Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.27
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.27 2010/10/22 07:22:34 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.27 2010/10/22 07:22:34 uebayasi Exp $");
     35 
     36 #include "opt_xip.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mount.h>
     43 #include <sys/namei.h>
     44 #include <sys/vnode.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/kmem.h>
     47 #include <sys/poll.h>
     48 #include <sys/mman.h>
     49 #include <sys/file.h>
     50 #include <sys/kauth.h>
     51 #include <sys/fstrans.h>
     52 #include <sys/buf.h>
     53 #include <sys/once.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 static int genfs_do_getpages(void *);
     63 #ifdef XIP
     64 static int genfs_do_getpages_xip(void *);
     65 static int genfs_do_getpages_xip1(struct vnode *, voff_t, struct vm_page **,
     66     int *, int, vm_prot_t, int, int);
     67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
     68     struct vm_page **);
     69 #endif
     70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     71     off_t, enum uio_rw);
     72 static void genfs_dio_iodone(struct buf *);
     73 
     74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     75     void (*)(struct buf *));
     76 static void genfs_rel_pages(struct vm_page **, int);
     77 static void genfs_markdirty(struct vnode *);
     78 
     79 int genfs_maxdio = MAXPHYS;
     80 
     81 static void
     82 genfs_rel_pages(struct vm_page **pgs, int npages)
     83 {
     84 	int i;
     85 
     86 	for (i = 0; i < npages; i++) {
     87 		struct vm_page *pg = pgs[i];
     88 
     89 		if (pg == NULL || pg == PGO_DONTCARE)
     90 			continue;
     91 		if (pg->flags & PG_FAKE) {
     92 			pg->flags |= PG_RELEASED;
     93 		}
     94 	}
     95 	mutex_enter(&uvm_pageqlock);
     96 	uvm_page_unbusy(pgs, npages);
     97 	mutex_exit(&uvm_pageqlock);
     98 }
     99 
    100 static void
    101 genfs_markdirty(struct vnode *vp)
    102 {
    103 	struct genfs_node * const gp = VTOG(vp);
    104 
    105 	KASSERT(mutex_owned(&vp->v_interlock));
    106 	gp->g_dirtygen++;
    107 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    108 		vn_syncer_add_to_worklist(vp, filedelay);
    109 	}
    110 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    111 		vp->v_iflag |= VI_WRMAPDIRTY;
    112 	}
    113 }
    114 
    115 /*
    116  * generic VM getpages routine.
    117  * Return PG_BUSY pages for the given range,
    118  * reading from backing store if necessary.
    119  */
    120 
    121 int
    122 genfs_getpages(void *v)
    123 {
    124 #ifdef XIP
    125 	struct vop_getpages_args /* {
    126 		struct vnode *a_vp;
    127 		voff_t a_offset;
    128 		struct vm_page **a_m;
    129 		int *a_count;
    130 		int a_centeridx;
    131 		vm_prot_t a_access_type;
    132 		int a_advice;
    133 		int a_flags;
    134 	} */ * const ap = v;
    135 
    136 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    137 		return genfs_do_getpages_xip(v);
    138 	else
    139 #endif
    140 		return genfs_do_getpages(v);
    141 }
    142 
    143 static int
    144 genfs_do_getpages(void *v)
    145 {
    146 	struct vop_getpages_args /* {
    147 		struct vnode *a_vp;
    148 		voff_t a_offset;
    149 		struct vm_page **a_m;
    150 		int *a_count;
    151 		int a_centeridx;
    152 		vm_prot_t a_access_type;
    153 		int a_advice;
    154 		int a_flags;
    155 	} */ * const ap = v;
    156 
    157 	off_t diskeof, memeof;
    158 	int i, error, npages;
    159 	const int flags = ap->a_flags;
    160 	struct vnode * const vp = ap->a_vp;
    161 	struct uvm_object * const uobj = &vp->v_uobj;
    162 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    163 	const bool async = (flags & PGO_SYNCIO) == 0;
    164 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    165 	bool has_trans = false;
    166 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    167 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    168 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    169 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    170 
    171 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    172 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    173 
    174 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    175 	    vp->v_type == VLNK || vp->v_type == VBLK);
    176 
    177 startover:
    178 	error = 0;
    179 	const voff_t origvsize = vp->v_size;
    180 	const off_t origoffset = ap->a_offset;
    181 	const int orignpages = *ap->a_count;
    182 
    183 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    184 	if (flags & PGO_PASTEOF) {
    185 		off_t newsize;
    186 #if defined(DIAGNOSTIC)
    187 		off_t writeeof;
    188 #endif /* defined(DIAGNOSTIC) */
    189 
    190 		newsize = MAX(origvsize,
    191 		    origoffset + (orignpages << PAGE_SHIFT));
    192 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    193 #if defined(DIAGNOSTIC)
    194 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    195 		if (newsize > round_page(writeeof)) {
    196 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    197 			    __func__, newsize, round_page(writeeof));
    198 		}
    199 #endif /* defined(DIAGNOSTIC) */
    200 	} else {
    201 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    202 	}
    203 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    204 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    205 	KASSERT(orignpages > 0);
    206 
    207 	/*
    208 	 * Bounds-check the request.
    209 	 */
    210 
    211 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    212 		if ((flags & PGO_LOCKED) == 0) {
    213 			mutex_exit(&uobj->vmobjlock);
    214 		}
    215 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    216 		    origoffset, *ap->a_count, memeof,0);
    217 		error = EINVAL;
    218 		goto out_err;
    219 	}
    220 
    221 	/* uobj is locked */
    222 
    223 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    224 	    (vp->v_type != VBLK ||
    225 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    226 		int updflags = 0;
    227 
    228 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    229 			updflags = GOP_UPDATE_ACCESSED;
    230 		}
    231 		if (memwrite) {
    232 			updflags |= GOP_UPDATE_MODIFIED;
    233 		}
    234 		if (updflags != 0) {
    235 			GOP_MARKUPDATE(vp, updflags);
    236 		}
    237 	}
    238 
    239 	/*
    240 	 * For PGO_LOCKED requests, just return whatever's in memory.
    241 	 */
    242 
    243 	if (flags & PGO_LOCKED) {
    244 		int nfound;
    245 		struct vm_page *pg;
    246 
    247 		KASSERT(!glocked);
    248 		npages = *ap->a_count;
    249 #if defined(DEBUG)
    250 		for (i = 0; i < npages; i++) {
    251 			pg = ap->a_m[i];
    252 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    253 		}
    254 #endif /* defined(DEBUG) */
    255 		nfound = uvn_findpages(uobj, origoffset, &npages,
    256 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    257 		KASSERT(npages == *ap->a_count);
    258 		if (nfound == 0) {
    259 			error = EBUSY;
    260 			goto out_err;
    261 		}
    262 		if (!genfs_node_rdtrylock(vp)) {
    263 			genfs_rel_pages(ap->a_m, npages);
    264 
    265 			/*
    266 			 * restore the array.
    267 			 */
    268 
    269 			for (i = 0; i < npages; i++) {
    270 				pg = ap->a_m[i];
    271 
    272 				if (pg != NULL || pg != PGO_DONTCARE) {
    273 					ap->a_m[i] = NULL;
    274 				}
    275 			}
    276 		} else {
    277 			genfs_node_unlock(vp);
    278 		}
    279 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    280 		if (error == 0 && memwrite) {
    281 			genfs_markdirty(vp);
    282 		}
    283 		goto out_err;
    284 	}
    285 	mutex_exit(&uobj->vmobjlock);
    286 
    287 	/*
    288 	 * find the requested pages and make some simple checks.
    289 	 * leave space in the page array for a whole block.
    290 	 */
    291 
    292 	const int fs_bshift = (vp->v_type != VBLK) ?
    293 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    294 	const int dev_bshift = (vp->v_type != VBLK) ?
    295 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    296 	const int fs_bsize = 1 << fs_bshift;
    297 #define	blk_mask	(fs_bsize - 1)
    298 #define	trunc_blk(x)	((x) & ~blk_mask)
    299 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    300 
    301 	const int orignmempages = MIN(orignpages,
    302 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    303 	npages = orignmempages;
    304 	const off_t startoffset = trunc_blk(origoffset);
    305 	const off_t endoffset = MIN(
    306 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    307 	    round_page(memeof));
    308 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    309 
    310 	const int pgs_size = sizeof(struct vm_page *) *
    311 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    312 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    313 
    314 	if (pgs_size > sizeof(pgs_onstack)) {
    315 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    316 		if (pgs == NULL) {
    317 			pgs = pgs_onstack;
    318 			error = ENOMEM;
    319 			goto out_err;
    320 		}
    321 	} else {
    322 		pgs = pgs_onstack;
    323 		(void)memset(pgs, 0, pgs_size);
    324 	}
    325 
    326 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    327 	    ridx, npages, startoffset, endoffset);
    328 
    329 	if (!has_trans) {
    330 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    331 		has_trans = true;
    332 	}
    333 
    334 	/*
    335 	 * hold g_glock to prevent a race with truncate.
