages - nback) << PAGE_SHIFT;
1382 if (off < endoff) {
1383 pg = uvm_pagelookup(uobj, off);
1384 }
1385 }
1386 }
1387 if (by_list) {
1388 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1389 }
1390
1391 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1392 (vp->v_type != VBLK ||
1393 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1394 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1395 }
1396
1397 /*
1398 * if we're cleaning and there was nothing to clean,
1399 * take us off the syncer list. if we started any i/o
1400 * and we're doing sync i/o, wait for all writes to finish.
1401 */
1402
1403 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1404 (vp->v_iflag & VI_ONWORKLST) != 0) {
1405 #if defined(DEBUG)
1406 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1407 if ((pg->flags & PG_MARKER) != 0) {
1408 continue;
1409 }
1410 if ((pg->flags & PG_CLEAN) == 0) {
1411 printf("%s: %p: !CLEAN\n", __func__, pg);
1412 }
1413 if (pmap_is_modified(pg)) {
1414 printf("%s: %p: modified\n", __func__, pg);
1415 }
1416 }
1417 #endif /* defined(DEBUG) */
1418 vp->v_iflag &= ~VI_WRMAPDIRTY;
1419 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1420 vn_syncer_remove_from_worklist(vp);
1421 }
1422
1423 #if !defined(DEBUG)
1424 skip_scan:
1425 #endif /* !defined(DEBUG) */
1426
1427 /* Wait for output to complete. */
1428 if (!wasclean && !async && vp->v_numoutput != 0) {
1429 while (vp->v_numoutput != 0)
1430 cv_wait(&vp->v_cv, slock);
1431 }
1432 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1433 mutex_exit(slock);
1434
1435 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1436 /*
1437 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1438 * retrying is not a big deal because, in many cases,
1439 * uobj->uo_npages is already 0 here.
1440 */
1441 mutex_enter(slock);
1442 goto retry;
1443 }
1444
1445 if (has_trans) {
1446 if (need_wapbl)
1447 WAPBL_END(vp->v_mount);
1448 fstrans_done(vp->v_mount);
1449 }
1450
1451 return (error);
1452 }
1453
1454 #ifdef XIP
1455 int
1456 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1457 int flags, struct vm_page **busypg)
1458 {
1459 struct uvm_object *uobj = &vp->v_uobj;
1460 #ifdef DIAGNOSTIC
1461 struct genfs_node * const gp = VTOG(vp);
1462 #endif
1463
1464 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1465
1466 KASSERT(mutex_owned(&uobj->vmobjlock));
1467 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1468 KASSERT(vp->v_numoutput == 0);
1469 KASSERT(gp->g_dirtygen == 0);
1470
1471 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1472 vp, uobj->uo_npages, startoff, endoff - startoff);
1473
1474 /*
1475 * XIP pages are read-only, and never become dirty. They're also never
1476 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1477 * pages, so we ignore them.
1478 */
1479 if ((flags & PGO_FREE) == 0)
1480 goto done;
1481
1482 /*
1483 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1484 * mappings of both XIP pages and XIP zero pages.
1485 *
1486 * Zero page is freed when one of its mapped offset is freed, even if
1487 * one file (vnode) has many holes and mapping its zero page to all
1488 * of those hole pages.
1489 *
1490 * We don't know which pages are currently mapped in the given vnode,
1491 * because XIP pages are not added to vnode. What we can do is to
1492 * locate pages by querying the filesystem as done in getpages. Call
1493 * genfs_do_getpages_xip1().
