genfs_io.c revision 1.36.2.36 1 /* $NetBSD: genfs_io.c,v 1.36.2.36 2010/11/19 02:30:41 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.36 2010/11/19 02:30:41 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 static int genfs_do_getpages(void *);
63 #ifdef XIP
64 static int genfs_do_getpages_xip(void *);
65 static int genfs_do_getpages_xip1(struct vnode *, voff_t, struct vm_page **,
66 int *, int, vm_prot_t, int, int);
67 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
68 int *, int, vm_prot_t, int, int);
69 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
70 struct vm_page **);
71 #endif
72 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
73 off_t, enum uio_rw);
74 static void genfs_dio_iodone(struct buf *);
75
76 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
77 void (*)(struct buf *));
78 static void genfs_rel_pages(struct vm_page **, int);
79 static void genfs_markdirty(struct vnode *);
80
81 int genfs_maxdio = MAXPHYS;
82
83 static void
84 genfs_rel_pages(struct vm_page **pgs, int npages)
85 {
86 int i;
87
88 for (i = 0; i < npages; i++) {
89 struct vm_page *pg = pgs[i];
90
91 if (pg == NULL || pg == PGO_DONTCARE)
92 continue;
93 if (pg->flags & PG_FAKE) {
94 pg->flags |= PG_RELEASED;
95 }
96 }
97 mutex_enter(&uvm_pageqlock);
98 uvm_page_unbusy(pgs, npages);
99 mutex_exit(&uvm_pageqlock);
100 }
101
102 static void
103 genfs_markdirty(struct vnode *vp)
104 {
105 struct genfs_node * const gp = VTOG(vp);
106
107 KASSERT(mutex_owned(&vp->v_interlock));
108 gp->g_dirtygen++;
109 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
110 vn_syncer_add_to_worklist(vp, filedelay);
111 }
112 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
113 vp->v_iflag |= VI_WRMAPDIRTY;
114 }
115 }
116
117 /*
118 * generic VM getpages routine.
119 * Return PG_BUSY pages for the given range,
120 * reading from backing store if necessary.
121 */
122
123 int
124 genfs_getpages(void *v)
125 {
126 #ifdef XIP
127 struct vop_getpages_args /* {
128 struct vnode *a_vp;
129 voff_t a_offset;
130 struct vm_page **a_m;
131 int *a_count;
132 int a_centeridx;
133 vm_prot_t a_access_type;
134 int a_advice;
135 int a_flags;
136 } */ * const ap = v;
137
138 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
139 return genfs_do_getpages_xip(v);
140 else
141 #endif
142 return genfs_do_getpages(v);
143 }
144
145 static int
146 genfs_do_getpages(void *v)
147 {
148 struct vop_getpages_args /* {
149 struct vnode *a_vp;
150 voff_t a_offset;
151 struct vm_page **a_m;
152 int *a_count;
153 int a_centeridx;
154 vm_prot_t a_access_type;
155 int a_advice;
156 int a_flags;
157 } */ * const ap = v;
158
159 off_t diskeof, memeof;
160 int i, error, npages;
161 const int flags = ap->a_flags;
162 struct vnode * const vp = ap->a_vp;
163 struct uvm_object * const uobj = &vp->v_uobj;
164 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
165 const bool async = (flags & PGO_SYNCIO) == 0;
166 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
167 bool has_trans = false;
168 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
169 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
170 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
171 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
172
173 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
174 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
175
176 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
177 vp->v_type == VLNK || vp->v_type == VBLK);
178
179 startover:
180 error = 0;
181 const voff_t origvsize = vp->v_size;
182 const off_t origoffset = ap->a_offset;
183 const int orignpages = *ap->a_count;
184
185 GOP_SIZE(vp, origvsize, &diskeof, 0);
186 if (flags & PGO_PASTEOF) {
187 off_t newsize;
188 #if defined(DIAGNOSTIC)
189 off_t writeeof;
190 #endif /* defined(DIAGNOSTIC) */
191
192 newsize = MAX(origvsize,
193 origoffset + (orignpages << PAGE_SHIFT));
194 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
195 #if defined(DIAGNOSTIC)
196 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
197 if (newsize > round_page(writeeof)) {
198 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
199 __func__, newsize, round_page(writeeof));
200 }
201 #endif /* defined(DIAGNOSTIC) */
202 } else {
203 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
204 }
205 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
206 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
207 KASSERT(orignpages > 0);
208
209 /*
210 * Bounds-check the request.