    336 	 *
    337 	 * check if our idea of v_size is still valid.
    338 	 */
    339 
    340 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    341 	if (!glocked) {
    342 		if (blockalloc) {
    343 			genfs_node_wrlock(vp);
    344 		} else {
    345 			genfs_node_rdlock(vp);
    346 		}
    347 	}
    348 	mutex_enter(&uobj->vmobjlock);
    349 	if (vp->v_size < origvsize) {
    350 		if (!glocked) {
    351 			genfs_node_unlock(vp);
    352 		}
    353 		if (pgs != pgs_onstack)
    354 			kmem_free(pgs, pgs_size);
    355 		goto startover;
    356 	}
    357 
    358 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    359 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    360 		if (!glocked) {
    361 			genfs_node_unlock(vp);
    362 		}
    363 		KASSERT(async != 0);
    364 		genfs_rel_pages(&pgs[ridx], orignmempages);
    365 		mutex_exit(&uobj->vmobjlock);
    366 		error = EBUSY;
    367 		goto out_err_free;
    368 	}
    369 
    370 	/*
    371 	 * if the pages are already resident, just return them.
    372 	 */
    373 
    374 	for (i = 0; i < npages; i++) {
    375 		struct vm_page *pg = pgs[ridx + i];
    376 
    377 		if ((pg->flags & PG_FAKE) ||
    378 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    379 			break;
    380 		}
    381 	}
    382 	if (i == npages) {
    383 		if (!glocked) {
    384 			genfs_node_unlock(vp);
    385 		}
    386 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    387 		npages += ridx;
    388 		goto out;
    389 	}
    390 
    391 	/*
    392 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    393 	 */
    394 
    395 	if (overwrite) {
    396 		if (!glocked) {
    397 			genfs_node_unlock(vp);
    398 		}
    399 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    400 
    401 		for (i = 0; i < npages; i++) {
    402 			struct vm_page *pg = pgs[ridx + i];
    403 
    404 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    405 		}
    406 		npages += ridx;
    407 		goto out;
    408 	}
    409 
    410 	/*
    411 	 * the page wasn't resident and we're not overwriting,
    412 	 * so we're going to have to do some i/o.
    413 	 * find any additional pages needed to cover the expanded range.
    414 	 */
    415 
    416 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    417 	if (startoffset != origoffset || npages != orignmempages) {
    418 		int npgs;
    419 
    420 		/*
    421 		 * we need to avoid deadlocks caused by locking
    422 		 * additional pages at lower offsets than pages we
    423 		 * already have locked.  unlock them all and start over.
    424 		 */
    425 
    426 		genfs_rel_pages(&pgs[ridx], orignmempages);
    427 		memset(pgs, 0, pgs_size);
    428 
    429 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    430 		    startoffset, endoffset, 0,0);
    431 		npgs = npages;
    432 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    433 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    434 			if (!glocked) {
    435 				genfs_node_unlock(vp);
    436 			}
    437 			KASSERT(async != 0);
    438 			genfs_rel_pages(pgs, npages);
    439 			mutex_exit(&uobj->vmobjlock);
    440 			error = EBUSY;
    441 			goto out_err_free;
    442 		}
    443 	}
    444 
    445 	mutex_exit(&uobj->vmobjlock);
    446 
    447     {
    448 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    449 	vaddr_t kva;
    450 	struct buf *bp, *mbp;
    451 	bool sawhole = false;
    452 
    453 	/*
    454 	 * read the desired page(s).
    455 	 */
    456 
    457 	totalbytes = npages << PAGE_SHIFT;
    458 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    459 	tailbytes = totalbytes - bytes;
    460 	skipbytes = 0;
    461 
    462 	kva = uvm_pagermapin(pgs, npages,
    463 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    464 
    465 	mbp = getiobuf(vp, true);
    466 	mbp->b_bufsize = totalbytes;
    467 	mbp->b_data = (void *)kva;
    468 	mbp->b_resid = mbp->b_bcount = bytes;
    469 	mbp->b_cflags = BC_BUSY;
    470 	if (async) {
    471 		mbp->b_flags = B_READ | B_ASYNC;
    472 		mbp->b_iodone = uvm_aio_biodone;
    473 	} else {
    474 		mbp->b_flags = B_READ;
    475 		mbp->b_iodone = NULL;
    476 	}
    477 	if (async)
    478 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    479 	else
    480 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    481 
    482 	/*
    483 	 * if EOF is in the middle of the range, zero the part past EOF.
    484 	 * skip over pages which are not PG_FAKE since in that case they have
    485 	 * valid data that we need to preserve.
    486 	 */
    487 
    488 	tailstart = bytes;
    489 	while (tailbytes > 0) {
    490 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    491 
    492 		KASSERT(len <= tailbytes);
    493 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    494 			memset((void *)(kva + tailstart), 0, len);
    495 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    496 			    kva, tailstart, len, 0);
    497 		}
    498 		tailstart += len;
    499 		tailbytes -= len;
    500 	}
    501 
    502 	/*
    503 	 * now loop over the pages, reading as needed.
    504 	 */
    505 
    506 	bp = NULL;
    507 	off_t offset;
    508 	for (offset = startoffset;
    509 	    bytes > 0;
    510 	    offset += iobytes, bytes -= iobytes) {
    511 		int run;
    512 		daddr_t lbn, blkno;
    513 		int pidx;
    514 		struct vnode *devvp;
    515 
    516 		/*
    517 		 * skip pages which don't need to be read.
    518 		 */
    519 
    520 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    521 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    522 			size_t b;
    523 
    524 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    525 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    526 				sawhole = true;
    527 			}
    528 			b = MIN(PAGE_SIZE, bytes);
    529 			offset += b;
    530 			bytes -= b;
    531 			skipbytes += b;
    532 			pidx++;
    533 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    534 			    offset, 0,0,0);
    535 			if (bytes == 0) {
    536 				goto loopdone;
    537 			}
    538 		}
    539 
    540 		/*
    541 		 * bmap the file to find out the blkno to read from and
    542 		 * how much we can read in one i/o.  if bmap returns an error,
    543 		 * skip the rest of the top-level i/o.
    544 		 */
    545 
    546 		lbn = offset >> fs_bshift;
    547 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    548 		if (error) {
    549 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    550 			    lbn,error,0,0);
    551 			skipbytes += bytes;
    552 			bytes = 0;
    553 			goto loopdone;
    554 		}
    555 
    556 		/*
    557 		 * see how many pages can be read with this i/o.
    558 		 * reduce the i/o size if necessary to avoid
    559 		 * overwriting pages with valid data.
    560 		 */
    561 
    562 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    563 		    bytes);
    564 		if (offset + iobytes > round_page(offset)) {
    565 			int pcount;
    566 
    567 			pcount = 1;
    568 			while (pidx + pcount < npages &&
    569 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    570 				pcount++;
    571 			}
    572 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    573 			    (offset - trunc_page(offset)));
    574 		}
    575 
    576 		/*
    577 		 * if this block isn't allocated, zero it instead of
    578 		 * reading it.  unless we are going to allocate blocks,
    579 		 * mark the pages we zeroed PG_RDONLY.
    580 		 */
    581 
    582 		if (blkno == (daddr_t)-1) {
    583 			int holepages = (round_page(offset + iobytes) -
    584 			    trunc_page(offset)) >> PAGE_SHIFT;
    585 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    586 
    587 			sawhole = true;
    588 			memset((char *)kva + (offset - startoffset), 0,
    589 			    iobytes);
    590 			skipbytes += iobytes;
    591 
    592 			for (i = 0; i < holepages; i++) {
    593 				if (memwrite) {
    594 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    595 				}
    596 				if (!blockalloc) {
    597 					pgs[pidx + i]->flags |= PG_RDONLY;
    598 				}
    599 			}
    600 			continue;
    601 		}
    602 
    603 		/*
    604 		 * allocate a sub-buf for this piece of the i/o
    605 		 * (or just use mbp if there's only 1 piece),
    606 		 * and start it going.
