Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.33
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.33 2010/11/18 01:53:04 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.33 2010/11/18 01:53:04 uebayasi Exp $");
     35 
     36 #include "opt_xip.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mount.h>
     43 #include <sys/namei.h>
     44 #include <sys/vnode.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/kmem.h>
     47 #include <sys/poll.h>
     48 #include <sys/mman.h>
     49 #include <sys/file.h>
     50 #include <sys/kauth.h>
     51 #include <sys/fstrans.h>
     52 #include <sys/buf.h>
     53 #include <sys/once.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 static int genfs_do_getpages(void *);
     63 #ifdef XIP
     64 static int genfs_do_getpages_xip(void *);
     65 static int genfs_do_getpages_xip1(struct vnode *, voff_t, struct vm_page **,
     66     int *, int, vm_prot_t, int, int);
     67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
     68     struct vm_page **);
     69 #endif
     70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     71     off_t, enum uio_rw);
     72 static void genfs_dio_iodone(struct buf *);
     73 
     74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     75     void (*)(struct buf *));
     76 static void genfs_rel_pages(struct vm_page **, int);
     77 static void genfs_markdirty(struct vnode *);
     78 
     79 int genfs_maxdio = MAXPHYS;
     80 
     81 static void
     82 genfs_rel_pages(struct vm_page **pgs, int npages)
     83 {
     84 	int i;
     85 
     86 	for (i = 0; i < npages; i++) {
     87 		struct vm_page *pg = pgs[i];
     88 
     89 		if (pg == NULL || pg == PGO_DONTCARE)
     90 			continue;
     91 		if (pg->flags & PG_FAKE) {
     92 			pg->flags |= PG_RELEASED;
     93 		}
     94 	}
     95 	mutex_enter(&uvm_pageqlock);
     96 	uvm_page_unbusy(pgs, npages);
     97 	mutex_exit(&uvm_pageqlock);
     98 }
     99 
    100 static void
    101 genfs_markdirty(struct vnode *vp)
    102 {
    103 	struct genfs_node * const gp = VTOG(vp);
    104 
    105 	KASSERT(mutex_owned(&vp->v_interlock));
    106 	gp->g_dirtygen++;
    107 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    108 		vn_syncer_add_to_worklist(vp, filedelay);
    109 	}
    110 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    111 		vp->v_iflag |= VI_WRMAPDIRTY;
    112 	}
    113 }
    114 
    115 /*
    116  * generic VM getpages routine.
    117  * Return PG_BUSY pages for the given range,
    118  * reading from backing store if necessary.
    119  */
    120 
    121 int
    122 genfs_getpages(void *v)
    123 {
    124 #ifdef XIP
    125 	struct vop_getpages_args /* {
    126 		struct vnode *a_vp;
    127 		voff_t a_offset;
    128 		struct vm_page **a_m;
    129 		int *a_count;
    130 		int a_centeridx;
    131 		vm_prot_t a_access_type;
    132 		int a_advice;
    133 		int a_flags;
    134 	} */ * const ap = v;
    135 
    136 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    137 		return genfs_do_getpages_xip(v);
    138 	else
    139 #endif
    140 		return genfs_do_getpages(v);
    141 }
    142 
    143 static int
    144 genfs_do_getpages(void *v)
    145 {
    146 	struct vop_getpages_args /* {
    147 		struct vnode *a_vp;
    148 		voff_t a_offset;
    149 		struct vm_page **a_m;
    150 		int *a_count;
    151 		int a_centeridx;
    152 		vm_prot_t a_access_type;
    153 		int a_advice;
    154 		int a_flags;
    155 	} */ * const ap = v;
    156 
    157 	off_t diskeof, memeof;
    158 	int i, error, npages;
    159 	const int flags = ap->a_flags;
    160 	struct vnode * const vp = ap->a_vp;
    161 	struct uvm_object * const uobj = &vp->v_uobj;
    162 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    163 	const bool async = (flags & PGO_SYNCIO) == 0;
    164 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    165 	bool has_trans = false;
    166 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    167 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    168 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    169 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    170 
    171 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    172 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    173 
    174 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    175 	    vp->v_type == VLNK || vp->v_type == VBLK);
    176 
    177 startover:
    178 	error = 0;
    179 	const voff_t origvsize = vp->v_size;
    180 	const off_t origoffset = ap->a_offset;
    181 	const int orignpages = *ap->a_count;
    182 
    183 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    184 	if (flags & PGO_PASTEOF) {
    185 		off_t newsize;
    186 #if defined(DIAGNOSTIC)
    187 		off_t writeeof;
    188 #endif /* defined(DIAGNOSTIC) */
    189 
    190 		newsize = MAX(origvsize,
    191 		    origoffset + (orignpages << PAGE_SHIFT));
    192 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    193 #if defined(DIAGNOSTIC)
    194 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    195 		if (newsize > round_page(writeeof)) {
    196 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    197 			    __func__, newsize, round_page(writeeof));
    198 		}
    199 #endif /* defined(DIAGNOSTIC) */
    200 	} else {
    201 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    202 	}
    203 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    204 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    205 	KASSERT(orignpages > 0);
    206 
    207 	/*
    208 	 * Bounds-check the request.
    209 	 */
    210 
    211 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    212 		if ((flags & PGO_LOCKED) == 0) {
    213 			mutex_exit(&uobj->vmobjlock);
    214 		}
    215 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    216 		    origoffset, *ap->a_count, memeof,0);
    217 		error = EINVAL;
    218 		goto out_err;
    219 	}
    220 
    221 	/* uobj is locked */
    222 
    223 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    224 	    (vp->v_type != VBLK ||
    225 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    226 		int updflags = 0;
    227 
    228 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    229 			updflags = GOP_UPDATE_ACCESSED;
    230 		}
    231 		if (memwrite) {
    232 			updflags |= GOP_UPDATE_MODIFIED;
    233 		}
    234 		if (updflags != 0) {
    235 			GOP_MARKUPDATE(vp, updflags);
    236 		}
    237 	}
    238 
    239 	/*
    240 	 * For PGO_LOCKED requests, just return whatever's in memory.
    241 	 */
    242 
    243 	if (flags & PGO_LOCKED) {
    244 		int nfound;
    245 		struct vm_page *pg;
    246 
    247 		KASSERT(!glocked);
    248 		npages = *ap->a_count;
    249 #if defined(DEBUG)
    250 		for (i = 0; i < npages; i++) {
    251 			pg = ap->a_m[i];
    252 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    253 		}
    254 #endif /* defined(DEBUG) */
    255 		nfound = uvn_findpages(uobj, origoffset, &npages,
    256 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    257 		KASSERT(npages == *ap->a_count);
    258 		if (nfound == 0) {
    259 			error = EBUSY;
    260 			goto out_err;
    261 		}
    262 		if (!genfs_node_rdtrylock(vp)) {
    263 			genfs_rel_pages(ap->a_m, npages);
    264 
    265 			/*
    266 			 * restore the array.
    267 			 */
    268 
    269 			for (i = 0; i < npages; i++) {
    270 				pg = ap->a_m[i];
    271 
    272 				if (pg != NULL && pg != PGO_DONTCARE) {
    273 					ap->a_m[i] = NULL;
    274 				}
    275 				KASSERT(pg == NULL || pg == PGO_DONTCARE);
    276 			}
    277 		} else {
    278 			genfs_node_unlock(vp);
    279 		}
    280 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    281 		if (error == 0 && memwrite) {
    282 			genfs_markdirty(vp);
    283 		}
    284 		goto out_err;
    285 	}
    286 	mutex_exit(&uobj->vmobjlock);
    287 
    288 	/*
    289 	 * find the requested pages and make some simple checks.
    290 	 * leave space in the page array for a whole block.
    291 	 */
    292 
    293 	const int fs_bshift = (vp->v_type != VBLK) ?
    294 	    vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
    295 	const int dev_bshift = (vp->v_type != VBLK) ?
