Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.3
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.3 2010/02/28 05:03:58 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.3 2010/02/28 05:03:58 uebayasi Exp $");
     35 
     36 #include "opt_device_page.h"
     37 #include "opt_xip.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/proc.h>
     42 #include <sys/kernel.h>
     43 #include <sys/mount.h>
     44 #include <sys/namei.h>
     45 #include <sys/vnode.h>
     46 #include <sys/fcntl.h>
     47 #include <sys/kmem.h>
     48 #include <sys/poll.h>
     49 #include <sys/mman.h>
     50 #include <sys/file.h>
     51 #include <sys/kauth.h>
     52 #include <sys/fstrans.h>
     53 #include <sys/buf.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 static int genfs_do_getpages(void *);
     63 static int genfs_do_getpages_xip(void *);
     64 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     65     off_t, enum uio_rw);
     66 static void genfs_dio_iodone(struct buf *);
     67 
     68 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     69     void (*)(struct buf *));
     70 static inline void genfs_rel_pages(struct vm_page **, int);
     71 
     72 int genfs_maxdio = MAXPHYS;
     73 
     74 static inline void
     75 genfs_rel_pages(struct vm_page **pgs, int npages)
     76 {
     77 	int i;
     78 
     79 	for (i = 0; i < npages; i++) {
     80 		struct vm_page *pg = pgs[i];
     81 
     82 		if (pg == NULL || pg == PGO_DONTCARE)
     83 			continue;
     84 		if (pg->flags & PG_FAKE) {
     85 			pg->flags |= PG_RELEASED;
     86 		}
     87 	}
     88 	mutex_enter(&uvm_pageqlock);
     89 	uvm_page_unbusy(pgs, npages);
     90 	mutex_exit(&uvm_pageqlock);
     91 }
     92 
     93 /*
     94  * generic VM getpages routine.
     95  * Return PG_BUSY pages for the given range,
     96  * reading from backing store if necessary.
     97  */
     98 
     99 int
    100 genfs_getpages(void *v)
    101 {
    102 	struct vop_getpages_args /* {
    103 		struct vnode *a_vp;
    104 		voff_t a_offset;
    105 		struct vm_page **a_m;
    106 		int *a_count;
    107 		int a_centeridx;
    108 		vm_prot_t a_access_type;
    109 		int a_advice;
    110 		int a_flags;
    111 	} */ * const ap = v;
    112 	struct vnode * const vp = ap->a_vp;
    113 
    114 #ifdef XIP
    115 	if ((vp->v_vflag & VV_XIP) != 0)
    116 		return genfs_do_getpages_xip(v);
    117 	else
    118 #endif
    119 		return genfs_do_getpages(v);
    120 }
    121 
    122 static int
    123 genfs_do_getpages(void *v)
    124 {
    125 	struct vop_getpages_args /* {
    126 		struct vnode *a_vp;
    127 		voff_t a_offset;
    128 		struct vm_page **a_m;
    129 		int *a_count;
    130 		int a_centeridx;
    131 		vm_prot_t a_access_type;
    132 		int a_advice;
    133 		int a_flags;
    134 	} */ * const ap = v;
    135 
    136 	off_t diskeof, memeof;
    137 	int i, error, npages;
    138 	const int flags = ap->a_flags;
    139 	struct vnode * const vp = ap->a_vp;
    140 	struct genfs_node * const gp = VTOG(vp);
    141 	struct uvm_object * const uobj = &vp->v_uobj;
    142 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    143 	const bool async = (flags & PGO_SYNCIO) == 0;
    144 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    145 	bool has_trans = false;
    146 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    147 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    148 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    149 
    150 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    151 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    152 
    153 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    154 	    vp->v_type == VLNK || vp->v_type == VBLK);
    155 
    156 startover:
    157 	error = 0;
    158 	const voff_t origvsize = vp->v_size;
    159 	const off_t origoffset = ap->a_offset;
    160 	const int orignpages = *ap->a_count;
    161 
    162 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    163 	if (flags & PGO_PASTEOF) {
    164 		off_t newsize;
    165 #if defined(DIAGNOSTIC)
    166 		off_t writeeof;
    167 #endif /* defined(DIAGNOSTIC) */
    168 
    169 		newsize = MAX(origvsize,
    170 		    origoffset + (orignpages << PAGE_SHIFT));
    171 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    172 #if defined(DIAGNOSTIC)
    173 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    174 		if (newsize > round_page(writeeof)) {
    175 			panic("%s: past eof", __func__);
    176 		}
    177 #endif /* defined(DIAGNOSTIC) */
    178 	} else {
    179 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    180 	}
    181 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    182 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    183 	KASSERT(orignpages > 0);
    184 
    185 	/*
    186 	 * Bounds-check the request.
    187 	 */
    188 
    189 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    190 		if ((flags & PGO_LOCKED) == 0) {
    191 			mutex_exit(&uobj->vmobjlock);
    192 		}
    193 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    194 		    origoffset, *ap->a_count, memeof,0);
    195 		error = EINVAL;
    196 		goto out_err;
    197 	}
    198 
    199 	/* uobj is locked */
    200 
    201 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    202 	    (vp->v_type != VBLK ||
    203 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    204 		int updflags = 0;
    205 
    206 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    207 			updflags = GOP_UPDATE_ACCESSED;
    208 		}
    209 		if (memwrite) {
    210 			updflags |= GOP_UPDATE_MODIFIED;
    211 		}
    212 		if (updflags != 0) {
    213 			GOP_MARKUPDATE(vp, updflags);
    214 		}
    215 	}
    216 
    217 	if (memwrite) {
    218 		gp->g_dirtygen++;
    219 		if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    220 			vn_syncer_add_to_worklist(vp, filedelay);
    221 		}
    222 		if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    223 			vp->v_iflag |= VI_WRMAPDIRTY;
    224 		}
    225 	}
    226 
    227 	/*
    228 	 * For PGO_LOCKED requests, just return whatever's in memory.
    229 	 */
    230 
    231 	if (flags & PGO_LOCKED) {
    232 		int nfound;
    233 		struct vm_page *pg;
    234 
    235 		npages = *ap->a_count;
    236 #if defined(DEBUG)
    237 		for (i = 0; i < npages; i++) {
    238 			pg = ap->a_m[i];
    239 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    240 		}
    241 #endif /* defined(DEBUG) */
    242 		nfound = uvn_findpages(uobj, origoffset, &npages,
    243 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    244 		KASSERT(npages == *ap->a_count);
    245 		if (nfound == 0) {
    246 			error = EBUSY;
    247 			goto out_err;
    248 		}
    249 		if (!genfs_node_rdtrylock(vp)) {
    250 			genfs_rel_pages(ap->a_m, npages);
    251 
    252 			/*
    253 			 * restore the array.
    254 			 */
    255 
    256 			for (i = 0; i < npages; i++) {
    257 				pg = ap->a_m[i];
    258 
    259 				if (pg != NULL || pg != PGO_DONTCARE) {
    260 					ap->a_m[i] = NULL;
    261 				}
    262 			}
    263 		} else {
    264 			genfs_node_unlock(vp);
    265 		}
    266 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    267 		goto out_err;
    268 	}
    269 	mutex_exit(&uobj->vmobjlock);
    270 
    271 	/*
    272 	 * find the requested pages and make some simple checks.
    273 	 * leave space in the page array for a whole block.
    274 	 */
    275 
    276 	const int fs_bshift = (vp->v_type != VBLK) ?
    277 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    278 	const int dev_bshift = (vp->v_type != VBLK) ?
