genfs_io.c revision 1.36.2.33 1 /* $NetBSD: genfs_io.c,v 1.36.2.33 2010/11/18 01:53:04 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.33 2010/11/18 01:53:04 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 static int genfs_do_getpages(void *);
63 #ifdef XIP
64 static int genfs_do_getpages_xip(void *);
65 static int genfs_do_getpages_xip1(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int);
67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
68 struct vm_page **);
69 #endif
70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
71 off_t, enum uio_rw);
72 static void genfs_dio_iodone(struct buf *);
73
74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
75 void (*)(struct buf *));
76 static void genfs_rel_pages(struct vm_page **, int);
77 static void genfs_markdirty(struct vnode *);
78
79 int genfs_maxdio = MAXPHYS;
80
81 static void
82 genfs_rel_pages(struct vm_page **pgs, int npages)
83 {
84 int i;
85
86 for (i = 0; i < npages; i++) {
87 struct vm_page *pg = pgs[i];
88
89 if (pg == NULL || pg == PGO_DONTCARE)
90 continue;
91 if (pg->flags & PG_FAKE) {
92 pg->flags |= PG_RELEASED;
93 }
94 }
95 mutex_enter(&uvm_pageqlock);
96 uvm_page_unbusy(pgs, npages);
97 mutex_exit(&uvm_pageqlock);
98 }
99
100 static void
101 genfs_markdirty(struct vnode *vp)
102 {
103 struct genfs_node * const gp = VTOG(vp);
104
105 KASSERT(mutex_owned(&vp->v_interlock));
106 gp->g_dirtygen++;
107 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
108 vn_syncer_add_to_worklist(vp, filedelay);
109 }
110 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
111 vp->v_iflag |= VI_WRMAPDIRTY;
112 }
113 }
114
115 /*
116 * generic VM getpages routine.
117 * Return PG_BUSY pages for the given range,
118 * reading from backing store if necessary.
119 */
120
121 int
122 genfs_getpages(void *v)
123 {
124 #ifdef XIP
125 struct vop_getpages_args /* {
126 struct vnode *a_vp;
127 voff_t a_offset;
128 struct vm_page **a_m;
129 int *a_count;
130 int a_centeridx;
131 vm_prot_t a_access_type;
132 int a_advice;
133 int a_flags;
134 } */ * const ap = v;
135
136 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
137 return genfs_do_getpages_xip(v);
138 else
139 #endif
140 return genfs_do_getpages(v);
141 }
142
143 static int
144 genfs_do_getpages(void *v)
145 {
146 struct vop_getpages_args /* {
147 struct vnode *a_vp;
148 voff_t a_offset;
149 struct vm_page **a_m;
150 int *a_count;
151 int a_centeridx;
152 vm_prot_t a_access_type;
153 int a_advice;
154 int a_flags;
155 } */ * const ap = v;
156
157 off_t diskeof, memeof;
158 int i, error, npages;
159 const int flags = ap->a_flags;
160 struct vnode * const vp = ap->a_vp;
161 struct uvm_object * const uobj = &vp->v_uobj;
162 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
163 const bool async = (flags & PGO_SYNCIO) == 0;
164 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
165 bool has_trans = false;
166 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
167 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
168 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
169 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
170
171 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
172 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
173
174 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
175 vp->v_type == VLNK || vp->v_type == VBLK);
176
177 startover:
178 error = 0;
179 const voff_t origvsize = vp->v_size;
180 const off_t origoffset = ap->a_offset;
181 const int orignpages = *ap->a_count;
182
183 GOP_SIZE(vp, origvsize, &diskeof, 0);
184 if (flags & PGO_PASTEOF) {
185 off_t newsize;
186 #if defined(DIAGNOSTIC)
187 off_t writeeof;
188 #endif /* defined(DIAGNOSTIC) */
189
190 newsize = MAX(origvsize,
191 origoffset + (orignpages << PAGE_SHIFT));
192 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
193 #if defined(DIAGNOSTIC)
194 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
195 if (newsize > round_page(writeeof)) {
196 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
197 __func__, newsize, round_page(writeeof));
198 }
199 #endif /* defined(DIAGNOSTIC) */
200 } else {
201 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
202 }
203 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
204 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
205 KASSERT(orignpages > 0);
206
207 /*
208 * Bounds-check the request.
209 */
210
211 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
212 if ((flags & PGO_LOCKED) == 0) {
213 mutex_exit(&uobj->vmobjlock);
214 }
215 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
216 origoffset, *ap->a_count, memeof,0);
217 error = EINVAL;
218 goto out_err;
219 }
220
221 /* uobj is locked */
222
223 if ((flags & PGO_NOTIMESTAMP) == 0 &&
224 (vp->v_type != VBLK ||
225 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
226 int updflags = 0;
227
228 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
229 updflags = GOP_UPDATE_ACCESSED;
230 }
231 if (memwrite) {
232 updflags |= GOP_UPDATE_MODIFIED;
233 }
234 if (updflags != 0) {
235 GOP_MARKUPDATE(vp, updflags);
236 }
237 }
238
239 /*
240 * For PGO_LOCKED requests, just return whatever's in memory.
241 */
242
243 if (flags & PGO_LOCKED) {
244 int nfound;
245 struct vm_page *pg;
246
247 KASSERT(!glocked);
248 npages = *ap->a_count;
249 #if defined(DEBUG)
250 for (i = 0; i < npages; i++) {
251 pg = ap->a_m[i];
252 KASSERT(pg == NULL || pg == PGO_DONTCARE);
253 }
254 #endif /* defined(DEBUG) */
255 nfound = uvn_findpages(uobj, origoffset, &npages,
256 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
257 KASSERT(npages == *ap->a_count);
258 if (nfound == 0) {
259 error = EBUSY;
260 goto out_err;
261 }
262 if (!genfs_node_rdtrylock(vp)) {
263 genfs_rel_pages(ap->a_m, npages);
264
265 /*
266 * restore the array.
267 */
268
269 for (i = 0; i < npages; i++) {
270 pg = ap->a_m[i];
271
272 if (pg != NULL && pg != PGO_DONTCARE) {
273 ap->a_m[i] = NULL;
274 }
275 KASSERT(pg == NULL || pg == PGO_DONTCARE);
276 }
277 } else {
278 genfs_node_unlock(vp);
279 }
280 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
281 if (error == 0 && memwrite) {
282 genfs_markdirty(vp);
283 }
284 goto out_err;
285 }
286 mutex_exit(&uobj->vmobjlock);
287
288 /*
289 * find the requested pages and make some simple checks.
290 * leave space in the page array for a whole block.
291 */
292
293 const int fs_bshift = (vp->v_type != VBLK) ?
294 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
295 const int dev_bshift = (vp->v_type != VBLK) ?
296 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
297 const int fs_bsize = 1 << fs_bshift;
298 #define blk_mask (fs_bsize - 1)
299 #define trunc_blk(x) ((x) & ~blk_mask)
300 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
301
302 const int orignmempages = MIN(orignpages,
303 round_page(memeof - origoffset) >> PAGE_SHIFT);
304 npages = orignmempages;
305 const off_t startoffset = trunc_blk(origoffset);
306 const off_t endoffset = MIN(
307 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
308 round_page(memeof));
309 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
310
311 const int pgs_size = sizeof(struct vm_page *) *
312 ((endoffset - startoffset) >> PAGE_SHIFT);
313 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
314
315 if (pgs_size > sizeof(pgs_onstack)) {
316 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
317 if (pgs == NULL) {
318 pgs = pgs_onstack;
319 error = ENOMEM;
320 goto out_err;
321 }
322 } else {
323 pgs = pgs_onstack;
324 (void)memset(pgs, 0, pgs_size);
325 }
326
327 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
328 ridx, npages, startoffset, endoffset);
329
330 if (!has_trans) {
331 fstrans_start(vp->v_mount, FSTRANS_SHARED);
332 has_trans = true;
333 }
334
335 /*
336 * hold g_glock to prevent a race with truncate.