    607 		 */
    608 
    609 		if (offset == startoffset && iobytes == bytes) {
    610 			bp = mbp;
    611 		} else {
    612 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    613 			    vp, bp, vp->v_numoutput, 0);
    614 			bp = getiobuf(vp, true);
    615 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    616 		}
    617 		bp->b_lblkno = 0;
    618 
    619 		/* adjust physical blkno for partial blocks */
    620 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    621 		    dev_bshift);
    622 
    623 		UVMHIST_LOG(ubchist,
    624 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    625 		    bp, offset, bp->b_bcount, bp->b_blkno);
    626 
    627 		VOP_STRATEGY(devvp, bp);
    628 	}
    629 
    630 loopdone:
    631 	nestiobuf_done(mbp, skipbytes, error);
    632 	if (async) {
    633 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    634 		if (!glocked) {
    635 			genfs_node_unlock(vp);
    636 		}
    637 		error = 0;
    638 		goto out_err_free;
    639 	}
    640 	if (bp != NULL) {
    641 		error = biowait(mbp);
    642 	}
    643 
    644 	/* Remove the mapping (make KVA available as soon as possible) */
    645 	uvm_pagermapout(kva, npages);
    646 
    647 	/*
    648 	 * if this we encountered a hole then we have to do a little more work.
    649 	 * for read faults, we marked the page PG_RDONLY so that future
    650 	 * write accesses to the page will fault again.
    651 	 * for write faults, we must make sure that the backing store for
    652 	 * the page is completely allocated while the pages are locked.
    653 	 */
    654 
    655 	if (!error && sawhole && blockalloc) {
    656 		/*
    657 		 * XXX: This assumes that we come here only via
    658 		 * the mmio path
    659 		 */
    660 		if (vp->v_mount->mnt_wapbl) {
    661 			error = WAPBL_BEGIN(vp->v_mount);
    662 		}
    663 
    664 		if (!error) {
    665 			error = GOP_ALLOC(vp, startoffset,
    666 			    npages << PAGE_SHIFT, 0, cred);
    667 			if (vp->v_mount->mnt_wapbl) {
    668 				WAPBL_END(vp->v_mount);
    669 			}
    670 		}
    671 
    672 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    673 		    startoffset, npages << PAGE_SHIFT, error,0);
    674 		if (!error) {
    675 			for (i = 0; i < npages; i++) {
    676 				struct vm_page *pg = pgs[i];
    677 
    678 				if (pg == NULL) {
    679 					continue;
    680 				}
    681 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    682 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    683 				    pg,0,0,0);
    684 			}
    685 		}
    686 	}
    687 	if (!glocked) {
    688 		genfs_node_unlock(vp);
    689 	}
    690 
    691 	putiobuf(mbp);
    692     }
    693 
    694 	mutex_enter(&uobj->vmobjlock);
    695 
    696 	/*
    697 	 * we're almost done!  release the pages...
    698 	 * for errors, we free the pages.
    699 	 * otherwise we activate them and mark them as valid and clean.
    700 	 * also, unbusy pages that were not actually requested.
    701 	 */
    702 
    703 	if (error) {
    704 		for (i = 0; i < npages; i++) {
    705 			struct vm_page *pg = pgs[i];
    706 
    707 			if (pg == NULL) {
    708 				continue;
    709 			}
    710 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    711 			    pg, pg->flags, 0,0);
    712 			if (pg->flags & PG_FAKE) {
    713 				pg->flags |= PG_RELEASED;
    714 			}
    715 		}
    716 		mutex_enter(&uvm_pageqlock);
    717 		uvm_page_unbusy(pgs, npages);
    718 		mutex_exit(&uvm_pageqlock);
    719 		mutex_exit(&uobj->vmobjlock);
    720 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    721 		goto out_err_free;
    722 	}
    723 
    724 out:
    725 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    726 	error = 0;
    727 	mutex_enter(&uvm_pageqlock);
    728 	for (i = 0; i < npages; i++) {
    729 		struct vm_page *pg = pgs[i];
    730 		if (pg == NULL) {
    731 			continue;
    732 		}
    733 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    734 		    pg, pg->flags, 0,0);
    735 		if (pg->flags & PG_FAKE && !overwrite) {
    736 			pg->flags &= ~(PG_FAKE);
    737 			pmap_clear_modify(pgs[i]);
    738 		}
    739 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    740 		if (i < ridx || i >= ridx + orignmempages || async) {
    741 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    742 			    pg, pg->offset,0,0);
    743 			if (pg->flags & PG_WANTED) {
    744 				wakeup(pg);
    745 			}
    746 			if (pg->flags & PG_FAKE) {
    747 				KASSERT(overwrite);
    748 				uvm_pagezero(pg);
    749 			}
    750 			if (pg->flags & PG_RELEASED) {
    751 				uvm_pagefree(pg);
    752 				continue;
    753 			}
    754 			uvm_pageenqueue(pg);
    755 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    756 			UVM_PAGE_OWN(pg, NULL);
    757 		}
    758 	}
    759 	mutex_exit(&uvm_pageqlock);
    760 	if (memwrite) {
    761 		genfs_markdirty(vp);
    762 	}
    763 	mutex_exit(&uobj->vmobjlock);
    764 	if (ap->a_m != NULL) {
    765 		memcpy(ap->a_m, &pgs[ridx],
    766 		    orignmempages * sizeof(struct vm_page *));
    767 	}
    768 
    769 out_err_free:
    770 	if (pgs != NULL && pgs != pgs_onstack)
    771 		kmem_free(pgs, pgs_size);
    772 out_err:
    773 	if (has_trans)
    774 		fstrans_done(vp->v_mount);
    775 	return error;
    776 }
    777 
    778 #ifdef XIP
    779 /*
    780  * genfs_do_getpages_xip
    781  *      Return "direct pages" of XIP vnode.  The block addresses of XIP
    782  *      vnode pages are returned back to the VM fault handler as the
    783  *	actually mapped physical addresses.
    784  *
    785  * XXX Should be merged into genfs_do_getpages() after
    786  * XXX genfs_do_getpages() and genfs_do_io() are merged.
    787  */
    788 static int
    789 genfs_do_getpages_xip(void *v)
    790 {
    791 	struct vop_getpages_args /* {
    792 		struct vnode *a_vp;
    793 		voff_t a_offset;
    794 		struct vm_page **a_m;
    795 		int *a_count;
    796 		int a_centeridx;
    797 		vm_prot_t a_access_type;
    798 		int a_advice;
    799 		int a_flags;
    800 	} */ * const ap = v;
    801 
    802 	return genfs_do_getpages_xip1(
    803 		ap->a_vp,
    804 		ap->a_offset,
    805 		ap->a_m,
    806 		ap->a_count,
    807 		ap->a_centeridx,
    808 		ap->a_access_type,
    809 		ap->a_advice,
    810 		ap->a_flags);
    811 }
    812 
    813 static int
    814 genfs_do_getpages_xip1(
    815 	struct vnode *vp,
    816 	voff_t offset,
    817 	struct vm_page **pps,
    818 	int *npagesp,
    819 	int centeridx,
    820 	vm_prot_t access_type,
    821 	int advice,
    822 	int flags)
    823 {
    824 	struct uvm_object * const uobj = &vp->v_uobj;
    825 
    826 	int error;
    827 	off_t eof, sbkoff, ebkoff, off;
    828 	int npages;
    829 	int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
    830 	int i;
    831 	struct vm_page *zero_page;
    832 
    833 	UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
    834 
    835 	KASSERT((vp->v_vflag & VV_XIP) != 0);
    836 
    837 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
    838 	npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
    839 
    840 	fs_bshift = vp->v_mount->mnt_fs_bshift;
    841 	fs_bsize = 1 << fs_bshift;
    842 	dev_bshift = vp->v_mount->mnt_dev_bshift;
    843 	dev_bsize = 1 << dev_bshift;
    844 
    845 	sbkoff = offset & ~(fs_bsize - 1);
    846 	ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
    847 	    ~(fs_bsize - 1);
    848 
    849 	zero_page = NULL;
    850 
    851 	UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
    852 	    npages, (long)sbkoff, (long)ebkoff, 0);
    853 
    854 	KASSERT(mutex_owned(&uobj->vmobjlock));
    855 	mutex_exit(&uobj->vmobjlock);
    856 
    857 	off = offset;
    858 	for (i = 0; i < npages; i++) {
    859 		daddr_t lbn, blkno;
    860 		int run;
    861 		struct vnode *devvp;
    862 
    863 		lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
    864 
    865 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    866 		KASSERT(error == 0);
    867 		UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
    868 		    (long)lbn, (long)blkno, run, 0);
    869 
    870 		/*
    871 		 * XIP page metadata assignment
    872 		 * - Unallocated block is redirected to the dedicated zero'ed
    873 		 *   page.