    296 	    vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
    297 	const int fs_bsize = 1 << fs_bshift;
    298 #define	blk_mask	(fs_bsize - 1)
    299 #define	trunc_blk(x)	((x) & ~blk_mask)
    300 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    301 
    302 	const int orignmempages = MIN(orignpages,
    303 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    304 	npages = orignmempages;
    305 	const off_t startoffset = trunc_blk(origoffset);
    306 	const off_t endoffset = MIN(
    307 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    308 	    round_page(memeof));
    309 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    310 
    311 	const int pgs_size = sizeof(struct vm_page *) *
    312 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    313 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    314 
    315 	if (pgs_size > sizeof(pgs_onstack)) {
    316 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    317 		if (pgs == NULL) {
    318 			pgs = pgs_onstack;
    319 			error = ENOMEM;
    320 			goto out_err;
    321 		}
    322 	} else {
    323 		pgs = pgs_onstack;
    324 		(void)memset(pgs, 0, pgs_size);
    325 	}
    326 
    327 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    328 	    ridx, npages, startoffset, endoffset);
    329 
    330 	if (!has_trans) {
    331 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    332 		has_trans = true;
    333 	}
    334 
    335 	/*
    336 	 * hold g_glock to prevent a race with truncate.
    337 	 *
    338 	 * check if our idea of v_size is still valid.
    339 	 */
    340 
    341 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    342 	if (!glocked) {
    343 		if (blockalloc) {
    344 			genfs_node_wrlock(vp);
    345 		} else {
    346 			genfs_node_rdlock(vp);
    347 		}
    348 	}
    349 	mutex_enter(&uobj->vmobjlock);
    350 	if (vp->v_size < origvsize) {
    351 		if (!glocked) {
    352 			genfs_node_unlock(vp);
    353 		}
    354 		if (pgs != pgs_onstack)
    355 			kmem_free(pgs, pgs_size);
    356 		goto startover;
    357 	}
    358 
    359 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    360 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    361 		if (!glocked) {
    362 			genfs_node_unlock(vp);
    363 		}
    364 		KASSERT(async != 0);
    365 		genfs_rel_pages(&pgs[ridx], orignmempages);
    366 		mutex_exit(&uobj->vmobjlock);
    367 		error = EBUSY;
    368 		goto out_err_free;
    369 	}
    370 
    371 	/*
    372 	 * if the pages are already resident, just return them.
    373 	 */
    374 
    375 	for (i = 0; i < npages; i++) {
    376 		struct vm_page *pg = pgs[ridx + i];
    377 
    378 		if ((pg->flags & PG_FAKE) ||
    379 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    380 			break;
    381 		}
    382 	}
    383 	if (i == npages) {
    384 		if (!glocked) {
    385 			genfs_node_unlock(vp);
    386 		}
    387 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    388 		npages += ridx;
    389 		goto out;
    390 	}
    391 
    392 	/*
    393 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    394 	 */
    395 
    396 	if (overwrite) {
    397 		if (!glocked) {
    398 			genfs_node_unlock(vp);
    399 		}
    400 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    401 
    402 		for (i = 0; i < npages; i++) {
    403 			struct vm_page *pg = pgs[ridx + i];
    404 
    405 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    406 		}
    407 		npages += ridx;
    408 		goto out;
    409 	}
    410 
    411 	/*
    412 	 * the page wasn't resident and we're not overwriting,
    413 	 * so we're going to have to do some i/o.
    414 	 * find any additional pages needed to cover the expanded range.
    415 	 */
    416 
    417 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    418 	if (startoffset != origoffset || npages != orignmempages) {
    419 		int npgs;
    420 
    421 		/*
    422 		 * we need to avoid deadlocks caused by locking
    423 		 * additional pages at lower offsets than pages we
    424 		 * already have locked.  unlock them all and start over.
    425 		 */
    426 
    427 		genfs_rel_pages(&pgs[ridx], orignmempages);
    428 		memset(pgs, 0, pgs_size);
    429 
    430 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    431 		    startoffset, endoffset, 0,0);
    432 		npgs = npages;
    433 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    434 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    435 			if (!glocked) {
    436 				genfs_node_unlock(vp);
    437 			}
    438 			KASSERT(async != 0);
    439 			genfs_rel_pages(pgs, npages);
    440 			mutex_exit(&uobj->vmobjlock);
    441 			error = EBUSY;
    442 			goto out_err_free;
    443 		}
    444 	}
    445 
    446 	mutex_exit(&uobj->vmobjlock);
    447 
    448     {
    449 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    450 	vaddr_t kva;
    451 	struct buf *bp, *mbp;
    452 	bool sawhole = false;
    453 
    454 	/*
    455 	 * read the desired page(s).
    456 	 */
    457 
    458 	totalbytes = npages << PAGE_SHIFT;
    459 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    460 	tailbytes = totalbytes - bytes;
    461 	skipbytes = 0;
    462 
    463 	kva = uvm_pagermapin(pgs, npages,
    464 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    465 
    466 	mbp = getiobuf(vp, true);
    467 	mbp->b_bufsize = totalbytes;
    468 	mbp->b_data = (void *)kva;
    469 	mbp->b_resid = mbp->b_bcount = bytes;
    470 	mbp->b_cflags = BC_BUSY;
    471 	if (async) {
    472 		mbp->b_flags = B_READ | B_ASYNC;
    473 		mbp->b_iodone = uvm_aio_biodone;
    474 	} else {
    475 		mbp->b_flags = B_READ;
    476 		mbp->b_iodone = NULL;
    477 	}
    478 	if (async)
    479 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    480 	else
    481 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    482 
    483 	/*
    484 	 * if EOF is in the middle of the range, zero the part past EOF.
    485 	 * skip over pages which are not PG_FAKE since in that case they have
    486 	 * valid data that we need to preserve.
    487 	 */
    488 
    489 	tailstart = bytes;
    490 	while (tailbytes > 0) {
    491 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    492 
    493 		KASSERT(len <= tailbytes);
    494 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    495 			memset((void *)(kva + tailstart), 0, len);
    496 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    497 			    kva, tailstart, len, 0);
    498 		}
    499 		tailstart += len;
    500 		tailbytes -= len;
    501 	}
    502 
    503 	/*
    504 	 * now loop over the pages, reading as needed.
    505 	 */
    506 
    507 	bp = NULL;
    508 	off_t offset;
    509 	for (offset = startoffset;
    510 	    bytes > 0;
    511 	    offset += iobytes, bytes -= iobytes) {
    512 		int run;
    513 		daddr_t lbn, blkno;
    514 		int pidx;
    515 		struct vnode *devvp;
    516 
    517 		/*
    518 		 * skip pages which don't need to be read.
    519 		 */
    520 
    521 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    522 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    523 			size_t b;
    524 
    525 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    526 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    527 				sawhole = true;
    528 			}
    529 			b = MIN(PAGE_SIZE, bytes);
    530 			offset += b;
    531 			bytes -= b;
    532 			skipbytes += b;
    533 			pidx++;
    534 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    535 			    offset, 0,0,0);
    536 			if (bytes == 0) {
    537 				goto loopdone;
    538 			}
    539 		}
    540 
    541 		/*
    542 		 * bmap the file to find out the blkno to read from and
    543 		 * how much we can read in one i/o.  if bmap returns an error,
    544 		 * skip the rest of the top-level i/o.
    545 		 */
    546 
    547 		lbn = offset >> fs_bshift;
    548 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    549 		if (error) {
    550 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    551 			    lbn,error,0,0);
    552 			skipbytes += bytes;
    553 			bytes = 0;
    554 			goto loopdone;
    555 		}
    556 
    557 		/*
    558 		 * see how many pages can be read with this i/o.
    559 		 * reduce the i/o size if necessary to avoid
    560 		 * overwriting pages with valid data.
    561 		 */
    562 
    563 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    564 		    bytes);
    565 		if (offset + iobytes > round_page(offset)) {
    566 			int pcount;
    567 
    568 			pcount = 1;
    569 			while (pidx + pcount < npages &&
    570 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    571 				pcount++;
    572 			}
    573 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    574 			    (offset - trunc_page(offset)));
    575 		}
    576 
    577 		/*
    578 		 * if this block isn't allocated, zero it instead of
    579 		 * reading it.  unless we are going to allocate blocks,
    580 		 * mark the pages we zeroed PG_RDONLY.
    581 		 */
    582 
    583 		if (blkno == (daddr_t)-1) {
    584 			int holepages = (round_page(offset + iobytes) -
    585 			    trunc_page(offset)) >> PAGE_SHIFT;
    586 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    587 
    588 			sawhole = true;
    589 			memset((char *)kva + (offset - startoffset), 0,
    590 			    iobytes);
    591 			skipbytes += iobytes;
    592 
    593 			for (i = 0; i < holepages; i++) {
    594 				if (memwrite) {
    595 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    596 				}
    597 				if (!blockalloc) {
    598 					pgs[pidx + i]->flags |= PG_RDONLY;
    599 				}
    600 			}
    601 			continue;
    602 		}
    603 
    604 		/*
    605 		 * allocate a sub-buf for this piece of the i/o
    606 		 * (or just use mbp if there's only 1 piece),
    607 		 * and start it going.