211 */
212
213 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
214 if ((flags & PGO_LOCKED) == 0) {
215 mutex_exit(&uobj->vmobjlock);
216 }
217 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
218 origoffset, *ap->a_count, memeof,0);
219 error = EINVAL;
220 goto out_err;
221 }
222
223 /* uobj is locked */
224
225 if ((flags & PGO_NOTIMESTAMP) == 0 &&
226 (vp->v_type != VBLK ||
227 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
228 int updflags = 0;
229
230 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
231 updflags = GOP_UPDATE_ACCESSED;
232 }
233 if (memwrite) {
234 updflags |= GOP_UPDATE_MODIFIED;
235 }
236 if (updflags != 0) {
237 GOP_MARKUPDATE(vp, updflags);
238 }
239 }
240
241 /*
242 * For PGO_LOCKED requests, just return whatever's in memory.
243 */
244
245 if (flags & PGO_LOCKED) {
246 int nfound;
247 struct vm_page *pg;
248
249 KASSERT(!glocked);
250 npages = *ap->a_count;
251 #if defined(DEBUG)
252 for (i = 0; i < npages; i++) {
253 pg = ap->a_m[i];
254 KASSERT(pg == NULL || pg == PGO_DONTCARE);
255 }
256 #endif /* defined(DEBUG) */
257 nfound = uvn_findpages(uobj, origoffset, &npages,
258 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
259 KASSERT(npages == *ap->a_count);
260 if (nfound == 0) {
261 error = EBUSY;
262 goto out_err;
263 }
264 if (!genfs_node_rdtrylock(vp)) {
265 genfs_rel_pages(ap->a_m, npages);
266
267 /*
268 * restore the array.
269 */
270
271 for (i = 0; i < npages; i++) {
272 pg = ap->a_m[i];
273
274 if (pg != NULL && pg != PGO_DONTCARE) {
275 ap->a_m[i] = NULL;
276 }
277 KASSERT(pg == NULL || pg == PGO_DONTCARE);
278 }
279 } else {
280 genfs_node_unlock(vp);
281 }
282 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
283 if (error == 0 && memwrite) {
284 genfs_markdirty(vp);
285 }
286 goto out_err;
287 }
288 mutex_exit(&uobj->vmobjlock);
289
290 /*
291 * find the requested pages and make some simple checks.
292 * leave space in the page array for a whole block.
293 */
294
295 const int fs_bshift = (vp->v_type != VBLK) ?
296 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
297 const int dev_bshift = (vp->v_type != VBLK) ?
298 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
299 const int fs_bsize = 1 << fs_bshift;
300 #define blk_mask (fs_bsize - 1)
301 #define trunc_blk(x) ((x) & ~blk_mask)
302 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
303
304 const int orignmempages = MIN(orignpages,
305 round_page(memeof - origoffset) >> PAGE_SHIFT);
306 npages = orignmempages;
307 const off_t startoffset = trunc_blk(origoffset);
308 const off_t endoffset = MIN(
309 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
310 round_page(memeof));
311 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
312
313 const int pgs_size = sizeof(struct vm_page *) *
314 ((endoffset - startoffset) >> PAGE_SHIFT);
315 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
316
317 if (pgs_size > sizeof(pgs_onstack)) {
318 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
319 if (pgs == NULL) {
320 pgs = pgs_onstack;
321 error = ENOMEM;
322 goto out_err;
323 }
324 } else {
325 pgs = pgs_onstack;
326 (void)memset(pgs, 0, pgs_size);
327 }
328
329 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
330 ridx, npages, startoffset, endoffset);
331
332 if (!has_trans) {
333 fstrans_start(vp->v_mount, FSTRANS_SHARED);
334 has_trans = true;
335 }
336
337 /*
338 * hold g_glock to prevent a race with truncate.
339 *
340 * check if our idea of v_size is still valid.