    874 		 * - Assume that struct vm_page *[] array of this segment is
    875 		 *   allocated and linearly ordered by physical address.
    876 		 */
    877 		if (blkno < 0) {
    878 			zero_page = uvm_pagelookup(uobj, 0);
    879 
    880 			if (zero_page == NULL) {
    881 				mutex_enter(&uobj->vmobjlock);
    882 				zero_page = uvm_pagealloc(uobj, 0, NULL,
    883 				    UVM_PGA_ZERO);
    884 				mutex_exit(&uobj->vmobjlock);
    885 				KASSERT(zero_page != NULL);
    886 				mutex_enter(&uvm_pageqlock);
    887 				uvm_pagewire(zero_page);
    888 				mutex_exit(&uvm_pageqlock);
    889 			}
    890 			pps[i] = zero_page;
    891 		} else {
    892 			struct vm_physseg *seg;
    893 			daddr_t seg_off;
    894 			struct vm_page *pg;
    895 
    896 			seg = devvp->v_physseg;
    897 			KASSERT(seg != NULL);
    898 			/* bus_space_mmap cookie -> paddr_t */
    899 			seg_off = (blkno << dev_bshift) +
    900 			    (off - (lbn << fs_bshift));
    901 			KASSERT((seg_off & PAGE_MASK) == 0);
    902 			pg = seg->pgs + (seg_off >> PAGE_SHIFT);
    903 			KASSERT(pg->phys_addr ==
    904 			    (seg->start << PAGE_SHIFT) + seg_off);
    905 
    906 			pps[i] = pg;
    907 		}
    908 
    909 		UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
    910 			i,
    911 			(long)pps[i]->phys_addr,
    912 			pps[i],
    913 			0);
    914 
    915 		off += PAGE_SIZE;
    916 	}
    917 
    918 	mutex_enter(&uobj->vmobjlock);
    919 
    920 	for (i = 0; i < npages; i++) {
    921 		struct vm_page *pg = pps[i];
    922 
    923 		if (pg == zero_page) {
    924 		} else {
    925 			KASSERT((pg->flags & PG_BUSY) == 0);
    926 			KASSERT((pg->flags & PG_RDONLY) != 0);
    927 			KASSERT((pg->flags & PG_CLEAN) != 0);
    928 			KASSERT((pg->pqflags & PQ_FIXED) != 0);
    929 			pg->flags |= PG_BUSY;
    930 			pg->flags &= ~PG_FAKE;
    931 			pg->uobject = &vp->v_uobj;
    932 		}
    933 	}
    934 
    935 	if ((flags & PGO_LOCKED) == 0)
    936 		mutex_exit(&uobj->vmobjlock);
    937 
    938 	*npagesp = npages;
    939 
    940 	return 0;
    941 }
    942 #endif
    943 
    944 /*
    945  * generic VM putpages routine.
    946  * Write the given range of pages to backing store.
    947  *
    948  * => "offhi == 0" means flush all pages at or after "offlo".
    949  * => object should be locked by caller.  we return with the
    950  *      object unlocked.
    951  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    952  *	thus, a caller might want to unlock higher level resources
    953  *	(e.g. vm_map) before calling flush.
    954  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    955  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    956  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    957  *	that new pages are inserted on the tail end of the list.   thus,
    958  *	we can make a complete pass through the object in one go by starting
    959  *	at the head and working towards the tail (new pages are put in
    960  *	front of us).
    961  * => NOTE: we are allowed to lock the page queues, so the caller
    962  *	must not be holding the page queue lock.
    963  *
    964  * note on "cleaning" object and PG_BUSY pages:
    965  *	this routine is holding the lock on the object.   the only time
    966  *	that it can run into a PG_BUSY page that it does not own is if
    967  *	some other process has started I/O on the page (e.g. either
    968  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    969  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    970  *	had a chance to modify it yet.    if the PG_BUSY page is being
    971  *	paged out then it means that someone else has already started
    972  *	cleaning the page for us (how nice!).    in this case, if we
    973  *	have syncio specified, then after we make our pass through the
    974  *	object we need to wait for the other PG_BUSY pages to clear
    975  *	off (i.e. we need to do an iosync).   also note that once a
    976  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    977  *
    978  * note on page traversal:
    979  *	we can traverse the pages in an object either by going down the
    980  *	linked list in "uobj->memq", or we can go over the address range
    981  *	by page doing hash table lookups for each address.    depending
    982  *	on how many pages are in the object it may be cheaper to do one
    983  *	or the other.   we set "by_list" to true if we are using memq.
    984  *	if the cost of a hash lookup was equal to the cost of the list
    985  *	traversal we could compare the number of pages in the start->stop
    986  *	range to the total number of pages in the object.   however, it
    987  *	seems that a hash table lookup is more expensive than the linked
    988  *	list traversal, so we multiply the number of pages in the
    989  *	range by an estimate of the relatively higher cost of the hash lookup.
    990  */
    991 
    992 int
    993 genfs_putpages(void *v)
    994 {
    995 	struct vop_putpages_args /* {
    996 		struct vnode *a_vp;
    997 		voff_t a_offlo;
    998 		voff_t a_offhi;
    999 		int a_flags;
   1000 	} */ * const ap = v;
   1001 
   1002 #ifdef XIP
   1003 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
   1004 		return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1005 		    ap->a_flags, NULL);
   1006 	else
   1007 #endif
   1008 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1009 	    ap->a_flags, NULL);
   1010 }
   1011 
   1012 int
   1013 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
   1014     int origflags, struct vm_page **busypg)
   1015 {
   1016 	struct uvm_object * const uobj = &vp->v_uobj;
   1017 	kmutex_t * const slock = &uobj->vmobjlock;
   1018 	off_t off;
   1019 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1020 #define maxpages (MAXPHYS >> PAGE_SHIFT)
   1021 	int i, error, npages, nback;
   1022 	int freeflag;
   1023 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1024 	bool wasclean, by_list, needs_clean, yld;
   1025 	bool async = (origflags & PGO_SYNCIO) == 0;
   1026 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
   1027 	struct lwp * const l = curlwp ? curlwp : &lwp0;
   1028 	struct genfs_node * const gp = VTOG(vp);
   1029 	int flags;
   1030 	int dirtygen;
   1031 	bool modified;
   1032 	bool need_wapbl;
   1033 	bool has_trans;
   1034 	bool cleanall;
   1035 	bool onworklst;
   1036 
   1037 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1038 
   1039 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1040 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1041 	KASSERT(startoff < endoff || endoff == 0);
   1042 
   1043 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1044 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1045 
   1046 	has_trans = false;
   1047 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
   1048 	    (origflags & PGO_JOURNALLOCKED) == 0);
   1049 
   1050 retry:
   1051 	modified = false;
   1052 	flags = origflags;
   1053 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
   1054 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
   1055 	if (uobj->uo_npages == 0) {
   1056 		if (vp->v_iflag & VI_ONWORKLST) {
   1057 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1058 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1059 				vn_syncer_remove_from_worklist(vp);
   1060 		}
   1061 		if (has_trans) {
   1062 			if (need_wapbl)
   1063 				WAPBL_END(vp->v_mount);
   1064 			fstrans_done(vp->v_mount);
   1065 		}
   1066 		mutex_exit(slock);
   1067 		return (0);
   1068 	}
   1069 
   1070 	/*
   1071 	 * the vnode has pages, set up to process the request.
   1072 	 */
   1073 
   1074 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
   1075 		mutex_exit(slock);
   1076 		if (pagedaemon) {
   1077 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1078 			if (error)
   1079 				return error;
   1080 		} else
   1081 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1082 		if (need_wapbl) {
   1083 			error = WAPBL_BEGIN(vp->v_mount);
   1084 			if (error) {
   1085 				fstrans_done(vp->v_mount);
   1086 				return error;
   1087 			}
   1088 		}
   1089 		has_trans = true;
   1090 		mutex_enter(slock);
   1091 		goto retry;
   1092 	}
   1093 
   1094 	error = 0;
   1095 	wasclean = (vp->v_numoutput == 0);
   1096 	off = startoff;
   1097 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1098 		endoff = trunc_page(LLONG_MAX);
   1099 	}
   1100 	by_list = (uobj->uo_npages <=
   1101 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
   1102 
   1103 #if !defined(DEBUG)
   1104 	/*
   1105 	 * if this vnode is known not to have dirty pages,
   1106 	 * don't bother to clean it out.