    608 		 */
    609 
    610 		if (offset == startoffset && iobytes == bytes) {
    611 			bp = mbp;
    612 		} else {
    613 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    614 			    vp, bp, vp->v_numoutput, 0);
    615 			bp = getiobuf(vp, true);
    616 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    617 		}
    618 		bp->b_lblkno = 0;
    619 
    620 		/* adjust physical blkno for partial blocks */
    621 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    622 		    dev_bshift);
    623 
    624 		UVMHIST_LOG(ubchist,
    625 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    626 		    bp, offset, bp->b_bcount, bp->b_blkno);
    627 
    628 		VOP_STRATEGY(devvp, bp);
    629 	}
    630 
    631 loopdone:
    632 	nestiobuf_done(mbp, skipbytes, error);
    633 	if (async) {
    634 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    635 		if (!glocked) {
    636 			genfs_node_unlock(vp);
    637 		}
    638 		error = 0;
    639 		goto out_err_free;
    640 	}
    641 	if (bp != NULL) {
    642 		error = biowait(mbp);
    643 	}
    644 
    645 	/* Remove the mapping (make KVA available as soon as possible) */
    646 	uvm_pagermapout(kva, npages);
    647 
    648 	/*
    649 	 * if this we encountered a hole then we have to do a little more work.
    650 	 * for read faults, we marked the page PG_RDONLY so that future
    651 	 * write accesses to the page will fault again.
    652 	 * for write faults, we must make sure that the backing store for
    653 	 * the page is completely allocated while the pages are locked.
    654 	 */
    655 
    656 	if (!error && sawhole && blockalloc) {
    657 		/*
    658 		 * XXX: This assumes that we come here only via
    659 		 * the mmio path
    660 		 */
    661 		if (vp->v_mount->mnt_wapbl) {
    662 			error = WAPBL_BEGIN(vp->v_mount);
    663 		}
    664 
    665 		if (!error) {
    666 			error = GOP_ALLOC(vp, startoffset,
    667 			    npages << PAGE_SHIFT, 0, cred);
    668 			if (vp->v_mount->mnt_wapbl) {
    669 				WAPBL_END(vp->v_mount);
    670 			}
    671 		}
    672 
    673 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    674 		    startoffset, npages << PAGE_SHIFT, error,0);
    675 		if (!error) {
    676 			for (i = 0; i < npages; i++) {
    677 				struct vm_page *pg = pgs[i];
    678 
    679 				if (pg == NULL) {
    680 					continue;
    681 				}
    682 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    683 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    684 				    pg,0,0,0);
    685 			}
    686 		}
    687 	}
    688 	if (!glocked) {
    689 		genfs_node_unlock(vp);
    690 	}
    691 
    692 	putiobuf(mbp);
    693     }
    694 
    695 	mutex_enter(&uobj->vmobjlock);
    696 
    697 	/*
    698 	 * we're almost done!  release the pages...
    699 	 * for errors, we free the pages.
    700 	 * otherwise we activate them and mark them as valid and clean.
    701 	 * also, unbusy pages that were not actually requested.
    702 	 */
    703 
    704 	if (error) {
    705 		for (i = 0; i < npages; i++) {
    706 			struct vm_page *pg = pgs[i];
    707 
    708 			if (pg == NULL) {
    709 				continue;
    710 			}
    711 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    712 			    pg, pg->flags, 0,0);
    713 			if (pg->flags & PG_FAKE) {
    714 				pg->flags |= PG_RELEASED;
    715 			}
    716 		}
    717 		mutex_enter(&uvm_pageqlock);
    718 		uvm_page_unbusy(pgs, npages);
    719 		mutex_exit(&uvm_pageqlock);
    720 		mutex_exit(&uobj->vmobjlock);
    721 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    722 		goto out_err_free;
    723 	}
    724 
    725 out:
    726 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    727 	error = 0;
    728 	mutex_enter(&uvm_pageqlock);
    729 	for (i = 0; i < npages; i++) {
    730 		struct vm_page *pg = pgs[i];
    731 		if (pg == NULL) {
    732 			continue;
    733 		}
    734 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    735 		    pg, pg->flags, 0,0);
    736 		if (pg->flags & PG_FAKE && !overwrite) {
    737 			pg->flags &= ~(PG_FAKE);
    738 			pmap_clear_modify(pgs[i]);
    739 		}
    740 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    741 		if (i < ridx || i >= ridx + orignmempages || async) {
    742 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    743 			    pg, pg->offset,0,0);
    744 			if (pg->flags & PG_WANTED) {
    745 				wakeup(pg);
    746 			}
    747 			if (pg->flags & PG_FAKE) {
    748 				KASSERT(overwrite);
    749 				uvm_pagezero(pg);
    750 			}
    751 			if (pg->flags & PG_RELEASED) {
    752 				uvm_pagefree(pg);
    753 				continue;
    754 			}
    755 			uvm_pageenqueue(pg);
    756 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    757 			UVM_PAGE_OWN(pg, NULL);
    758 		}
    759 	}
    760 	mutex_exit(&uvm_pageqlock);
    761 	if (memwrite) {
    762 		genfs_markdirty(vp);
    763 	}
    764 	mutex_exit(&uobj->vmobjlock);
    765 	if (ap->a_m != NULL) {
    766 		memcpy(ap->a_m, &pgs[ridx],
    767 		    orignmempages * sizeof(struct vm_page *));
    768 	}
    769 
    770 out_err_free:
    771 	if (pgs != NULL && pgs != pgs_onstack)
    772 		kmem_free(pgs, pgs_size);
    773 out_err:
    774 	if (has_trans)
    775 		fstrans_done(vp->v_mount);
    776 	return error;
    777 }
    778 
    779 #ifdef XIP
    780 /*
    781  * genfs_do_getpages_xip
    782  *      Return "direct pages" of XIP vnode.  The block addresses of XIP
    783  *      vnode pages are returned back to the VM fault handler as the
    784  *	actually mapped physical addresses.
    785  */
    786 static int
    787 genfs_do_getpages_xip(void *v)
    788 {
    789 	struct vop_getpages_args /* {
    790 		struct vnode *a_vp;
    791 		voff_t a_offset;
    792 		struct vm_page **a_m;
    793 		int *a_count;
    794 		int a_centeridx;
    795 		vm_prot_t a_access_type;
    796 		int a_advice;
    797 		int a_flags;
    798 	} */ * const ap = v;
    799 
    800 	return genfs_do_getpages_xip1(
    801 		ap->a_vp,
    802 		ap->a_offset,
    803 		ap->a_m,
    804 		ap->a_count,
    805 		ap->a_centeridx,
    806 		ap->a_access_type,
    807 		ap->a_advice,
    808 		ap->a_flags);
    809 }
    810 
    811 static int
    812 genfs_do_getpages_xip1(
    813 	struct vnode *vp,
    814 	voff_t offset,
    815 	struct vm_page **pps,
    816 	int *npagesp,
    817 	int centeridx,
    818 	vm_prot_t access_type,
    819 	int advice,
    820 	int flags)
    821 {
    822 	struct uvm_object * const uobj = &vp->v_uobj;
    823 
    824 	int error;
    825 	off_t eof, sbkoff, ebkoff, off;
    826 	int npages;
    827 	int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
    828 	int i;
    829 	struct vm_page *zero_page;
    830 
    831 	UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
    832 
    833 	KASSERT((vp->v_vflag & VV_XIP) != 0);
    834 
    835 	GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
    836 	npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
    837 
    838 	fs_bshift = vp->v_mount->mnt_fs_bshift;
    839 	fs_bsize = 1 << fs_bshift;
    840 	dev_bshift = vp->v_mount->mnt_dev_bshift;
    841 	dev_bsize = 1 << dev_bshift;
    842 
    843 	sbkoff = offset & ~(fs_bsize - 1);
    844 	ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
    845 	    ~(fs_bsize - 1);
    846 
    847 	zero_page = NULL;
    848 
    849 	UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
    850 	    npages, (long)sbkoff, (long)ebkoff, 0);
    851 
    852 	KASSERT(mutex_owned(&uobj->vmobjlock));
    853 	mutex_exit(&uobj->vmobjlock);
    854 
    855 	off = offset;
    856 	for (i = 0; i < npages; i++) {
    857 		daddr_t lbn, blkno;
    858 		int run;
    859 		struct vnode *devvp;
    860 
    861 		lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
    862 
    863 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    864 		KASSERT(error == 0);
    865 		UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
    866 		    (long)lbn, (long)blkno, run, 0);
    867 
    868 		/*
    869 		 * XIP page metadata assignment
    870 		 * - Unallocated block is redirected to the dedicated zero'ed
    871 		 *   page.