1494 */
1495
1496 off_t off, eof;
1497 struct vm_page *zero_page;
1498 bool put_zero_page;
1499
1500 off = trunc_page(startoff);
1501 if (endoff == 0 || (flags & PGO_ALLPAGES))
1502 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1503 else
1504 eof = endoff;
1505
1506 zero_page = uvm_pagelookup(uobj, 0);
1507 KASSERT(zero_page != NULL || uobj->uo_npages == 0);
1508 KASSERT(zero_page == NULL || uobj->uo_npages == 1);
1509 put_zero_page = false;
1510
1511 while (off < eof) {
1512 int npages, orignpages, error, i;
1513 struct vm_page *pgs[maxpages], *pg;
1514
1515 npages = round_page(eof - off) >> PAGE_SHIFT;
1516 if (npages > maxpages)
1517 npages = maxpages;
1518
1519 orignpages = npages;
1520 KASSERT(mutex_owned(&uobj->vmobjlock));
1521 error = genfs_do_getpages_xip1(vp, off, pgs, &npages, 0,
1522 VM_PROT_ALL, 0, PGO_LOCKED);
1523 KASSERT(error == 0);
1524 KASSERT(npages == orignpages);
1525 KASSERT(mutex_owned(&uobj->vmobjlock));
1526 for (i = 0; i < npages; i++) {
1527 pg = pgs[i];
1528 if (pg == NULL || pg == PGO_DONTCARE)
1529 continue;
1530 if (pg == zero_page) {
1531 put_zero_page = true;
1532 } else {
1533 /*
1534 * Freeing normal XIP pages; nothing to do.
1535 */
1536 pmap_page_protect(pg, VM_PROT_NONE);
1537 KASSERT((pg->flags & PG_BUSY) != 0);
1538 KASSERT((pg->flags & PG_RDONLY) != 0);
1539 KASSERT((pg->flags & PG_CLEAN) != 0);
1540 KASSERT((pg->flags & PG_FAKE) == 0);
1541 KASSERT((pg->pqflags & PQ_FIXED) != 0);
1542 pg->flags &= ~PG_BUSY;
1543 }
1544 }
1545 off += npages << PAGE_SHIFT;
1546 }
1547
1548 if (put_zero_page) {
1549 /*
1550 * Freeing an XIP zero page.
1551 */
1552 pmap_page_protect(zero_page, VM_PROT_NONE);
1553 mutex_enter(&uvm_pageqlock);
1554 uvm_pageunwire(zero_page);
1555 mutex_exit(&uvm_pageqlock);
1556 uvm_pagefree(zero_page);
1557 }
1558
1559 KASSERT(uobj->uo_npages == 0);
1560
1561 done:
1562 KASSERT(mutex_owned(&uobj->vmobjlock));
1563 mutex_exit(&uobj->vmobjlock);
1564 return 0;
1565 }
1566 #endif
1567
1568 int
1569 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1570 {
1571 off_t off;
1572 vaddr_t kva;
1573 size_t len;
1574 int error;
1575 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1576
1577 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1578 vp, pgs, npages, flags);
1579
1580 off = pgs[0]->offset;
1581 kva = uvm_pagermapin(pgs, npages,
1582 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1583 len = npages << PAGE_SHIFT;
1584
1585 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1586 uvm_aio_biodone);
1587
1588 return error;
1589 }
1590
1591 int
1592 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1593 {
1594 off_t off;
1595 vaddr_t kva;
1596 size_t len;
1597 int error;
1598 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1599
1600 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1601 vp, pgs, npages, flags);
1602
1603 off = pgs[0]->offset;
1604 kva = uvm_pagermapin(pgs, npages,
1605 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1606 len = npages << PAGE_SHIFT;
1607
1608 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1609 uvm_aio_biodone);
1610
1611 return error;
1612 }
1613
1614 /*
1615 * Backend routine for doing I/O to vnode pages. Pages are already locked
1616 * and mapped into kernel memory. Here we just look up the underlying
1617 * device block addresses and call the strategy routine.