   1107 	 */
   1108 
   1109 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1110 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1111 			goto skip_scan;
   1112 		}
   1113 		flags &= ~PGO_CLEANIT;
   1114 	}
   1115 #endif /* !defined(DEBUG) */
   1116 
   1117 	/*
   1118 	 * start the loop.  when scanning by list, hold the last page
   1119 	 * in the list before we start.  pages allocated after we start
   1120 	 * will be added to the end of the list, so we can stop at the
   1121 	 * current last page.
   1122 	 */
   1123 
   1124 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1125 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1126 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1127 	dirtygen = gp->g_dirtygen;
   1128 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1129 	if (by_list) {
   1130 		curmp.flags = PG_MARKER;
   1131 		endmp.flags = PG_MARKER;
   1132 		pg = TAILQ_FIRST(&uobj->memq);
   1133 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1134 	} else {
   1135 		pg = uvm_pagelookup(uobj, off);
   1136 	}
   1137 	nextpg = NULL;
   1138 	while (by_list || off < endoff) {
   1139 
   1140 		/*
   1141 		 * if the current page is not interesting, move on to the next.
   1142 		 */
   1143 
   1144 		KASSERT(pg == NULL || pg->uobject == uobj ||
   1145 		    (pg->flags & PG_MARKER) != 0);
   1146 		KASSERT(pg == NULL ||
   1147 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1148 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
   1149 		if (by_list) {
   1150 			if (pg == &endmp) {
   1151 				break;
   1152 			}
   1153 			if (pg->flags & PG_MARKER) {
   1154 				pg = TAILQ_NEXT(pg, listq.queue);
   1155 				continue;
   1156 			}
   1157 			if (pg->offset < startoff || pg->offset >= endoff ||
   1158 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1159 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1160 					wasclean = false;
   1161 				}
   1162 				pg = TAILQ_NEXT(pg, listq.queue);
   1163 				continue;
   1164 			}
   1165 			off = pg->offset;
   1166 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1167 			if (pg != NULL) {
   1168 				wasclean = false;
   1169 			}
   1170 			off += PAGE_SIZE;
   1171 			if (off < endoff) {
   1172 				pg = uvm_pagelookup(uobj, off);
   1173 			}
   1174 			continue;
   1175 		}
   1176 
   1177 		/*
   1178 		 * if the current page needs to be cleaned and it's busy,
   1179 		 * wait for it to become unbusy.
   1180 		 */
   1181 
   1182 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1183 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1184 		if (pg->flags & PG_BUSY || yld) {
   1185 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1186 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1187 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1188 				error = EDEADLK;
   1189 				if (busypg != NULL)
   1190 					*busypg = pg;
   1191 				break;
   1192 			}
   1193 			if (pagedaemon) {
   1194 				/*
   1195 				 * someone has taken the page while we
   1196 				 * dropped the lock for fstrans_start.
   1197 				 */
   1198 				break;
   1199 			}
   1200 			if (by_list) {
   1201 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1202 				UVMHIST_LOG(ubchist, "curmp next %p",
   1203 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1204 			}
   1205 			if (yld) {
   1206 				mutex_exit(slock);
   1207 				preempt();
   1208 				mutex_enter(slock);
   1209 			} else {
   1210 				pg->flags |= PG_WANTED;
   1211 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1212 				mutex_enter(slock);
   1213 			}
   1214 			if (by_list) {
   1215 				UVMHIST_LOG(ubchist, "after next %p",
   1216 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1217 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1218 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1219 			} else {
   1220 				pg = uvm_pagelookup(uobj, off);
   1221 			}
   1222 			continue;
   1223 		}
   1224 
   1225 		/*
   1226 		 * if we're freeing, remove all mappings of the page now.
   1227 		 * if we're cleaning, check if the page is needs to be cleaned.
   1228 		 */
   1229 
   1230 		if (flags & PGO_FREE) {
   1231 			pmap_page_protect(pg, VM_PROT_NONE);
   1232 		} else if (flags & PGO_CLEANIT) {
   1233 
   1234 			/*
   1235 			 * if we still have some hope to pull this vnode off
   1236 			 * from the syncer queue, write-protect the page.
   1237 			 */
   1238 
   1239 			if (cleanall && wasclean &&
   1240 			    gp->g_dirtygen == dirtygen) {
   1241 
   1242 				/*
   1243 				 * uobj pages get wired only by uvm_fault
   1244 				 * where uobj is locked.
   1245 				 */
   1246 
   1247 				if (pg->wire_count == 0) {
   1248 					pmap_page_protect(pg,
   1249 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1250 				} else {
   1251 					cleanall = false;
   1252 				}
   1253 			}
   1254 		}
   1255 
   1256 		if (flags & PGO_CLEANIT) {
   1257 			needs_clean = pmap_clear_modify(pg) ||
   1258 			    (pg->flags & PG_CLEAN) == 0;
   1259 			pg->flags |= PG_CLEAN;
   1260 		} else {
   1261 			needs_clean = false;
   1262 		}
   1263 
   1264 		/*
   1265 		 * if we're cleaning, build a cluster.
   1266 		 * the cluster will consist of pages which are currently dirty,
   1267 		 * but they will be returned to us marked clean.
   1268 		 * if not cleaning, just operate on the one page.
   1269 		 */
   1270 
   1271 		if (needs_clean) {
   1272 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1273 			wasclean = false;
   1274 			memset(pgs, 0, sizeof(pgs));
   1275 			pg->flags |= PG_BUSY;
   1276 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1277 
   1278 			/*
   1279 			 * first look backward.
   1280 			 */
   1281 
   1282 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1283 			nback = npages;
   1284 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1285 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1286 			if (nback) {
   1287 				memmove(&pgs[0], &pgs[npages - nback],
   1288 				    nback * sizeof(pgs[0]));
   1289 				if (npages - nback < nback)
   1290 					memset(&pgs[nback], 0,
   1291 					    (npages - nback) * sizeof(pgs[0]));
   1292 				else
   1293 					memset(&pgs[npages - nback], 0,
   1294 					    nback * sizeof(pgs[0]));
   1295 			}
   1296 
   1297 			/*
   1298 			 * then plug in our page of interest.
   1299 			 */
   1300 
   1301 			pgs[nback] = pg;
   1302 
   1303 			/*
   1304 			 * then look forward to fill in the remaining space in
   1305 			 * the array of pages.
   1306 			 */
   1307 
   1308 			npages = maxpages - nback - 1;
   1309 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1310 			    &pgs[nback + 1],
   1311 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1312 			npages += nback + 1;
   1313 		} else {
   1314 			pgs[0] = pg;
   1315 			npages = 1;
   1316 			nback = 0;
   1317 		}
   1318 
   1319 		/*
   1320 		 * apply FREE or DEACTIVATE options if requested.
   1321 		 */
   1322 
   1323 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1324 			mutex_enter(&uvm_pageqlock);
   1325 		}
   1326 		for (i = 0; i < npages; i++) {
   1327 			tpg = pgs[i];
   1328 			KASSERT(tpg->uobject == uobj);
   1329 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1330 				pg = tpg;
   1331 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1332 				continue;
   1333 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1334 				uvm_pagedeactivate(tpg);
   1335 			} else if (flags & PGO_FREE) {
   1336 				pmap_page_protect(tpg, VM_PROT_NONE);
   1337 				if (tpg->flags & PG_BUSY) {
   1338 					tpg->flags |= freeflag;
   1339 					if (pagedaemon) {
   1340 						uvm_pageout_start(1);
   1341 						uvm_pagedequeue(tpg);
   1342 					}
   1343 				} else {
   1344 
   1345 					/*
   1346 					 * ``page is not busy''
   1347 					 * implies that npages is 1
   1348 					 * and needs_clean is false.
   1349 					 */
   1350 
   1351 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1352 					uvm_pagefree(tpg);
   1353 					if (pagedaemon)
   1354 						uvmexp.pdfreed++;
   1355 				}
   1356 			}
   1357 		}
   1358 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1359 			mutex_exit(&uvm_pageqlock);
   1360 		}
   1361 		if (needs_clean) {
   1362 			modified = true;
   1363 
   1364 			/*
   1365 			 * start the i/o.  if we're traversing by list,
   1366 			 * keep our place in the list with a marker page.
   1367 			 */
   1368 
   1369 			if (by_list) {
   1370 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1371 				    listq.queue);
   1372 			}
   1373 			mutex_exit(slock);
   1374 			error = GOP_WRITE(vp, pgs, npages, flags);
   1375 			mutex_enter(slock);
   1376 			if (by_list) {
   1377 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1378 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1379 			}
   1380 			if (error) {
   1381 				break;
   1382 			}
   1383 			if (by_list) {
   1384 				continue;
   1385 			}
   1386 		}
   1387 
   1388 		/*
   1389 		 * find the next page and continue if there was no error.