    872 		 */
    873 		if (blkno < 0) {
    874 			zero_page = uvm_page_zeropage_alloc();
    875 			KASSERT(zero_page != NULL);
    876 			pps[i] = zero_page;
    877 		} else {
    878 			daddr_t blk_off, fs_off;
    879 
    880 			blk_off = blkno << dev_bshift;
    881 			fs_off = off - (lbn << fs_bshift);
    882 
    883 			pps[i] = uvn_findpage_xip(&devvp->v_uobj,
    884 			    blk_off + fs_off);
    885 			KASSERT(pps[i] != NULL);
    886 		}
    887 
    888 		UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
    889 			i,
    890 			(long)pps[i]->phys_addr,
    891 			pps[i],
    892 			0);
    893 
    894 		off += PAGE_SIZE;
    895 	}
    896 
    897 	mutex_enter(&uobj->vmobjlock);
    898 
    899 	for (i = 0; i < npages; i++) {
    900 		struct vm_page *pg = pps[i];
    901 
    902 		KASSERT((pg->flags & PG_RDONLY) != 0);
    903 		if (pg == zero_page)
    904 			continue;
    905 		KASSERT((pg->flags & PG_BUSY) == 0);
    906 		KASSERT((pg->flags & PG_CLEAN) != 0);
    907 		KASSERT((pg->flags & PG_DEVICE) != 0);
    908 		pg->flags |= PG_BUSY;
    909 		pg->flags &= ~PG_FAKE;
    910 		pg->uobject = &vp->v_uobj;
    911 	}
    912 
    913 	if ((flags & PGO_LOCKED) == 0)
    914 		mutex_exit(&uobj->vmobjlock);
    915 
    916 	*npagesp = npages;
    917 
    918 	return 0;
    919 }
    920 #endif
    921 
    922 /*
    923  * generic VM putpages routine.
    924  * Write the given range of pages to backing store.
    925  *
    926  * => "offhi == 0" means flush all pages at or after "offlo".
    927  * => object should be locked by caller.  we return with the
    928  *      object unlocked.
    929  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
    930  *	thus, a caller might want to unlock higher level resources
    931  *	(e.g. vm_map) before calling flush.
    932  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
    933  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
    934  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    935  *	that new pages are inserted on the tail end of the list.   thus,
    936  *	we can make a complete pass through the object in one go by starting
    937  *	at the head and working towards the tail (new pages are put in
    938  *	front of us).
    939  * => NOTE: we are allowed to lock the page queues, so the caller
    940  *	must not be holding the page queue lock.
    941  *
    942  * note on "cleaning" object and PG_BUSY pages:
    943  *	this routine is holding the lock on the object.   the only time
    944  *	that it can run into a PG_BUSY page that it does not own is if
    945  *	some other process has started I/O on the page (e.g. either
    946  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
    947  *	in, then it can not be dirty (!PG_CLEAN) because no one has
    948  *	had a chance to modify it yet.    if the PG_BUSY page is being
    949  *	paged out then it means that someone else has already started
    950  *	cleaning the page for us (how nice!).    in this case, if we
    951  *	have syncio specified, then after we make our pass through the
    952  *	object we need to wait for the other PG_BUSY pages to clear
    953  *	off (i.e. we need to do an iosync).   also note that once a
    954  *	page is PG_BUSY it must stay in its object until it is un-busyed.
    955  *
    956  * note on page traversal:
    957  *	we can traverse the pages in an object either by going down the
    958  *	linked list in "uobj->memq", or we can go over the address range
    959  *	by page doing hash table lookups for each address.    depending
    960  *	on how many pages are in the object it may be cheaper to do one
    961  *	or the other.   we set "by_list" to true if we are using memq.
    962  *	if the cost of a hash lookup was equal to the cost of the list
    963  *	traversal we could compare the number of pages in the start->stop
    964  *	range to the total number of pages in the object.   however, it
    965  *	seems that a hash table lookup is more expensive than the linked
    966  *	list traversal, so we multiply the number of pages in the
    967  *	range by an estimate of the relatively higher cost of the hash lookup.
    968  */
    969 
    970 int
    971 genfs_putpages(void *v)
    972 {
    973 	struct vop_putpages_args /* {
    974 		struct vnode *a_vp;
    975 		voff_t a_offlo;
    976 		voff_t a_offhi;
    977 		int a_flags;
    978 	} */ * const ap = v;
    979 
    980 #ifdef XIP
    981 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    982 		return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
    983 		    ap->a_flags, NULL);
    984 	else
    985 #endif
    986 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
    987 	    ap->a_flags, NULL);
    988 }
    989 
    990 int
    991 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
    992     int origflags, struct vm_page **busypg)
    993 {
    994 	struct uvm_object * const uobj = &vp->v_uobj;
    995 	kmutex_t * const slock = &uobj->vmobjlock;
    996 	off_t off;
    997 	/* Even for strange MAXPHYS, the shift rounds down to a page */
    998 #define maxpages (MAXPHYS >> PAGE_SHIFT)
    999 	int i, error, npages, nback;
   1000 	int freeflag;
   1001 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1002 	bool wasclean, by_list, needs_clean, yld;
   1003 	bool async = (origflags & PGO_SYNCIO) == 0;
   1004 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
   1005 	struct lwp * const l = curlwp ? curlwp : &lwp0;
   1006 	struct genfs_node * const gp = VTOG(vp);
   1007 	int flags;
   1008 	int dirtygen;
   1009 	bool modified;
   1010 	bool need_wapbl;
   1011 	bool has_trans;
   1012 	bool cleanall;
   1013 	bool onworklst;
   1014 
   1015 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1016 
   1017 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1018 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1019 	KASSERT(startoff < endoff || endoff == 0);
   1020 
   1021 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1022 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1023 
   1024 	has_trans = false;
   1025 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
   1026 	    (origflags & PGO_JOURNALLOCKED) == 0);
   1027 
   1028 retry:
   1029 	modified = false;
   1030 	flags = origflags;
   1031 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
   1032 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
   1033 	if (uobj->uo_npages == 0) {
   1034 		if (vp->v_iflag & VI_ONWORKLST) {
   1035 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1036 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1037 				vn_syncer_remove_from_worklist(vp);
   1038 		}
   1039 		if (has_trans) {
   1040 			if (need_wapbl)
   1041 				WAPBL_END(vp->v_mount);
   1042 			fstrans_done(vp->v_mount);
   1043 		}
   1044 		mutex_exit(slock);
   1045 		return (0);
   1046 	}
   1047 
   1048 	/*
   1049 	 * the vnode has pages, set up to process the request.
   1050 	 */
   1051 
   1052 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
   1053 		mutex_exit(slock);
   1054 		if (pagedaemon) {
   1055 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1056 			if (error)
   1057 				return error;
   1058 		} else
   1059 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1060 		if (need_wapbl) {
   1061 			error = WAPBL_BEGIN(vp->v_mount);
   1062 			if (error) {
   1063 				fstrans_done(vp->v_mount);
   1064 				return error;
   1065 			}
   1066 		}
   1067 		has_trans = true;
   1068 		mutex_enter(slock);
   1069 		goto retry;
   1070 	}
   1071 
   1072 	error = 0;
   1073 	wasclean = (vp->v_numoutput == 0);
   1074 	off = startoff;
   1075 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1076 		endoff = trunc_page(LLONG_MAX);
   1077 	}
   1078 	by_list = (uobj->uo_npages <=
   1079 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
   1080 
   1081 #if !defined(DEBUG)
   1082 	/*
   1083 	 * if this vnode is known not to have dirty pages,
   1084 	 * don't bother to clean it out.
   1085 	 */
   1086 
   1087 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1088 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1089 			goto skip_scan;
   1090 		}
   1091 		flags &= ~PGO_CLEANIT;
   1092 	}
   1093 #endif /* !defined(DEBUG) */
   1094 
   1095 	/*
   1096 	 * start the loop.  when scanning by list, hold the last page
   1097 	 * in the list before we start.  pages allocated after we start
   1098 	 * will be added to the end of the list, so we can stop at the
   1099 	 * current last page.