337 *
338 * check if our idea of v_size is still valid.
339 */
340
341 KASSERT(!glocked || genfs_node_wrlocked(vp));
342 if (!glocked) {
343 if (blockalloc) {
344 genfs_node_wrlock(vp);
345 } else {
346 genfs_node_rdlock(vp);
347 }
348 }
349 mutex_enter(&uobj->vmobjlock);
350 if (vp->v_size < origvsize) {
351 if (!glocked) {
352 genfs_node_unlock(vp);
353 }
354 if (pgs != pgs_onstack)
355 kmem_free(pgs, pgs_size);
356 goto startover;
357 }
358
359 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
360 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
361 if (!glocked) {
362 genfs_node_unlock(vp);
363 }
364 KASSERT(async != 0);
365 genfs_rel_pages(&pgs[ridx], orignmempages);
366 mutex_exit(&uobj->vmobjlock);
367 error = EBUSY;
368 goto out_err_free;
369 }
370
371 /*
372 * if the pages are already resident, just return them.
373 */
374
375 for (i = 0; i < npages; i++) {
376 struct vm_page *pg = pgs[ridx + i];
377
378 if ((pg->flags & PG_FAKE) ||
379 (blockalloc && (pg->flags & PG_RDONLY))) {
380 break;
381 }
382 }
383 if (i == npages) {
384 if (!glocked) {
385 genfs_node_unlock(vp);
386 }
387 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
388 npages += ridx;
389 goto out;
390 }
391
392 /*
393 * if PGO_OVERWRITE is set, don't bother reading the pages.
394 */
395
396 if (overwrite) {
397 if (!glocked) {
398 genfs_node_unlock(vp);
399 }
400 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
401
402 for (i = 0; i < npages; i++) {
403 struct vm_page *pg = pgs[ridx + i];
404
405 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
406 }
407 npages += ridx;
408 goto out;
409 }
410
411 /*
412 * the page wasn't resident and we're not overwriting,
413 * so we're going to have to do some i/o.
414 * find any additional pages needed to cover the expanded range.
415 */
416
417 npages = (endoffset - startoffset) >> PAGE_SHIFT;
418 if (startoffset != origoffset || npages != orignmempages) {
419 int npgs;
420
421 /*
422 * we need to avoid deadlocks caused by locking
423 * additional pages at lower offsets than pages we
424 * already have locked. unlock them all and start over.
425 */
426
427 genfs_rel_pages(&pgs[ridx], orignmempages);
428 memset(pgs, 0, pgs_size);
429
430 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
431 startoffset, endoffset, 0,0);
432 npgs = npages;
433 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
434 async ? UFP_NOWAIT : UFP_ALL) != npages) {
435 if (!glocked) {
436 genfs_node_unlock(vp);
437 }
438 KASSERT(async != 0);
439 genfs_rel_pages(pgs, npages);
440 mutex_exit(&uobj->vmobjlock);
441 error = EBUSY;
442 goto out_err_free;
443 }
444 }
445
446 mutex_exit(&uobj->vmobjlock);
447
448 {
449 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
450 vaddr_t kva;
451 struct buf *bp, *mbp;
452 bool sawhole = false;
453
454 /*
455 * read the desired page(s).
456 */
457
458 totalbytes = npages << PAGE_SHIFT;
459 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
460 tailbytes = totalbytes - bytes;
461 skipbytes = 0;
462
463 kva = uvm_pagermapin(pgs, npages,
464 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
465
466 mbp = getiobuf(vp, true);
467 mbp->b_bufsize = totalbytes;
468 mbp->b_data = (void *)kva;
469 mbp->b_resid = mbp->b_bcount = bytes;
470 mbp->b_cflags = BC_BUSY;
471 if (async) {
472 mbp->b_flags = B_READ | B_ASYNC;
473 mbp->b_iodone = uvm_aio_biodone;
474 } else {
475 mbp->b_flags = B_READ;
476 mbp->b_iodone = NULL;
477 }
478 if (async)
479 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
480 else
481 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
482
483 /*
484 * if EOF is in the middle of the range, zero the part past EOF.
485 * skip over pages which are not PG_FAKE since in that case they have
486 * valid data that we need to preserve.
487 */
488
489 tailstart = bytes;
490 while (tailbytes > 0) {
491 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
492
493 KASSERT(len <= tailbytes);
494 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
495 memset((void *)(kva + tailstart), 0, len);
496 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
497 kva, tailstart, len, 0);
498 }
499 tailstart += len;
500 tailbytes -= len;
501 }
502
503 /*
504 * now loop over the pages, reading as needed.
505 */
506
507 bp = NULL;
508 off_t offset;
509 for (offset = startoffset;
510 bytes > 0;
511 offset += iobytes, bytes -= iobytes) {
512 int run;
513 daddr_t lbn, blkno;
514 int pidx;
515 struct vnode *devvp;
516
517 /*
518 * skip pages which don't need to be read.
519 */
520
521 pidx = (offset - startoffset) >> PAGE_SHIFT;
522 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
523 size_t b;
524
525 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
526 if ((pgs[pidx]->flags & PG_RDONLY)) {
527 sawhole = true;
528 }
529 b = MIN(PAGE_SIZE, bytes);
530 offset += b;
531 bytes -= b;
532 skipbytes += b;
533 pidx++;
534 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
535 offset, 0,0,0);
536 if (bytes == 0) {
537 goto loopdone;
538 }
539 }
540
541 /*
542 * bmap the file to find out the blkno to read from and
543 * how much we can read in one i/o. if bmap returns an error,
544 * skip the rest of the top-level i/o.
545 */
546
547 lbn = offset >> fs_bshift;
548 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
549 if (error) {
550 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
551 lbn,error,0,0);
552 skipbytes += bytes;
553 bytes = 0;
554 goto loopdone;
555 }
556
557 /*
558 * see how many pages can be read with this i/o.
559 * reduce the i/o size if necessary to avoid
560 * overwriting pages with valid data.
561 */
562
563 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
564 bytes);
565 if (offset + iobytes > round_page(offset)) {
566 int pcount;
567
568 pcount = 1;
569 while (pidx + pcount < npages &&
570 pgs[pidx + pcount]->flags & PG_FAKE) {
571 pcount++;
572 }
573 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
574 (offset - trunc_page(offset)));
575 }
576
577 /*
578 * if this block isn't allocated, zero it instead of
579 * reading it. unless we are going to allocate blocks,
580 * mark the pages we zeroed PG_RDONLY.
581 */
582
583 if (blkno == (daddr_t)-1) {
584 int holepages = (round_page(offset + iobytes) -
585 trunc_page(offset)) >> PAGE_SHIFT;
586 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
587
588 sawhole = true;
589 memset((char *)kva + (offset - startoffset), 0,
590 iobytes);
591 skipbytes += iobytes;
592
593 for (i = 0; i < holepages; i++) {
594 if (memwrite) {
595 pgs[pidx + i]->flags &= ~PG_CLEAN;
596 }
597 if (!blockalloc) {
598 pgs[pidx + i]->flags |= PG_RDONLY;
599 }
600 }
601 continue;
602 }
603
604 /*
605 * allocate a sub-buf for this piece of the i/o
606 * (or just use mbp if there's only 1 piece),
607 * and start it going.