   1390 		 */
   1391 
   1392 		if (by_list) {
   1393 			if (nextpg) {
   1394 				pg = nextpg;
   1395 				nextpg = NULL;
   1396 			} else {
   1397 				pg = TAILQ_NEXT(pg, listq.queue);
   1398 			}
   1399 		} else {
   1400 			off += (npages - nback) << PAGE_SHIFT;
   1401 			if (off < endoff) {
   1402 				pg = uvm_pagelookup(uobj, off);
   1403 			}
   1404 		}
   1405 	}
   1406 	if (by_list) {
   1407 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1408 	}
   1409 
   1410 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1411 	    (vp->v_type != VBLK ||
   1412 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1413 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1414 	}
   1415 
   1416 	/*
   1417 	 * if we're cleaning and there was nothing to clean,
   1418 	 * take us off the syncer list.  if we started any i/o
   1419 	 * and we're doing sync i/o, wait for all writes to finish.
   1420 	 */
   1421 
   1422 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1423 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1424 #if defined(DEBUG)
   1425 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1426 			if ((pg->flags & PG_MARKER) != 0) {
   1427 				continue;
   1428 			}
   1429 			if ((pg->flags & PG_CLEAN) == 0) {
   1430 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1431 			}
   1432 			if (pmap_is_modified(pg)) {
   1433 				printf("%s: %p: modified\n", __func__, pg);
   1434 			}
   1435 		}
   1436 #endif /* defined(DEBUG) */
   1437 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1438 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1439 			vn_syncer_remove_from_worklist(vp);
   1440 	}
   1441 
   1442 #if !defined(DEBUG)
   1443 skip_scan:
   1444 #endif /* !defined(DEBUG) */
   1445 
   1446 	/* Wait for output to complete. */
   1447 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1448 		while (vp->v_numoutput != 0)
   1449 			cv_wait(&vp->v_cv, slock);
   1450 	}
   1451 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1452 	mutex_exit(slock);
   1453 
   1454 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1455 		/*
   1456 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1457 		 * retrying is not a big deal because, in many cases,
   1458 		 * uobj->uo_npages is already 0 here.
   1459 		 */
   1460 		mutex_enter(slock);
   1461 		goto retry;
   1462 	}
   1463 
   1464 	if (has_trans) {
   1465 		if (need_wapbl)
   1466 			WAPBL_END(vp->v_mount);
   1467 		fstrans_done(vp->v_mount);
   1468 	}
   1469 
   1470 	return (error);
   1471 }
   1472 
   1473 #ifdef XIP
   1474 int
   1475 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
   1476     int flags, struct vm_page **busypg)
   1477 {
   1478 	struct uvm_object *uobj = &vp->v_uobj;
   1479 #ifdef DIAGNOSTIC
   1480 	struct genfs_node * const gp = VTOG(vp);
   1481 #endif
   1482 
   1483 	UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
   1484 
   1485 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1486 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1487 	KASSERT(vp->v_numoutput == 0);
   1488 	KASSERT(gp->g_dirtygen == 0);
   1489 
   1490 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1491 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1492 
   1493 	/*
   1494 	 * XIP pages are read-only, and never become dirty.  They're also never
   1495 	 * queued.  PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
   1496 	 * pages, so we ignore them.
   1497 	 */
   1498 	if ((flags & PGO_FREE) == 0)
   1499 		goto done;
   1500 
   1501 	/*
   1502 	 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
   1503 	 * mappings of both XIP pages and XIP zero pages.
   1504 	 *
   1505 	 * Zero page is freed when one of its mapped offset is freed, even if
   1506 	 * one file (vnode) has many holes and mapping its zero page to all
   1507 	 * of those hole pages.
   1508 	 *
   1509 	 * We don't know which pages are currently mapped in the given vnode,
   1510 	 * because XIP pages are not added to vnode.  What we can do is to
   1511 	 * locate pages by querying the filesystem as done in getpages.  Call
   1512 	 * genfs_do_getpages_xip1().
   1513 	 */
   1514 
   1515 	off_t off, eof;
   1516 	struct vm_page *zero_page;
   1517 	bool put_zero_page;
   1518 
   1519 	off = trunc_page(startoff);
   1520 	if (endoff == 0 || (flags & PGO_ALLPAGES))
   1521 		GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
   1522 	else
   1523 		eof = endoff;
   1524 
   1525 	zero_page = uvm_pagelookup(uobj, 0);
   1526 	KASSERT(zero_page != NULL || uobj->uo_npages == 0);
   1527 	KASSERT(zero_page == NULL || uobj->uo_npages == 1);
   1528 	put_zero_page = false;
   1529 
   1530 	while (off < eof) {
   1531 		int npages, orignpages, error, i;
   1532 		struct vm_page *pgs[maxpages], *pg;
   1533 
   1534 		npages = round_page(eof - off) >> PAGE_SHIFT;
   1535 		if (npages > maxpages)
   1536 			npages = maxpages;
   1537 
   1538 		orignpages = npages;
   1539 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1540 		error = genfs_do_getpages_xip1(vp, off, pgs, &npages, 0,
   1541 		    VM_PROT_ALL, 0, PGO_LOCKED);
   1542 		KASSERT(error == 0);
   1543 		KASSERT(npages == orignpages);
   1544 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1545 		for (i = 0; i < npages; i++) {
   1546 			pg = pgs[i];
   1547 			if (pg == NULL || pg == PGO_DONTCARE)
   1548 				continue;
   1549 			if (pg == zero_page) {
   1550 				put_zero_page = true;
   1551 			} else {
   1552 				/*
   1553 				 * Freeing normal XIP pages; nothing to do.
   1554 				 */
   1555 				pmap_page_protect(pg, VM_PROT_NONE);
   1556 				KASSERT((pg->flags & PG_BUSY) != 0);
   1557 				KASSERT((pg->flags & PG_RDONLY) != 0);
   1558 				KASSERT((pg->flags & PG_CLEAN) != 0);
   1559 				KASSERT((pg->flags & PG_FAKE) == 0);
   1560 				KASSERT((pg->pqflags & PQ_FIXED) != 0);
   1561 				pg->flags &= ~PG_BUSY;
   1562 			}
   1563 		}
   1564 		off += npages << PAGE_SHIFT;
   1565 	}
   1566 
   1567 	if (put_zero_page) {
   1568 		/*
   1569 		 * Freeing an XIP zero page.
   1570 		 */
   1571 		pmap_page_protect(zero_page, VM_PROT_NONE);
   1572 		mutex_enter(&uvm_pageqlock);
   1573 		uvm_pageunwire(zero_page);
   1574 		mutex_exit(&uvm_pageqlock);
   1575 		uvm_pagefree(zero_page);
   1576 	}
   1577 
   1578 	KASSERT(uobj->uo_npages == 0);
   1579 
   1580 done:
   1581 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1582 	mutex_exit(&uobj->vmobjlock);
   1583 	return 0;
   1584 }
   1585 #endif
   1586 
   1587 int
   1588 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1589 {
   1590 	off_t off;
   1591 	vaddr_t kva;
   1592 	size_t len;
   1593 	int error;
   1594 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1595 
   1596 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1597 	    vp, pgs, npages, flags);
   1598 
   1599 	off = pgs[0]->offset;
   1600 	kva = uvm_pagermapin(pgs, npages,
   1601 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1602 	len = npages << PAGE_SHIFT;
   1603 
   1604 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1605 			    uvm_aio_biodone);
   1606 
   1607 	return error;
   1608 }
   1609 
   1610 int
   1611 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1612 {
   1613 	off_t off;
   1614 	vaddr_t kva;
   1615 	size_t len;
   1616 	int error;
   1617 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1618 
   1619 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1620 	    vp, pgs, npages, flags);
   1621 
   1622 	off = pgs[0]->offset;
   1623 	kva = uvm_pagermapin(pgs, npages,
   1624 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1625 	len = npages << PAGE_SHIFT;
   1626 
   1627 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1628 			    uvm_aio_biodone);
   1629 
   1630 	return error;
   1631 }
   1632 
   1633 /*
   1634  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1635  * and mapped into kernel memory.  Here we just look up the underlying
   1636  * device block addresses and call the strategy routine.