   1100 	 */
   1101 
   1102 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1103 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1104 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1105 	dirtygen = gp->g_dirtygen;
   1106 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1107 	if (by_list) {
   1108 		curmp.flags = PG_MARKER;
   1109 		endmp.flags = PG_MARKER;
   1110 		pg = TAILQ_FIRST(&uobj->memq);
   1111 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1112 	} else {
   1113 		pg = uvm_pagelookup(uobj, off);
   1114 	}
   1115 	nextpg = NULL;
   1116 	while (by_list || off < endoff) {
   1117 
   1118 		/*
   1119 		 * if the current page is not interesting, move on to the next.
   1120 		 */
   1121 
   1122 		KASSERT(pg == NULL || pg->uobject == uobj ||
   1123 		    (pg->flags & PG_MARKER) != 0);
   1124 		KASSERT(pg == NULL ||
   1125 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1126 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
   1127 		if (by_list) {
   1128 			if (pg == &endmp) {
   1129 				break;
   1130 			}
   1131 			if (pg->flags & PG_MARKER) {
   1132 				pg = TAILQ_NEXT(pg, listq.queue);
   1133 				continue;
   1134 			}
   1135 			if (pg->offset < startoff || pg->offset >= endoff ||
   1136 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1137 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1138 					wasclean = false;
   1139 				}
   1140 				pg = TAILQ_NEXT(pg, listq.queue);
   1141 				continue;
   1142 			}
   1143 			off = pg->offset;
   1144 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1145 			if (pg != NULL) {
   1146 				wasclean = false;
   1147 			}
   1148 			off += PAGE_SIZE;
   1149 			if (off < endoff) {
   1150 				pg = uvm_pagelookup(uobj, off);
   1151 			}
   1152 			continue;
   1153 		}
   1154 
   1155 		/*
   1156 		 * if the current page needs to be cleaned and it's busy,
   1157 		 * wait for it to become unbusy.
   1158 		 */
   1159 
   1160 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1161 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1162 		if (pg->flags & PG_BUSY || yld) {
   1163 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1164 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1165 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1166 				error = EDEADLK;
   1167 				if (busypg != NULL)
   1168 					*busypg = pg;
   1169 				break;
   1170 			}
   1171 			if (pagedaemon) {
   1172 				/*
   1173 				 * someone has taken the page while we
   1174 				 * dropped the lock for fstrans_start.
   1175 				 */
   1176 				break;
   1177 			}
   1178 			if (by_list) {
   1179 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1180 				UVMHIST_LOG(ubchist, "curmp next %p",
   1181 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1182 			}
   1183 			if (yld) {
   1184 				mutex_exit(slock);
   1185 				preempt();
   1186 				mutex_enter(slock);
   1187 			} else {
   1188 				pg->flags |= PG_WANTED;
   1189 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1190 				mutex_enter(slock);
   1191 			}
   1192 			if (by_list) {
   1193 				UVMHIST_LOG(ubchist, "after next %p",
   1194 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1195 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1196 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1197 			} else {
   1198 				pg = uvm_pagelookup(uobj, off);
   1199 			}
   1200 			continue;
   1201 		}
   1202 
   1203 		/*
   1204 		 * if we're freeing, remove all mappings of the page now.
   1205 		 * if we're cleaning, check if the page is needs to be cleaned.
   1206 		 */
   1207 
   1208 		if (flags & PGO_FREE) {
   1209 			pmap_page_protect(pg, VM_PROT_NONE);
   1210 		} else if (flags & PGO_CLEANIT) {
   1211 
   1212 			/*
   1213 			 * if we still have some hope to pull this vnode off
   1214 			 * from the syncer queue, write-protect the page.
   1215 			 */
   1216 
   1217 			if (cleanall && wasclean &&
   1218 			    gp->g_dirtygen == dirtygen) {
   1219 
   1220 				/*
   1221 				 * uobj pages get wired only by uvm_fault
   1222 				 * where uobj is locked.
   1223 				 */
   1224 
   1225 				if (pg->wire_count == 0) {
   1226 					pmap_page_protect(pg,
   1227 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1228 				} else {
   1229 					cleanall = false;
   1230 				}
   1231 			}
   1232 		}
   1233 
   1234 		if (flags & PGO_CLEANIT) {
   1235 			needs_clean = pmap_clear_modify(pg) ||
   1236 			    (pg->flags & PG_CLEAN) == 0;
   1237 			pg->flags |= PG_CLEAN;
   1238 		} else {
   1239 			needs_clean = false;
   1240 		}
   1241 
   1242 		/*
   1243 		 * if we're cleaning, build a cluster.
   1244 		 * the cluster will consist of pages which are currently dirty,
   1245 		 * but they will be returned to us marked clean.
   1246 		 * if not cleaning, just operate on the one page.
   1247 		 */
   1248 
   1249 		if (needs_clean) {
   1250 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1251 			wasclean = false;
   1252 			memset(pgs, 0, sizeof(pgs));
   1253 			pg->flags |= PG_BUSY;
   1254 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1255 
   1256 			/*
   1257 			 * first look backward.
   1258 			 */
   1259 
   1260 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1261 			nback = npages;
   1262 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1263 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1264 			if (nback) {
   1265 				memmove(&pgs[0], &pgs[npages - nback],
   1266 				    nback * sizeof(pgs[0]));
   1267 				if (npages - nback < nback)
   1268 					memset(&pgs[nback], 0,
   1269 					    (npages - nback) * sizeof(pgs[0]));
   1270 				else
   1271 					memset(&pgs[npages - nback], 0,
   1272 					    nback * sizeof(pgs[0]));
   1273 			}
   1274 
   1275 			/*
   1276 			 * then plug in our page of interest.
   1277 			 */
   1278 
   1279 			pgs[nback] = pg;
   1280 
   1281 			/*
   1282 			 * then look forward to fill in the remaining space in
   1283 			 * the array of pages.
   1284 			 */
   1285 
   1286 			npages = maxpages - nback - 1;
   1287 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1288 			    &pgs[nback + 1],
   1289 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1290 			npages += nback + 1;
   1291 		} else {
   1292 			pgs[0] = pg;
   1293 			npages = 1;
   1294 			nback = 0;
   1295 		}
   1296 
   1297 		/*
   1298 		 * apply FREE or DEACTIVATE options if requested.
   1299 		 */
   1300 
   1301 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1302 			mutex_enter(&uvm_pageqlock);
   1303 		}
   1304 		for (i = 0; i < npages; i++) {
   1305 			tpg = pgs[i];
   1306 			KASSERT(tpg->uobject == uobj);
   1307 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1308 				pg = tpg;
   1309 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1310 				continue;
   1311 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1312 				uvm_pagedeactivate(tpg);
   1313 			} else if (flags & PGO_FREE) {
   1314 				pmap_page_protect(tpg, VM_PROT_NONE);
   1315 				if (tpg->flags & PG_BUSY) {
   1316 					tpg->flags |= freeflag;
   1317 					if (pagedaemon) {
   1318 						uvm_pageout_start(1);
   1319 						uvm_pagedequeue(tpg);
   1320 					}
   1321 				} else {
   1322 
   1323 					/*
   1324 					 * ``page is not busy''
   1325 					 * implies that npages is 1
   1326 					 * and needs_clean is false.
   1327 					 */
   1328 
   1329 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1330 					uvm_pagefree(tpg);
   1331 					if (pagedaemon)
   1332 						uvmexp.pdfreed++;
   1333 				}
   1334 			}
   1335 		}
   1336 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1337 			mutex_exit(&uvm_pageqlock);
   1338 		}
   1339 		if (needs_clean) {
   1340 			modified = true;
   1341 
   1342 			/*
   1343 			 * start the i/o.  if we're traversing by list,
   1344 			 * keep our place in the list with a marker page.
   1345 			 */
   1346 
   1347 			if (by_list) {
   1348 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1349 				    listq.queue);
   1350 			}
   1351 			mutex_exit(slock);
   1352 			error = GOP_WRITE(vp, pgs, npages, flags);
   1353 			mutex_enter(slock);
   1354 			if (by_list) {
   1355 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1356 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1357 			}
   1358 			if (error) {
   1359 				break;
   1360 			}
   1361 			if (by_list) {
   1362 				continue;
   1363 			}
   1364 		}
   1365 
   1366 		/*
   1367 		 * find the next page and continue if there was no error.
