genfs_io.c revision 1.36.2.31 1 /* $NetBSD: genfs_io.c,v 1.36.2.31 2010/11/15 17:32:01 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.31 2010/11/15 17:32:01 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 static int genfs_do_getpages(void *);
63 #ifdef XIP
64 static int genfs_do_getpages_xip(void *);
65 static int genfs_do_getpages_xip1(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int);
67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
68 struct vm_page **);
69 #endif
70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
71 off_t, enum uio_rw);
72 static void genfs_dio_iodone(struct buf *);
73
74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
75 void (*)(struct buf *));
76 static void genfs_rel_pages(struct vm_page **, int);
77 static void genfs_markdirty(struct vnode *);
78
79 int genfs_maxdio = MAXPHYS;
80
81 static void
82 genfs_rel_pages(struct vm_page **pgs, int npages)
83 {
84 int i;
85
86 for (i = 0; i < npages; i++) {
87 struct vm_page *pg = pgs[i];
88
89 if (pg == NULL || pg == PGO_DONTCARE)
90 continue;
91 if (pg->flags & PG_FAKE) {
92 pg->flags |= PG_RELEASED;
93 }
94 }
95 mutex_enter(&uvm_pageqlock);
96 uvm_page_unbusy(pgs, npages);
97 mutex_exit(&uvm_pageqlock);
98 }
99
100 static void
101 genfs_markdirty(struct vnode *vp)
102 {
103 struct genfs_node * const gp = VTOG(vp);
104
105 KASSERT(mutex_owned(&vp->v_interlock));
106 gp->g_dirtygen++;
107 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
108 vn_syncer_add_to_worklist(vp, filedelay);
109 }
110 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
111 vp->v_iflag |= VI_WRMAPDIRTY;
112 }
113 }
114
115 /*
116 * generic VM getpages routine.
117 * Return PG_BUSY pages for the given range,
118 * reading from backing store if necessary.
119 */
120
121 int
122 genfs_getpages(void *v)
123 {
124 #ifdef XIP
125 struct vop_getpages_args /* {
126 struct vnode *a_vp;
127 voff_t a_offset;
128 struct vm_page **a_m;
129 int *a_count;
130 int a_centeridx;
131 vm_prot_t a_access_type;
132 int a_advice;
133 int a_flags;
134 } */ * const ap = v;
135
136 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
137 return genfs_do_getpages_xip(v);
138 else
139 #endif
140 return genfs_do_getpages(v);
141 }
142
143 static int
144 genfs_do_getpages(void *v)
145 {
146 struct vop_getpages_args /* {
147 struct vnode *a_vp;
148 voff_t a_offset;
149 struct vm_page **a_m;
150 int *a_count;
151 int a_centeridx;
152 vm_prot_t a_access_type;
153 int a_advice;
154 int a_flags;
155 } */ * const ap = v;
156
157 off_t diskeof, memeof;
158 int i, error, npages;
159 const int flags = ap->a_flags;
160 struct vnode * const vp = ap->a_vp;
161 struct uvm_object * const uobj = &vp->v_uobj;
162 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
163 const bool async = (flags & PGO_SYNCIO) == 0;
164 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
165 bool has_trans = false;
166 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
167 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
168 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
169 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
170
171 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
172 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
173
174 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
175 vp->v_type == VLNK || vp->v_type == VBLK);
176
177 startover:
178 error = 0;
179 const voff_t origvsize = vp->v_size;
180 const off_t origoffset = ap->a_offset;
181 const int orignpages = *ap->a_count;
182
183 GOP_SIZE(vp, origvsize, &diskeof, 0);
184 if (flags & PGO_PASTEOF) {
185 off_t newsize;
186 #if defined(DIAGNOSTIC)
187 off_t writeeof;
188 #endif /* defined(DIAGNOSTIC) */
189
190 newsize = MAX(origvsize,
191 origoffset + (orignpages << PAGE_SHIFT));
192 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
193 #if defined(DIAGNOSTIC)
194 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
195 if (newsize > round_page(writeeof)) {
196 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
197 __func__, newsize, round_page(writeeof));
198 }
199 #endif /* defined(DIAGNOSTIC) */
200 } else {
201 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
202 }
203 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
204 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
205 KASSERT(orignpages > 0);
206
207 /*
208 * Bounds-check the request.
209 */
210
211 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
212 if ((flags & PGO_LOCKED) == 0) {
213 mutex_exit(&uobj->vmobjlock);
214 }
215 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
216 origoffset, *ap->a_count, memeof,0);
217 error = EINVAL;
218 goto out_err;
219 }
220
221 /* uobj is locked */
222
223 if ((flags & PGO_NOTIMESTAMP) == 0 &&
224 (vp->v_type != VBLK ||
225 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
226 int updflags = 0;
227
228 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
229 updflags = GOP_UPDATE_ACCESSED;
230 }
231 if (memwrite) {
232 updflags |= GOP_UPDATE_MODIFIED;
233 }
234 if (updflags != 0) {
235 GOP_MARKUPDATE(vp, updflags);
236 }
237 }
238
239 /*
240 * For PGO_LOCKED requests, just return whatever's in memory.
241 */
242
243 if (flags & PGO_LOCKED) {
244 int nfound;
245 struct vm_page *pg;
246
247 KASSERT(!glocked);
248 npages = *ap->a_count;
249 #if defined(DEBUG)
250 for (i = 0; i < npages; i++) {
251 pg = ap->a_m[i];
252 KASSERT(pg == NULL || pg == PGO_DONTCARE);
253 }
254 #endif /* defined(DEBUG) */
255 nfound = uvn_findpages(uobj, origoffset, &npages,
256 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
257 KASSERT(npages == *ap->a_count);
258 if (nfound == 0) {
259 error = EBUSY;
260 goto out_err;
261 }
262 if (!genfs_node_rdtrylock(vp)) {
263 genfs_rel_pages(ap->a_m, npages);
264
265 /*
266 * restore the array.
267 */
268
269 for (i = 0; i < npages; i++) {
270 pg = ap->a_m[i];
271
272 if (pg != NULL && pg != PGO_DONTCARE) {
273 ap->a_m[i] = NULL;
274 }
275 KASSERT(pg == NULL || pg == PGO_DONTCARE);
276 }
277 } else {
278 genfs_node_unlock(vp);
279 }
280 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
281 if (error == 0 && memwrite) {
282 genfs_markdirty(vp);
283 }
284 goto out_err;
285 }
286 mutex_exit(&uobj->vmobjlock);
287
288 /*
289 * find the requested pages and make some simple checks.
290 * leave space in the page array for a whole block.
291 */
292
293 const int fs_bshift = (vp->v_type != VBLK) ?
294 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
295 const int dev_bshift = (vp->v_type != VBLK) ?
296 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
297 const int fs_bsize = 1 << fs_bshift;
298 #define blk_mask (fs_bsize - 1)
299 #define trunc_blk(x) ((x) & ~blk_mask)
300 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
301
302 const int orignmempages = MIN(orignpages,
303 round_page(memeof - origoffset) >> PAGE_SHIFT);
304 npages = orignmempages;
305 const off_t startoffset = trunc_blk(origoffset);
306 const off_t endoffset = MIN(
307 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
308 round_page(memeof));
309 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
310
311 const int pgs_size = sizeof(struct vm_page *) *
312 ((endoffset - startoffset) >> PAGE_SHIFT);
313 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
314
315 if (pgs_size > sizeof(pgs_onstack)) {
316 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
317 if (pgs == NULL) {
318 pgs = pgs_onstack;
319 error = ENOMEM;
320 goto out_err;
321 }
322 } else {
323 pgs = pgs_onstack;
324 (void)memset(pgs, 0, pgs_size);
325 }
326
327 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
328 ridx, npages, startoffset, endoffset);
329
330 if (!has_trans) {
331 fstrans_start(vp->v_mount, FSTRANS_SHARED);
332 has_trans = true;
333 }
334
335 /*
336 * hold g_glock to prevent a race with truncate.