    279 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    280 	const int fs_bsize = 1 << fs_bshift;
    281 #define	blk_mask	(fs_bsize - 1)
    282 #define	trunc_blk(x)	((x) & ~blk_mask)
    283 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    284 
    285 	const int orignmempages = MIN(orignpages,
    286 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    287 	npages = orignmempages;
    288 	const off_t startoffset = trunc_blk(origoffset);
    289 	const off_t endoffset = MIN(
    290 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    291 	    round_page(memeof));
    292 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    293 
    294 	const int pgs_size = sizeof(struct vm_page *) *
    295 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    296 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    297 
    298 	if (pgs_size > sizeof(pgs_onstack)) {
    299 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    300 		if (pgs == NULL) {
    301 			pgs = pgs_onstack;
    302 			error = ENOMEM;
    303 			goto out_err;
    304 		}
    305 	} else {
    306 		pgs = pgs_onstack;
    307 		(void)memset(pgs, 0, pgs_size);
    308 	}
    309 
    310 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    311 	    ridx, npages, startoffset, endoffset);
    312 
    313 	if (!has_trans) {
    314 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    315 		has_trans = true;
    316 	}
    317 
    318 	/*
    319 	 * hold g_glock to prevent a race with truncate.
    320 	 *
    321 	 * check if our idea of v_size is still valid.
    322 	 */
    323 
    324 	if (blockalloc) {
    325 		rw_enter(&gp->g_glock, RW_WRITER);
    326 	} else {
    327 		rw_enter(&gp->g_glock, RW_READER);
    328 	}
    329 	mutex_enter(&uobj->vmobjlock);
    330 	if (vp->v_size < origvsize) {
    331 		genfs_node_unlock(vp);
    332 		if (pgs != pgs_onstack)
    333 			kmem_free(pgs, pgs_size);
    334 		goto startover;
    335 	}
    336 
    337 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    338 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    339 		genfs_node_unlock(vp);
    340 		KASSERT(async != 0);
    341 		genfs_rel_pages(&pgs[ridx], orignmempages);
    342 		mutex_exit(&uobj->vmobjlock);
    343 		error = EBUSY;
    344 		goto out_err_free;
    345 	}
    346 
    347 	/*
    348 	 * if the pages are already resident, just return them.
    349 	 */
    350 
    351 	for (i = 0; i < npages; i++) {
    352 		struct vm_page *pg = pgs[ridx + i];
    353 
    354 		if ((pg->flags & PG_FAKE) ||
    355 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    356 			break;
    357 		}
    358 	}
    359 	if (i == npages) {
    360 		genfs_node_unlock(vp);
    361 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    362 		npages += ridx;
    363 		goto out;
    364 	}
    365 
    366 	/*
    367 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    368 	 */
    369 
    370 	if (overwrite) {
    371 		genfs_node_unlock(vp);
    372 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    373 
    374 		for (i = 0; i < npages; i++) {
    375 			struct vm_page *pg = pgs[ridx + i];
    376 
    377 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    378 		}
    379 		npages += ridx;
    380 		goto out;
    381 	}
    382 
    383 	/*
    384 	 * the page wasn't resident and we're not overwriting,
    385 	 * so we're going to have to do some i/o.
    386 	 * find any additional pages needed to cover the expanded range.
    387 	 */
    388 
    389 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    390 	if (startoffset != origoffset || npages != orignmempages) {
    391 		int npgs;
    392 
    393 		/*
    394 		 * we need to avoid deadlocks caused by locking
    395 		 * additional pages at lower offsets than pages we
    396 		 * already have locked.  unlock them all and start over.
    397 		 */
    398 
    399 		genfs_rel_pages(&pgs[ridx], orignmempages);
    400 		memset(pgs, 0, pgs_size);
    401 
    402 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    403 		    startoffset, endoffset, 0,0);
    404 		npgs = npages;
    405 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    406 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    407 			genfs_node_unlock(vp);
    408 			KASSERT(async != 0);
    409 			genfs_rel_pages(pgs, npages);
    410 			mutex_exit(&uobj->vmobjlock);
    411 			error = EBUSY;
    412 			goto out_err_free;
    413 		}
    414 	}
    415 
    416 	mutex_exit(&uobj->vmobjlock);
    417 
    418     {
    419 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    420 	vaddr_t kva;
    421 	struct buf *bp, *mbp;
    422 	bool sawhole = false;
    423 
    424 	/*
    425 	 * read the desired page(s).
    426 	 */
    427 
    428 	totalbytes = npages << PAGE_SHIFT;
    429 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    430 	tailbytes = totalbytes - bytes;
    431 	skipbytes = 0;
    432 
    433 	kva = uvm_pagermapin(pgs, npages,
    434 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    435 
    436 	mbp = getiobuf(vp, true);
    437 	mbp->b_bufsize = totalbytes;
    438 	mbp->b_data = (void *)kva;
    439 	mbp->b_resid = mbp->b_bcount = bytes;
    440 	mbp->b_cflags = BC_BUSY;
    441 	if (async) {
    442 		mbp->b_flags = B_READ | B_ASYNC;
    443 		mbp->b_iodone = uvm_aio_biodone;
    444 	} else {
    445 		mbp->b_flags = B_READ;
    446 		mbp->b_iodone = NULL;
    447 	}
    448 	if (async)
    449 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    450 	else
    451 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    452 
    453 	/*
    454 	 * if EOF is in the middle of the range, zero the part past EOF.
    455 	 * skip over pages which are not PG_FAKE since in that case they have
    456 	 * valid data that we need to preserve.
    457 	 */
    458 
    459 	tailstart = bytes;
    460 	while (tailbytes > 0) {
    461 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    462 
    463 		KASSERT(len <= tailbytes);
    464 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    465 			memset((void *)(kva + tailstart), 0, len);
    466 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    467 			    kva, tailstart, len, 0);
    468 		}
    469 		tailstart += len;
    470 		tailbytes -= len;
    471 	}
    472 
    473 	/*
    474 	 * now loop over the pages, reading as needed.
    475 	 */
    476 
    477 	bp = NULL;
    478 	off_t offset;
    479 	for (offset = startoffset;
    480 	    bytes > 0;
    481 	    offset += iobytes, bytes -= iobytes) {
    482 		int run;
    483 		daddr_t lbn, blkno;
    484 		int pidx;
    485 		struct vnode *devvp;
    486 
    487 		/*
    488 		 * skip pages which don't need to be read.
    489 		 */
    490 
    491 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    492 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    493 			size_t b;
    494 
    495 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    496 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    497 				sawhole = true;
    498 			}
    499 			b = MIN(PAGE_SIZE, bytes);
    500 			offset += b;
    501 			bytes -= b;
    502 			skipbytes += b;
    503 			pidx++;
    504 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    505 			    offset, 0,0,0);
    506 			if (bytes == 0) {
    507 				goto loopdone;
    508 			}
    509 		}
    510 
    511 		/*
    512 		 * bmap the file to find out the blkno to read from and
    513 		 * how much we can read in one i/o.  if bmap returns an error,
    514 		 * skip the rest of the top-level i/o.
    515 		 */
    516 
    517 		lbn = offset >> fs_bshift;
    518 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    519 		if (error) {
    520 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    521 			    lbn,error,0,0);
    522 			skipbytes += bytes;
    523 			bytes = 0;
    524 			goto loopdone;
    525 		}
    526 
    527 		/*
    528 		 * see how many pages can be read with this i/o.
    529 		 * reduce the i/o size if necessary to avoid
    530 		 * overwriting pages with valid data.