608 */
609
610 if (offset == startoffset && iobytes == bytes) {
611 bp = mbp;
612 } else {
613 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
614 vp, bp, vp->v_numoutput, 0);
615 bp = getiobuf(vp, true);
616 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
617 }
618 bp->b_lblkno = 0;
619
620 /* adjust physical blkno for partial blocks */
621 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
622 dev_bshift);
623
624 UVMHIST_LOG(ubchist,
625 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
626 bp, offset, bp->b_bcount, bp->b_blkno);
627
628 VOP_STRATEGY(devvp, bp);
629 }
630
631 loopdone:
632 nestiobuf_done(mbp, skipbytes, error);
633 if (async) {
634 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
635 if (!glocked) {
636 genfs_node_unlock(vp);
637 }
638 error = 0;
639 goto out_err_free;
640 }
641 if (bp != NULL) {
642 error = biowait(mbp);
643 }
644
645 /* Remove the mapping (make KVA available as soon as possible) */
646 uvm_pagermapout(kva, npages);
647
648 /*
649 * if this we encountered a hole then we have to do a little more work.
650 * for read faults, we marked the page PG_RDONLY so that future
651 * write accesses to the page will fault again.
652 * for write faults, we must make sure that the backing store for
653 * the page is completely allocated while the pages are locked.
654 */
655
656 if (!error && sawhole && blockalloc) {
657 /*
658 * XXX: This assumes that we come here only via
659 * the mmio path
660 */
661 if (vp->v_mount->mnt_wapbl) {
662 error = WAPBL_BEGIN(vp->v_mount);
663 }
664
665 if (!error) {
666 error = GOP_ALLOC(vp, startoffset,
667 npages << PAGE_SHIFT, 0, cred);
668 if (vp->v_mount->mnt_wapbl) {
669 WAPBL_END(vp->v_mount);
670 }
671 }
672
673 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
674 startoffset, npages << PAGE_SHIFT, error,0);
675 if (!error) {
676 for (i = 0; i < npages; i++) {
677 struct vm_page *pg = pgs[i];
678
679 if (pg == NULL) {
680 continue;
681 }
682 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
683 UVMHIST_LOG(ubchist, "mark dirty pg %p",
684 pg,0,0,0);
685 }
686 }
687 }
688 if (!glocked) {
689 genfs_node_unlock(vp);
690 }
691
692 putiobuf(mbp);
693 }
694
695 mutex_enter(&uobj->vmobjlock);
696
697 /*
698 * we're almost done! release the pages...
699 * for errors, we free the pages.
700 * otherwise we activate them and mark them as valid and clean.
701 * also, unbusy pages that were not actually requested.
702 */
703
704 if (error) {
705 for (i = 0; i < npages; i++) {
706 struct vm_page *pg = pgs[i];
707
708 if (pg == NULL) {
709 continue;
710 }
711 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
712 pg, pg->flags, 0,0);
713 if (pg->flags & PG_FAKE) {
714 pg->flags |= PG_RELEASED;
715 }
716 }
717 mutex_enter(&uvm_pageqlock);
718 uvm_page_unbusy(pgs, npages);
719 mutex_exit(&uvm_pageqlock);
720 mutex_exit(&uobj->vmobjlock);
721 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
722 goto out_err_free;
723 }
724
725 out:
726 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
727 error = 0;
728 mutex_enter(&uvm_pageqlock);
729 for (i = 0; i < npages; i++) {
730 struct vm_page *pg = pgs[i];
731 if (pg == NULL) {
732 continue;
733 }
734 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
735 pg, pg->flags, 0,0);
736 if (pg->flags & PG_FAKE && !overwrite) {
737 pg->flags &= ~(PG_FAKE);
738 pmap_clear_modify(pgs[i]);
739 }
740 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
741 if (i < ridx || i >= ridx + orignmempages || async) {
742 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
743 pg, pg->offset,0,0);
744 if (pg->flags & PG_WANTED) {
745 wakeup(pg);
746 }
747 if (pg->flags & PG_FAKE) {
748 KASSERT(overwrite);
749 uvm_pagezero(pg);
750 }
751 if (pg->flags & PG_RELEASED) {
752 uvm_pagefree(pg);
753 continue;
754 }
755 uvm_pageenqueue(pg);
756 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
757 UVM_PAGE_OWN(pg, NULL);
758 }
759 }
760 mutex_exit(&uvm_pageqlock);
761 if (memwrite) {
762 genfs_markdirty(vp);
763 }
764 mutex_exit(&uobj->vmobjlock);
765 if (ap->a_m != NULL) {
766 memcpy(ap->a_m, &pgs[ridx],
767 orignmempages * sizeof(struct vm_page *));
768 }
769
770 out_err_free:
771 if (pgs != NULL && pgs != pgs_onstack)
772 kmem_free(pgs, pgs_size);
773 out_err:
774 if (has_trans)
775 fstrans_done(vp->v_mount);
776 return error;
777 }
778
779 #ifdef XIP
780 /*
781 * genfs_do_getpages_xip
782 * Return "direct pages" of XIP vnode. The block addresses of XIP
783 * vnode pages are returned back to the VM fault handler as the
784 * actually mapped physical addresses.
785 */
786 static int
787 genfs_do_getpages_xip(void *v)
788 {
789 struct vop_getpages_args /* {
790 struct vnode *a_vp;
791 voff_t a_offset;
792 struct vm_page **a_m;
793 int *a_count;
794 int a_centeridx;
795 vm_prot_t a_access_type;
796 int a_advice;
797 int a_flags;
798 } */ * const ap = v;
799
800 return genfs_do_getpages_xip1(
801 ap->a_vp,
802 ap->a_offset,
803 ap->a_m,
804 ap->a_count,
805 ap->a_centeridx,
806 ap->a_access_type,
807 ap->a_advice,
808 ap->a_flags);
809 }
810
811 static int
812 genfs_do_getpages_xip1(
813 struct vnode *vp,
814 voff_t offset,
815 struct vm_page **pps,
816 int *npagesp,
817 int centeridx,
818 vm_prot_t access_type,
819 int advice,
820 int flags)
821 {
822 struct uvm_object * const uobj = &vp->v_uobj;
823
824 int error;
825 off_t eof, sbkoff, ebkoff, off;
826 int npages;
827 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
828 int i;
829 struct vm_page *zero_page;
830
831 UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
832
833 KASSERT((vp->v_vflag & VV_XIP) != 0);
834
835 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
836 npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
837
838 fs_bshift = vp->v_mount->mnt_fs_bshift;
839 fs_bsize = 1 << fs_bshift;
840 dev_bshift = vp->v_mount->mnt_dev_bshift;
841 dev_bsize = 1 << dev_bshift;
842
843 sbkoff = offset & ~(fs_bsize - 1);
844 ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
845 ~(fs_bsize - 1);
846
847 zero_page = NULL;
848
849 UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
850 npages, (long)sbkoff, (long)ebkoff, 0);
851
852 KASSERT(mutex_owned(&uobj->vmobjlock));
853 mutex_exit(&uobj->vmobjlock);
854
855 off = offset;
856 for (i = 0; i < npages; i++) {
857 daddr_t lbn, blkno;
858 int run;
859 struct vnode *devvp;
860
861 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
862
863 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
864 KASSERT(error == 0);
865 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
866 (long)lbn, (long)blkno, run, 0);
867
868 /*
869 * XIP page metadata assignment
870 * - Unallocated block is redirected to the dedicated zero'ed
871 * page.