337 *
338 * check if our idea of v_size is still valid.
339 */
340
341 KASSERT(!glocked || genfs_node_wrlocked(vp));
342 if (!glocked) {
343 if (blockalloc) {
344 genfs_node_wrlock(vp);
345 } else {
346 genfs_node_rdlock(vp);
347 }
348 }
349 mutex_enter(&uobj->vmobjlock);
350 if (vp->v_size < origvsize) {
351 if (!glocked) {
352 genfs_node_unlock(vp);
353 }
354 if (pgs != pgs_onstack)
355 kmem_free(pgs, pgs_size);
356 goto startover;
357 }
358
359 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
360 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
361 if (!glocked) {
362 genfs_node_unlock(vp);
363 }
364 KASSERT(async != 0);
365 genfs_rel_pages(&pgs[ridx], orignmempages);
366 mutex_exit(&uobj->vmobjlock);
367 error = EBUSY;
368 goto out_err_free;
369 }
370
371 /*
372 * if the pages are already resident, just return them.
373 */
374
375 for (i = 0; i < npages; i++) {
376 struct vm_page *pg = pgs[ridx + i];
377
378 if ((pg->flags & PG_FAKE) ||
379 (blockalloc && (pg->flags & PG_RDONLY))) {
380 break;
381 }
382 }
383 if (i == npages) {
384 if (!glocked) {
385 genfs_node_unlock(vp);
386 }
387 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
388 npages += ridx;
389 goto out;
390 }
391
392 /*
393 * if PGO_OVERWRITE is set, don't bother reading the pages.
394 */
395
396 if (overwrite) {
397 if (!glocked) {
398 genfs_node_unlock(vp);
399 }
400 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
401
402 for (i = 0; i < npages; i++) {
403 struct vm_page *pg = pgs[ridx + i];
404
405 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
406 }
407 npages += ridx;
408 goto out;
409 }
410
411 /*
412 * the page wasn't resident and we're not overwriting,
413 * so we're going to have to do some i/o.
414 * find any additional pages needed to cover the expanded range.
415 */
416
417 npages = (endoffset - startoffset) >> PAGE_SHIFT;
418 if (startoffset != origoffset || npages != orignmempages) {
419 int npgs;
420
421 /*
422 * we need to avoid deadlocks caused by locking
423 * additional pages at lower offsets than pages we
424 * already have locked. unlock them all and start over.
425 */
426
427 genfs_rel_pages(&pgs[ridx], orignmempages);
428 memset(pgs, 0, pgs_size);
429
430 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
431 startoffset, endoffset, 0,0);
432 npgs = npages;
433 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
434 async ? UFP_NOWAIT : UFP_ALL) != npages) {
435 if (!glocked) {
436 genfs_node_unlock(vp);
437 }
438 KASSERT(async != 0);
439 genfs_rel_pages(pgs, npages);
440 mutex_exit(&uobj->vmobjlock);
441 error = EBUSY;
442 goto out_err_free;
443 }
444 }
445
446 mutex_exit(&uobj->vmobjlock);
447
448 {
449 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
450 vaddr_t kva;
451 struct buf *bp, *mbp;
452 bool sawhole = false;
453
454 /*
455 * read the desired page(s).
456 */
457
458 totalbytes = npages << PAGE_SHIFT;
459 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
460 tailbytes = totalbytes - bytes;
461 skipbytes = 0;
462
463 kva = uvm_pagermapin(pgs, npages,
464 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
465
466 mbp = getiobuf(vp, true);
467 mbp->b_bufsize = totalbytes;
468 mbp->b_data = (void *)kva;
469 mbp->b_resid = mbp->b_bcount = bytes;
470 mbp->b_cflags = BC_BUSY;
471 if (async) {
472 mbp->b_flags = B_READ | B_ASYNC;
473 mbp->b_iodone = uvm_aio_biodone;
474 } else {
475 mbp->b_flags = B_READ;
476 mbp->b_iodone = NULL;
477 }
478 if (async)
479 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
480 else
481 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
482
483 /*
484 * if EOF is in the middle of the range, zero the part past EOF.
485 * skip over pages which are not PG_FAKE since in that case they have
486 * valid data that we need to preserve.
487 */
488
489 tailstart = bytes;
490 while (tailbytes > 0) {
491 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
492
493 KASSERT(len <= tailbytes);
494 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
495 memset((void *)(kva + tailstart), 0, len);
496 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
497 kva, tailstart, len, 0);
498 }
499 tailstart += len;
500 tailbytes -= len;
501 }
502
503 /*
504 * now loop over the pages, reading as needed.
505 */
506
507 bp = NULL;
508 off_t offset;
509 for (offset = startoffset;
510 bytes > 0;
511 offset += iobytes, bytes -= iobytes) {
512 int run;
513 daddr_t lbn, blkno;
514 int pidx;
515 struct vnode *devvp;
516
517 /*
518 * skip pages which don't need to be read.
519 */
520
521 pidx = (offset - startoffset) >> PAGE_SHIFT;
522 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
523 size_t b;
524
525 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
526 if ((pgs[pidx]->flags & PG_RDONLY)) {
527 sawhole = true;
528 }
529 b = MIN(PAGE_SIZE, bytes);
530 offset += b;
531 bytes -= b;
532 skipbytes += b;
533 pidx++;
534 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
535 offset, 0,0,0);
536 if (bytes == 0) {
537 goto loopdone;
538 }
539 }
540
541 /*
542 * bmap the file to find out the blkno to read from and
543 * how much we can read in one i/o. if bmap returns an error,
544 * skip the rest of the top-level i/o.
545 */
546
547 lbn = offset >> fs_bshift;
548 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
549 if (error) {
550 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
551 lbn,error,0,0);
552 skipbytes += bytes;
553 bytes = 0;
554 goto loopdone;
555 }
556
557 /*
558 * see how many pages can be read with this i/o.
559 * reduce the i/o size if necessary to avoid
560 * overwriting pages with valid data.
561 */
562
563 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
564 bytes);
565 if (offset + iobytes > round_page(offset)) {
566 int pcount;
567
568 pcount = 1;
569 while (pidx + pcount < npages &&
570 pgs[pidx + pcount]->flags & PG_FAKE) {
571 pcount++;
572 }
573 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
574 (offset - trunc_page(offset)));
575 }
576
577 /*
578 * if this block isn't allocated, zero it instead of
579 * reading it. unless we are going to allocate blocks,
580 * mark the pages we zeroed PG_RDONLY.
581 */
582
583 if (blkno == (daddr_t)-1) {
584 int holepages = (round_page(offset + iobytes) -
585 trunc_page(offset)) >> PAGE_SHIFT;
586 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
587
588 sawhole = true;
589 memset((char *)kva + (offset - startoffset), 0,
590 iobytes);
591 skipbytes += iobytes;
592
593 for (i = 0; i < holepages; i++) {
594 if (memwrite) {
595 pgs[pidx + i]->flags &= ~PG_CLEAN;
596 }
597 if (!blockalloc) {
598 pgs[pidx + i]->flags |= PG_RDONLY;
599 }
600 }
601 continue;
602 }
603
604 /*
605 * allocate a sub-buf for this piece of the i/o
606 * (or just use mbp if there's only 1 piece),
607 * and start it going.