341 */
342
343 KASSERT(!glocked || genfs_node_wrlocked(vp));
344 if (!glocked) {
345 if (blockalloc) {
346 genfs_node_wrlock(vp);
347 } else {
348 genfs_node_rdlock(vp);
349 }
350 }
351 mutex_enter(&uobj->vmobjlock);
352 if (vp->v_size < origvsize) {
353 if (!glocked) {
354 genfs_node_unlock(vp);
355 }
356 if (pgs != pgs_onstack)
357 kmem_free(pgs, pgs_size);
358 goto startover;
359 }
360
361 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
362 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
363 if (!glocked) {
364 genfs_node_unlock(vp);
365 }
366 KASSERT(async != 0);
367 genfs_rel_pages(&pgs[ridx], orignmempages);
368 mutex_exit(&uobj->vmobjlock);
369 error = EBUSY;
370 goto out_err_free;
371 }
372
373 /*
374 * if the pages are already resident, just return them.
375 */
376
377 for (i = 0; i < npages; i++) {
378 struct vm_page *pg = pgs[ridx + i];
379
380 if ((pg->flags & PG_FAKE) ||
381 (blockalloc && (pg->flags & PG_RDONLY))) {
382 break;
383 }
384 }
385 if (i == npages) {
386 if (!glocked) {
387 genfs_node_unlock(vp);
388 }
389 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
390 npages += ridx;
391 goto out;
392 }
393
394 /*
395 * if PGO_OVERWRITE is set, don't bother reading the pages.
396 */
397
398 if (overwrite) {
399 if (!glocked) {
400 genfs_node_unlock(vp);
401 }
402 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
403
404 for (i = 0; i < npages; i++) {
405 struct vm_page *pg = pgs[ridx + i];
406
407 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
408 }
409 npages += ridx;
410 goto out;
411 }
412
413 /*
414 * the page wasn't resident and we're not overwriting,
415 * so we're going to have to do some i/o.
416 * find any additional pages needed to cover the expanded range.
417 */
418
419 npages = (endoffset - startoffset) >> PAGE_SHIFT;
420 if (startoffset != origoffset || npages != orignmempages) {
421 int npgs;
422
423 /*
424 * we need to avoid deadlocks caused by locking
425 * additional pages at lower offsets than pages we
426 * already have locked. unlock them all and start over.
427 */
428
429 genfs_rel_pages(&pgs[ridx], orignmempages);
430 memset(pgs, 0, pgs_size);
431
432 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
433 startoffset, endoffset, 0,0);
434 npgs = npages;
435 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
436 async ? UFP_NOWAIT : UFP_ALL) != npages) {
437 if (!glocked) {
438 genfs_node_unlock(vp);
439 }
440 KASSERT(async != 0);
441 genfs_rel_pages(pgs, npages);
442 mutex_exit(&uobj->vmobjlock);
443 error = EBUSY;
444 goto out_err_free;
445 }
446 }
447
448 mutex_exit(&uobj->vmobjlock);
449
450 {
451 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
452 vaddr_t kva;
453 struct buf *bp, *mbp;
454 bool sawhole = false;
455
456 /*
457 * read the desired page(s).
458 */
459
460 totalbytes = npages << PAGE_SHIFT;
461 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
462 tailbytes = totalbytes - bytes;
463 skipbytes = 0;
464
465 kva = uvm_pagermapin(pgs, npages,
466 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
467
468 mbp = getiobuf(vp, true);
469 mbp->b_bufsize = totalbytes;
470 mbp->b_data = (void *)kva;
471 mbp->b_resid = mbp->b_bcount = bytes;
472 mbp->b_cflags = BC_BUSY;
473 if (async) {
474 mbp->b_flags = B_READ | B_ASYNC;
475 mbp->b_iodone = uvm_aio_biodone;
476 } else {
477 mbp->b_flags = B_READ;
478 mbp->b_iodone = NULL;
479 }
480 if (async)
481 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
482 else
483 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
484
485 /*
486 * if EOF is in the middle of the range, zero the part past EOF.
487 * skip over pages which are not PG_FAKE since in that case they have
488 * valid data that we need to preserve.
489 */
490
491 tailstart = bytes;
492 while (tailbytes > 0) {
493 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
494
495 KASSERT(len <= tailbytes);
496 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
497 memset((void *)(kva + tailstart), 0, len);
498 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
499 kva, tailstart, len, 0);
500 }
501 tailstart += len;
502 tailbytes -= len;
503 }
504
505 /*
506 * now loop over the pages, reading as needed.
507 */
508
509 bp = NULL;
510 off_t offset;
511 for (offset = startoffset;
512 bytes > 0;
513 offset += iobytes, bytes -= iobytes) {
514 int run;
515 daddr_t lbn, blkno;
516 int pidx;
517 struct vnode *devvp;
518
519 /*
520 * skip pages which don't need to be read.