    531 		 */
    532 
    533 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    534 		    bytes);
    535 		if (offset + iobytes > round_page(offset)) {
    536 			int pcount;
    537 
    538 			pcount = 1;
    539 			while (pidx + pcount < npages &&
    540 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    541 				pcount++;
    542 			}
    543 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    544 			    (offset - trunc_page(offset)));
    545 		}
    546 
    547 		/*
    548 		 * if this block isn't allocated, zero it instead of
    549 		 * reading it.  unless we are going to allocate blocks,
    550 		 * mark the pages we zeroed PG_RDONLY.
    551 		 */
    552 
    553 		if (blkno == (daddr_t)-1) {
    554 			int holepages = (round_page(offset + iobytes) -
    555 			    trunc_page(offset)) >> PAGE_SHIFT;
    556 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    557 
    558 			sawhole = true;
    559 			memset((char *)kva + (offset - startoffset), 0,
    560 			    iobytes);
    561 			skipbytes += iobytes;
    562 
    563 			for (i = 0; i < holepages; i++) {
    564 				if (memwrite) {
    565 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    566 				}
    567 				if (!blockalloc) {
    568 					pgs[pidx + i]->flags |= PG_RDONLY;
    569 				}
    570 			}
    571 			continue;
    572 		}
    573 
    574 		/*
    575 		 * allocate a sub-buf for this piece of the i/o
    576 		 * (or just use mbp if there's only 1 piece),
    577 		 * and start it going.
    578 		 */
    579 
    580 		if (offset == startoffset && iobytes == bytes) {
    581 			bp = mbp;
    582 		} else {
    583 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    584 			    vp, bp, vp->v_numoutput, 0);
    585 			bp = getiobuf(vp, true);
    586 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    587 		}
    588 		bp->b_lblkno = 0;
    589 
    590 		/* adjust physical blkno for partial blocks */
    591 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    592 		    dev_bshift);
    593 
    594 		UVMHIST_LOG(ubchist,
    595 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    596 		    bp, offset, bp->b_bcount, bp->b_blkno);
    597 
    598 		VOP_STRATEGY(devvp, bp);
    599 	}
    600 
    601 loopdone:
    602 	nestiobuf_done(mbp, skipbytes, error);
    603 	if (async) {
    604 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    605 		genfs_node_unlock(vp);
    606 		error = 0;
    607 		goto out_err_free;
    608 	}
    609 	if (bp != NULL) {
    610 		error = biowait(mbp);
    611 	}
    612 
    613 	/* Remove the mapping (make KVA available as soon as possible) */
    614 	uvm_pagermapout(kva, npages);
    615 
    616 	/*
    617 	 * if this we encountered a hole then we have to do a little more work.
    618 	 * for read faults, we marked the page PG_RDONLY so that future
    619 	 * write accesses to the page will fault again.
    620 	 * for write faults, we must make sure that the backing store for
    621 	 * the page is completely allocated while the pages are locked.
    622 	 */
    623 
    624 	if (!error && sawhole && blockalloc) {
    625 		/*
    626 		 * XXX: This assumes that we come here only via
    627 		 * the mmio path
    628 		 */
    629 		if (vp->v_mount->mnt_wapbl) {
    630 			error = WAPBL_BEGIN(vp->v_mount);
    631 		}
    632 
    633 		if (!error) {
    634 			error = GOP_ALLOC(vp, startoffset,
    635 			    npages << PAGE_SHIFT, 0, cred);
    636 			if (vp->v_mount->mnt_wapbl) {
    637 				WAPBL_END(vp->v_mount);
    638 			}
    639 		}
    640 
    641 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    642 		    startoffset, npages << PAGE_SHIFT, error,0);
    643 		if (!error) {
    644 			for (i = 0; i < npages; i++) {
    645 				struct vm_page *pg = pgs[i];
    646 
    647 				if (pg == NULL) {
    648 					continue;
    649 				}
    650 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    651 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    652 				    pg,0,0,0);
    653 			}
    654 		}
    655 	}
    656 	genfs_node_unlock(vp);
    657 
    658 	putiobuf(mbp);
    659     }
    660 
    661 	mutex_enter(&uobj->vmobjlock);
    662 
    663 	/*
    664 	 * we're almost done!  release the pages...
    665 	 * for errors, we free the pages.
    666 	 * otherwise we activate them and mark them as valid and clean.
    667 	 * also, unbusy pages that were not actually requested.
    668 	 */
    669 
    670 	if (error) {
    671 		for (i = 0; i < npages; i++) {
    672 			struct vm_page *pg = pgs[i];
    673 
    674 			if (pg == NULL) {
    675 				continue;
    676 			}
    677 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    678 			    pg, pg->flags, 0,0);
    679 			if (pg->flags & PG_FAKE) {
    680 				pg->flags |= PG_RELEASED;
    681 			}
    682 		}
    683 		mutex_enter(&uvm_pageqlock);
    684 		uvm_page_unbusy(pgs, npages);
    685 		mutex_exit(&uvm_pageqlock);
    686 		mutex_exit(&uobj->vmobjlock);
    687 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    688 		goto out_err_free;
    689 	}
    690 
    691 out:
    692 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    693 	error = 0;
    694 	mutex_enter(&uvm_pageqlock);
    695 	for (i = 0; i < npages; i++) {
    696 		struct vm_page *pg = pgs[i];
    697 		if (pg == NULL) {
    698 			continue;
    699 		}
    700 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    701 		    pg, pg->flags, 0,0);
    702 		if (pg->flags & PG_FAKE && !overwrite) {
    703 			pg->flags &= ~(PG_FAKE);
    704 			pmap_clear_modify(pgs[i]);
    705 		}
    706 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    707 		if (i < ridx || i >= ridx + orignmempages || async) {
    708 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    709 			    pg, pg->offset,0,0);
    710 			if (pg->flags & PG_WANTED) {
    711 				wakeup(pg);
    712 			}
    713 			if (pg->flags & PG_FAKE) {
    714 				KASSERT(overwrite);
    715 				uvm_pagezero(pg);
    716 			}
    717 			if (pg->flags & PG_RELEASED) {
    718 				uvm_pagefree(pg);
    719 				continue;
    720 			}
    721 			uvm_pageenqueue(pg);
    722 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    723 			UVM_PAGE_OWN(pg, NULL);
    724 		}
    725 	}
    726 	mutex_exit(&uvm_pageqlock);
    727 	mutex_exit(&uobj->vmobjlock);
    728 	if (ap->a_m != NULL) {
    729 		memcpy(ap->a_m, &pgs[ridx],
    730 		    orignmempages * sizeof(struct vm_page *));
    731 	}
    732 
    733 out_err_free:
    734 	if (pgs != NULL && pgs != pgs_onstack)
    735 		kmem_free(pgs, pgs_size);
    736 out_err:
    737 	if (has_trans)
    738 		fstrans_done(vp->v_mount);
    739 	return (error);
    740 }
    741 
    742 #ifdef XIP
    743 static int
    744 genfs_do_getpages_xip(void *v)
    745 {
    746 	struct vop_getpages_args /* {
    747 		struct vnode *a_vp;
    748 		voff_t a_offset;
    749 		struct vm_page **a_m;
    750 		int *a_count;
    751 		int a_centeridx;
    752 		vm_prot_t a_access_type;
    753 		int a_advice;
    754 		int a_flags;
    755 	} */ * const ap = v;
    756 
    757 	struct vnode * const vp = ap->a_vp;
    758 	int *npagesp = ap->a_count;
    759 	const off_t offset = ap->a_offset;
    760 	struct vm_page **pps = ap->a_m;
    761 	struct uvm_object * const uobj = &vp->v_uobj;
    762 	const int flags = ap->a_flags;
    763 
    764 	int error;
    765 	off_t eof, sbkoff, ebkoff, off;
    766 	int npages;
    767 	int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
    768 	int i;
    769 	paddr_t phys_addr;
    770 
    771 	UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
    772 
    773 	KASSERT((vp->v_vflag & VV_XIP) != 0);
    774 
    775 	/* XXXUEBS should we care about PGO_LOCKED? */
    776 
    777 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
    778 	npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
    779 
    780 	fs_bshift = vp->v_mount->mnt_fs_bshift;
    781 	fs_bsize = 1 << fs_bshift;
    782 	dev_bshift = vp->v_mount->mnt_dev_bshift;