608 */
609
610 if (offset == startoffset && iobytes == bytes) {
611 bp = mbp;
612 } else {
613 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
614 vp, bp, vp->v_numoutput, 0);
615 bp = getiobuf(vp, true);
616 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
617 }
618 bp->b_lblkno = 0;
619
620 /* adjust physical blkno for partial blocks */
621 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
622 dev_bshift);
623
624 UVMHIST_LOG(ubchist,
625 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
626 bp, offset, bp->b_bcount, bp->b_blkno);
627
628 VOP_STRATEGY(devvp, bp);
629 }
630
631 loopdone:
632 nestiobuf_done(mbp, skipbytes, error);
633 if (async) {
634 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
635 if (!glocked) {
636 genfs_node_unlock(vp);
637 }
638 error = 0;
639 goto out_err_free;
640 }
641 if (bp != NULL) {
642 error = biowait(mbp);
643 }
644
645 /* Remove the mapping (make KVA available as soon as possible) */
646 uvm_pagermapout(kva, npages);
647
648 /*
649 * if this we encountered a hole then we have to do a little more work.
650 * for read faults, we marked the page PG_RDONLY so that future
651 * write accesses to the page will fault again.
652 * for write faults, we must make sure that the backing store for
653 * the page is completely allocated while the pages are locked.
654 */
655
656 if (!error && sawhole && blockalloc) {
657 /*
658 * XXX: This assumes that we come here only via
659 * the mmio path
660 */
661 if (vp->v_mount->mnt_wapbl) {
662 error = WAPBL_BEGIN(vp->v_mount);
663 }
664
665 if (!error) {
666 error = GOP_ALLOC(vp, startoffset,
667 npages << PAGE_SHIFT, 0, cred);
668 if (vp->v_mount->mnt_wapbl) {
669 WAPBL_END(vp->v_mount);
670 }
671 }
672
673 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
674 startoffset, npages << PAGE_SHIFT, error,0);
675 if (!error) {
676 for (i = 0; i < npages; i++) {
677 struct vm_page *pg = pgs[i];
678
679 if (pg == NULL) {
680 continue;
681 }
682 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
683 UVMHIST_LOG(ubchist, "mark dirty pg %p",
684 pg,0,0,0);
685 }
686 }
687 }
688 if (!glocked) {
689 genfs_node_unlock(vp);
690 }
691
692 putiobuf(mbp);
693 }
694
695 mutex_enter(&uobj->vmobjlock);
696
697 /*
698 * we're almost done! release the pages...
699 * for errors, we free the pages.
700 * otherwise we activate them and mark them as valid and clean.
701 * also, unbusy pages that were not actually requested.
702 */
703
704 if (error) {
705 for (i = 0; i < npages; i++) {
706 struct vm_page *pg = pgs[i];
707
708 if (pg == NULL) {
709 continue;
710 }
711 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
712 pg, pg->flags, 0,0);
713 if (pg->flags & PG_FAKE) {
714 pg->flags |= PG_RELEASED;
715 }
716 }
717 mutex_enter(&uvm_pageqlock);
718 uvm_page_unbusy(pgs, npages);
719 mutex_exit(&uvm_pageqlock);
720 mutex_exit(&uobj->vmobjlock);
721 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
722 goto out_err_free;
723 }
724
725 out:
726 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
727 error = 0;
728 mutex_enter(&uvm_pageqlock);
729 for (i = 0; i < npages; i++) {
730 struct vm_page *pg = pgs[i];
731 if (pg == NULL) {
732 continue;
733 }
734 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
735 pg, pg->flags, 0,0);
736 if (pg->flags & PG_FAKE && !overwrite) {
737 pg->flags &= ~(PG_FAKE);
738 pmap_clear_modify(pgs[i]);
739 }
740 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
741 if (i < ridx || i >= ridx + orignmempages || async) {
742 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
743 pg, pg->offset,0,0);
744 if (pg->flags & PG_WANTED) {
745 wakeup(pg);
746 }
747 if (pg->flags & PG_FAKE) {
748 KASSERT(overwrite);
749 uvm_pagezero(pg);
750 }
751 if (pg->flags & PG_RELEASED) {
752 uvm_pagefree(pg);
753 continue;
754 }
755 uvm_pageenqueue(pg);
756 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
757 UVM_PAGE_OWN(pg, NULL);
758 }
759 }
760 mutex_exit(&uvm_pageqlock);
761 if (memwrite) {
762 genfs_markdirty(vp);
763 }
764 mutex_exit(&uobj->vmobjlock);
765 if (ap->a_m != NULL) {
766 memcpy(ap->a_m, &pgs[ridx],
767 orignmempages * sizeof(struct vm_page *));
768 }
769
770 out_err_free:
771 if (pgs != NULL && pgs != pgs_onstack)
772 kmem_free(pgs, pgs_size);
773 out_err:
774 if (has_trans)
775 fstrans_done(vp->v_mount);
776 return error;
777 }
778
779 #ifdef XIP
780 /*
781 * genfs_do_getpages_xip
782 * Return "direct pages" of XIP vnode. The block addresses of XIP
783 * vnode pages are returned back to the VM fault handler as the
784 * actually mapped physical addresses.
785 */
786 static int
787 genfs_do_getpages_xip(void *v)
788 {
789 struct vop_getpages_args /* {
790 struct vnode *a_vp;
791 voff_t a_offset;
792 struct vm_page **a_m;
793 int *a_count;
794 int a_centeridx;
795 vm_prot_t a_access_type;
796 int a_advice;
797 int a_flags;
798 } */ * const ap = v;
799
800 return genfs_do_getpages_xip1(
801 ap->a_vp,
802 ap->a_offset,
803 ap->a_m,
804 ap->a_count,
805 ap->a_centeridx,
806 ap->a_access_type,
807 ap->a_advice,
808 ap->a_flags);
809 }
810
811 static int
812 genfs_do_getpages_xip1(
813 struct vnode *vp,
814 voff_t offset,
815 struct vm_page **pps,
816 int *npagesp,
817 int centeridx,
818 vm_prot_t access_type,
819 int advice,
820 int flags)
821 {
822 struct uvm_object * const uobj = &vp->v_uobj;
823
824 int error;
825 off_t eof, sbkoff, ebkoff, off;
826 int npages;
827 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
828 int i;
829 struct vm_page *zero_page;
830
831 UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
832
833 KASSERT((vp->v_vflag & VV_XIP) != 0);
834
835 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
836 npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
837
838 fs_bshift = vp->v_mount->mnt_fs_bshift;
839 fs_bsize = 1 << fs_bshift;
840 dev_bshift = vp->v_mount->mnt_dev_bshift;
841 dev_bsize = 1 << dev_bshift;
842
843 sbkoff = offset & ~(fs_bsize - 1);
844 ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
845 ~(fs_bsize - 1);
846
847 zero_page = NULL;
848
849 UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
850 npages, (long)sbkoff, (long)ebkoff, 0);
851
852 KASSERT(mutex_owned(&uobj->vmobjlock));
853 mutex_exit(&uobj->vmobjlock);
854
855 off = offset;
856 for (i = 0; i < npages; i++) {
857 daddr_t lbn, blkno;
858 int run;
859 struct vnode *devvp;
860
861 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
862
863 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
864 KASSERT(error == 0);
865 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
866 (long)lbn, (long)blkno, run, 0);
867
868 /*
869 * XIP page metadata assignment
870 * - Unallocated block is redirected to the dedicated zero'ed
871 * page.
872 * - Assume that struct vm_page *[] array of this segment is
873 * allocated and linearly ordered by physical address.