872 */
873 if (blkno < 0) {
874 zero_page = uvm_page_zeropage_alloc();
875 KASSERT(zero_page != NULL);
876 pps[i] = zero_page;
877 } else {
878 daddr_t blk_off, fs_off;
879
880 blk_off = blkno << dev_bshift;
881 fs_off = off - (lbn << fs_bshift);
882
883 pps[i] = uvn_findpage_xip(&devvp->v_uobj,
884 blk_off + fs_off);
885 KASSERT(pps[i] != NULL);
886 }
887
888 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
889 i,
890 (long)pps[i]->phys_addr,
891 pps[i],
892 0);
893
894 off += PAGE_SIZE;
895 }
896
897 mutex_enter(&uobj->vmobjlock);
898
899 for (i = 0; i < npages; i++) {
900 struct vm_page *pg = pps[i];
901
902 KASSERT((pg->flags & PG_RDONLY) != 0);
903 if (pg == zero_page)
904 continue;
905 KASSERT((pg->flags & PG_BUSY) == 0);
906 KASSERT((pg->flags & PG_CLEAN) != 0);
907 KASSERT((pg->flags & PG_DEVICE) != 0);
908 pg->flags |= PG_BUSY;
909 pg->flags &= ~PG_FAKE;
910 pg->uobject = &vp->v_uobj;
911 }
912
913 if ((flags & PGO_LOCKED) == 0)
914 mutex_exit(&uobj->vmobjlock);
915
916 *npagesp = npages;
917
918 return 0;
919 }
920 #endif
921
922 /*
923 * generic VM putpages routine.
924 * Write the given range of pages to backing store.
925 *
926 * => "offhi == 0" means flush all pages at or after "offlo".
927 * => object should be locked by caller. we return with the
928 * object unlocked.
929 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
930 * thus, a caller might want to unlock higher level resources
931 * (e.g. vm_map) before calling flush.
932 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
933 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
934 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
935 * that new pages are inserted on the tail end of the list. thus,
936 * we can make a complete pass through the object in one go by starting
937 * at the head and working towards the tail (new pages are put in
938 * front of us).
939 * => NOTE: we are allowed to lock the page queues, so the caller
940 * must not be holding the page queue lock.
941 *
942 * note on "cleaning" object and PG_BUSY pages:
943 * this routine is holding the lock on the object. the only time
944 * that it can run into a PG_BUSY page that it does not own is if
945 * some other process has started I/O on the page (e.g. either
946 * a pagein, or a pageout). if the PG_BUSY page is being paged
947 * in, then it can not be dirty (!PG_CLEAN) because no one has
948 * had a chance to modify it yet. if the PG_BUSY page is being
949 * paged out then it means that someone else has already started
950 * cleaning the page for us (how nice!). in this case, if we
951 * have syncio specified, then after we make our pass through the
952 * object we need to wait for the other PG_BUSY pages to clear
953 * off (i.e. we need to do an iosync). also note that once a
954 * page is PG_BUSY it must stay in its object until it is un-busyed.
955 *
956 * note on page traversal:
957 * we can traverse the pages in an object either by going down the
958 * linked list in "uobj->memq", or we can go over the address range
959 * by page doing hash table lookups for each address. depending
960 * on how many pages are in the object it may be cheaper to do one
961 * or the other. we set "by_list" to true if we are using memq.
962 * if the cost of a hash lookup was equal to the cost of the list
963 * traversal we could compare the number of pages in the start->stop
964 * range to the total number of pages in the object. however, it
965 * seems that a hash table lookup is more expensive than the linked
966 * list traversal, so we multiply the number of pages in the
967 * range by an estimate of the relatively higher cost of the hash lookup.
968 */
969
970 int
971 genfs_putpages(void *v)
972 {
973 struct vop_putpages_args /* {
974 struct vnode *a_vp;
975 voff_t a_offlo;
976 voff_t a_offhi;
977 int a_flags;
978 } */ * const ap = v;
979
980 #ifdef XIP
981 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
982 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
983 ap->a_flags, NULL);
984 else
985 #endif
986 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
987 ap->a_flags, NULL);
988 }
989
990 int
991 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
992 int origflags, struct vm_page **busypg)
993 {
994 struct uvm_object * const uobj = &vp->v_uobj;
995 kmutex_t * const slock = &uobj->vmobjlock;
996 off_t off;
997 /* Even for strange MAXPHYS, the shift rounds down to a page */
998 #define maxpages (MAXPHYS >> PAGE_SHIFT)
999 int i, error, npages, nback;
1000 int freeflag;
1001 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1002 bool wasclean, by_list, needs_clean, yld;
1003 bool async = (origflags & PGO_SYNCIO) == 0;
1004 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1005 struct lwp * const l = curlwp ? curlwp : &lwp0;
1006 struct genfs_node * const gp = VTOG(vp);
1007 int flags;
1008 int dirtygen;
1009 bool modified;
1010 bool need_wapbl;
1011 bool has_trans;
1012 bool cleanall;
1013 bool onworklst;
1014
1015 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1016
1017 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1018 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1019 KASSERT(startoff < endoff || endoff == 0);
1020
1021 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1022 vp, uobj->uo_npages, startoff, endoff - startoff);
1023
1024 has_trans = false;
1025 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1026 (origflags & PGO_JOURNALLOCKED) == 0);
1027
1028 retry:
1029 modified = false;
1030 flags = origflags;
1031 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1032 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1033 if (uobj->uo_npages == 0) {
1034 if (vp->v_iflag & VI_ONWORKLST) {
1035 vp->v_iflag &= ~VI_WRMAPDIRTY;
1036 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1037 vn_syncer_remove_from_worklist(vp);
1038 }
1039 if (has_trans) {
1040 if (need_wapbl)
1041 WAPBL_END(vp->v_mount);
1042 fstrans_done(vp->v_mount);
1043 }
1044 mutex_exit(slock);
1045 return (0);
1046 }
1047
1048 /*
1049 * the vnode has pages, set up to process the request.
1050 */
1051
1052 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1053 mutex_exit(slock);
1054 if (pagedaemon) {
1055 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1056 if (error)
1057 return error;
1058 } else
1059 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1060 if (need_wapbl) {
1061 error = WAPBL_BEGIN(vp->v_mount);
1062 if (error) {
1063 fstrans_done(vp->v_mount);
1064 return error;
1065 }
1066 }
1067 has_trans = true;
1068 mutex_enter(slock);
1069 goto retry;
1070 }
1071
1072 error = 0;
1073 wasclean = (vp->v_numoutput == 0);
1074 off = startoff;
1075 if (endoff == 0 || flags & PGO_ALLPAGES) {
1076 endoff = trunc_page(LLONG_MAX);
1077 }
1078 by_list = (uobj->uo_npages <=
1079 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1080
1081 #if !defined(DEBUG)
1082 /*
1083 * if this vnode is known not to have dirty pages,
1084 * don't bother to clean it out.
1085 */
1086
1087 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1088 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1089 goto skip_scan;
1090 }
1091 flags &= ~PGO_CLEANIT;
1092 }
1093 #endif /* !defined(DEBUG) */
1094
1095 /*
1096 * start the loop. when scanning by list, hold the last page
1097 * in the list before we start. pages allocated after we start
1098 * will be added to the end of the list, so we can stop at the
1099 * current last page.