    783 	dev_bsize = 1 << dev_bshift;
    784 
    785 	sbkoff = offset & ~(fs_bsize - 1);
    786 	ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) & ~(fs_bsize - 1);
    787 
    788 	UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx", npages, (long)sbkoff, (long)ebkoff, 0);
    789 
    790 	if ((flags & PGO_LOCKED) == 0)
    791 		mutex_exit(&uobj->vmobjlock);
    792 
    793 	/* XXX optimize */
    794 	off = offset;
    795 	i = 0;
    796 	while (i < npages) {
    797 		daddr_t lbn, blkno;
    798 		int run;
    799 		struct vnode *devvp;
    800 
    801 		lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
    802 
    803 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    804 		KASSERT(error == 0);
    805 		UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d", (long)lbn, (long)blkno, run, 0);
    806 
    807 		if (blkno < 0) {
    808 			/* unallocated page is redirected to read-only zero-filled page */
    809 			phys_addr = uvm_pageofzero_xip_phys_addr();
    810 		} else {
    811 			/* bus_space_mmap cookie -> paddr_t */
    812 			phys_addr = pmap_phys_address(vp->v_mount->mnt_phys_addr) +
    813 			    (blkno << dev_bshift) +
    814 			    (off - (lbn << fs_bshift));
    815 		}
    816 
    817 		pps[i] = uvm_phys_to_vm_page_device(phys_addr);
    818 
    819 		UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
    820 			i,
    821 			(long)phys_addr,
    822 			pps[i],
    823 			0);
    824 
    825 		off += PAGE_SIZE;
    826 		i++;
    827 	}
    828 
    829 	*npagesp = i;
    830 
    831 	return 0;
    832 }
    833 #endif
    834 
    835 /*
    836  * generic VM putpages routine.
    837  * Write the given range of pages to backing store.
    838  *
    839  * => "offhi == 0" means flush all pages at or after "offlo".
    840  * => object should be locked by caller.  we return with the
    841  *      object unlocked.
    842  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    843  *	thus, a caller might want to unlock higher level resources
    844  *	(e.g. vm_map) before calling flush.
    845  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    846  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    847  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    848  *	that new pages are inserted on the tail end of the list.   thus,
    849  *	we can make a complete pass through the object in one go by starting
    850  *	at the head and working towards the tail (new pages are put in
    851  *	front of us).
    852  * => NOTE: we are allowed to lock the page queues, so the caller
    853  *	must not be holding the page queue lock.
    854  *
    855  * note on "cleaning" object and PG_BUSY pages:
    856  *	this routine is holding the lock on the object.   the only time
    857  *	that it can run into a PG_BUSY page that it does not own is if
    858  *	some other process has started I/O on the page (e.g. either
    859  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    860  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    861  *	had a chance to modify it yet.    if the PG_BUSY page is being
    862  *	paged out then it means that someone else has already started
    863  *	cleaning the page for us (how nice!).    in this case, if we
    864  *	have syncio specified, then after we make our pass through the
    865  *	object we need to wait for the other PG_BUSY pages to clear
    866  *	off (i.e. we need to do an iosync).   also note that once a
    867  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    868  *
    869  * note on page traversal:
    870  *	we can traverse the pages in an object either by going down the
    871  *	linked list in "uobj->memq", or we can go over the address range
    872  *	by page doing hash table lookups for each address.    depending
    873  *	on how many pages are in the object it may be cheaper to do one
    874  *	or the other.   we set "by_list" to true if we are using memq.
    875  *	if the cost of a hash lookup was equal to the cost of the list
    876  *	traversal we could compare the number of pages in the start->stop
    877  *	range to the total number of pages in the object.   however, it
    878  *	seems that a hash table lookup is more expensive than the linked
    879  *	list traversal, so we multiply the number of pages in the
    880  *	range by an estimate of the relatively higher cost of the hash lookup.
    881  */
    882 
    883 int
    884 genfs_putpages(void *v)
    885 {
    886 	struct vop_putpages_args /* {
    887 		struct vnode *a_vp;
    888 		voff_t a_offlo;
    889 		voff_t a_offhi;
    890 		int a_flags;
    891 	} */ * const ap = v;
    892 
    893 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    894 	    ap->a_flags, NULL);
    895 }
    896 
    897 int
    898 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    899     int origflags, struct vm_page **busypg)
    900 {
    901 	struct uvm_object * const uobj = &vp->v_uobj;
    902 	kmutex_t * const slock = &uobj->vmobjlock;
    903 	off_t off;
    904 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    905 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    906 	int i, error, npages, nback;
    907 	int freeflag;
    908 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
    909 	bool wasclean, by_list, needs_clean, yld;
    910 	bool async = (origflags & PGO_SYNCIO) == 0;
    911 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
    912 	struct lwp * const l = curlwp ? curlwp : &lwp0;
    913 	struct genfs_node * const gp = VTOG(vp);
    914 	int flags;
    915 	int dirtygen;
    916 	bool modified;
    917 	bool need_wapbl;
    918 	bool has_trans;
    919 	bool cleanall;
    920 	bool onworklst;
    921 
    922 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
    923 
    924 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
    925 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
    926 	KASSERT(startoff < endoff || endoff == 0);
    927 
    928 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
    929 	    vp, uobj->uo_npages, startoff, endoff - startoff);
    930 
    931 	has_trans = false;
    932 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
    933 	    (origflags & PGO_JOURNALLOCKED) == 0);
    934 
    935 retry:
    936 	modified = false;
    937 	flags = origflags;
    938 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
    939 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
    940 	if (uobj->uo_npages == 0) {
    941 		if (vp->v_iflag & VI_ONWORKLST) {
    942 			vp->v_iflag &= ~VI_WRMAPDIRTY;
    943 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
    944 				vn_syncer_remove_from_worklist(vp);
    945 		}
    946 		if (has_trans) {
    947 			if (need_wapbl)
    948 				WAPBL_END(vp->v_mount);
    949 			fstrans_done(vp->v_mount);
    950 		}
    951 		mutex_exit(slock);
    952 		return (0);
    953 	}
    954 
    955 	/*
    956 	 * the vnode has pages, set up to process the request.
    957 	 */
    958 
    959 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
    960 		mutex_exit(slock);
    961 		if (pagedaemon) {
    962 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
    963 			if (error)
    964 				return error;
    965 		} else
    966 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
    967 		if (need_wapbl) {
    968 			error = WAPBL_BEGIN(vp->v_mount);
    969 			if (error) {
    970 				fstrans_done(vp->v_mount);
    971 				return error;
    972 			}
    973 		}
    974 		has_trans = true;
    975 		mutex_enter(slock);
    976 		goto retry;
    977 	}
    978 
    979 	error = 0;
    980 	wasclean = (vp->v_numoutput == 0);
    981 	off = startoff;
    982 	if (endoff == 0 || flags & PGO_ALLPAGES) {
    983 		endoff = trunc_page(LLONG_MAX);
    984 	}
    985 	by_list = (uobj->uo_npages <=
    986 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    987 
    988 #if !defined(DEBUG)
    989 	/*
    990 	 * if this vnode is known not to have dirty pages,
    991 	 * don't bother to clean it out.