   1368 		 */
   1369 
   1370 		if (by_list) {
   1371 			if (nextpg) {
   1372 				pg = nextpg;
   1373 				nextpg = NULL;
   1374 			} else {
   1375 				pg = TAILQ_NEXT(pg, listq.queue);
   1376 			}
   1377 		} else {
   1378 			off += (npages - nback) << PAGE_SHIFT;
   1379 			if (off < endoff) {
   1380 				pg = uvm_pagelookup(uobj, off);
   1381 			}
   1382 		}
   1383 	}
   1384 	if (by_list) {
   1385 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1386 	}
   1387 
   1388 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1389 	    (vp->v_type != VBLK ||
   1390 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1391 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1392 	}
   1393 
   1394 	/*
   1395 	 * if we're cleaning and there was nothing to clean,
   1396 	 * take us off the syncer list.  if we started any i/o
   1397 	 * and we're doing sync i/o, wait for all writes to finish.
   1398 	 */
   1399 
   1400 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1401 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1402 #if defined(DEBUG)
   1403 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1404 			if ((pg->flags & PG_MARKER) != 0) {
   1405 				continue;
   1406 			}
   1407 			if ((pg->flags & PG_CLEAN) == 0) {
   1408 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1409 			}
   1410 			if (pmap_is_modified(pg)) {
   1411 				printf("%s: %p: modified\n", __func__, pg);
   1412 			}
   1413 		}
   1414 #endif /* defined(DEBUG) */
   1415 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1416 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1417 			vn_syncer_remove_from_worklist(vp);
   1418 	}
   1419 
   1420 #if !defined(DEBUG)
   1421 skip_scan:
   1422 #endif /* !defined(DEBUG) */
   1423 
   1424 	/* Wait for output to complete. */
   1425 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1426 		while (vp->v_numoutput != 0)
   1427 			cv_wait(&vp->v_cv, slock);
   1428 	}
   1429 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1430 	mutex_exit(slock);
   1431 
   1432 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1433 		/*
   1434 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1435 		 * retrying is not a big deal because, in many cases,
   1436 		 * uobj->uo_npages is already 0 here.
   1437 		 */
   1438 		mutex_enter(slock);
   1439 		goto retry;
   1440 	}
   1441 
   1442 	if (has_trans) {
   1443 		if (need_wapbl)
   1444 			WAPBL_END(vp->v_mount);
   1445 		fstrans_done(vp->v_mount);
   1446 	}
   1447 
   1448 	return (error);
   1449 }
   1450 
   1451 #ifdef XIP
   1452 int
   1453 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
   1454     int flags, struct vm_page **busypg)
   1455 {
   1456 	struct uvm_object *uobj = &vp->v_uobj;
   1457 #ifdef DIAGNOSTIC
   1458 	struct genfs_node * const gp = VTOG(vp);
   1459 #endif
   1460 
   1461 	UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
   1462 
   1463 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1464 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1465 	KASSERT(vp->v_numoutput == 0);
   1466 	KASSERT(gp->g_dirtygen == 0);
   1467 
   1468 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1469 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1470 
   1471 	/*
   1472 	 * XIP pages are read-only, and never become dirty.  They're also never
   1473 	 * queued.  PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
   1474 	 * pages, so we ignore them.
   1475 	 */
   1476 	if ((flags & PGO_FREE) == 0)
   1477 		goto done;
   1478 
   1479 	/*
   1480 	 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
   1481 	 * mappings of both XIP pages and XIP zero pages.
   1482 	 *
   1483 	 * Zero page is freed when one of its mapped offset is freed, even if
   1484 	 * one file (vnode) has many holes and mapping its zero page to all
   1485 	 * of those hole pages.
   1486 	 *
   1487 	 * We don't know which pages are currently mapped in the given vnode,
   1488 	 * because XIP pages are not added to vnode.  What we can do is to
   1489 	 * locate pages by querying the filesystem as done in getpages.  Call
   1490 	 * genfs_do_getpages_xip1().
   1491 	 */
   1492 
   1493 	off_t off, eof;
   1494 	struct vm_page *zero_page;
   1495 	bool put_zero_page;
   1496 
   1497 	off = trunc_page(startoff);
   1498 	if (endoff == 0 || (flags & PGO_ALLPAGES))
   1499 		GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
   1500 	else
   1501 		eof = endoff;
   1502 
   1503 	zero_page = uvm_pagelookup(uobj, 0);
   1504 	KASSERT(zero_page != NULL || uobj->uo_npages == 0);
   1505 	KASSERT(zero_page == NULL || uobj->uo_npages == 1);
   1506 	put_zero_page = false;
   1507 
   1508 	while (off < eof) {
   1509 		int npages, orignpages, error, i;
   1510 		struct vm_page *pgs[maxpages], *pg;
   1511 
   1512 		npages = round_page(eof - off) >> PAGE_SHIFT;
   1513 		if (npages > maxpages)
   1514 			npages = maxpages;
   1515 
   1516 		orignpages = npages;
   1517 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1518 		error = genfs_do_getpages_xip1(vp, off, pgs, &npages, 0,
   1519 		    VM_PROT_ALL, 0, PGO_LOCKED);
   1520 		KASSERT(error == 0);
   1521 		KASSERT(npages == orignpages);
   1522 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1523 		for (i = 0; i < npages; i++) {
   1524 			pg = pgs[i];
   1525 			if (pg == NULL || pg == PGO_DONTCARE)
   1526 				continue;
   1527 			if (pg == uvm_page_zeropage)
   1528 				/* Do nothing for holes. */
   1529 				continue;
   1530 			/*
   1531 			 * Freeing normal XIP pages; nothing to do.
   1532 			 */
   1533 			pmap_page_protect(pg, VM_PROT_NONE);
   1534 			KASSERT((pg->flags & PG_BUSY) != 0);
   1535 			KASSERT((pg->flags & PG_RDONLY) != 0);
   1536 			KASSERT((pg->flags & PG_CLEAN) != 0);
   1537 			KASSERT((pg->flags & PG_FAKE) == 0);
   1538 			KASSERT((pg->flags & PG_DEVICE) != 0);
   1539 			pg->flags &= ~PG_BUSY;
   1540 		}
   1541 		off += npages << PAGE_SHIFT;
   1542 	}
   1543 
   1544 	KASSERT(uobj->uo_npages == 0);
   1545 
   1546 done:
   1547 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1548 	mutex_exit(&uobj->vmobjlock);
   1549 	return 0;
   1550 }
   1551 #endif
   1552 
   1553 int
   1554 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1555 {
   1556 	off_t off;
   1557 	vaddr_t kva;
   1558 	size_t len;
   1559 	int error;
   1560 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1561 
   1562 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1563 	    vp, pgs, npages, flags);
   1564 
   1565 	off = pgs[0]->offset;
   1566 	kva = uvm_pagermapin(pgs, npages,
   1567 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1568 	len = npages << PAGE_SHIFT;
   1569 
   1570 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1571 			    uvm_aio_biodone);
   1572 
   1573 	return error;
   1574 }
   1575 
   1576 int
   1577 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1578 {
   1579 	off_t off;
   1580 	vaddr_t kva;
   1581 	size_t len;
   1582 	int error;
   1583 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1584 
   1585 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1586 	    vp, pgs, npages, flags);
   1587 
   1588 	off = pgs[0]->offset;
   1589 	kva = uvm_pagermapin(pgs, npages,
   1590 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1591 	len = npages << PAGE_SHIFT;
   1592 
   1593 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1594 			    uvm_aio_biodone);
   1595 
   1596 	return error;
   1597 }
   1598 
   1599 /*
   1600  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1601  * and mapped into kernel memory.  Here we just look up the underlying
   1602  * device block addresses and call the strategy routine.