1618 */
1619
1620 static int
1621 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1622 enum uio_rw rw, void (*iodone)(struct buf *))
1623 {
1624 int s, error;
1625 int fs_bshift, dev_bshift;
1626 off_t eof, offset, startoffset;
1627 size_t bytes, iobytes, skipbytes;
1628 struct buf *mbp, *bp;
1629 const bool async = (flags & PGO_SYNCIO) == 0;
1630 const bool iowrite = rw == UIO_WRITE;
1631 const int brw = iowrite ? B_WRITE : B_READ;
1632 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1633
1634 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1635 vp, kva, len, flags);
1636
1637 KASSERT(vp->v_size <= vp->v_writesize);
1638 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1639 if (vp->v_type != VBLK) {
1640 fs_bshift = vp->v_mount->mnt_fs_bshift;
1641 dev_bshift = vp->v_mount->mnt_dev_bshift;
1642 } else {
1643 fs_bshift = DEV_BSHIFT;
1644 dev_bshift = DEV_BSHIFT;
1645 }
1646 error = 0;
1647 startoffset = off;
1648 bytes = MIN(len, eof - startoffset);
1649 skipbytes = 0;
1650 KASSERT(bytes != 0);
1651
1652 if (iowrite) {
1653 mutex_enter(&vp->v_interlock);
1654 vp->v_numoutput += 2;
1655 mutex_exit(&vp->v_interlock);
1656 }
1657 mbp = getiobuf(vp, true);
1658 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1659 vp, mbp, vp->v_numoutput, bytes);
1660 mbp->b_bufsize = len;
1661 mbp->b_data = (void *)kva;
1662 mbp->b_resid = mbp->b_bcount = bytes;
1663 mbp->b_cflags = BC_BUSY | BC_AGE;
1664 if (async) {
1665 mbp->b_flags = brw | B_ASYNC;
1666 mbp->b_iodone = iodone;
1667 } else {
1668 mbp->b_flags = brw;
1669 mbp->b_iodone = NULL;
1670 }
1671 if (curlwp == uvm.pagedaemon_lwp)
1672 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1673 else if (async)
1674 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1675 else
1676 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1677
1678 bp = NULL;
1679 for (offset = startoffset;
1680 bytes > 0;
1681 offset += iobytes, bytes -= iobytes) {
1682 int run;
1683 daddr_t lbn, blkno;
1684 struct vnode *devvp;
1685
1686 /*
1687 * bmap the file to find out the blkno to read from and
1688 * how much we can read in one i/o. if bmap returns an error,
1689 * skip the rest of the top-level i/o.
1690 */
1691
1692 lbn = offset >> fs_bshift;
1693 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1694 if (error) {
1695 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1696 lbn,error,0,0);
1697 skipbytes += bytes;
1698 bytes = 0;
1699 goto loopdone;
1700 }
1701
1702 /*
1703 * see how many pages can be read with this i/o.
1704 * reduce the i/o size if necessary to avoid
1705 * overwriting pages with valid data.
1706 */
1707
1708 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1709 bytes);
1710
1711 /*
1712 * if this block isn't allocated, zero it instead of
1713 * reading it. unless we are going to allocate blocks,
1714 * mark the pages we zeroed PG_RDONLY.
1715 */
1716
1717 if (blkno == (daddr_t)-1) {
1718 if (!iowrite) {
1719 memset((char *)kva + (offset - startoffset), 0,
1720 iobytes);
1721 }
1722 skipbytes += iobytes;
1723 continue;
1724 }
1725
1726 /*
1727 * allocate a sub-buf for this piece of the i/o
1728 * (or just use mbp if there's only 1 piece),
1729 * and start it going.