    992 	 */
    993 
    994 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    995 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
    996 			goto skip_scan;
    997 		}
    998 		flags &= ~PGO_CLEANIT;
    999 	}
   1000 #endif /* !defined(DEBUG) */
   1001 
   1002 	/*
   1003 	 * start the loop.  when scanning by list, hold the last page
   1004 	 * in the list before we start.  pages allocated after we start
   1005 	 * will be added to the end of the list, so we can stop at the
   1006 	 * current last page.
   1007 	 */
   1008 
   1009 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1010 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1011 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1012 	dirtygen = gp->g_dirtygen;
   1013 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1014 	if (by_list) {
   1015 		curmp.uobject = uobj;
   1016 		curmp.offset = (voff_t)-1;
   1017 		curmp.flags = PG_BUSY;
   1018 		endmp.uobject = uobj;
   1019 		endmp.offset = (voff_t)-1;
   1020 		endmp.flags = PG_BUSY;
   1021 		pg = TAILQ_FIRST(&uobj->memq);
   1022 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1023 	} else {
   1024 		pg = uvm_pagelookup(uobj, off);
   1025 	}
   1026 	nextpg = NULL;
   1027 	while (by_list || off < endoff) {
   1028 
   1029 		/*
   1030 		 * if the current page is not interesting, move on to the next.
   1031 		 */
   1032 
   1033 		KASSERT(pg == NULL || pg->uobject == uobj);
   1034 		KASSERT(pg == NULL ||
   1035 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1036 		    (pg->flags & PG_BUSY) != 0);
   1037 		if (by_list) {
   1038 			if (pg == &endmp) {
   1039 				break;
   1040 			}
   1041 			if (pg->offset < startoff || pg->offset >= endoff ||
   1042 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1043 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1044 					wasclean = false;
   1045 				}
   1046 				pg = TAILQ_NEXT(pg, listq.queue);
   1047 				continue;
   1048 			}
   1049 			off = pg->offset;
   1050 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1051 			if (pg != NULL) {
   1052 				wasclean = false;
   1053 			}
   1054 			off += PAGE_SIZE;
   1055 			if (off < endoff) {
   1056 				pg = uvm_pagelookup(uobj, off);
   1057 			}
   1058 			continue;
   1059 		}
   1060 
   1061 		/*
   1062 		 * if the current page needs to be cleaned and it's busy,
   1063 		 * wait for it to become unbusy.
   1064 		 */
   1065 
   1066 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1067 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1068 		if (pg->flags & PG_BUSY || yld) {
   1069 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1070 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1071 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1072 				error = EDEADLK;
   1073 				if (busypg != NULL)
   1074 					*busypg = pg;
   1075 				break;
   1076 			}
   1077 			if (pagedaemon) {
   1078 				/*
   1079 				 * someone has taken the page while we
   1080 				 * dropped the lock for fstrans_start.
   1081 				 */
   1082 				break;
   1083 			}
   1084 			if (by_list) {
   1085 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1086 				UVMHIST_LOG(ubchist, "curmp next %p",
   1087 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1088 			}
   1089 			if (yld) {
   1090 				mutex_exit(slock);
   1091 				preempt();
   1092 				mutex_enter(slock);
   1093 			} else {
   1094 				pg->flags |= PG_WANTED;
   1095 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1096 				mutex_enter(slock);
   1097 			}
   1098 			if (by_list) {
   1099 				UVMHIST_LOG(ubchist, "after next %p",
   1100 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1101 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1102 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1103 			} else {
   1104 				pg = uvm_pagelookup(uobj, off);
   1105 			}
   1106 			continue;
   1107 		}
   1108 
   1109 		/*
   1110 		 * if we're freeing, remove all mappings of the page now.
   1111 		 * if we're cleaning, check if the page is needs to be cleaned.
   1112 		 */
   1113 
   1114 		if (flags & PGO_FREE) {
   1115 			pmap_page_protect(pg, VM_PROT_NONE);
   1116 		} else if (flags & PGO_CLEANIT) {
   1117 
   1118 			/*
   1119 			 * if we still have some hope to pull this vnode off
   1120 			 * from the syncer queue, write-protect the page.
   1121 			 */
   1122 
   1123 			if (cleanall && wasclean &&
   1124 			    gp->g_dirtygen == dirtygen) {
   1125 
   1126 				/*
   1127 				 * uobj pages get wired only by uvm_fault
   1128 				 * where uobj is locked.
   1129 				 */
   1130 
   1131 				if (pg->wire_count == 0) {
   1132 					pmap_page_protect(pg,
   1133 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1134 				} else {
   1135 					cleanall = false;
   1136 				}
   1137 			}
   1138 		}
   1139 
   1140 		if (flags & PGO_CLEANIT) {
   1141 			needs_clean = pmap_clear_modify(pg) ||
   1142 			    (pg->flags & PG_CLEAN) == 0;
   1143 			pg->flags |= PG_CLEAN;
   1144 		} else {
   1145 			needs_clean = false;
   1146 		}
   1147 
   1148 		/*
   1149 		 * if we're cleaning, build a cluster.
   1150 		 * the cluster will consist of pages which are currently dirty,
   1151 		 * but they will be returned to us marked clean.
   1152 		 * if not cleaning, just operate on the one page.
   1153 		 */
   1154 
   1155 		if (needs_clean) {
   1156 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1157 			wasclean = false;
   1158 			memset(pgs, 0, sizeof(pgs));
   1159 			pg->flags |= PG_BUSY;
   1160 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1161 
   1162 			/*
   1163 			 * first look backward.
   1164 			 */
   1165 
   1166 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1167 			nback = npages;
   1168 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1169 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1170 			if (nback) {
   1171 				memmove(&pgs[0], &pgs[npages - nback],
   1172 				    nback * sizeof(pgs[0]));
   1173 				if (npages - nback < nback)
   1174 					memset(&pgs[nback], 0,
   1175 					    (npages - nback) * sizeof(pgs[0]));
   1176 				else
   1177 					memset(&pgs[npages - nback], 0,
   1178 					    nback * sizeof(pgs[0]));
   1179 			}
   1180 
   1181 			/*
   1182 			 * then plug in our page of interest.
   1183 			 */
   1184 
   1185 			pgs[nback] = pg;
   1186 
   1187 			/*
   1188 			 * then look forward to fill in the remaining space in
   1189 			 * the array of pages.
   1190 			 */
   1191 
   1192 			npages = maxpages - nback - 1;
   1193 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1194 			    &pgs[nback + 1],
   1195 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1196 			npages += nback + 1;
   1197 		} else {
   1198 			pgs[0] = pg;
   1199 			npages = 1;
   1200 			nback = 0;
   1201 		}
   1202 
   1203 		/*
   1204 		 * apply FREE or DEACTIVATE options if requested.