1100 */
1101
1102 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1103 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1104 (vp->v_iflag & VI_ONWORKLST) != 0;
1105 dirtygen = gp->g_dirtygen;
1106 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1107 if (by_list) {
1108 curmp.flags = PG_MARKER;
1109 endmp.flags = PG_MARKER;
1110 pg = TAILQ_FIRST(&uobj->memq);
1111 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1112 } else {
1113 pg = uvm_pagelookup(uobj, off);
1114 }
1115 nextpg = NULL;
1116 while (by_list || off < endoff) {
1117
1118 /*
1119 * if the current page is not interesting, move on to the next.
1120 */
1121
1122 KASSERT(pg == NULL || pg->uobject == uobj ||
1123 (pg->flags & PG_MARKER) != 0);
1124 KASSERT(pg == NULL ||
1125 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1126 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1127 if (by_list) {
1128 if (pg == &endmp) {
1129 break;
1130 }
1131 if (pg->flags & PG_MARKER) {
1132 pg = TAILQ_NEXT(pg, listq.queue);
1133 continue;
1134 }
1135 if (pg->offset < startoff || pg->offset >= endoff ||
1136 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1137 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1138 wasclean = false;
1139 }
1140 pg = TAILQ_NEXT(pg, listq.queue);
1141 continue;
1142 }
1143 off = pg->offset;
1144 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1145 if (pg != NULL) {
1146 wasclean = false;
1147 }
1148 off += PAGE_SIZE;
1149 if (off < endoff) {
1150 pg = uvm_pagelookup(uobj, off);
1151 }
1152 continue;
1153 }
1154
1155 /*
1156 * if the current page needs to be cleaned and it's busy,
1157 * wait for it to become unbusy.
1158 */
1159
1160 yld = (l->l_cpu->ci_schedstate.spc_flags &
1161 SPCF_SHOULDYIELD) && !pagedaemon;
1162 if (pg->flags & PG_BUSY || yld) {
1163 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1164 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1165 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1166 error = EDEADLK;
1167 if (busypg != NULL)
1168 *busypg = pg;
1169 break;
1170 }
1171 if (pagedaemon) {
1172 /*
1173 * someone has taken the page while we
1174 * dropped the lock for fstrans_start.
1175 */
1176 break;
1177 }
1178 if (by_list) {
1179 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1180 UVMHIST_LOG(ubchist, "curmp next %p",
1181 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1182 }
1183 if (yld) {
1184 mutex_exit(slock);
1185 preempt();
1186 mutex_enter(slock);
1187 } else {
1188 pg->flags |= PG_WANTED;
1189 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1190 mutex_enter(slock);
1191 }
1192 if (by_list) {
1193 UVMHIST_LOG(ubchist, "after next %p",
1194 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1195 pg = TAILQ_NEXT(&curmp, listq.queue);
1196 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1197 } else {
1198 pg = uvm_pagelookup(uobj, off);
1199 }
1200 continue;
1201 }
1202
1203 /*
1204 * if we're freeing, remove all mappings of the page now.
1205 * if we're cleaning, check if the page is needs to be cleaned.
1206 */
1207
1208 if (flags & PGO_FREE) {
1209 pmap_page_protect(pg, VM_PROT_NONE);
1210 } else if (flags & PGO_CLEANIT) {
1211
1212 /*
1213 * if we still have some hope to pull this vnode off
1214 * from the syncer queue, write-protect the page.
1215 */
1216
1217 if (cleanall && wasclean &&
1218 gp->g_dirtygen == dirtygen) {
1219
1220 /*
1221 * uobj pages get wired only by uvm_fault
1222 * where uobj is locked.
1223 */
1224
1225 if (pg->wire_count == 0) {
1226 pmap_page_protect(pg,
1227 VM_PROT_READ|VM_PROT_EXECUTE);
1228 } else {
1229 cleanall = false;
1230 }
1231 }
1232 }
1233
1234 if (flags & PGO_CLEANIT) {
1235 needs_clean = pmap_clear_modify(pg) ||
1236 (pg->flags & PG_CLEAN) == 0;
1237 pg->flags |= PG_CLEAN;
1238 } else {
1239 needs_clean = false;
1240 }
1241
1242 /*
1243 * if we're cleaning, build a cluster.
1244 * the cluster will consist of pages which are currently dirty,
1245 * but they will be returned to us marked clean.
1246 * if not cleaning, just operate on the one page.
1247 */
1248
1249 if (needs_clean) {
1250 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1251 wasclean = false;
1252 memset(pgs, 0, sizeof(pgs));
1253 pg->flags |= PG_BUSY;
1254 UVM_PAGE_OWN(pg, "genfs_putpages");
1255
1256 /*
1257 * first look backward.
1258 */
1259
1260 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1261 nback = npages;
1262 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1263 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1264 if (nback) {
1265 memmove(&pgs[0], &pgs[npages - nback],
1266 nback * sizeof(pgs[0]));
1267 if (npages - nback < nback)
1268 memset(&pgs[nback], 0,
1269 (npages - nback) * sizeof(pgs[0]));
1270 else
1271 memset(&pgs[npages - nback], 0,
1272 nback * sizeof(pgs[0]));
1273 }
1274
1275 /*
1276 * then plug in our page of interest.
1277 */
1278
1279 pgs[nback] = pg;
1280
1281 /*
1282 * then look forward to fill in the remaining space in
1283 * the array of pages.
1284 */
1285
1286 npages = maxpages - nback - 1;
1287 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1288 &pgs[nback + 1],
1289 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1290 npages += nback + 1;
1291 } else {
1292 pgs[0] = pg;
1293 npages = 1;
1294 nback = 0;
1295 }
1296
1297 /*
1298 * apply FREE or DEACTIVATE options if requested.
1299 */
1300
1301 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1302 mutex_enter(&uvm_pageqlock);
1303 }
1304 for (i = 0; i < npages; i++) {
1305 tpg = pgs[i];
1306 KASSERT(tpg->uobject == uobj);
1307 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1308 pg = tpg;
1309 if (tpg->offset < startoff || tpg->offset >= endoff)
1310 continue;
1311 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1312 uvm_pagedeactivate(tpg);
1313 } else if (flags & PGO_FREE) {
1314 pmap_page_protect(tpg, VM_PROT_NONE);
1315 if (tpg->flags & PG_BUSY) {
1316 tpg->flags |= freeflag;
1317 if (pagedaemon) {
1318 uvm_pageout_start(1);
1319 uvm_pagedequeue(tpg);
1320 }
1321 } else {
1322
1323 /*
1324 * ``page is not busy''
1325 * implies that npages is 1
1326 * and needs_clean is false.
1327 */
1328
1329 nextpg = TAILQ_NEXT(tpg, listq.queue);
1330 uvm_pagefree(tpg);
1331 if (pagedaemon)
1332 uvmexp.pdfreed++;
1333 }
1334 }
1335 }
1336 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1337 mutex_exit(&uvm_pageqlock);
1338 }
1339 if (needs_clean) {
1340 modified = true;
1341
1342 /*
1343 * start the i/o. if we're traversing by list,
1344 * keep our place in the list with a marker page.
1345 */
1346
1347 if (by_list) {
1348 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1349 listq.queue);
1350 }
1351 mutex_exit(slock);
1352 error = GOP_WRITE(vp, pgs, npages, flags);
1353 mutex_enter(slock);
1354 if (by_list) {
1355 pg = TAILQ_NEXT(&curmp, listq.queue);
1356 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1357 }
1358 if (error) {
1359 break;
1360 }
1361 if (by_list) {
1362 continue;
1363 }
1364 }
1365
1366 /*
1367 * find the next page and continue if there was no error.