1730 */
1731
1732 if (offset == startoffset && iobytes == bytes) {
1733 bp = mbp;
1734 } else {
1735 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1736 vp, bp, vp->v_numoutput, 0);
1737 bp = getiobuf(vp, true);
1738 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1739 }
1740 bp->b_lblkno = 0;
1741
1742 /* adjust physical blkno for partial blocks */
1743 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1744 dev_bshift);
1745
1746 UVMHIST_LOG(ubchist,
1747 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1748 bp, offset, bp->b_bcount, bp->b_blkno);
1749
1750 VOP_STRATEGY(devvp, bp);
1751 }
1752
1753 loopdone:
1754 if (skipbytes) {
1755 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1756 }
1757 nestiobuf_done(mbp, skipbytes, error);
1758 if (async) {
1759 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1760 return (0);
1761 }
1762 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1763 error = biowait(mbp);
1764 s = splbio();
1765 (*iodone)(mbp);
1766 splx(s);
1767 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1768 return (error);
1769 }
1770
1771 int
1772 genfs_compat_getpages(void *v)
1773 {
1774 struct vop_getpages_args /* {
1775 struct vnode *a_vp;
1776 voff_t a_offset;
1777 struct vm_page **a_m;
1778 int *a_count;
1779 int a_centeridx;
1780 vm_prot_t a_access_type;
1781 int a_advice;
1782 int a_flags;
1783 } */ *ap = v;
1784
1785 off_t origoffset;
1786 struct vnode *vp = ap->a_vp;
1787 struct uvm_object *uobj = &vp->v_uobj;
1788 struct vm_page *pg, **pgs;
1789 vaddr_t kva;
1790 int i, error, orignpages, npages;
1791 struct iovec iov;
1792 struct uio uio;
1793 kauth_cred_t cred = curlwp->l_cred;
1794 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1795
1796 error = 0;
1797 origoffset = ap->a_offset;
1798 orignpages = *ap->a_count;
1799 pgs = ap->a_m;
1800
1801 if (ap->a_flags & PGO_LOCKED) {
1802 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1803 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1804
1805 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1806 if (error == 0 && memwrite) {
1807 genfs_markdirty(vp);
1808 }
1809 return error;
1810 }
1811 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1812 mutex_exit(&uobj->vmobjlock);
1813 return EINVAL;
1814 }
1815 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1816 mutex_exit(&uobj->vmobjlock);
1817 return 0;
1818 }
1819 npages = orignpages;
1820 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1821 mutex_exit(&uobj->vmobjlock);
1822 kva = uvm_pagermapin(pgs, npages,
1823 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1824 for (i = 0; i < npages; i++) {
1825 pg = pgs[i];
1826 if ((pg->flags & PG_FAKE) == 0) {
1827 continue;
1828 }
1829 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1830 iov.iov_len = PAGE_SIZE;
1831 uio.uio_iov = &iov;
1832 uio.uio_iovcnt = 1;
1833 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1834 uio.uio_rw = UIO_READ;
1835 uio.uio_resid = PAGE_SIZE;
1836 UIO_SETUP_SYSSPACE(&uio);
1837 /* XXX vn_lock */
1838 error = VOP_READ(vp, &uio, 0, cred);
1839 if (error) {
1840 break;
1841 }
1842 if (uio.uio_resid) {
1843 memset(iov.iov_base, 0, uio.uio_resid);
1844 }
1845 }
1846 uvm_pagermapout(kva, npages);
1847 mutex_enter(&uobj->vmobjlock);
1848 mutex_enter(&uvm_pageqlock);
1849 for (i = 0; i < npages; i++) {
1850 pg = pgs[i];
1851 if (error && (pg->flags & PG_FAKE) != 0) {
1852 pg->flags |= PG_RELEASED;
1853 } else {
1854 pmap_clear_modify(pg);
1855 uvm_pageactivate(pg);
1856 }
1857 }