   1205 		 */
   1206 
   1207 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1208 			mutex_enter(&uvm_pageqlock);
   1209 		}
   1210 		for (i = 0; i < npages; i++) {
   1211 			tpg = pgs[i];
   1212 			KASSERT(tpg->uobject == uobj);
   1213 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1214 				pg = tpg;
   1215 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1216 				continue;
   1217 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1218 				uvm_pagedeactivate(tpg);
   1219 			} else if (flags & PGO_FREE) {
   1220 				pmap_page_protect(tpg, VM_PROT_NONE);
   1221 				if (tpg->flags & PG_BUSY) {
   1222 					tpg->flags |= freeflag;
   1223 					if (pagedaemon) {
   1224 						uvm_pageout_start(1);
   1225 						uvm_pagedequeue(tpg);
   1226 					}
   1227 				} else {
   1228 
   1229 					/*
   1230 					 * ``page is not busy''
   1231 					 * implies that npages is 1
   1232 					 * and needs_clean is false.
   1233 					 */
   1234 
   1235 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1236 					uvm_pagefree(tpg);
   1237 					if (pagedaemon)
   1238 						uvmexp.pdfreed++;
   1239 				}
   1240 			}
   1241 		}
   1242 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1243 			mutex_exit(&uvm_pageqlock);
   1244 		}
   1245 		if (needs_clean) {
   1246 			modified = true;
   1247 
   1248 			/*
   1249 			 * start the i/o.  if we're traversing by list,
   1250 			 * keep our place in the list with a marker page.
   1251 			 */
   1252 
   1253 			if (by_list) {
   1254 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1255 				    listq.queue);
   1256 			}
   1257 			mutex_exit(slock);
   1258 			error = GOP_WRITE(vp, pgs, npages, flags);
   1259 			mutex_enter(slock);
   1260 			if (by_list) {
   1261 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1262 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1263 			}
   1264 			if (error) {
   1265 				break;
   1266 			}
   1267 			if (by_list) {
   1268 				continue;
   1269 			}
   1270 		}
   1271 
   1272 		/*
   1273 		 * find the next page and continue if there was no error.
   1274 		 */
   1275 
   1276 		if (by_list) {
   1277 			if (nextpg) {
   1278 				pg = nextpg;
   1279 				nextpg = NULL;
   1280 			} else {
   1281 				pg = TAILQ_NEXT(pg, listq.queue);
   1282 			}
   1283 		} else {
   1284 			off += (npages - nback) << PAGE_SHIFT;
   1285 			if (off < endoff) {
   1286 				pg = uvm_pagelookup(uobj, off);
   1287 			}
   1288 		}
   1289 	}
   1290 	if (by_list) {
   1291 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1292 	}
   1293 
   1294 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1295 	    (vp->v_type != VBLK ||
   1296 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1297 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1298 	}
   1299 
   1300 	/*
   1301 	 * if we're cleaning and there was nothing to clean,
   1302 	 * take us off the syncer list.  if we started any i/o
   1303 	 * and we're doing sync i/o, wait for all writes to finish.
   1304 	 */
   1305 
   1306 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1307 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1308 #if defined(DEBUG)
   1309 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1310 			if ((pg->flags & PG_CLEAN) == 0) {
   1311 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1312 			}
   1313 			if (pmap_is_modified(pg)) {
   1314 				printf("%s: %p: modified\n", __func__, pg);
   1315 			}
   1316 		}
   1317 #endif /* defined(DEBUG) */
   1318 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1319 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1320 			vn_syncer_remove_from_worklist(vp);
   1321 	}
   1322 
   1323 #if !defined(DEBUG)
   1324 skip_scan:
   1325 #endif /* !defined(DEBUG) */
   1326 
   1327 	/* Wait for output to complete. */
   1328 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1329 		while (vp->v_numoutput != 0)
   1330 			cv_wait(&vp->v_cv, slock);
   1331 	}
   1332 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1333 	mutex_exit(slock);
   1334 
   1335 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1336 		/*
   1337 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1338 		 * retrying is not a big deal because, in many cases,
   1339 		 * uobj->uo_npages is already 0 here.
   1340 		 */
   1341 		mutex_enter(slock);
   1342 		goto retry;
   1343 	}
   1344 
   1345 	if (has_trans) {
   1346 		if (need_wapbl)
   1347 			WAPBL_END(vp->v_mount);
   1348 		fstrans_done(vp->v_mount);
   1349 	}
   1350 
   1351 	return (error);
   1352 }
   1353 
   1354 int
   1355 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1356 {
   1357 	off_t off;
   1358 	vaddr_t kva;
   1359 	size_t len;
   1360 	int error;
   1361 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1362 
   1363 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1364 	    vp, pgs, npages, flags);
   1365 
   1366 	off = pgs[0]->offset;
   1367 	kva = uvm_pagermapin(pgs, npages,
   1368 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1369 	len = npages << PAGE_SHIFT;
   1370 
   1371 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1372 			    uvm_aio_biodone);
   1373 
   1374 	return error;
   1375 }
   1376 
   1377 int
   1378 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1379 {
   1380 	off_t off;
   1381 	vaddr_t kva;
   1382 	size_t len;
   1383 	int error;
   1384 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1385 
   1386 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1387 	    vp, pgs, npages, flags);
   1388 
   1389 	off = pgs[0]->offset;
   1390 	kva = uvm_pagermapin(pgs, npages,
   1391 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1392 	len = npages << PAGE_SHIFT;
   1393 
   1394 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1395 			    uvm_aio_biodone);
   1396 
   1397 	return error;
   1398 }
   1399 
   1400 /*
   1401  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1402  * and mapped into kernel memory.  Here we just look up the underlying
   1403  * device block addresses and call the strategy routine.
   1404  */
   1405 
   1406 static int
   1407 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1408     enum uio_rw rw, void (*iodone)(struct buf *))
   1409 {
   1410 	int s, error;
   1411 	int fs_bshift, dev_bshift;
   1412 	off_t eof, offset, startoffset;
   1413 	size_t bytes, iobytes, skipbytes;
   1414 	struct buf *mbp, *bp;
   1415 	const bool async = (flags & PGO_SYNCIO) == 0;
   1416 	const bool iowrite = rw == UIO_WRITE;
   1417 	const int brw = iowrite ? B_WRITE : B_READ;
   1418 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1419 
   1420 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1421 	    vp, kva, len, flags);
   1422 
   1423 	KASSERT(vp->v_size <= vp->v_writesize);
   1424 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1425 	if (vp->v_type != VBLK) {
   1426 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1427 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1428 	} else {
   1429 		fs_bshift = DEV_BSHIFT;
   1430 		dev_bshift = DEV_BSHIFT;
   1431 	}
   1432 	error = 0;
   1433 	startoffset = off;
   1434 	bytes = MIN(len, eof - startoffset);
   1435 	skipbytes = 0;
   1436 	KASSERT(bytes != 0);
   1437 
   1438 	if (iowrite) {
   1439 		mutex_enter(&vp->v_interlock);
   1440 		vp->v_numoutput += 2;
   1441 		mutex_exit(&vp->v_interlock);
   1442 	}
   1443 	mbp = getiobuf(vp, true);
   1444 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1445 	    vp, mbp, vp->v_numoutput, bytes);
   1446 	mbp->b_bufsize = len;
   1447 	mbp->b_data = (void *)kva;
   1448 	mbp->b_resid = mbp->b_bcount = bytes;
   1449 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1450 	if (async) {
   1451 		mbp->b_flags = brw | B_ASYNC;
   1452 		mbp->b_iodone = iodone;
   1453 	} else {
   1454 		mbp->b_flags = brw;
   1455 		mbp->b_iodone = NULL;
   1456 	}
   1457 	if (curlwp == uvm.pagedaemon_lwp)
   1458 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1459 	else if (async)
   1460 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1461 	else
   1462 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1463 
   1464 	bp = NULL;
   1465 	for (offset = startoffset;
   1466 	    bytes > 0;
   1467 	    offset += iobytes, bytes -= iobytes) {
   1468 		int run;
   1469 		daddr_t lbn, blkno;
   1470 		struct vnode *devvp;
   1471 
   1472 		/*
   1473 		 * bmap the file to find out the blkno to read from and
   1474 		 * how much we can read in one i/o.  if bmap returns an error,
   1475 		 * skip the rest of the top-level i/o.