   1603  */
   1604 
   1605 static int
   1606 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1607     enum uio_rw rw, void (*iodone)(struct buf *))
   1608 {
   1609 	int s, error;
   1610 	int fs_bshift, dev_bshift;
   1611 	off_t eof, offset, startoffset;
   1612 	size_t bytes, iobytes, skipbytes;
   1613 	struct buf *mbp, *bp;
   1614 	const bool async = (flags & PGO_SYNCIO) == 0;
   1615 	const bool iowrite = rw == UIO_WRITE;
   1616 	const int brw = iowrite ? B_WRITE : B_READ;
   1617 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1618 
   1619 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1620 	    vp, kva, len, flags);
   1621 
   1622 	KASSERT(vp->v_size <= vp->v_writesize);
   1623 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1624 	if (vp->v_type != VBLK) {
   1625 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1626 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1627 	} else {
   1628 		fs_bshift = DEV_BSHIFT;
   1629 		dev_bshift = DEV_BSHIFT;
   1630 	}
   1631 	error = 0;
   1632 	startoffset = off;
   1633 	bytes = MIN(len, eof - startoffset);
   1634 	skipbytes = 0;
   1635 	KASSERT(bytes != 0);
   1636 
   1637 	if (iowrite) {
   1638 		mutex_enter(&vp->v_interlock);
   1639 		vp->v_numoutput += 2;
   1640 		mutex_exit(&vp->v_interlock);
   1641 	}
   1642 	mbp = getiobuf(vp, true);
   1643 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1644 	    vp, mbp, vp->v_numoutput, bytes);
   1645 	mbp->b_bufsize = len;
   1646 	mbp->b_data = (void *)kva;
   1647 	mbp->b_resid = mbp->b_bcount = bytes;
   1648 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1649 	if (async) {
   1650 		mbp->b_flags = brw | B_ASYNC;
   1651 		mbp->b_iodone = iodone;
   1652 	} else {
   1653 		mbp->b_flags = brw;
   1654 		mbp->b_iodone = NULL;
   1655 	}
   1656 	if (curlwp == uvm.pagedaemon_lwp)
   1657 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1658 	else if (async)
   1659 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1660 	else
   1661 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1662 
   1663 	bp = NULL;
   1664 	for (offset = startoffset;
   1665 	    bytes > 0;
   1666 	    offset += iobytes, bytes -= iobytes) {
   1667 		int run;
   1668 		daddr_t lbn, blkno;
   1669 		struct vnode *devvp;
   1670 
   1671 		/*
   1672 		 * bmap the file to find out the blkno to read from and
   1673 		 * how much we can read in one i/o.  if bmap returns an error,
   1674 		 * skip the rest of the top-level i/o.
   1675 		 */
   1676 
   1677 		lbn = offset >> fs_bshift;
   1678 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1679 		if (error) {
   1680 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1681 			    lbn,error,0,0);
   1682 			skipbytes += bytes;
   1683 			bytes = 0;
   1684 			goto loopdone;
   1685 		}
   1686 
   1687 		/*
   1688 		 * see how many pages can be read with this i/o.
   1689 		 * reduce the i/o size if necessary to avoid
   1690 		 * overwriting pages with valid data.
   1691 		 */
   1692 
   1693 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1694 		    bytes);
   1695 
   1696 		/*
   1697 		 * if this block isn't allocated, zero it instead of
   1698 		 * reading it.  unless we are going to allocate blocks,
   1699 		 * mark the pages we zeroed PG_RDONLY.
   1700 		 */
   1701 
   1702 		if (blkno == (daddr_t)-1) {
   1703 			if (!iowrite) {
   1704 				memset((char *)kva + (offset - startoffset), 0,
   1705 				    iobytes);
   1706 			}
   1707 			skipbytes += iobytes;
   1708 			continue;
   1709 		}
   1710 
   1711 		/*
   1712 		 * allocate a sub-buf for this piece of the i/o
   1713 		 * (or just use mbp if there's only 1 piece),
   1714 		 * and start it going.
   1715 		 */
   1716 
   1717 		if (offset == startoffset && iobytes == bytes) {
   1718 			bp = mbp;
   1719 		} else {
   1720 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1721 			    vp, bp, vp->v_numoutput, 0);
   1722 			bp = getiobuf(vp, true);
   1723 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1724 		}
   1725 		bp->b_lblkno = 0;
   1726 
   1727 		/* adjust physical blkno for partial blocks */
   1728 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1729 		    dev_bshift);
   1730 
   1731 		UVMHIST_LOG(ubchist,
   1732 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1733 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1734 
   1735 		VOP_STRATEGY(devvp, bp);
   1736 	}
   1737 
   1738 loopdone:
   1739 	if (skipbytes) {
   1740 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1741 	}
   1742 	nestiobuf_done(mbp, skipbytes, error);
   1743 	if (async) {
   1744 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1745 		return (0);
   1746 	}
   1747 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1748 	error = biowait(mbp);
   1749 	s = splbio();
   1750 	(*iodone)(mbp);
   1751 	splx(s);
   1752 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1753 	return (error);
   1754 }
   1755 
   1756 int
   1757 genfs_compat_getpages(void *v)
   1758 {
   1759 	struct vop_getpages_args /* {
   1760 		struct vnode *a_vp;
   1761 		voff_t a_offset;
   1762 		struct vm_page **a_m;
   1763 		int *a_count;
   1764 		int a_centeridx;
   1765 		vm_prot_t a_access_type;
   1766 		int a_advice;
   1767 		int a_flags;
   1768 	} */ *ap = v;
   1769 
   1770 	off_t origoffset;
   1771 	struct vnode *vp = ap->a_vp;
   1772 	struct uvm_object *uobj = &vp->v_uobj;
   1773 	struct vm_page *pg, **pgs;
   1774 	vaddr_t kva;
   1775 	int i, error, orignpages, npages;
   1776 	struct iovec iov;
   1777 	struct uio uio;
   1778 	kauth_cred_t cred = curlwp->l_cred;
   1779 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1780 
   1781 	error = 0;
   1782 	origoffset = ap->a_offset;
   1783 	orignpages = *ap->a_count;
   1784 	pgs = ap->a_m;
   1785 
   1786 	if (ap->a_flags & PGO_LOCKED) {
   1787 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1788 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1789 
   1790 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1791 		if (error == 0 && memwrite) {
   1792 			genfs_markdirty(vp);
   1793 		}
   1794 		return error;
   1795 	}
   1796 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1797 		mutex_exit(&uobj->vmobjlock);
   1798 		return EINVAL;
   1799 	}
   1800 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1801 		mutex_exit(&uobj->vmobjlock);
   1802 		return 0;
   1803 	}
   1804 	npages = orignpages;
   1805 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1806 	mutex_exit(&uobj->vmobjlock);
   1807 	kva = uvm_pagermapin(pgs, npages,
   1808 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1809 	for (i = 0; i < npages; i++) {
   1810 		pg = pgs[i];
   1811 		if ((pg->flags & PG_FAKE) == 0) {
   1812 			continue;
   1813 		}
   1814 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1815 		iov.iov_len = PAGE_SIZE;
   1816 		uio.uio_iov = &iov;
   1817 		uio.uio_iovcnt = 1;
   1818 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1819 		uio.uio_rw = UIO_READ;
   1820 		uio.uio_resid = PAGE_SIZE;
   1821 		UIO_SETUP_SYSSPACE(&uio);
   1822 		/* XXX vn_lock */
   1823 		error = VOP_READ(vp, &uio, 0, cred);
   1824 		if (error) {
   1825 			break;
   1826 		}
   1827 		if (uio.uio_resid) {
   1828 			memset(iov.iov_base, 0, uio.uio_resid);
   1829 		}
   1830 	}
   1831 	uvm_pagermapout(kva, npages);
   1832 	mutex_enter(&uobj->vmobjlock);
   1833 	mutex_enter(&uvm_pageqlock);
   1834 	for (i = 0; i < npages; i++) {
   1835 		pg = pgs[i];
   1836 		if (error && (pg->flags & PG_FAKE) != 0) {
   1837 			pg->flags |= PG_RELEASED;
   1838 		} else {
   1839 			pmap_clear_modify(pg);
   1840 			uvm_pageactivate(pg);
   1841 		}
   1842 	}
   1843 	if (error) {
   1844 		uvm_page_unbusy(pgs, npages);
   1845 	}
   1846 	mutex_exit(&uvm_pageqlock);
   1847 	if (error == 0 && memwrite) {
   1848 		genfs_markdirty(vp);
   1849 	}
   1850 	mutex_exit(&uobj->vmobjlock);
   1851 	return error;
   1852 }
   1853 
   1854 int
   1855 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1856     int flags)
   1857 {
   1858 	off_t offset;
   1859 	struct iovec iov;
   1860 	struct uio uio;
   1861 	kauth_cred_t cred = curlwp->l_cred;
   1862 	struct buf *bp;
   1863 	vaddr_t kva;
   1864 	int error;
   1865 
   1866 	offset = pgs[0]->offset;
   1867 	kva = uvm_pagermapin(pgs, npages,
   1868 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1869 
   1870 	iov.iov_base = (void *)kva;
   1871 	iov.iov_len = npages << PAGE_SHIFT;
   1872 	uio.uio_iov = &iov;
   1873 	uio.uio_iovcnt = 1;
   1874 	uio.uio_offset = offset;
   1875 	uio.uio_rw = UIO_WRITE;
   1876 	uio.uio_resid = npages << PAGE_SHIFT;
   1877 	UIO_SETUP_SYSSPACE(&uio);
   1878 	/* XXX vn_lock */
   1879 	error = VOP_WRITE(vp, &uio, 0, cred);
   1880 
   1881 	mutex_enter(&vp->v_interlock);
   1882 	vp->v_numoutput++;
   1883 	mutex_exit(&vp->v_interlock);
   1884 
   1885 	bp = getiobuf(vp, true);
   1886 	bp->b_cflags = BC_BUSY | BC_AGE;
   1887 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1888 	bp->b_data = (char *)kva;
   1889 	bp->b_bcount = npages << PAGE_SHIFT;
   1890 	bp->b_bufsize = npages << PAGE_SHIFT;
   1891 	bp->b_resid = 0;
   1892 	bp->b_error = error;
   1893 	uvm_aio_aiodone(bp);
   1894 	return (error);
   1895 }
   1896 
   1897 /*
   1898  * Process a uio using direct I/O.  If we reach a part of the request
   1899  * which cannot be processed in this fashion for some reason, just return.