874 */
875 if (blkno < 0) {
876 zero_page = uvm_page_zeropage_alloc();
877 KASSERT(zero_page != NULL);
878 pps[i] = zero_page;
879 } else {
880 struct vm_physseg *seg;
881 daddr_t seg_off;
882 struct vm_page *pg;
883
884 seg = devvp->v_physseg;
885 KASSERT(seg != NULL);
886 /* bus_space_mmap cookie -> paddr_t */
887 seg_off = (blkno << dev_bshift) +
888 (off - (lbn << fs_bshift));
889 KASSERT((seg_off & PAGE_MASK) == 0);
890 pg = seg->pgs + (seg_off >> PAGE_SHIFT);
891 KASSERT(pg->phys_addr ==
892 (seg->start << PAGE_SHIFT) + seg_off);
893
894 pps[i] = pg;
895 }
896
897 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
898 i,
899 (long)pps[i]->phys_addr,
900 pps[i],
901 0);
902
903 off += PAGE_SIZE;
904 }
905
906 mutex_enter(&uobj->vmobjlock);
907
908 for (i = 0; i < npages; i++) {
909 struct vm_page *pg = pps[i];
910
911 KASSERT((pg->flags & PG_RDONLY) != 0);
912 if (pg == zero_page) {
913 } else {
914 KASSERT((pg->flags & PG_BUSY) == 0);
915 KASSERT((pg->flags & PG_CLEAN) != 0);
916 KASSERT((pg->flags & PG_DEVICE) != 0);
917 pg->flags |= PG_BUSY;
918 pg->flags &= ~PG_FAKE;
919 pg->uobject = &vp->v_uobj;
920 }
921 }
922
923 if ((flags & PGO_LOCKED) == 0)
924 mutex_exit(&uobj->vmobjlock);
925
926 *npagesp = npages;
927
928 return 0;
929 }
930 #endif
931
932 /*
933 * generic VM putpages routine.
934 * Write the given range of pages to backing store.
935 *
936 * => "offhi == 0" means flush all pages at or after "offlo".
937 * => object should be locked by caller. we return with the
938 * object unlocked.
939 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
940 * thus, a caller might want to unlock higher level resources
941 * (e.g. vm_map) before calling flush.
942 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
943 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
944 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
945 * that new pages are inserted on the tail end of the list. thus,
946 * we can make a complete pass through the object in one go by starting
947 * at the head and working towards the tail (new pages are put in
948 * front of us).
949 * => NOTE: we are allowed to lock the page queues, so the caller
950 * must not be holding the page queue lock.
951 *
952 * note on "cleaning" object and PG_BUSY pages:
953 * this routine is holding the lock on the object. the only time
954 * that it can run into a PG_BUSY page that it does not own is if
955 * some other process has started I/O on the page (e.g. either
956 * a pagein, or a pageout). if the PG_BUSY page is being paged
957 * in, then it can not be dirty (!PG_CLEAN) because no one has
958 * had a chance to modify it yet. if the PG_BUSY page is being
959 * paged out then it means that someone else has already started
960 * cleaning the page for us (how nice!). in this case, if we
961 * have syncio specified, then after we make our pass through the
962 * object we need to wait for the other PG_BUSY pages to clear
963 * off (i.e. we need to do an iosync). also note that once a
964 * page is PG_BUSY it must stay in its object until it is un-busyed.
965 *
966 * note on page traversal:
967 * we can traverse the pages in an object either by going down the
968 * linked list in "uobj->memq", or we can go over the address range
969 * by page doing hash table lookups for each address. depending
970 * on how many pages are in the object it may be cheaper to do one
971 * or the other. we set "by_list" to true if we are using memq.
972 * if the cost of a hash lookup was equal to the cost of the list
973 * traversal we could compare the number of pages in the start->stop
974 * range to the total number of pages in the object. however, it
975 * seems that a hash table lookup is more expensive than the linked
976 * list traversal, so we multiply the number of pages in the
977 * range by an estimate of the relatively higher cost of the hash lookup.
978 */
979
980 int
981 genfs_putpages(void *v)
982 {
983 struct vop_putpages_args /* {
984 struct vnode *a_vp;
985 voff_t a_offlo;
986 voff_t a_offhi;
987 int a_flags;
988 } */ * const ap = v;
989
990 #ifdef XIP
991 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
992 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
993 ap->a_flags, NULL);
994 else
995 #endif
996 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
997 ap->a_flags, NULL);
998 }
999
1000 int
1001 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1002 int origflags, struct vm_page **busypg)
1003 {
1004 struct uvm_object * const uobj = &vp->v_uobj;
1005 kmutex_t * const slock = &uobj->vmobjlock;
1006 off_t off;
1007 /* Even for strange MAXPHYS, the shift rounds down to a page */
1008 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1009 int i, error, npages, nback;
1010 int freeflag;
1011 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1012 bool wasclean, by_list, needs_clean, yld;
1013 bool async = (origflags & PGO_SYNCIO) == 0;
1014 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1015 struct lwp * const l = curlwp ? curlwp : &lwp0;
1016 struct genfs_node * const gp = VTOG(vp);
1017 int flags;
1018 int dirtygen;
1019 bool modified;
1020 bool need_wapbl;
1021 bool has_trans;
1022 bool cleanall;
1023 bool onworklst;
1024
1025 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1026
1027 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1028 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1029 KASSERT(startoff < endoff || endoff == 0);
1030
1031 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1032 vp, uobj->uo_npages, startoff, endoff - startoff);
1033
1034 has_trans = false;
1035 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1036 (origflags & PGO_JOURNALLOCKED) == 0);
1037
1038 retry:
1039 modified = false;
1040 flags = origflags;
1041 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1042 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1043 if (uobj->uo_npages == 0) {
1044 if (vp->v_iflag & VI_ONWORKLST) {
1045 vp->v_iflag &= ~VI_WRMAPDIRTY;
1046 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1047 vn_syncer_remove_from_worklist(vp);
1048 }
1049 if (has_trans) {
1050 if (need_wapbl)
1051 WAPBL_END(vp->v_mount);
1052 fstrans_done(vp->v_mount);
1053 }
1054 mutex_exit(slock);
1055 return (0);
1056 }
1057
1058 /*
1059 * the vnode has pages, set up to process the request.
1060 */
1061
1062 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1063 mutex_exit(slock);
1064 if (pagedaemon) {
1065 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1066 if (error)
1067 return error;
1068 } else
1069 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1070 if (need_wapbl) {
1071 error = WAPBL_BEGIN(vp->v_mount);
1072 if (error) {
1073 fstrans_done(vp->v_mount);
1074 return error;
1075 }
1076 }
1077 has_trans = true;
1078 mutex_enter(slock);
1079 goto retry;
1080 }
1081
1082 error = 0;
1083 wasclean = (vp->v_numoutput == 0);
1084 off = startoff;
1085 if (endoff == 0 || flags & PGO_ALLPAGES) {
1086 endoff = trunc_page(LLONG_MAX);
1087 }
1088 by_list = (uobj->uo_npages <=
1089 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1090
1091 #if !defined(DEBUG)
1092 /*
1093 * if this vnode is known not to have dirty pages,
1094 * don't bother to clean it out.
1095 */
1096
1097 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1098 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1099 goto skip_scan;
1100 }
1101 flags &= ~PGO_CLEANIT;
1102 }
1103 #endif /* !defined(DEBUG) */
1104
1105 /*
1106 * start the loop. when scanning by list, hold the last page
1107 * in the list before we start. pages allocated after we start
1108 * will be added to the end of the list, so we can stop at the
1109 * current last page.