1858 if (error) {
1859 uvm_page_unbusy(pgs, npages);
1860 }
1861 mutex_exit(&uvm_pageqlock);
1862 if (error == 0 && memwrite) {
1863 genfs_markdirty(vp);
1864 }
1865 mutex_exit(&uobj->vmobjlock);
1866 return error;
1867 }
1868
1869 int
1870 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1871 int flags)
1872 {
1873 off_t offset;
1874 struct iovec iov;
1875 struct uio uio;
1876 kauth_cred_t cred = curlwp->l_cred;
1877 struct buf *bp;
1878 vaddr_t kva;
1879 int error;
1880
1881 offset = pgs[0]->offset;
1882 kva = uvm_pagermapin(pgs, npages,
1883 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1884
1885 iov.iov_base = (void *)kva;
1886 iov.iov_len = npages << PAGE_SHIFT;
1887 uio.uio_iov = &iov;
1888 uio.uio_iovcnt = 1;
1889 uio.uio_offset = offset;
1890 uio.uio_rw = UIO_WRITE;
1891 uio.uio_resid = npages << PAGE_SHIFT;
1892 UIO_SETUP_SYSSPACE(&uio);
1893 /* XXX vn_lock */
1894 error = VOP_WRITE(vp, &uio, 0, cred);
1895
1896 mutex_enter(&vp->v_interlock);
1897 vp->v_numoutput++;
1898 mutex_exit(&vp->v_interlock);
1899
1900 bp = getiobuf(vp, true);
1901 bp->b_cflags = BC_BUSY | BC_AGE;
1902 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1903 bp->b_data = (char *)kva;
1904 bp->b_bcount = npages << PAGE_SHIFT;
1905 bp->b_bufsize = npages << PAGE_SHIFT;
1906 bp->b_resid = 0;
1907 bp->b_error = error;
1908 uvm_aio_aiodone(bp);
1909 return (error);
1910 }
1911
1912 /*
1913 * Process a uio using direct I/O. If we reach a part of the request
1914 * which cannot be processed in this fashion for some reason, just return.
1915 * The caller must handle some additional part of the request using
1916 * buffered I/O before trying direct I/O again.
1917 */
1918
1919 void
1920 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1921 {
1922 struct vmspace *vs;
1923 struct iovec *iov;
1924 vaddr_t va;
1925 size_t len;
1926 const int mask = DEV_BSIZE - 1;
1927 int error;
1928 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1929 (ioflag & IO_JOURNALLOCKED) == 0);
1930
1931 /*
1932 * We only support direct I/O to user space for now.
1933 */
1934
1935 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1936 return;
1937 }
1938
1939 /*
1940 * If the vnode is mapped, we would need to get the getpages lock
1941 * to stabilize the bmap, but then we would get into trouble whil e
1942 * locking the pages if the pages belong to this same vnode (or a
1943 * multi-vnode cascade to the same effect). Just fall back to
1944 * buffered I/O if the vnode is mapped to avoid this mess.
1945 */
1946
1947 if (vp->v_vflag & VV_MAPPED) {
1948 return;
1949 }
1950
1951 if (need_wapbl) {
1952 error = WAPBL_BEGIN(vp->v_mount);
1953 if (error)
1954 return;
1955 }
1956
1957 /*
1958 * Do as much of the uio as possible with direct I/O.
1959 */
1960
1961 vs = uio->uio_vmspace;
1962 while (uio->uio_resid) {
1963 iov = uio->uio_iov;
1964 if (iov->iov_len == 0) {
1965 uio->uio_iov++;
1966 uio->uio_iovcnt--;
1967 continue;
1968 }
1969 va = (vaddr_t)iov->iov_base;
1970 len = MIN(iov->iov_len, genfs_maxdio);
1971 len &= ~mask;
1972
1973 /*
1974 * If the next chunk is smaller than DEV_BSIZE or extends past
1975 * the current EOF, then fall back to buffered I/O.
1976 */
1977
1978 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1979 break;
1980 }
1981
1982 /*
1983 * Check alignment. The file offset must be at least
1984 * sector-aligned. The exact constraint on memory alignment
1985 * is very hardware-dependent, but requiring sector-aligned
1986 * addresses there too is safe.