1368 */
1369
1370 if (by_list) {
1371 if (nextpg) {
1372 pg = nextpg;
1373 nextpg = NULL;
1374 } else {
1375 pg = TAILQ_NEXT(pg, listq.queue);
1376 }
1377 } else {
1378 off += (npages - nback) << PAGE_SHIFT;
1379 if (off < endoff) {
1380 pg = uvm_pagelookup(uobj, off);
1381 }
1382 }
1383 }
1384 if (by_list) {
1385 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1386 }
1387
1388 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1389 (vp->v_type != VBLK ||
1390 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1391 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1392 }
1393
1394 /*
1395 * if we're cleaning and there was nothing to clean,
1396 * take us off the syncer list. if we started any i/o
1397 * and we're doing sync i/o, wait for all writes to finish.
1398 */
1399
1400 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1401 (vp->v_iflag & VI_ONWORKLST) != 0) {
1402 #if defined(DEBUG)
1403 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1404 if ((pg->flags & PG_MARKER) != 0) {
1405 continue;
1406 }
1407 if ((pg->flags & PG_CLEAN) == 0) {
1408 printf("%s: %p: !CLEAN\n", __func__, pg);
1409 }
1410 if (pmap_is_modified(pg)) {
1411 printf("%s: %p: modified\n", __func__, pg);
1412 }
1413 }
1414 #endif /* defined(DEBUG) */
1415 vp->v_iflag &= ~VI_WRMAPDIRTY;
1416 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1417 vn_syncer_remove_from_worklist(vp);
1418 }
1419
1420 #if !defined(DEBUG)
1421 skip_scan:
1422 #endif /* !defined(DEBUG) */
1423
1424 /* Wait for output to complete. */
1425 if (!wasclean && !async && vp->v_numoutput != 0) {
1426 while (vp->v_numoutput != 0)
1427 cv_wait(&vp->v_cv, slock);
1428 }
1429 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1430 mutex_exit(slock);
1431
1432 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1433 /*
1434 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1435 * retrying is not a big deal because, in many cases,
1436 * uobj->uo_npages is already 0 here.
1437 */
1438 mutex_enter(slock);
1439 goto retry;
1440 }
1441
1442 if (has_trans) {
1443 if (need_wapbl)
1444 WAPBL_END(vp->v_mount);
1445 fstrans_done(vp->v_mount);
1446 }
1447
1448 return (error);
1449 }
1450
1451 #ifdef XIP
1452 int
1453 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1454 int flags, struct vm_page **busypg)
1455 {
1456 struct uvm_object *uobj = &vp->v_uobj;
1457 #ifdef DIAGNOSTIC
1458 struct genfs_node * const gp = VTOG(vp);
1459 #endif
1460
1461 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1462
1463 KASSERT(mutex_owned(&uobj->vmobjlock));
1464 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1465 KASSERT(vp->v_numoutput == 0);
1466 KASSERT(gp->g_dirtygen == 0);
1467
1468 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1469 vp, uobj->uo_npages, startoff, endoff - startoff);
1470
1471 /*
1472 * XIP pages are read-only, and never become dirty. They're also never
1473 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1474 * pages, so we ignore them.
1475 */
1476 if ((flags & PGO_FREE) == 0)
1477 goto done;
1478
1479 /*
1480 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1481 * mappings of both XIP pages and XIP zero pages.
1482 *
1483 * Zero page is freed when one of its mapped offset is freed, even if
1484 * one file (vnode) has many holes and mapping its zero page to all
1485 * of those hole pages.
1486 *
1487 * We don't know which pages are currently mapped in the given vnode,
1488 * because XIP pages are not added to vnode. What we can do is to
1489 * locate pages by querying the filesystem as done in getpages. Call
1490 * genfs_do_getpages_xip1().
1491 */
1492
1493 off_t off, eof;
1494 struct vm_page *zero_page;
1495 bool put_zero_page;
1496
1497 off = trunc_page(startoff);
1498 if (endoff == 0 || (flags & PGO_ALLPAGES))
1499 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1500 else
1501 eof = endoff;
1502
1503 zero_page = uvm_pagelookup(uobj, 0);
1504 KASSERT(zero_page != NULL || uobj->uo_npages == 0);
1505 KASSERT(zero_page == NULL || uobj->uo_npages == 1);
1506 put_zero_page = false;
1507
1508 while (off < eof) {
1509 int npages, orignpages, error, i;
1510 struct vm_page *pgs[maxpages], *pg;
1511
1512 npages = round_page(eof - off) >> PAGE_SHIFT;
1513 if (npages > maxpages)
1514 npages = maxpages;
1515
1516 orignpages = npages;
1517 KASSERT(mutex_owned(&uobj->vmobjlock));
1518 error = genfs_do_getpages_xip1(vp, off, pgs, &npages, 0,
1519 VM_PROT_ALL, 0, PGO_LOCKED);
1520 KASSERT(error == 0);
1521 KASSERT(npages == orignpages);
1522 KASSERT(mutex_owned(&uobj->vmobjlock));
1523 for (i = 0; i < npages; i++) {
1524 pg = pgs[i];
1525 if (pg == NULL || pg == PGO_DONTCARE)
1526 continue;
1527 if (pg == uvm_page_zeropage)
1528 /* Do nothing for holes. */
1529 continue;
1530 /*
1531 * Freeing normal XIP pages; nothing to do.
1532 */
1533 pmap_page_protect(pg, VM_PROT_NONE);
1534 KASSERT((pg->flags & PG_BUSY) != 0);
1535 KASSERT((pg->flags & PG_RDONLY) != 0);
1536 KASSERT((pg->flags & PG_CLEAN) != 0);
1537 KASSERT((pg->flags & PG_FAKE) == 0);
1538 KASSERT((pg->flags & PG_DEVICE) != 0);
1539 pg->flags &= ~PG_BUSY;
1540 }
1541 off += npages << PAGE_SHIFT;
1542 }
1543
1544 KASSERT(uobj->uo_npages == 0);
1545
1546 done:
1547 KASSERT(mutex_owned(&uobj->vmobjlock));
1548 mutex_exit(&uobj->vmobjlock);
1549 return 0;
1550 }
1551 #endif
1552
1553 int
1554 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1555 {
1556 off_t off;
1557 vaddr_t kva;
1558 size_t len;
1559 int error;
1560 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1561
1562 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1563 vp, pgs, npages, flags);
1564
1565 off = pgs[0]->offset;
1566 kva = uvm_pagermapin(pgs, npages,
1567 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1568 len = npages << PAGE_SHIFT;
1569
1570 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1571 uvm_aio_biodone);
1572
1573 return error;
1574 }
1575
1576 int
1577 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1578 {
1579 off_t off;
1580 vaddr_t kva;
1581 size_t len;
1582 int error;
1583 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1584
1585 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1586 vp, pgs, npages, flags);
1587
1588 off = pgs[0]->offset;
1589 kva = uvm_pagermapin(pgs, npages,
1590 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1591 len = npages << PAGE_SHIFT;
1592
1593 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1594 uvm_aio_biodone);
1595
1596 return error;
1597 }
1598
1599 /*
1600 * Backend routine for doing I/O to vnode pages. Pages are already locked
1601 * and mapped into kernel memory. Here we just look up the underlying
1602 * device block addresses and call the strategy routine.