   1476 		 */
   1477 
   1478 		lbn = offset >> fs_bshift;
   1479 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1480 		if (error) {
   1481 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1482 			    lbn,error,0,0);
   1483 			skipbytes += bytes;
   1484 			bytes = 0;
   1485 			goto loopdone;
   1486 		}
   1487 
   1488 		/*
   1489 		 * see how many pages can be read with this i/o.
   1490 		 * reduce the i/o size if necessary to avoid
   1491 		 * overwriting pages with valid data.
   1492 		 */
   1493 
   1494 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1495 		    bytes);
   1496 
   1497 		/*
   1498 		 * if this block isn't allocated, zero it instead of
   1499 		 * reading it.  unless we are going to allocate blocks,
   1500 		 * mark the pages we zeroed PG_RDONLY.
   1501 		 */
   1502 
   1503 		if (blkno == (daddr_t)-1) {
   1504 			if (!iowrite) {
   1505 				memset((char *)kva + (offset - startoffset), 0,
   1506 				    iobytes);
   1507 			}
   1508 			skipbytes += iobytes;
   1509 			continue;
   1510 		}
   1511 
   1512 		/*
   1513 		 * allocate a sub-buf for this piece of the i/o
   1514 		 * (or just use mbp if there's only 1 piece),
   1515 		 * and start it going.
   1516 		 */
   1517 
   1518 		if (offset == startoffset && iobytes == bytes) {
   1519 			bp = mbp;
   1520 		} else {
   1521 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1522 			    vp, bp, vp->v_numoutput, 0);
   1523 			bp = getiobuf(vp, true);
   1524 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1525 		}
   1526 		bp->b_lblkno = 0;
   1527 
   1528 		/* adjust physical blkno for partial blocks */
   1529 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1530 		    dev_bshift);
   1531 
   1532 		UVMHIST_LOG(ubchist,
   1533 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1534 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1535 
   1536 		VOP_STRATEGY(devvp, bp);
   1537 	}
   1538 
   1539 loopdone:
   1540 	if (skipbytes) {
   1541 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1542 	}
   1543 	nestiobuf_done(mbp, skipbytes, error);
   1544 	if (async) {
   1545 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1546 		return (0);
   1547 	}
   1548 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1549 	error = biowait(mbp);
   1550 	s = splbio();
   1551 	(*iodone)(mbp);
   1552 	splx(s);
   1553 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1554 	return (error);
   1555 }
   1556 
   1557 int
   1558 genfs_compat_getpages(void *v)
   1559 {
   1560 	struct vop_getpages_args /* {
   1561 		struct vnode *a_vp;
   1562 		voff_t a_offset;
   1563 		struct vm_page **a_m;
   1564 		int *a_count;
   1565 		int a_centeridx;
   1566 		vm_prot_t a_access_type;
   1567 		int a_advice;
   1568 		int a_flags;
   1569 	} */ *ap = v;
   1570 
   1571 	off_t origoffset;
   1572 	struct vnode *vp = ap->a_vp;
   1573 	struct uvm_object *uobj = &vp->v_uobj;
   1574 	struct vm_page *pg, **pgs;
   1575 	vaddr_t kva;
   1576 	int i, error, orignpages, npages;
   1577 	struct iovec iov;
   1578 	struct uio uio;
   1579 	kauth_cred_t cred = curlwp->l_cred;
   1580 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1581 
   1582 	error = 0;
   1583 	origoffset = ap->a_offset;
   1584 	orignpages = *ap->a_count;
   1585 	pgs = ap->a_m;
   1586 
   1587 	if (memwrite && (vp->v_iflag & VI_ONWORKLST) == 0) {
   1588 		vn_syncer_add_to_worklist(vp, filedelay);
   1589 	}
   1590 	if (ap->a_flags & PGO_LOCKED) {
   1591 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1592 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1593 
   1594 		return (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
   1595 	}
   1596 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1597 		mutex_exit(&uobj->vmobjlock);
   1598 		return (EINVAL);
   1599 	}
   1600 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1601 		mutex_exit(&uobj->vmobjlock);
   1602 		return 0;
   1603 	}
   1604 	npages = orignpages;
   1605 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1606 	mutex_exit(&uobj->vmobjlock);
   1607 	kva = uvm_pagermapin(pgs, npages,
   1608 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1609 	for (i = 0; i < npages; i++) {
   1610 		pg = pgs[i];
   1611 		if ((pg->flags & PG_FAKE) == 0) {
   1612 			continue;
   1613 		}
   1614 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1615 		iov.iov_len = PAGE_SIZE;
   1616 		uio.uio_iov = &iov;
   1617 		uio.uio_iovcnt = 1;
   1618 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1619 		uio.uio_rw = UIO_READ;
   1620 		uio.uio_resid = PAGE_SIZE;
   1621 		UIO_SETUP_SYSSPACE(&uio);
   1622 		/* XXX vn_lock */
   1623 		error = VOP_READ(vp, &uio, 0, cred);
   1624 		if (error) {
   1625 			break;
   1626 		}
   1627 		if (uio.uio_resid) {
   1628 			memset(iov.iov_base, 0, uio.uio_resid);
   1629 		}
   1630 	}
   1631 	uvm_pagermapout(kva, npages);
   1632 	mutex_enter(&uobj->vmobjlock);
   1633 	mutex_enter(&uvm_pageqlock);
   1634 	for (i = 0; i < npages; i++) {
   1635 		pg = pgs[i];
   1636 		if (error && (pg->flags & PG_FAKE) != 0) {
   1637 			pg->flags |= PG_RELEASED;
   1638 		} else {
   1639 			pmap_clear_modify(pg);
   1640 			uvm_pageactivate(pg);
   1641 		}
   1642 	}
   1643 	if (error) {
   1644 		uvm_page_unbusy(pgs, npages);
   1645 	}
   1646 	mutex_exit(&uvm_pageqlock);
   1647 	mutex_exit(&uobj->vmobjlock);
   1648 	return (error);
   1649 }
   1650 
   1651 int
   1652 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1653     int flags)
   1654 {
   1655 	off_t offset;
   1656 	struct iovec iov;
   1657 	struct uio uio;
   1658 	kauth_cred_t cred = curlwp->l_cred;
   1659 	struct buf *bp;
   1660 	vaddr_t kva;
   1661 	int error;
   1662 
   1663 	offset = pgs[0]->offset;
   1664 	kva = uvm_pagermapin(pgs, npages,
   1665 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1666 
   1667 	iov.iov_base = (void *)kva;
   1668 	iov.iov_len = npages << PAGE_SHIFT;
   1669 	uio.uio_iov = &iov;
   1670 	uio.uio_iovcnt = 1;
   1671 	uio.uio_offset = offset;
   1672 	uio.uio_rw = UIO_WRITE;
   1673 	uio.uio_resid = npages << PAGE_SHIFT;
   1674 	UIO_SETUP_SYSSPACE(&uio);
   1675 	/* XXX vn_lock */
   1676 	error = VOP_WRITE(vp, &uio, 0, cred);
   1677 
   1678 	mutex_enter(&vp->v_interlock);
   1679 	vp->v_numoutput++;
   1680 	mutex_exit(&vp->v_interlock);
   1681 
   1682 	bp = getiobuf(vp, true);
   1683 	bp->b_cflags = BC_BUSY | BC_AGE;
   1684 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1685 	bp->b_data = (char *)kva;
   1686 	bp->b_bcount = npages << PAGE_SHIFT;
   1687 	bp->b_bufsize = npages << PAGE_SHIFT;
   1688 	bp->b_resid = 0;
   1689 	bp->b_error = error;
   1690 	uvm_aio_aiodone(bp);
   1691 	return (error);
   1692 }
   1693 
   1694 /*
   1695  * Process a uio using direct I/O.  If we reach a part of the request
   1696  * which cannot be processed in this fashion for some reason, just return.