1987 */
1988
1989 if (uio->uio_offset & mask || va & mask) {
1990 break;
1991 }
1992 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1993 uio->uio_rw);
1994 if (error) {
1995 break;
1996 }
1997 iov->iov_base = (char *)iov->iov_base + len;
1998 iov->iov_len -= len;
1999 uio->uio_offset += len;
2000 uio->uio_resid -= len;
2001 }
2002
2003 if (need_wapbl)
2004 WAPBL_END(vp->v_mount);
2005 }
2006
2007 /*
2008 * Iodone routine for direct I/O. We don't do much here since the request is
2009 * always synchronous, so the caller will do most of the work after biowait().
2010 */
2011
2012 static void
2013 genfs_dio_iodone(struct buf *bp)
2014 {
2015
2016 KASSERT((bp->b_flags & B_ASYNC) == 0);
2017 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2018 mutex_enter(bp->b_objlock);
2019 vwakeup(bp);
2020 mutex_exit(bp->b_objlock);
2021 }
2022 putiobuf(bp);
2023 }
2024
2025 /*
2026 * Process one chunk of a direct I/O request.
2027 */
2028
2029 static int
2030 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2031 off_t off, enum uio_rw rw)
2032 {
2033 struct vm_map *map;
2034 struct pmap *upm, *kpm;
2035 size_t klen = round_page(uva + len) - trunc_page(uva);
2036 off_t spoff, epoff;
2037 vaddr_t kva, puva;
2038 paddr_t pa;
2039 vm_prot_t prot;
2040 int error, rv, poff, koff;
2041 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2042 (rw == UIO_WRITE ? PGO_FREE : 0);
2043
2044 /*
2045 * For writes, verify that this range of the file already has fully
2046 * allocated backing store. If there are any holes, just punt and
2047 * make the caller take the buffered write path.
2048 */
2049
2050 if (rw == UIO_WRITE) {
2051 daddr_t lbn, elbn, blkno;
2052 int bsize, bshift, run;
2053
2054 bshift = vp->v_mount->mnt_fs_bshift;
2055 bsize = 1 << bshift;
2056 lbn = off >> bshift;
2057 elbn = (off + len + bsize - 1) >> bshift;
2058 while (lbn < elbn) {
2059 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2060 if (error) {
2061 return error;
2062 }
2063 if (blkno == (daddr_t)-1) {
2064 return ENOSPC;
2065 }
2066 lbn += 1 + run;
2067 }
2068 }
2069
2070 /*
2071 * Flush any cached pages for parts of the file that we're about to
2072 * access. If we're writing, invalidate pages as well.
2073 */
2074
2075 spoff = trunc_page(off);
2076 epoff = round_page(off + len);
2077 mutex_enter(&vp->v_interlock);
2078 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2079 if (error) {
2080 return error;
2081 }
2082
2083 /*
2084 * Wire the user pages and remap them into kernel memory.
2085 */
2086
2087 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2088 error = uvm_vslock(vs, (void *)uva, len, prot);
2089 if (error) {
2090 return error;
2091 }
2092
2093 map = &vs->vm_map;
2094 upm = vm_map_pmap(map);
2095 kpm = vm_map_pmap(kernel_map);
2096 kva = uvm_km_alloc(kernel_map, klen, 0,
2097 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2098 puva = trunc_page(uva);
2099 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2100 rv = pmap_extract(upm, puva + poff, &pa);
2101 KASSERT(rv);
2102 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2103 }
2104 pmap_update(kpm);
2105
2106 /*
2107 * Do the I/O.
2108 */
2109
2110 koff = uva - trunc_page(uva);
2111 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2112 genfs_dio_iodone);
2113
2114 /*
2115 * Tear down the kernel mapping.
2116 */
2117
2118 pmap_remove(kpm, kva, kva + klen);
2119 pmap_update(kpm);
2120 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2121
2122 /*
2123 * Unwire the user pages.
2124 */
2125
2126 uvm_vsunlock(vs, (void *)uva, len);
2127 return error;
2128 }
2129
2130