   1637  */
   1638 
   1639 static int
   1640 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1641     enum uio_rw rw, void (*iodone)(struct buf *))
   1642 {
   1643 	int s, error;
   1644 	int fs_bshift, dev_bshift;
   1645 	off_t eof, offset, startoffset;
   1646 	size_t bytes, iobytes, skipbytes;
   1647 	struct buf *mbp, *bp;
   1648 	const bool async = (flags & PGO_SYNCIO) == 0;
   1649 	const bool iowrite = rw == UIO_WRITE;
   1650 	const int brw = iowrite ? B_WRITE : B_READ;
   1651 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1652 
   1653 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1654 	    vp, kva, len, flags);
   1655 
   1656 	KASSERT(vp->v_size <= vp->v_writesize);
   1657 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1658 	if (vp->v_type != VBLK) {
   1659 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1660 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1661 	} else {
   1662 		fs_bshift = DEV_BSHIFT;
   1663 		dev_bshift = DEV_BSHIFT;
   1664 	}
   1665 	error = 0;
   1666 	startoffset = off;
   1667 	bytes = MIN(len, eof - startoffset);
   1668 	skipbytes = 0;
   1669 	KASSERT(bytes != 0);
   1670 
   1671 	if (iowrite) {
   1672 		mutex_enter(&vp->v_interlock);
   1673 		vp->v_numoutput += 2;
   1674 		mutex_exit(&vp->v_interlock);
   1675 	}
   1676 	mbp = getiobuf(vp, true);
   1677 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1678 	    vp, mbp, vp->v_numoutput, bytes);
   1679 	mbp->b_bufsize = len;
   1680 	mbp->b_data = (void *)kva;
   1681 	mbp->b_resid = mbp->b_bcount = bytes;
   1682 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1683 	if (async) {
   1684 		mbp->b_flags = brw | B_ASYNC;
   1685 		mbp->b_iodone = iodone;
   1686 	} else {
   1687 		mbp->b_flags = brw;
   1688 		mbp->b_iodone = NULL;
   1689 	}
   1690 	if (curlwp == uvm.pagedaemon_lwp)
   1691 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1692 	else if (async)
   1693 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1694 	else
   1695 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1696 
   1697 	bp = NULL;
   1698 	for (offset = startoffset;
   1699 	    bytes > 0;
   1700 	    offset += iobytes, bytes -= iobytes) {
   1701 		int run;
   1702 		daddr_t lbn, blkno;
   1703 		struct vnode *devvp;
   1704 
   1705 		/*
   1706 		 * bmap the file to find out the blkno to read from and
   1707 		 * how much we can read in one i/o.  if bmap returns an error,
   1708 		 * skip the rest of the top-level i/o.
   1709 		 */
   1710 
   1711 		lbn = offset >> fs_bshift;
   1712 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1713 		if (error) {
   1714 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1715 			    lbn,error,0,0);
   1716 			skipbytes += bytes;
   1717 			bytes = 0;
   1718 			goto loopdone;
   1719 		}
   1720 
   1721 		/*
   1722 		 * see how many pages can be read with this i/o.
   1723 		 * reduce the i/o size if necessary to avoid
   1724 		 * overwriting pages with valid data.
   1725 		 */
   1726 
   1727 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1728 		    bytes);
   1729 
   1730 		/*
   1731 		 * if this block isn't allocated, zero it instead of
   1732 		 * reading it.  unless we are going to allocate blocks,
   1733 		 * mark the pages we zeroed PG_RDONLY.
   1734 		 */
   1735 
   1736 		if (blkno == (daddr_t)-1) {
   1737 			if (!iowrite) {
   1738 				memset((char *)kva + (offset - startoffset), 0,
   1739 				    iobytes);
   1740 			}
   1741 			skipbytes += iobytes;
   1742 			continue;
   1743 		}
   1744 
   1745 		/*
   1746 		 * allocate a sub-buf for this piece of the i/o
   1747 		 * (or just use mbp if there's only 1 piece),
   1748 		 * and start it going.
   1749 		 */
   1750 
   1751 		if (offset == startoffset && iobytes == bytes) {
   1752 			bp = mbp;
   1753 		} else {
   1754 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1755 			    vp, bp, vp->v_numoutput, 0);
   1756 			bp = getiobuf(vp, true);
   1757 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1758 		}
   1759 		bp->b_lblkno = 0;
   1760 
   1761 		/* adjust physical blkno for partial blocks */
   1762 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1763 		    dev_bshift);
   1764 
   1765 		UVMHIST_LOG(ubchist,
   1766 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1767 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1768 
   1769 		VOP_STRATEGY(devvp, bp);
   1770 	}
   1771 
   1772 loopdone:
   1773 	if (skipbytes) {
   1774 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1775 	}
   1776 	nestiobuf_done(mbp, skipbytes, error);
   1777 	if (async) {
   1778 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1779 		return (0);
   1780 	}
   1781 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1782 	error = biowait(mbp);
   1783 	s = splbio();
   1784 	(*iodone)(mbp);
   1785 	splx(s);
   1786 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1787 	return (error);
   1788 }
   1789 
   1790 int
   1791 genfs_compat_getpages(void *v)
   1792 {
   1793 	struct vop_getpages_args /* {
   1794 		struct vnode *a_vp;
   1795 		voff_t a_offset;
   1796 		struct vm_page **a_m;
   1797 		int *a_count;
   1798 		int a_centeridx;
   1799 		vm_prot_t a_access_type;
   1800 		int a_advice;
   1801 		int a_flags;
   1802 	} */ *ap = v;
   1803 
   1804 	off_t origoffset;
   1805 	struct vnode *vp = ap->a_vp;
   1806 	struct uvm_object *uobj = &vp->v_uobj;
   1807 	struct vm_page *pg, **pgs;
   1808 	vaddr_t kva;
   1809 	int i, error, orignpages, npages;
   1810 	struct iovec iov;
   1811 	struct uio uio;
   1812 	kauth_cred_t cred = curlwp->l_cred;
   1813 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1814 
   1815 	error = 0;
   1816 	origoffset = ap->a_offset;
   1817 	orignpages = *ap->a_count;
   1818 	pgs = ap->a_m;
   1819 
   1820 	if (ap->a_flags & PGO_LOCKED) {
   1821 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1822 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1823 
   1824 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1825 		if (error == 0 && memwrite) {
   1826 			genfs_markdirty(vp);
   1827 		}
   1828 		return error;
   1829 	}
   1830 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1831 		mutex_exit(&uobj->vmobjlock);
   1832 		return EINVAL;
   1833 	}
   1834 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1835 		mutex_exit(&uobj->vmobjlock);
   1836 		return 0;
   1837 	}
   1838 	npages = orignpages;
   1839 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1840 	mutex_exit(&uobj->vmobjlock);
   1841 	kva = uvm_pagermapin(pgs, npages,
   1842 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1843 	for (i = 0; i < npages; i++) {
   1844 		pg = pgs[i];
   1845 		if ((pg->flags & PG_FAKE) == 0) {
   1846 			continue;
   1847 		}
   1848 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1849 		iov.iov_len = PAGE_SIZE;
   1850 		uio.uio_iov = &iov;
   1851 		uio.uio_iovcnt = 1;
   1852 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1853 		uio.uio_rw = UIO_READ;
   1854 		uio.uio_resid = PAGE_SIZE;
   1855 		UIO_SETUP_SYSSPACE(&uio);
   1856 		/* XXX vn_lock */
   1857 		error = VOP_READ(vp, &uio, 0, cred);
   1858 		if (error) {
   1859 			break;
   1860 		}
   1861 		if (uio.uio_resid) {
   1862 			memset(iov.iov_base, 0, uio.uio_resid);
   1863 		}
   1864 	}
   1865 	uvm_pagermapout(kva, npages);
   1866 	mutex_enter(&uobj->vmobjlock);
   1867 	mutex_enter(&uvm_pageqlock);
   1868 	for (i = 0; i < npages; i++) {
   1869 		pg = pgs[i];
   1870 		if (error && (pg->flags & PG_FAKE) != 0) {
   1871 			pg->flags |= PG_RELEASED;
   1872 		} else {
   1873 			pmap_clear_modify(pg);
   1874 			uvm_pageactivate(pg);
   1875 		}
   1876 	}
   1877 	if (error) {
   1878 		uvm_page_unbusy(pgs, npages);
   1879 	}
   1880 	mutex_exit(&uvm_pageqlock);
   1881 	if (error == 0 && memwrite) {
   1882 		genfs_markdirty(vp);
   1883 	}
   1884 	mutex_exit(&uobj->vmobjlock);
   1885 	return error;
   1886 }
   1887 
   1888 int
   1889 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1890     int flags)
   1891 {
   1892 	off_t offset;
   1893 	struct iovec iov;
   1894 	struct uio uio;
   1895 	kauth_cred_t cred = curlwp->l_cred;
   1896 	struct buf *bp;
   1897 	vaddr_t kva;
   1898 	int error;
   1899 
   1900 	offset = pgs[0]->offset;
   1901 	kva = uvm_pagermapin(pgs, npages,
   1902 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1903 
   1904 	iov.iov_base = (void *)kva;
   1905 	iov.iov_len = npages << PAGE_SHIFT;
   1906 	uio.uio_iov = &iov;
   1907 	uio.uio_iovcnt = 1;
   1908 	uio.uio_offset = offset;
   1909 	uio.uio_rw = UIO_WRITE;
   1910 	uio.uio_resid = npages << PAGE_SHIFT;
   1911 	UIO_SETUP_SYSSPACE(&uio);
   1912 	/* XXX vn_lock */
   1913 	error = VOP_WRITE(vp, &uio, 0, cred);
   1914 
   1915 	mutex_enter(&vp->v_interlock);
   1916 	vp->v_numoutput++;
   1917 	mutex_exit(&vp->v_interlock);
   1918 
   1919 	bp = getiobuf(vp, true);
   1920 	bp->b_cflags = BC_BUSY | BC_AGE;
   1921 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1922 	bp->b_data = (char *)kva;
   1923 	bp->b_bcount = npages << PAGE_SHIFT;
   1924 	bp->b_bufsize = npages << PAGE_SHIFT;
   1925 	bp->b_resid = 0;
   1926 	bp->b_error = error;
   1927 	uvm_aio_aiodone(bp);
   1928 	return (error);
   1929 }
   1930 
   1931 /*
   1932  * Process a uio using direct I/O.  If we reach a part of the request
   1933  * which cannot be processed in this fashion for some reason, just return.