   1697  * The caller must handle some additional part of the request using
   1698  * buffered I/O before trying direct I/O again.
   1699  */
   1700 
   1701 void
   1702 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1703 {
   1704 	struct vmspace *vs;
   1705 	struct iovec *iov;
   1706 	vaddr_t va;
   1707 	size_t len;
   1708 	const int mask = DEV_BSIZE - 1;
   1709 	int error;
   1710 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1711 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1712 
   1713 	/*
   1714 	 * We only support direct I/O to user space for now.
   1715 	 */
   1716 
   1717 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1718 		return;
   1719 	}
   1720 
   1721 	/*
   1722 	 * If the vnode is mapped, we would need to get the getpages lock
   1723 	 * to stabilize the bmap, but then we would get into trouble whil e
   1724 	 * locking the pages if the pages belong to this same vnode (or a
   1725 	 * multi-vnode cascade to the same effect).  Just fall back to
   1726 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1727 	 */
   1728 
   1729 	if (vp->v_vflag & VV_MAPPED) {
   1730 		return;
   1731 	}
   1732 
   1733 	if (need_wapbl) {
   1734 		error = WAPBL_BEGIN(vp->v_mount);
   1735 		if (error)
   1736 			return;
   1737 	}
   1738 
   1739 	/*
   1740 	 * Do as much of the uio as possible with direct I/O.
   1741 	 */
   1742 
   1743 	vs = uio->uio_vmspace;
   1744 	while (uio->uio_resid) {
   1745 		iov = uio->uio_iov;
   1746 		if (iov->iov_len == 0) {
   1747 			uio->uio_iov++;
   1748 			uio->uio_iovcnt--;
   1749 			continue;
   1750 		}
   1751 		va = (vaddr_t)iov->iov_base;
   1752 		len = MIN(iov->iov_len, genfs_maxdio);
   1753 		len &= ~mask;
   1754 
   1755 		/*
   1756 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1757 		 * the current EOF, then fall back to buffered I/O.
   1758 		 */
   1759 
   1760 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1761 			break;
   1762 		}
   1763 
   1764 		/*
   1765 		 * Check alignment.  The file offset must be at least
   1766 		 * sector-aligned.  The exact constraint on memory alignment
   1767 		 * is very hardware-dependent, but requiring sector-aligned
   1768 		 * addresses there too is safe.
   1769 		 */
   1770 
   1771 		if (uio->uio_offset & mask || va & mask) {
   1772 			break;
   1773 		}
   1774 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1775 					  uio->uio_rw);
   1776 		if (error) {
   1777 			break;
   1778 		}
   1779 		iov->iov_base = (char *)iov->iov_base + len;
   1780 		iov->iov_len -= len;
   1781 		uio->uio_offset += len;
   1782 		uio->uio_resid -= len;
   1783 	}
   1784 
   1785 	if (need_wapbl)
   1786 		WAPBL_END(vp->v_mount);
   1787 }
   1788 
   1789 /*
   1790  * Iodone routine for direct I/O.  We don't do much here since the request is
   1791  * always synchronous, so the caller will do most of the work after biowait().
   1792  */
   1793 
   1794 static void
   1795 genfs_dio_iodone(struct buf *bp)
   1796 {
   1797 
   1798 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   1799 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   1800 		mutex_enter(bp->b_objlock);
   1801 		vwakeup(bp);
   1802 		mutex_exit(bp->b_objlock);
   1803 	}
   1804 	putiobuf(bp);
   1805 }
   1806 
   1807 /*
   1808  * Process one chunk of a direct I/O request.
   1809  */
   1810 
   1811 static int
   1812 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   1813     off_t off, enum uio_rw rw)
   1814 {
   1815 	struct vm_map *map;
   1816 	struct pmap *upm, *kpm;
   1817 	size_t klen = round_page(uva + len) - trunc_page(uva);
   1818 	off_t spoff, epoff;
   1819 	vaddr_t kva, puva;
   1820 	paddr_t pa;
   1821 	vm_prot_t prot;
   1822 	int error, rv, poff, koff;
   1823 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   1824 		(rw == UIO_WRITE ? PGO_FREE : 0);
   1825 
   1826 	/*
   1827 	 * For writes, verify that this range of the file already has fully
   1828 	 * allocated backing store.  If there are any holes, just punt and
   1829 	 * make the caller take the buffered write path.
   1830 	 */
   1831 
   1832 	if (rw == UIO_WRITE) {
   1833 		daddr_t lbn, elbn, blkno;
   1834 		int bsize, bshift, run;
   1835 
   1836 		bshift = vp->v_mount->mnt_fs_bshift;
   1837 		bsize = 1 << bshift;
   1838 		lbn = off >> bshift;
   1839 		elbn = (off + len + bsize - 1) >> bshift;
   1840 		while (lbn < elbn) {
   1841 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   1842 			if (error) {
   1843 				return error;
   1844 			}
   1845 			if (blkno == (daddr_t)-1) {
   1846 				return ENOSPC;
   1847 			}
   1848 			lbn += 1 + run;
   1849 		}
   1850 	}
   1851 
   1852 	/*
   1853 	 * Flush any cached pages for parts of the file that we're about to
   1854 	 * access.  If we're writing, invalidate pages as well.
   1855 	 */
   1856 
   1857 	spoff = trunc_page(off);
   1858 	epoff = round_page(off + len);
   1859 	mutex_enter(&vp->v_interlock);
   1860 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   1861 	if (error) {
   1862 		return error;
   1863 	}
   1864 
   1865 	/*
   1866 	 * Wire the user pages and remap them into kernel memory.
   1867 	 */
   1868 
   1869 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   1870 	error = uvm_vslock(vs, (void *)uva, len, prot);
   1871 	if (error) {
   1872 		return error;
   1873 	}
   1874 
   1875 	map = &vs->vm_map;
   1876 	upm = vm_map_pmap(map);
   1877 	kpm = vm_map_pmap(kernel_map);
   1878 	kva = uvm_km_alloc(kernel_map, klen, 0,
   1879 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   1880 	puva = trunc_page(uva);
   1881 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   1882 		rv = pmap_extract(upm, puva + poff, &pa);
   1883 		KASSERT(rv);
   1884 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   1885 	}
   1886 	pmap_update(kpm);
   1887 
   1888 	/*
   1889 	 * Do the I/O.
   1890 	 */
   1891 
   1892 	koff = uva - trunc_page(uva);
   1893 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   1894 			    genfs_dio_iodone);
   1895 
   1896 	/*
   1897 	 * Tear down the kernel mapping.
   1898 	 */
   1899 
   1900 	pmap_remove(kpm, kva, kva + klen);
   1901 	pmap_update(kpm);
   1902 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   1903 
   1904 	/*
   1905 	 * Unwire the user pages.
   1906 	 */
   1907 
   1908 	uvm_vsunlock(vs, (void *)uva, len);
   1909 	return error;
   1910 }
   1911 
   1912