521 */
522
523 pidx = (offset - startoffset) >> PAGE_SHIFT;
524 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
525 size_t b;
526
527 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
528 if ((pgs[pidx]->flags & PG_RDONLY)) {
529 sawhole = true;
530 }
531 b = MIN(PAGE_SIZE, bytes);
532 offset += b;
533 bytes -= b;
534 skipbytes += b;
535 pidx++;
536 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
537 offset, 0,0,0);
538 if (bytes == 0) {
539 goto loopdone;
540 }
541 }
542
543 /*
544 * bmap the file to find out the blkno to read from and
545 * how much we can read in one i/o. if bmap returns an error,
546 * skip the rest of the top-level i/o.
547 */
548
549 lbn = offset >> fs_bshift;
550 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
551 if (error) {
552 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
553 lbn,error,0,0);
554 skipbytes += bytes;
555 bytes = 0;
556 goto loopdone;
557 }
558
559 /*
560 * see how many pages can be read with this i/o.
561 * reduce the i/o size if necessary to avoid
562 * overwriting pages with valid data.
563 */
564
565 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
566 bytes);
567 if (offset + iobytes > round_page(offset)) {
568 int pcount;
569
570 pcount = 1;
571 while (pidx + pcount < npages &&
572 pgs[pidx + pcount]->flags & PG_FAKE) {
573 pcount++;
574 }
575 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
576 (offset - trunc_page(offset)));
577 }
578
579 /*
580 * if this block isn't allocated, zero it instead of
581 * reading it. unless we are going to allocate blocks,
582 * mark the pages we zeroed PG_RDONLY.
583 */
584
585 if (blkno == (daddr_t)-1) {
586 int holepages = (round_page(offset + iobytes) -
587 trunc_page(offset)) >> PAGE_SHIFT;
588 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
589
590 sawhole = true;
591 memset((char *)kva + (offset - startoffset), 0,
592 iobytes);
593 skipbytes += iobytes;
594
595 for (i = 0; i < holepages; i++) {
596 if (memwrite) {
597 pgs[pidx + i]->flags &= ~PG_CLEAN;
598 }
599 if (!blockalloc) {
600 pgs[pidx + i]->flags |= PG_RDONLY;
601 }
602 }
603 continue;
604 }
605
606 /*
607 * allocate a sub-buf for this piece of the i/o
608 * (or just use mbp if there's only 1 piece),
609 * and start it going.
610 */
611
612 if (offset == startoffset && iobytes == bytes) {
613 bp = mbp;
614 } else {
615 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
616 vp, bp, vp->v_numoutput, 0);
617 bp = getiobuf(vp, true);
618 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
619 }
620 bp->b_lblkno = 0;
621
622 /* adjust physical blkno for partial blocks */
623 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
624 dev_bshift);
625
626 UVMHIST_LOG(ubchist,
627 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
628 bp, offset, bp->b_bcount, bp->b_blkno);
629
630 VOP_STRATEGY(devvp, bp);
631 }
632
633 loopdone:
634 nestiobuf_done(mbp, skipbytes, error);
635 if (async) {
636 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
637 if (!glocked) {
638 genfs_node_unlock(vp);
639 }
640 error = 0;
641 goto out_err_free;
642 }
643 if (bp != NULL) {
644 error = biowait(mbp);
645 }
646
647 /* Remove the mapping (make KVA available as soon as possible) */
648 uvm_pagermapout(kva, npages);
649
650 /*
651 * if this we encountered a hole then we have to do a little more work.
652 * for read faults, we marked the page PG_RDONLY so that future
653 * write accesses to the page will fault again.
654 * for write faults, we must make sure that the backing store for
655 * the page is completely allocated while the pages are locked.
656 */
657
658 if (!error && sawhole && blockalloc) {
659 /*
660 * XXX: This assumes that we come here only via
661 * the mmio path
662 */
663 if (vp->v_mount->mnt_wapbl) {
664 error = WAPBL_BEGIN(vp->v_mount);
665 }
666
667 if (!error) {
668 error = GOP_ALLOC(vp, startoffset,
669 npages << PAGE_SHIFT, 0, cred);
670 if (vp->v_mount->mnt_wapbl) {
671 WAPBL_END(vp->v_mount);
672 }
673 }
674
675 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
676 startoffset, npages << PAGE_SHIFT, error,0);
677 if (!error) {
678 for (i = 0; i < npages; i++) {
679 struct vm_page *pg = pgs[i];
680
681 if (pg == NULL) {
682 continue;
683 }
684 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
685 UVMHIST_LOG(ubchist, "mark dirty pg %p",
686 pg,0,0,0);
687 }
688 }
689 }
690 if (!glocked) {
691 genfs_node_unlock(vp);
692 }
693
694 putiobuf(mbp);
695 }
696
697 mutex_enter(&uobj->vmobjlock);
698
699 /*
700 * we're almost done! release the pages...