   1900  * The caller must handle some additional part of the request using
   1901  * buffered I/O before trying direct I/O again.
   1902  */
   1903 
   1904 void
   1905 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   1906 {
   1907 	struct vmspace *vs;
   1908 	struct iovec *iov;
   1909 	vaddr_t va;
   1910 	size_t len;
   1911 	const int mask = DEV_BSIZE - 1;
   1912 	int error;
   1913 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   1914 	    (ioflag & IO_JOURNALLOCKED) == 0);
   1915 
   1916 	/*
   1917 	 * We only support direct I/O to user space for now.
   1918 	 */
   1919 
   1920 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   1921 		return;
   1922 	}
   1923 
   1924 	/*
   1925 	 * If the vnode is mapped, we would need to get the getpages lock
   1926 	 * to stabilize the bmap, but then we would get into trouble whil e
   1927 	 * locking the pages if the pages belong to this same vnode (or a
   1928 	 * multi-vnode cascade to the same effect).  Just fall back to
   1929 	 * buffered I/O if the vnode is mapped to avoid this mess.
   1930 	 */
   1931 
   1932 	if (vp->v_vflag & VV_MAPPED) {
   1933 		return;
   1934 	}
   1935 
   1936 	if (need_wapbl) {
   1937 		error = WAPBL_BEGIN(vp->v_mount);
   1938 		if (error)
   1939 			return;
   1940 	}
   1941 
   1942 	/*
   1943 	 * Do as much of the uio as possible with direct I/O.
   1944 	 */
   1945 
   1946 	vs = uio->uio_vmspace;
   1947 	while (uio->uio_resid) {
   1948 		iov = uio->uio_iov;
   1949 		if (iov->iov_len == 0) {
   1950 			uio->uio_iov++;
   1951 			uio->uio_iovcnt--;
   1952 			continue;
   1953 		}
   1954 		va = (vaddr_t)iov->iov_base;
   1955 		len = MIN(iov->iov_len, genfs_maxdio);
   1956 		len &= ~mask;
   1957 
   1958 		/*
   1959 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   1960 		 * the current EOF, then fall back to buffered I/O.
   1961 		 */
   1962 
   1963 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   1964 			break;
   1965 		}
   1966 
   1967 		/*
   1968 		 * Check alignment.  The file offset must be at least
   1969 		 * sector-aligned.  The exact constraint on memory alignment
   1970 		 * is very hardware-dependent, but requiring sector-aligned
   1971 		 * addresses there too is safe.
   1972 		 */
   1973 
   1974 		if (uio->uio_offset & mask || va & mask) {
   1975 			break;
   1976 		}
   1977 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   1978 					  uio->uio_rw);
   1979 		if (error) {
   1980 			break;
   1981 		}
   1982 		iov->iov_base = (char *)iov->iov_base + len;
   1983 		iov->iov_len -= len;
   1984 		uio->uio_offset += len;
   1985 		uio->uio_resid -= len;
   1986 	}
   1987 
   1988 	if (need_wapbl)
   1989 		WAPBL_END(vp->v_mount);
   1990 }
   1991 
   1992 /*
   1993  * Iodone routine for direct I/O.  We don't do much here since the request is
   1994  * always synchronous, so the caller will do most of the work after biowait().
   1995  */
   1996 
   1997 static void
   1998 genfs_dio_iodone(struct buf *bp)
   1999 {
   2000 
   2001 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   2002 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   2003 		mutex_enter(bp->b_objlock);
   2004 		vwakeup(bp);
   2005 		mutex_exit(bp->b_objlock);
   2006 	}
   2007 	putiobuf(bp);
   2008 }
   2009 
   2010 /*
   2011  * Process one chunk of a direct I/O request.
   2012  */
   2013 
   2014 static int
   2015 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   2016     off_t off, enum uio_rw rw)
   2017 {
   2018 	struct vm_map *map;
   2019 	struct pmap *upm, *kpm;
   2020 	size_t klen = round_page(uva + len) - trunc_page(uva);
   2021 	off_t spoff, epoff;
   2022 	vaddr_t kva, puva;
   2023 	paddr_t pa;
   2024 	vm_prot_t prot;
   2025 	int error, rv, poff, koff;
   2026 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   2027 		(rw == UIO_WRITE ? PGO_FREE : 0);
   2028 
   2029 	/*
   2030 	 * For writes, verify that this range of the file already has fully
   2031 	 * allocated backing store.  If there are any holes, just punt and
   2032 	 * make the caller take the buffered write path.
   2033 	 */
   2034 
   2035 	if (rw == UIO_WRITE) {
   2036 		daddr_t lbn, elbn, blkno;
   2037 		int bsize, bshift, run;
   2038 
   2039 		bshift = vp->v_mount->mnt_fs_bshift;
   2040 		bsize = 1 << bshift;
   2041 		lbn = off >> bshift;
   2042 		elbn = (off + len + bsize - 1) >> bshift;
   2043 		while (lbn < elbn) {
   2044 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   2045 			if (error) {
   2046 				return error;
   2047 			}
   2048 			if (blkno == (daddr_t)-1) {
   2049 				return ENOSPC;
   2050 			}
   2051 			lbn += 1 + run;
   2052 		}
   2053 	}
   2054 
   2055 	/*
   2056 	 * Flush any cached pages for parts of the file that we're about to
   2057 	 * access.  If we're writing, invalidate pages as well.
   2058 	 */
   2059 
   2060 	spoff = trunc_page(off);
   2061 	epoff = round_page(off + len);
   2062 	mutex_enter(&vp->v_interlock);
   2063 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   2064 	if (error) {
   2065 		return error;
   2066 	}
   2067 
   2068 	/*
   2069 	 * Wire the user pages and remap them into kernel memory.
   2070 	 */
   2071 
   2072 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   2073 	error = uvm_vslock(vs, (void *)uva, len, prot);
   2074 	if (error) {
   2075 		return error;
   2076 	}
   2077 
   2078 	map = &vs->vm_map;
   2079 	upm = vm_map_pmap(map);
   2080 	kpm = vm_map_pmap(kernel_map);
   2081 	kva = uvm_km_alloc(kernel_map, klen, 0,
   2082 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   2083 	puva = trunc_page(uva);
   2084 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   2085 		rv = pmap_extract(upm, puva + poff, &pa);
   2086 		KASSERT(rv);
   2087 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   2088 	}
   2089 	pmap_update(kpm);
   2090 
   2091 	/*
   2092 	 * Do the I/O.
   2093 	 */
   2094 
   2095 	koff = uva - trunc_page(uva);
   2096 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   2097 			    genfs_dio_iodone);
   2098 
   2099 	/*
   2100 	 * Tear down the kernel mapping.
   2101 	 */
   2102 
   2103 	pmap_remove(kpm, kva, kva + klen);
   2104 	pmap_update(kpm);
   2105 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   2106 
   2107 	/*
   2108 	 * Unwire the user pages.
   2109 	 */
   2110 
   2111 	uvm_vsunlock(vs, (void *)uva, len);
   2112 	return error;
   2113 }
   2114 
   2115