1603 */
1604
1605 static int
1606 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1607 enum uio_rw rw, void (*iodone)(struct buf *))
1608 {
1609 int s, error;
1610 int fs_bshift, dev_bshift;
1611 off_t eof, offset, startoffset;
1612 size_t bytes, iobytes, skipbytes;
1613 struct buf *mbp, *bp;
1614 const bool async = (flags & PGO_SYNCIO) == 0;
1615 const bool iowrite = rw == UIO_WRITE;
1616 const int brw = iowrite ? B_WRITE : B_READ;
1617 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1618
1619 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1620 vp, kva, len, flags);
1621
1622 KASSERT(vp->v_size <= vp->v_writesize);
1623 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1624 if (vp->v_type != VBLK) {
1625 fs_bshift = vp->v_mount->mnt_fs_bshift;
1626 dev_bshift = vp->v_mount->mnt_dev_bshift;
1627 } else {
1628 fs_bshift = DEV_BSHIFT;
1629 dev_bshift = DEV_BSHIFT;
1630 }
1631 error = 0;
1632 startoffset = off;
1633 bytes = MIN(len, eof - startoffset);
1634 skipbytes = 0;
1635 KASSERT(bytes != 0);
1636
1637 if (iowrite) {
1638 mutex_enter(&vp->v_interlock);
1639 vp->v_numoutput += 2;
1640 mutex_exit(&vp->v_interlock);
1641 }
1642 mbp = getiobuf(vp, true);
1643 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1644 vp, mbp, vp->v_numoutput, bytes);
1645 mbp->b_bufsize = len;
1646 mbp->b_data = (void *)kva;
1647 mbp->b_resid = mbp->b_bcount = bytes;
1648 mbp->b_cflags = BC_BUSY | BC_AGE;
1649 if (async) {
1650 mbp->b_flags = brw | B_ASYNC;
1651 mbp->b_iodone = iodone;
1652 } else {
1653 mbp->b_flags = brw;
1654 mbp->b_iodone = NULL;
1655 }
1656 if (curlwp == uvm.pagedaemon_lwp)
1657 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1658 else if (async)
1659 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1660 else
1661 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1662
1663 bp = NULL;
1664 for (offset = startoffset;
1665 bytes > 0;
1666 offset += iobytes, bytes -= iobytes) {
1667 int run;
1668 daddr_t lbn, blkno;
1669 struct vnode *devvp;
1670
1671 /*
1672 * bmap the file to find out the blkno to read from and
1673 * how much we can read in one i/o. if bmap returns an error,
1674 * skip the rest of the top-level i/o.
1675 */
1676
1677 lbn = offset >> fs_bshift;
1678 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1679 if (error) {
1680 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1681 lbn,error,0,0);
1682 skipbytes += bytes;
1683 bytes = 0;
1684 goto loopdone;
1685 }
1686
1687 /*
1688 * see how many pages can be read with this i/o.
1689 * reduce the i/o size if necessary to avoid
1690 * overwriting pages with valid data.
1691 */
1692
1693 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1694 bytes);
1695
1696 /*
1697 * if this block isn't allocated, zero it instead of
1698 * reading it. unless we are going to allocate blocks,
1699 * mark the pages we zeroed PG_RDONLY.
1700 */
1701
1702 if (blkno == (daddr_t)-1) {
1703 if (!iowrite) {
1704 memset((char *)kva + (offset - startoffset), 0,
1705 iobytes);
1706 }
1707 skipbytes += iobytes;
1708 continue;
1709 }
1710
1711 /*
1712 * allocate a sub-buf for this piece of the i/o
1713 * (or just use mbp if there's only 1 piece),
1714 * and start it going.
1715 */
1716
1717 if (offset == startoffset && iobytes == bytes) {
1718 bp = mbp;
1719 } else {
1720 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1721 vp, bp, vp->v_numoutput, 0);
1722 bp = getiobuf(vp, true);
1723 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1724 }
1725 bp->b_lblkno = 0;
1726
1727 /* adjust physical blkno for partial blocks */
1728 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1729 dev_bshift);
1730
1731 UVMHIST_LOG(ubchist,
1732 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1733 bp, offset, bp->b_bcount, bp->b_blkno);
1734
1735 VOP_STRATEGY(devvp, bp);
1736 }
1737
1738 loopdone:
1739 if (skipbytes) {
1740 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1741 }
1742 nestiobuf_done(mbp, skipbytes, error);
1743 if (async) {
1744 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1745 return (0);
1746 }
1747 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1748 error = biowait(mbp);
1749 s = splbio();
1750 (*iodone)(mbp);
1751 splx(s);
1752 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1753 return (error);
1754 }
1755
1756 int
1757 genfs_compat_getpages(void *v)
1758 {
1759 struct vop_getpages_args /* {
1760 struct vnode *a_vp;
1761 voff_t a_offset;
1762 struct vm_page **a_m;
1763 int *a_count;
1764 int a_centeridx;
1765 vm_prot_t a_access_type;
1766 int a_advice;
1767 int a_flags;
1768 } */ *ap = v;
1769
1770 off_t origoffset;
1771 struct vnode *vp = ap->a_vp;
1772 struct uvm_object *uobj = &vp->v_uobj;
1773 struct vm_page *pg, **pgs;
1774 vaddr_t kva;
1775 int i, error, orignpages, npages;
1776 struct iovec iov;
1777 struct uio uio;
1778 kauth_cred_t cred = curlwp->l_cred;
1779 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1780
1781 error = 0;
1782 origoffset = ap->a_offset;
1783 orignpages = *ap->a_count;
1784 pgs = ap->a_m;
1785
1786 if (ap->a_flags & PGO_LOCKED) {
1787 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1788 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1789
1790 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1791 if (error == 0 && memwrite) {
1792 genfs_markdirty(vp);
1793 }
1794 return error;
1795 }
1796 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1797 mutex_exit(&uobj->vmobjlock);
1798 return EINVAL;
1799 }
1800 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1801 mutex_exit(&uobj->vmobjlock);
1802 return 0;
1803 }
1804 npages = orignpages;
1805 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1806 mutex_exit(&uobj->vmobjlock);
1807 kva = uvm_pagermapin(pgs, npages,
1808 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1809 for (i = 0; i < npages; i++) {
1810 pg = pgs[i];
1811 if ((pg->flags & PG_FAKE) == 0) {
1812 continue;
1813 }
1814 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1815 iov.iov_len = PAGE_SIZE;
1816 uio.uio_iov = &iov;
1817 uio.uio_iovcnt = 1;
1818 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1819 uio.uio_rw = UIO_READ;
1820 uio.uio_resid = PAGE_SIZE;
1821 UIO_SETUP_SYSSPACE(&uio);
1822 /* XXX vn_lock */
1823 error = VOP_READ(vp, &uio, 0, cred);
1824 if (error) {
1825 break;
1826 }
1827 if (uio.uio_resid) {
1828 memset(iov.iov_base, 0, uio.uio_resid);
1829 }
1830 }
1831 uvm_pagermapout(kva, npages);
1832 mutex_enter(&uobj->vmobjlock);
1833 mutex_enter(&uvm_pageqlock);
1834 for (i = 0; i < npages; i++) {
1835 pg = pgs[i];
1836 if (error && (pg->flags & PG_FAKE) != 0) {
1837 pg->flags |= PG_RELEASED;
1838 } else {
1839 pmap_clear_modify(pg);
1840 uvm_pageactivate(pg);
1841 }
1842 }
1843 if (error) {
1844 uvm_page_unbusy(pgs, npages);
1845 }
1846 mutex_exit(&uvm_pageqlock);
1847 if (error == 0 && memwrite) {
1848 genfs_markdirty(vp);
1849 }
1850 mutex_exit(&uobj->vmobjlock);
1851 return error;
1852 }
1853
1854 int
1855 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1856 int flags)
1857 {
1858 off_t offset;
1859 struct iovec iov;
1860 struct uio uio;
1861 kauth_cred_t cred = curlwp->l_cred;
1862 struct buf *bp;
1863 vaddr_t kva;
1864 int error;
1865
1866 offset = pgs[0]->offset;
1867 kva = uvm_pagermapin(pgs, npages,
1868 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1869
1870 iov.iov_base = (void *)kva;
1871 iov.iov_len = npages << PAGE_SHIFT;
1872 uio.uio_iov = &iov;
1873 uio.uio_iovcnt = 1;
1874 uio.uio_offset = offset;
1875 uio.uio_rw = UIO_WRITE;
1876 uio.uio_resid = npages << PAGE_SHIFT;
1877 UIO_SETUP_SYSSPACE(&uio);
1878 /* XXX vn_lock */
1879 error = VOP_WRITE(vp, &uio, 0, cred);
1880
1881 mutex_enter(&vp->v_interlock);
1882 vp->v_numoutput++;
1883 mutex_exit(&vp->v_interlock);
1884
1885 bp = getiobuf(vp, true);
1886 bp->b_cflags = BC_BUSY | BC_AGE;
1887 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1888 bp->b_data = (char *)kva;
1889 bp->b_bcount = npages << PAGE_SHIFT;
1890 bp->b_bufsize = npages << PAGE_SHIFT;
1891 bp->b_resid = 0;
1892 bp->b_error = error;
1893 uvm_aio_aiodone(bp);
1894 return (error);
1895 }
1896
1897 /*
1898 * Process a uio using direct I/O. If we reach a part of the request
1899 * which cannot be processed in this fashion for some reason, just return.