1110 */
1111
1112 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1113 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1114 (vp->v_iflag & VI_ONWORKLST) != 0;
1115 dirtygen = gp->g_dirtygen;
1116 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1117 if (by_list) {
1118 curmp.flags = PG_MARKER;
1119 endmp.flags = PG_MARKER;
1120 pg = TAILQ_FIRST(&uobj->memq);
1121 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1122 } else {
1123 pg = uvm_pagelookup(uobj, off);
1124 }
1125 nextpg = NULL;
1126 while (by_list || off < endoff) {
1127
1128 /*
1129 * if the current page is not interesting, move on to the next.
1130 */
1131
1132 KASSERT(pg == NULL || pg->uobject == uobj ||
1133 (pg->flags & PG_MARKER) != 0);
1134 KASSERT(pg == NULL ||
1135 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1136 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1137 if (by_list) {
1138 if (pg == &endmp) {
1139 break;
1140 }
1141 if (pg->flags & PG_MARKER) {
1142 pg = TAILQ_NEXT(pg, listq.queue);
1143 continue;
1144 }
1145 if (pg->offset < startoff || pg->offset >= endoff ||
1146 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1147 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1148 wasclean = false;
1149 }
1150 pg = TAILQ_NEXT(pg, listq.queue);
1151 continue;
1152 }
1153 off = pg->offset;
1154 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1155 if (pg != NULL) {
1156 wasclean = false;
1157 }
1158 off += PAGE_SIZE;
1159 if (off < endoff) {
1160 pg = uvm_pagelookup(uobj, off);
1161 }
1162 continue;
1163 }
1164
1165 /*
1166 * if the current page needs to be cleaned and it's busy,
1167 * wait for it to become unbusy.
1168 */
1169
1170 yld = (l->l_cpu->ci_schedstate.spc_flags &
1171 SPCF_SHOULDYIELD) && !pagedaemon;
1172 if (pg->flags & PG_BUSY || yld) {
1173 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1174 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1175 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1176 error = EDEADLK;
1177 if (busypg != NULL)
1178 *busypg = pg;
1179 break;
1180 }
1181 if (pagedaemon) {
1182 /*
1183 * someone has taken the page while we
1184 * dropped the lock for fstrans_start.
1185 */
1186 break;
1187 }
1188 if (by_list) {
1189 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1190 UVMHIST_LOG(ubchist, "curmp next %p",
1191 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1192 }
1193 if (yld) {
1194 mutex_exit(slock);
1195 preempt();
1196 mutex_enter(slock);
1197 } else {
1198 pg->flags |= PG_WANTED;
1199 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1200 mutex_enter(slock);
1201 }
1202 if (by_list) {
1203 UVMHIST_LOG(ubchist, "after next %p",
1204 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1205 pg = TAILQ_NEXT(&curmp, listq.queue);
1206 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1207 } else {
1208 pg = uvm_pagelookup(uobj, off);
1209 }
1210 continue;
1211 }
1212
1213 /*
1214 * if we're freeing, remove all mappings of the page now.
1215 * if we're cleaning, check if the page is needs to be cleaned.
1216 */
1217
1218 if (flags & PGO_FREE) {
1219 pmap_page_protect(pg, VM_PROT_NONE);
1220 } else if (flags & PGO_CLEANIT) {
1221
1222 /*
1223 * if we still have some hope to pull this vnode off
1224 * from the syncer queue, write-protect the page.
1225 */
1226
1227 if (cleanall && wasclean &&
1228 gp->g_dirtygen == dirtygen) {
1229
1230 /*
1231 * uobj pages get wired only by uvm_fault
1232 * where uobj is locked.
1233 */
1234
1235 if (pg->wire_count == 0) {
1236 pmap_page_protect(pg,
1237 VM_PROT_READ|VM_PROT_EXECUTE);
1238 } else {
1239 cleanall = false;
1240 }
1241 }
1242 }
1243
1244 if (flags & PGO_CLEANIT) {
1245 needs_clean = pmap_clear_modify(pg) ||
1246 (pg->flags & PG_CLEAN) == 0;
1247 pg->flags |= PG_CLEAN;
1248 } else {
1249 needs_clean = false;
1250 }
1251
1252 /*
1253 * if we're cleaning, build a cluster.
1254 * the cluster will consist of pages which are currently dirty,
1255 * but they will be returned to us marked clean.
1256 * if not cleaning, just operate on the one page.
1257 */
1258
1259 if (needs_clean) {
1260 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1261 wasclean = false;
1262 memset(pgs, 0, sizeof(pgs));
1263 pg->flags |= PG_BUSY;
1264 UVM_PAGE_OWN(pg, "genfs_putpages");
1265
1266 /*
1267 * first look backward.
1268 */
1269
1270 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1271 nback = npages;
1272 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1273 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1274 if (nback) {
1275 memmove(&pgs[0], &pgs[npages - nback],
1276 nback * sizeof(pgs[0]));
1277 if (npages - nback < nback)
1278 memset(&pgs[nback], 0,
1279 (npages - nback) * sizeof(pgs[0]));
1280 else
1281 memset(&pgs[npages - nback], 0,
1282 nback * sizeof(pgs[0]));
1283 }
1284
1285 /*
1286 * then plug in our page of interest.
1287 */
1288
1289 pgs[nback] = pg;
1290
1291 /*
1292 * then look forward to fill in the remaining space in
1293 * the array of pages.
1294 */
1295
1296 npages = maxpages - nback - 1;
1297 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1298 &pgs[nback + 1],
1299 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1300 npages += nback + 1;
1301 } else {
1302 pgs[0] = pg;
1303 npages = 1;
1304 nback = 0;
1305 }
1306
1307 /*
1308 * apply FREE or DEACTIVATE options if requested.
1309 */
1310
1311 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1312 mutex_enter(&uvm_pageqlock);
1313 }
1314 for (i = 0; i < npages; i++) {
1315 tpg = pgs[i];
1316 KASSERT(tpg->uobject == uobj);
1317 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1318 pg = tpg;
1319 if (tpg->offset < startoff || tpg->offset >= endoff)
1320 continue;
1321 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1322 uvm_pagedeactivate(tpg);
1323 } else if (flags & PGO_FREE) {
1324 pmap_page_protect(tpg, VM_PROT_NONE);
1325 if (tpg->flags & PG_BUSY) {
1326 tpg->flags |= freeflag;
1327 if (pagedaemon) {
1328 uvm_pageout_start(1);
1329 uvm_pagedequeue(tpg);
1330 }
1331 } else {
1332
1333 /*
1334 * ``page is not busy''
1335 * implies that npages is 1
1336 * and needs_clean is false.
1337 */
1338
1339 nextpg = TAILQ_NEXT(tpg, listq.queue);
1340 uvm_pagefree(tpg);
1341 if (pagedaemon)
1342 uvmexp.pdfreed++;
1343 }
1344 }
1345 }
1346 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1347 mutex_exit(&uvm_pageqlock);
1348 }
1349 if (needs_clean) {
1350 modified = true;
1351
1352 /*
1353 * start the i/o. if we're traversing by list,
1354 * keep our place in the list with a marker page.
1355 */
1356
1357 if (by_list) {
1358 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1359 listq.queue);
1360 }
1361 mutex_exit(slock);
1362 error = GOP_WRITE(vp, pgs, npages, flags);
1363 mutex_enter(slock);
1364 if (by_list) {
1365 pg = TAILQ_NEXT(&curmp, listq.queue);
1366 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1367 }
1368 if (error) {
1369 break;
1370 }
1371 if (by_list) {
1372 continue;
1373 }
1374 }
1375
1376 /*
1377 * find the next page and continue if there was no error.