701 * for errors, we free the pages.
702 * otherwise we activate them and mark them as valid and clean.
703 * also, unbusy pages that were not actually requested.
704 */
705
706 if (error) {
707 for (i = 0; i < npages; i++) {
708 struct vm_page *pg = pgs[i];
709
710 if (pg == NULL) {
711 continue;
712 }
713 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
714 pg, pg->flags, 0,0);
715 if (pg->flags & PG_FAKE) {
716 pg->flags |= PG_RELEASED;
717 }
718 }
719 mutex_enter(&uvm_pageqlock);
720 uvm_page_unbusy(pgs, npages);
721 mutex_exit(&uvm_pageqlock);
722 mutex_exit(&uobj->vmobjlock);
723 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
724 goto out_err_free;
725 }
726
727 out:
728 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
729 error = 0;
730 mutex_enter(&uvm_pageqlock);
731 for (i = 0; i < npages; i++) {
732 struct vm_page *pg = pgs[i];
733 if (pg == NULL) {
734 continue;
735 }
736 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
737 pg, pg->flags, 0,0);
738 if (pg->flags & PG_FAKE && !overwrite) {
739 pg->flags &= ~(PG_FAKE);
740 pmap_clear_modify(pgs[i]);
741 }
742 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
743 if (i < ridx || i >= ridx + orignmempages || async) {
744 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
745 pg, pg->offset,0,0);
746 if (pg->flags & PG_WANTED) {
747 wakeup(pg);
748 }
749 if (pg->flags & PG_FAKE) {
750 KASSERT(overwrite);
751 uvm_pagezero(pg);
752 }
753 if (pg->flags & PG_RELEASED) {
754 uvm_pagefree(pg);
755 continue;
756 }
757 uvm_pageenqueue(pg);
758 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
759 UVM_PAGE_OWN(pg, NULL);
760 }
761 }
762 mutex_exit(&uvm_pageqlock);
763 if (memwrite) {
764 genfs_markdirty(vp);
765 }
766 mutex_exit(&uobj->vmobjlock);
767 if (ap->a_m != NULL) {
768 memcpy(ap->a_m, &pgs[ridx],
769 orignmempages * sizeof(struct vm_page *));
770 }
771
772 out_err_free:
773 if (pgs != NULL && pgs != pgs_onstack)
774 kmem_free(pgs, pgs_size);
775 out_err:
776 if (has_trans)
777 fstrans_done(vp->v_mount);
778 return error;
779 }
780
781 #ifdef XIP
782 /*
783 * genfs_do_getpages_xip
784 * Return "direct pages" of XIP vnode. The block addresses of XIP
785 * vnode pages are returned back to the VM fault handler as the
786 * actually mapped physical addresses.