   1934  * The caller must handle some additional part of the request using
   1935  * buffered I/O before trying direct I/O again.
   1936  */
   1937 
   1938 void
   1939 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1940 {
   1941 	struct vmspace *vs;
   1942 	struct iovec *iov;
   1943 	vaddr_t va;
   1944 	size_t len;
   1945 	const int mask = DEV_BSIZE - 1;
   1946 	int error;
   1947 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1948 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1949 
   1950 	/*
   1951 	 * We only support direct I/O to user space for now.
   1952 	 */
   1953 
   1954 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1955 		return;
   1956 	}
   1957 
   1958 	/*
   1959 	 * If the vnode is mapped, we would need to get the getpages lock
   1960 	 * to stabilize the bmap, but then we would get into trouble whil e
   1961 	 * locking the pages if the pages belong to this same vnode (or a
   1962 	 * multi-vnode cascade to the same effect).  Just fall back to
   1963 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1964 	 */
   1965 
   1966 	if (vp->v_vflag & VV_MAPPED) {
   1967 		return;
   1968 	}
   1969 
   1970 	if (need_wapbl) {
   1971 		error = WAPBL_BEGIN(vp->v_mount);
   1972 		if (error)
   1973 			return;
   1974 	}
   1975 
   1976 	/*
   1977 	 * Do as much of the uio as possible with direct I/O.
   1978 	 */
   1979 
   1980 	vs = uio->uio_vmspace;
   1981 	while (uio->uio_resid) {
   1982 		iov = uio->uio_iov;
   1983 		if (iov->iov_len == 0) {
   1984 			uio->uio_iov++;
   1985 			uio->uio_iovcnt--;
   1986 			continue;
   1987 		}
   1988 		va = (vaddr_t)iov->iov_base;
   1989 		len = MIN(iov->iov_len, genfs_maxdio);
   1990 		len &= ~mask;
   1991 
   1992 		/*
   1993 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1994 		 * the current EOF, then fall back to buffered I/O.
   1995 		 */
   1996 
   1997 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1998 			break;
   1999 		}
   2000 
   2001 		/*
   2002 		 * Check alignment.  The file offset must be at least
   2003 		 * sector-aligned.  The exact constraint on memory alignment
   2004 		 * is very hardware-dependent, but requiring sector-aligned
   2005 		 * addresses there too is safe.
   2006 		 */
   2007 
   2008 		if (uio->uio_offset & mask || va & mask) {
   2009 			break;
   2010 		}
   2011 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   2012 					  uio->uio_rw);
   2013 		if (error) {
   2014 			break;
   2015 		}
   2016 		iov->iov_base = (char *)iov->iov_base + len;
   2017 		iov->iov_len -= len;
   2018 		uio->uio_offset += len;
   2019 		uio->uio_resid -= len;
   2020 	}
   2021 
   2022 	if (need_wapbl)
   2023 		WAPBL_END(vp->v_mount);
   2024 }
   2025 
   2026 /*
   2027  * Iodone routine for direct I/O.  We don't do much here since the request is
   2028  * always synchronous, so the caller will do most of the work after biowait().
   2029  */
   2030 
   2031 static void
   2032 genfs_dio_iodone(struct buf *bp)
   2033 {
   2034 
   2035 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   2036 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   2037 		mutex_enter(bp->b_objlock);
   2038 		vwakeup(bp);
   2039 		mutex_exit(bp->b_objlock);
   2040 	}
   2041 	putiobuf(bp);
   2042 }
   2043 
   2044 /*
   2045  * Process one chunk of a direct I/O request.
   2046  */
   2047 
   2048 static int
   2049 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   2050     off_t off, enum uio_rw rw)
   2051 {
   2052 	struct vm_map *map;
   2053 	struct pmap *upm, *kpm;
   2054 	size_t klen = round_page(uva + len) - trunc_page(uva);
   2055 	off_t spoff, epoff;
   2056 	vaddr_t kva, puva;
   2057 	paddr_t pa;
   2058 	vm_prot_t prot;
   2059 	int error, rv, poff, koff;
   2060 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   2061 		(rw == UIO_WRITE ? PGO_FREE : 0);
   2062 
   2063 	/*
   2064 	 * For writes, verify that this range of the file already has fully
   2065 	 * allocated backing store.  If there are any holes, just punt and
   2066 	 * make the caller take the buffered write path.
   2067 	 */
   2068 
   2069 	if (rw == UIO_WRITE) {
   2070 		daddr_t lbn, elbn, blkno;
   2071 		int bsize, bshift, run;
   2072 
   2073 		bshift = vp->v_mount->mnt_fs_bshift;
   2074 		bsize = 1 << bshift;
   2075 		lbn = off >> bshift;
   2076 		elbn = (off + len + bsize - 1) >> bshift;
   2077 		while (lbn < elbn) {
   2078 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   2079 			if (error) {
   2080 				return error;
   2081 			}
   2082 			if (blkno == (daddr_t)-1) {
   2083 				return ENOSPC;
   2084 			}
   2085 			lbn += 1 + run;
   2086 		}
   2087 	}
   2088 
   2089 	/*
   2090 	 * Flush any cached pages for parts of the file that we're about to
   2091 	 * access.  If we're writing, invalidate pages as well.
   2092 	 */
   2093 
   2094 	spoff = trunc_page(off);
   2095 	epoff = round_page(off + len);
   2096 	mutex_enter(&vp->v_interlock);
   2097 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   2098 	if (error) {
   2099 		return error;
   2100 	}
   2101 
   2102 	/*
   2103 	 * Wire the user pages and remap them into kernel memory.
   2104 	 */
   2105 
   2106 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   2107 	error = uvm_vslock(vs, (void *)uva, len, prot);
   2108 	if (error) {
   2109 		return error;
   2110 	}
   2111 
   2112 	map = &vs->vm_map;
   2113 	upm = vm_map_pmap(map);
   2114 	kpm = vm_map_pmap(kernel_map);
   2115 	kva = uvm_km_alloc(kernel_map, klen, 0,
   2116 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   2117 	puva = trunc_page(uva);
   2118 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   2119 		rv = pmap_extract(upm, puva + poff, &pa);
   2120 		KASSERT(rv);
   2121 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   2122 	}
   2123 	pmap_update(kpm);
   2124 
   2125 	/*
   2126 	 * Do the I/O.
   2127 	 */
   2128 
   2129 	koff = uva - trunc_page(uva);
   2130 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   2131 			    genfs_dio_iodone);
   2132 
   2133 	/*
   2134 	 * Tear down the kernel mapping.
   2135 	 */
   2136 
   2137 	pmap_remove(kpm, kva, kva + klen);
   2138 	pmap_update(kpm);
   2139 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   2140 
   2141 	/*
   2142 	 * Unwire the user pages.
   2143 	 */
   2144 
   2145 	uvm_vsunlock(vs, (void *)uva, len);
   2146 	return error;
   2147 }
   2148 
   2149