1378 */
1379
1380 if (by_list) {
1381 if (nextpg) {
1382 pg = nextpg;
1383 nextpg = NULL;
1384 } else {
1385 pg = TAILQ_NEXT(pg, listq.queue);
1386 }
1387 } else {
1388 off += (npages - nback) << PAGE_SHIFT;
1389 if (off < endoff) {
1390 pg = uvm_pagelookup(uobj, off);
1391 }
1392 }
1393 }
1394 if (by_list) {
1395 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1396 }
1397
1398 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1399 (vp->v_type != VBLK ||
1400 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1401 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1402 }
1403
1404 /*
1405 * if we're cleaning and there was nothing to clean,
1406 * take us off the syncer list. if we started any i/o
1407 * and we're doing sync i/o, wait for all writes to finish.
1408 */
1409
1410 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1411 (vp->v_iflag & VI_ONWORKLST) != 0) {
1412 #if defined(DEBUG)
1413 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1414 if ((pg->flags & PG_MARKER) != 0) {
1415 continue;
1416 }
1417 if ((pg->flags & PG_CLEAN) == 0) {
1418 printf("%s: %p: !CLEAN\n", __func__, pg);
1419 }
1420 if (pmap_is_modified(pg)) {
1421 printf("%s: %p: modified\n", __func__, pg);
1422 }
1423 }
1424 #endif /* defined(DEBUG) */
1425 vp->v_iflag &= ~VI_WRMAPDIRTY;
1426 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1427 vn_syncer_remove_from_worklist(vp);
1428 }
1429
1430 #if !defined(DEBUG)
1431 skip_scan:
1432 #endif /* !defined(DEBUG) */
1433
1434 /* Wait for output to complete. */
1435 if (!wasclean && !async && vp->v_numoutput != 0) {
1436 while (vp->v_numoutput != 0)
1437 cv_wait(&vp->v_cv, slock);
1438 }
1439 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1440 mutex_exit(slock);
1441
1442 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1443 /*
1444 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1445 * retrying is not a big deal because, in many cases,
1446 * uobj->uo_npages is already 0 here.
1447 */
1448 mutex_enter(slock);
1449 goto retry;
1450 }
1451
1452 if (has_trans) {
1453 if (need_wapbl)
1454 WAPBL_END(vp->v_mount);
1455 fstrans_done(vp->v_mount);
1456 }
1457
1458 return (error);
1459 }
1460
1461 #ifdef XIP
1462 int
1463 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1464 int flags, struct vm_page **busypg)
1465 {
1466 struct uvm_object *uobj = &vp->v_uobj;
1467 #ifdef DIAGNOSTIC
1468 struct genfs_node * const gp = VTOG(vp);
1469 #endif
1470
1471 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1472
1473 KASSERT(mutex_owned(&uobj->vmobjlock));
1474 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1475 KASSERT(vp->v_numoutput == 0);
1476 KASSERT(gp->g_dirtygen == 0);
1477
1478 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1479 vp, uobj->uo_npages, startoff, endoff - startoff);
1480
1481 /*
1482 * XIP pages are read-only, and never become dirty. They're also never
1483 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1484 * pages, so we ignore them.
1485 */
1486 if ((flags & PGO_FREE) == 0)
1487 goto done;
1488
1489 /*
1490 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1491 * mappings of both XIP pages and XIP zero pages.
1492 *
1493 * Zero page is freed when one of its mapped offset is freed, even if
1494 * one file (vnode) has many holes and mapping its zero page to all
1495 * of those hole pages.
1496 *
1497 * We don't know which pages are currently mapped in the given vnode,
1498 * because XIP pages are not added to vnode. What we can do is to
1499 * locate pages by querying the filesystem as done in getpages. Call
1500 * genfs_do_getpages_xip1().
1501 */
1502
1503 off_t off, eof;
1504 struct vm_page *zero_page;
1505 bool put_zero_page;
1506
1507 off = trunc_page(startoff);
1508 if (endoff == 0 || (flags & PGO_ALLPAGES))
1509 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1510 else
1511 eof = endoff;
1512
1513 zero_page = uvm_pagelookup(uobj, 0);
1514 KASSERT(zero_page != NULL || uobj->uo_npages == 0);
1515 KASSERT(zero_page == NULL || uobj->uo_npages == 1);
1516 put_zero_page = false;
1517
1518 while (off < eof) {
1519 int npages, orignpages, error, i;
1520 struct vm_page *pgs[maxpages], *pg;
1521
1522 npages = round_page(eof - off) >> PAGE_SHIFT;
1523 if (npages > maxpages)
1524 npages = maxpages;
1525
1526 orignpages = npages;
1527 KASSERT(mutex_owned(&uobj->vmobjlock));
1528 error = genfs_do_getpages_xip1(vp, off, pgs, &npages, 0,
1529 VM_PROT_ALL, 0, PGO_LOCKED);
1530 KASSERT(error == 0);
1531 KASSERT(npages == orignpages);
1532 KASSERT(mutex_owned(&uobj->vmobjlock));
1533 for (i = 0; i < npages; i++) {
1534 pg = pgs[i];
1535 if (pg == NULL || pg == PGO_DONTCARE)
1536 continue;
1537 if (pg == uvm_page_zeropage) {
1538 /* Do nothing for holes. */
1539 } else {
1540 /*
1541 * Freeing normal XIP pages; nothing to do.
1542 */
1543 pmap_page_protect(pg, VM_PROT_NONE);
1544 KASSERT((pg->flags & PG_BUSY) != 0);
1545 KASSERT((pg->flags & PG_RDONLY) != 0);
1546 KASSERT((pg->flags & PG_CLEAN) != 0);
1547 KASSERT((pg->flags & PG_FAKE) == 0);
1548 KASSERT((pg->flags & PG_DEVICE) != 0);
1549 pg->flags &= ~PG_BUSY;
1550 }
1551 }
1552 off += npages << PAGE_SHIFT;
1553 }
1554
1555 KASSERT(uobj->uo_npages == 0);
1556
1557 done:
1558 KASSERT(mutex_owned(&uobj->vmobjlock));
1559 mutex_exit(&uobj->vmobjlock);
1560 return 0;
1561 }
1562 #endif
1563
1564 int
1565 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1566 {
1567 off_t off;
1568 vaddr_t kva;
1569 size_t len;
1570 int error;
1571 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1572
1573 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1574 vp, pgs, npages, flags);
1575
1576 off = pgs[0]->offset;
1577 kva = uvm_pagermapin(pgs, npages,
1578 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1579 len = npages << PAGE_SHIFT;
1580
1581 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1582 uvm_aio_biodone);
1583
1584 return error;
1585 }
1586
1587 int
1588 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1589 {
1590 off_t off;
1591 vaddr_t kva;
1592 size_t len;
1593 int error;
1594 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1595
1596 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1597 vp, pgs, npages, flags);
1598
1599 off = pgs[0]->offset;
1600 kva = uvm_pagermapin(pgs, npages,
1601 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1602 len = npages << PAGE_SHIFT;
1603
1604 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1605 uvm_aio_biodone);
1606
1607 return error;
1608 }
1609
1610 /*
1611 * Backend routine for doing I/O to vnode pages. Pages are already locked
1612 * and mapped into kernel memory. Here we just look up the underlying
1613 * device block addresses and call the strategy routine.