1900 * The caller must handle some additional part of the request using
1901 * buffered I/O before trying direct I/O again.
1902 */
1903
1904 void
1905 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1906 {
1907 struct vmspace *vs;
1908 struct iovec *iov;
1909 vaddr_t va;
1910 size_t len;
1911 const int mask = DEV_BSIZE - 1;
1912 int error;
1913 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1914 (ioflag & IO_JOURNALLOCKED) == 0);
1915
1916 /*
1917 * We only support direct I/O to user space for now.
1918 */
1919
1920 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1921 return;
1922 }
1923
1924 /*
1925 * If the vnode is mapped, we would need to get the getpages lock
1926 * to stabilize the bmap, but then we would get into trouble whil e
1927 * locking the pages if the pages belong to this same vnode (or a
1928 * multi-vnode cascade to the same effect). Just fall back to
1929 * buffered I/O if the vnode is mapped to avoid this mess.
1930 */
1931
1932 if (vp->v_vflag & VV_MAPPED) {
1933 return;
1934 }
1935
1936 if (need_wapbl) {
1937 error = WAPBL_BEGIN(vp->v_mount);
1938 if (error)
1939 return;
1940 }
1941
1942 /*
1943 * Do as much of the uio as possible with direct I/O.
1944 */
1945
1946 vs = uio->uio_vmspace;
1947 while (uio->uio_resid) {
1948 iov = uio->uio_iov;
1949 if (iov->iov_len == 0) {
1950 uio->uio_iov++;
1951 uio->uio_iovcnt--;
1952 continue;
1953 }
1954 va = (vaddr_t)iov->iov_base;
1955 len = MIN(iov->iov_len, genfs_maxdio);
1956 len &= ~mask;
1957
1958 /*
1959 * If the next chunk is smaller than DEV_BSIZE or extends past
1960 * the current EOF, then fall back to buffered I/O.
1961 */
1962
1963 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1964 break;
1965 }
1966
1967 /*
1968 * Check alignment. The file offset must be at least
1969 * sector-aligned. The exact constraint on memory alignment
1970 * is very hardware-dependent, but requiring sector-aligned
1971 * addresses there too is safe.
1972 */
1973
1974 if (uio->uio_offset & mask || va & mask) {
1975 break;
1976 }
1977 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1978 uio->uio_rw);
1979 if (error) {
1980 break;
1981 }
1982 iov->iov_base = (char *)iov->iov_base + len;
1983 iov->iov_len -= len;
1984 uio->uio_offset += len;
1985 uio->uio_resid -= len;
1986 }
1987
1988 if (need_wapbl)
1989 WAPBL_END(vp->v_mount);
1990 }
1991
1992 /*
1993 * Iodone routine for direct I/O. We don't do much here since the request is
1994 * always synchronous, so the caller will do most of the work after biowait().
1995 */
1996
1997 static void
1998 genfs_dio_iodone(struct buf *bp)
1999 {
2000
2001 KASSERT((bp->b_flags & B_ASYNC) == 0);
2002 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2003 mutex_enter(bp->b_objlock);
2004 vwakeup(bp);
2005 mutex_exit(bp->b_objlock);
2006 }
2007 putiobuf(bp);
2008 }
2009
2010 /*
2011 * Process one chunk of a direct I/O request.
2012 */
2013
2014 static int
2015 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2016 off_t off, enum uio_rw rw)
2017 {
2018 struct vm_map *map;
2019 struct pmap *upm, *kpm;
2020 size_t klen = round_page(uva + len) - trunc_page(uva);
2021 off_t spoff, epoff;
2022 vaddr_t kva, puva;
2023 paddr_t pa;
2024 vm_prot_t prot;
2025 int error, rv, poff, koff;
2026 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2027 (rw == UIO_WRITE ? PGO_FREE : 0);
2028
2029 /*
2030 * For writes, verify that this range of the file already has fully
2031 * allocated backing store. If there are any holes, just punt and
2032 * make the caller take the buffered write path.
2033 */
2034
2035 if (rw == UIO_WRITE) {
2036 daddr_t lbn, elbn, blkno;
2037 int bsize, bshift, run;
2038
2039 bshift = vp->v_mount->mnt_fs_bshift;
2040 bsize = 1 << bshift;
2041 lbn = off >> bshift;
2042 elbn = (off + len + bsize - 1) >> bshift;
2043 while (lbn < elbn) {
2044 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2045 if (error) {
2046 return error;
2047 }
2048 if (blkno == (daddr_t)-1) {
2049 return ENOSPC;
2050 }
2051 lbn += 1 + run;
2052 }
2053 }
2054
2055 /*
2056 * Flush any cached pages for parts of the file that we're about to
2057 * access. If we're writing, invalidate pages as well.
2058 */
2059
2060 spoff = trunc_page(off);
2061 epoff = round_page(off + len);
2062 mutex_enter(&vp->v_interlock);
2063 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2064 if (error) {
2065 return error;
2066 }
2067
2068 /*
2069 * Wire the user pages and remap them into kernel memory.
2070 */
2071
2072 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2073 error = uvm_vslock(vs, (void *)uva, len, prot);
2074 if (error) {
2075 return error;
2076 }
2077
2078 map = &vs->vm_map;
2079 upm = vm_map_pmap(map);
2080 kpm = vm_map_pmap(kernel_map);
2081 kva = uvm_km_alloc(kernel_map, klen, 0,
2082 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2083 puva = trunc_page(uva);
2084 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2085 rv = pmap_extract(upm, puva + poff, &pa);
2086 KASSERT(rv);
2087 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2088 }
2089 pmap_update(kpm);
2090
2091 /*
2092 * Do the I/O.
2093 */
2094
2095 koff = uva - trunc_page(uva);
2096 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2097 genfs_dio_iodone);
2098
2099 /*
2100 * Tear down the kernel mapping.
2101 */
2102
2103 pmap_remove(kpm, kva, kva + klen);
2104 pmap_update(kpm);
2105 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2106
2107 /*
2108 * Unwire the user pages.
2109 */
2110
2111 uvm_vsunlock(vs, (void *)uva, len);
2112 return error;
2113 }
2114
2115