1614 */
1615
1616 static int
1617 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1618 enum uio_rw rw, void (*iodone)(struct buf *))
1619 {
1620 int s, error;
1621 int fs_bshift, dev_bshift;
1622 off_t eof, offset, startoffset;
1623 size_t bytes, iobytes, skipbytes;
1624 struct buf *mbp, *bp;
1625 const bool async = (flags & PGO_SYNCIO) == 0;
1626 const bool iowrite = rw == UIO_WRITE;
1627 const int brw = iowrite ? B_WRITE : B_READ;
1628 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1629
1630 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1631 vp, kva, len, flags);
1632
1633 KASSERT(vp->v_size <= vp->v_writesize);
1634 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1635 if (vp->v_type != VBLK) {
1636 fs_bshift = vp->v_mount->mnt_fs_bshift;
1637 dev_bshift = vp->v_mount->mnt_dev_bshift;
1638 } else {
1639 fs_bshift = DEV_BSHIFT;
1640 dev_bshift = DEV_BSHIFT;
1641 }
1642 error = 0;
1643 startoffset = off;
1644 bytes = MIN(len, eof - startoffset);
1645 skipbytes = 0;
1646 KASSERT(bytes != 0);
1647
1648 if (iowrite) {
1649 mutex_enter(&vp->v_interlock);
1650 vp->v_numoutput += 2;
1651 mutex_exit(&vp->v_interlock);
1652 }
1653 mbp = getiobuf(vp, true);
1654 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1655 vp, mbp, vp->v_numoutput, bytes);
1656 mbp->b_bufsize = len;
1657 mbp->b_data = (void *)kva;
1658 mbp->b_resid = mbp->b_bcount = bytes;
1659 mbp->b_cflags = BC_BUSY | BC_AGE;
1660 if (async) {
1661 mbp->b_flags = brw | B_ASYNC;
1662 mbp->b_iodone = iodone;
1663 } else {
1664 mbp->b_flags = brw;
1665 mbp->b_iodone = NULL;
1666 }
1667 if (curlwp == uvm.pagedaemon_lwp)
1668 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1669 else if (async)
1670 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1671 else
1672 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1673
1674 bp = NULL;
1675 for (offset = startoffset;
1676 bytes > 0;
1677 offset += iobytes, bytes -= iobytes) {
1678 int run;
1679 daddr_t lbn, blkno;
1680 struct vnode *devvp;
1681
1682 /*
1683 * bmap the file to find out the blkno to read from and
1684 * how much we can read in one i/o. if bmap returns an error,
1685 * skip the rest of the top-level i/o.
1686 */
1687
1688 lbn = offset >> fs_bshift;
1689 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1690 if (error) {
1691 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1692 lbn,error,0,0);
1693 skipbytes += bytes;
1694 bytes = 0;
1695 goto loopdone;
1696 }
1697
1698 /*
1699 * see how many pages can be read with this i/o.
1700 * reduce the i/o size if necessary to avoid
1701 * overwriting pages with valid data.
1702 */
1703
1704 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1705 bytes);
1706
1707 /*
1708 * if this block isn't allocated, zero it instead of
1709 * reading it. unless we are going to allocate blocks,
1710 * mark the pages we zeroed PG_RDONLY.
1711 */
1712
1713 if (blkno == (daddr_t)-1) {
1714 if (!iowrite) {
1715 memset((char *)kva + (offset - startoffset), 0,
1716 iobytes);
1717 }
1718 skipbytes += iobytes;
1719 continue;
1720 }
1721
1722 /*
1723 * allocate a sub-buf for this piece of the i/o
1724 * (or just use mbp if there's only 1 piece),
1725 * and start it going.
1726 */
1727
1728 if (offset == startoffset && iobytes == bytes) {
1729 bp = mbp;
1730 } else {
1731 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1732 vp, bp, vp->v_numoutput, 0);
1733 bp = getiobuf(vp, true);
1734 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1735 }
1736 bp->b_lblkno = 0;
1737
1738 /* adjust physical blkno for partial blocks */
1739 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1740 dev_bshift);
1741
1742 UVMHIST_LOG(ubchist,
1743 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1744 bp, offset, bp->b_bcount, bp->b_blkno);
1745
1746 VOP_STRATEGY(devvp, bp);
1747 }
1748
1749 loopdone:
1750 if (skipbytes) {
1751 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1752 }
1753 nestiobuf_done(mbp, skipbytes, error);
1754 if (async) {
1755 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1756 return (0);
1757 }
1758 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1759 error = biowait(mbp);
1760 s = splbio();
1761 (*iodone)(mbp);
1762 splx(s);
1763 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1764 return (error);
1765 }
1766
1767 int
1768 genfs_compat_getpages(void *v)
1769 {
1770 struct vop_getpages_args /* {
1771 struct vnode *a_vp;
1772 voff_t a_offset;
1773 struct vm_page **a_m;
1774 int *a_count;
1775 int a_centeridx;
1776 vm_prot_t a_access_type;
1777 int a_advice;
1778 int a_flags;
1779 } */ *ap = v;
1780
1781 off_t origoffset;
1782 struct vnode *vp = ap->a_vp;
1783 struct uvm_object *uobj = &vp->v_uobj;
1784 struct vm_page *pg, **pgs;
1785 vaddr_t kva;
1786 int i, error, orignpages, npages;
1787 struct iovec iov;
1788 struct uio uio;
1789 kauth_cred_t cred = curlwp->l_cred;
1790 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1791
1792 error = 0;
1793 origoffset = ap->a_offset;
1794 orignpages = *ap->a_count;
1795 pgs = ap->a_m;
1796
1797 if (ap->a_flags & PGO_LOCKED) {
1798 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1799 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1800
1801 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1802 if (error == 0 && memwrite) {
1803 genfs_markdirty(vp);
1804 }
1805 return error;
1806 }
1807 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1808 mutex_exit(&uobj->vmobjlock);
1809 return EINVAL;
1810 }
1811 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1812 mutex_exit(&uobj->vmobjlock);
1813 return 0;
1814 }
1815 npages = orignpages;
1816 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1817 mutex_exit(&uobj->vmobjlock);
1818 kva = uvm_pagermapin(pgs, npages,
1819 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1820 for (i = 0; i < npages; i++) {
1821 pg = pgs[i];
1822 if ((pg->flags & PG_FAKE) == 0) {
1823 continue;
1824 }
1825 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1826 iov.iov_len = PAGE_SIZE;
1827 uio.uio_iov = &iov;
1828 uio.uio_iovcnt = 1;
1829 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1830 uio.uio_rw = UIO_READ;
1831 uio.uio_resid = PAGE_SIZE;
1832 UIO_SETUP_SYSSPACE(&uio);
1833 /* XXX vn_lock */
1834 error = VOP_READ(vp, &uio, 0, cred);
1835 if (error) {
1836 break;
1837 }
1838 if (uio.uio_resid) {
1839 memset(iov.iov_base, 0, uio.uio_resid);
1840 }
1841 }
1842 uvm_pagermapout(kva, npages);
1843 mutex_enter(&uobj->vmobjlock);
1844 mutex_enter(&uvm_pageqlock);
1845 for (i = 0; i < npages; i++) {
1846 pg = pgs[i];
1847 if (error && (pg->flags & PG_FAKE) != 0) {
1848 pg->flags |= PG_RELEASED;
1849 } else {
1850 pmap_clear_modify(pg);
1851 uvm_pageactivate(pg);
1852 }
1853 }
1854 if (error) {
1855 uvm_page_unbusy(pgs, npages);
1856 }
1857 mutex_exit(&uvm_pageqlock);
1858 if (error == 0 && memwrite) {
1859 genfs_markdirty(vp);
1860 }
1861 mutex_exit(&uobj->vmobjlock);
1862 return error;
1863 }
1864
1865 int
1866 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1867 int flags)
1868 {
1869 off_t offset;
1870 struct iovec iov;
1871 struct uio uio;
1872 kauth_cred_t cred = curlwp->l_cred;
1873 struct buf *bp;
1874 vaddr_t kva;
1875 int error;
1876
1877 offset = pgs[0]->offset;
1878 kva = uvm_pagermapin(pgs, npages,
1879 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1880
1881 iov.iov_base = (void *)kva;
1882 iov.iov_len = npages << PAGE_SHIFT;
1883 uio.uio_iov = &iov;
1884 uio.uio_iovcnt = 1;
1885 uio.uio_offset = offset;
1886 uio.uio_rw = UIO_WRITE;
1887 uio.uio_resid = npages << PAGE_SHIFT;
1888 UIO_SETUP_SYSSPACE(&uio);
1889 /* XXX vn_lock */
1890 error = VOP_WRITE(vp, &uio, 0, cred);
1891
1892 mutex_enter(&vp->v_interlock);
1893 vp->v_numoutput++;
1894 mutex_exit(&vp->v_interlock);
1895
1896 bp = getiobuf(vp, true);
1897 bp->b_cflags = BC_BUSY | BC_AGE;
1898 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1899 bp->b_data = (char *)kva;
1900 bp->b_bcount = npages << PAGE_SHIFT;
1901 bp->b_bufsize = npages << PAGE_SHIFT;
1902 bp->b_resid = 0;
1903 bp->b_error = error;
1904 uvm_aio_aiodone(bp);
1905 return (error);
1906 }
1907
1908 /*
1909 * Process a uio using direct I/O. If we reach a part of the request
1910 * which cannot be processed in this fashion for some reason, just return.
1911 * The caller must handle some additional part of the request using
1912 * buffered I/O before trying direct I/O again.
1913 */
1914
1915 void
1916 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1917 {
1918 struct vmspace *vs;
1919 struct iovec *iov;
1920 vaddr_t va;
1921 size_t len;
1922 const int mask = DEV_BSIZE - 1;
1923 int error;
1924 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1925 (ioflag & IO_JOURNALLOCKED) == 0);
1926
1927 /*
1928 * We only support direct I/O to user space for now.
1929 */
1930
1931 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1932 return;
1933 }
1934
1935 /*
1936 * If the vnode is mapped, we would need to get the getpages lock
1937 * to stabilize the bmap, but then we would get into trouble whil e
1938 * locking the pages if the pages belong to this same vnode (or a
1939 * multi-vnode cascade to the same effect). Just fall back to
1940 * buffered I/O if the vnode is mapped to avoid this mess.
1941 */
1942
1943 if (vp->v_vflag & VV_MAPPED) {
1944 return;
1945 }
1946
1947 if (need_wapbl) {
1948 error = WAPBL_BEGIN(vp->v_mount);
1949 if (error)
1950 return;
1951 }
1952
1953 /*
1954 * Do as much of the uio as possible with direct I/O.
1955 */
1956
1957 vs = uio->uio_vmspace;
1958 while (uio->uio_resid) {
1959 iov = uio->uio_iov;
1960 if (iov->iov_len == 0) {
1961 uio->uio_iov++;
1962 uio->uio_iovcnt--;
1963 continue;
1964 }
1965 va = (vaddr_t)iov->iov_base;
1966 len = MIN(iov->iov_len, genfs_maxdio);
1967 len &= ~mask;
1968
1969 /*
1970 * If the next chunk is smaller than DEV_BSIZE or extends past
1971 * the current EOF, then fall back to buffered I/O.
1972 */
1973
1974 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1975 break;
1976 }
1977
1978 /*
1979 * Check alignment. The file offset must be at least
1980 * sector-aligned. The exact constraint on memory alignment
1981 * is very hardware-dependent, but requiring sector-aligned
1982 * addresses there too is safe.
1983 */
1984
1985 if (uio->uio_offset & mask || va & mask) {
1986 break;
1987 }
1988 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1989 uio->uio_rw);
1990 if (error) {
1991 break;
1992 }
1993 iov->iov_base = (char *)iov->iov_base + len;
1994 iov->iov_len -= len;
1995 uio->uio_offset += len;
1996 uio->uio_resid -= len;
1997 }
1998
1999 if (need_wapbl)
2000 WAPBL_END(vp->v_mount);
2001 }
2002
2003 /*
2004 * Iodone routine for direct I/O. We don't do much here since the request is
2005 * always synchronous, so the caller will do most of the work after biowait().
2006 */
2007
2008 static void
2009 genfs_dio_iodone(struct buf *bp)
2010 {
2011
2012 KASSERT((bp->b_flags & B_ASYNC) == 0);
2013 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2014 mutex_enter(bp->b_objlock);
2015 vwakeup(bp);
2016 mutex_exit(bp->b_objlock);
2017 }
2018 putiobuf(bp);
2019 }
2020
2021 /*
2022 * Process one chunk of a direct I/O request.
2023 */
2024
2025 static int
2026 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2027 off_t off, enum uio_rw rw)
2028 {
2029 struct vm_map *map;
2030 struct pmap *upm, *kpm;
2031 size_t klen = round_page(uva + len) - trunc_page(uva);
2032 off_t spoff, epoff;
2033 vaddr_t kva, puva;
2034 paddr_t pa;
2035 vm_prot_t prot;
2036 int error, rv, poff, koff;
2037 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2038 (rw == UIO_WRITE ? PGO_FREE : 0);
2039
2040 /*
2041 * For writes, verify that this range of the file already has fully
2042 * allocated backing store. If there are any holes, just punt and
2043 * make the caller take the buffered write path.
2044 */
2045
2046 if (rw == UIO_WRITE) {
2047 daddr_t lbn, elbn, blkno;
2048 int bsize, bshift, run;
2049
2050 bshift = vp->v_mount->mnt_fs_bshift;
2051 bsize = 1 << bshift;
2052 lbn = off >> bshift;
2053 elbn = (off + len + bsize - 1) >> bshift;
2054 while (lbn < elbn) {
2055 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2056 if (error) {
2057 return error;
2058 }
2059 if (blkno == (daddr_t)-1) {
2060 return ENOSPC;
2061 }
2062 lbn += 1 + run;
2063 }
2064 }
2065
2066 /*
2067 * Flush any cached pages for parts of the file that we're about to
2068 * access. If we're writing, invalidate pages as well.
2069 */
2070
2071 spoff = trunc_page(off);
2072 epoff = round_page(off + len);
2073 mutex_enter(&vp->v_interlock);
2074 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2075 if (error) {
2076 return error;
2077 }
2078
2079 /*
2080 * Wire the user pages and remap them into kernel memory.
2081 */
2082
2083 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2084 error = uvm_vslock(vs, (void *)uva, len, prot);
2085 if (error) {
2086 return error;
2087 }
2088
2089 map = &vs->vm_map;
2090 upm = vm_map_pmap(map);
2091 kpm = vm_map_pmap(kernel_map);
2092 kva = uvm_km_alloc(kernel_map, klen, 0,
2093 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2094 puva = trunc_page(uva);
2095 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2096 rv = pmap_extract(upm, puva + poff, &pa);
2097 KASSERT(rv);
2098 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2099 }
2100 pmap_update(kpm);
2101
2102 /*
2103 * Do the I/O.
2104 */
2105
2106 koff = uva - trunc_page(uva);
2107 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2108 genfs_dio_iodone);
2109
2110 /*
2111 * Tear down the kernel mapping.
2112 */
2113
2114 pmap_remove(kpm, kva, kva + klen);
2115 pmap_update(kpm);
2116 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2117
2118 /*
2119 * Unwire the user pages.
2120 */
2121
2122 uvm_vsunlock(vs, (void *)uva, len);
2123 return error;
2124 }
2125
2126