787 */
788 static int
789 genfs_do_getpages_xip(void *v)
790 {
791 struct vop_getpages_args /* {
792 struct vnode *a_vp;
793 voff_t a_offset;
794 struct vm_page **a_m;
795 int *a_count;
796 int a_centeridx;
797 vm_prot_t a_access_type;
798 int a_advice;
799 int a_flags;
800 } */ * const ap = v;
801
802 UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
803
804 return genfs_do_getpages_xip1(
805 ap->a_vp,
806 ap->a_offset,
807 ap->a_m,
808 ap->a_count,
809 ap->a_centeridx,
810 ap->a_access_type,
811 ap->a_advice,
812 ap->a_flags);
813 }
814
815 static int
816 genfs_do_getpages_xip1(
817 struct vnode *vp,
818 voff_t offset,
819 struct vm_page **pps,
820 int *npagesp,
821 int centeridx,
822 vm_prot_t access_type,
823 int advice,
824 int flags)
825 {
826
827 KASSERT((vp->v_vflag & VV_XIP) != 0);
828
829 if ((flags & PGO_LOCKED) != 0) {
830 *npagesp = 0;
831 return 0;
832 } else
833 return genfs_do_getpages_xip_io(
834 vp,
835 offset,
836 pps,
837 npagesp,
838 centeridx,
839 access_type,
840 advice,
841 flags);
842 }
843
844 static int
845 genfs_do_getpages_xip_io(
846 struct vnode *vp,
847 voff_t offset,
848 struct vm_page **pps,
849 int *npagesp,
850 int centeridx,
851 vm_prot_t access_type,
852 int advice,
853 int flags)
854 {
855 struct uvm_object * const uobj = &vp->v_uobj;
856
857 int error;
858 off_t eof, sbkoff, ebkoff, off;
859 int npages;
860 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
861 int i;
862 struct vm_page *zero_page;
863
864 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
865
866 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
867 npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
868
869 fs_bshift = vp->v_mount->mnt_fs_bshift;
870 fs_bsize = 1 << fs_bshift;
871 dev_bshift = vp->v_mount->mnt_dev_bshift;
872 dev_bsize = 1 << dev_bshift;
873
874 sbkoff = offset & ~(fs_bsize - 1);
875 ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
876 ~(fs_bsize - 1);
877
878 zero_page = NULL;
879
880 UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
881 npages, (long)sbkoff, (long)ebkoff, 0);
882
883 KASSERT(mutex_owned(&uobj->vmobjlock));
884 mutex_exit(&uobj->vmobjlock);
885
886 off = offset;
887 for (i = 0; i < npages; i++) {
888 daddr_t lbn, blkno;
889 int run;
890 struct vnode *devvp;
891
892 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
893
894 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
895 KASSERT(error == 0);
896 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
897 (long)lbn, (long)blkno, run, 0);
898
899 /*
900 * XIP page metadata assignment
901 * - Unallocated block is redirected to the dedicated zero'ed
902 * page.
903 */
904 if (blkno < 0) {
905 zero_page = uvm_page_zeropage_alloc();
906 KASSERT(zero_page != NULL);
907 pps[i] = zero_page;
908 } else {
909 daddr_t blk_off, fs_off;
910
911 blk_off = blkno << dev_bshift;
912 fs_off = off - (lbn << fs_bshift);
913
914 pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
915 blk_off + fs_off);
916 KASSERT(pps[i] != NULL);
917 }
918
919 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
920 i,
921 (long)pps[i]->phys_addr,
922 pps[i],
923 0);
924
925 off += PAGE_SIZE;
926 }
927
928 mutex_enter(&uobj->vmobjlock);
929
930 for (i = 0; i < npages; i++) {
931 struct vm_page *pg = pps[i];
932
933 KASSERT((pg->flags & PG_RDONLY) != 0);
934 if (pg == zero_page)
935 continue;
936 KASSERT((pg->flags & PG_BUSY) == 0);
937 KASSERT((pg->flags & PG_CLEAN) != 0);
938 KASSERT((pg->flags & PG_DEVICE) != 0);
939 pg->flags |= PG_BUSY;
940 pg->flags &= ~PG_FAKE;
941 pg->uobject = &vp->v_uobj;
942 }
943
944 mutex_exit(&uobj->vmobjlock);
945
946 *npagesp = npages;
947
948 return 0;
949 }
950 #endif
951
952 /*
953 * generic VM putpages routine.
954 * Write the given range of pages to backing store.
955 *
956 * => "offhi == 0" means flush all pages at or after "offlo".
957 * => object should be locked by caller. we return with the
958 * object unlocked.
959 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
960 * thus, a caller might want to unlock higher level resources
961 * (e.g. vm_map) before calling flush.
962 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
963 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
964 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
965 * that new pages are inserted on the tail end of the list. thus,
966 * we can make a complete pass through the object in one go by starting
967 * at the head and working towards the tail (new pages are put in
968 * front of us).
969 * => NOTE: we are allowed to lock the page queues, so the caller
970 * must not be holding the page queue lock.
971 *
972 * note on "cleaning" object and PG_BUSY pages:
973 * this routine is holding the lock on the object. the only time
974 * that it can run into a PG_BUSY page that it does not own is if
975 * some other process has started I/O on the page (e.g. either
976 * a pagein, or a pageout). if the PG_BUSY page is being paged
977 * in, then it can not be dirty (!PG_CLEAN) because no one has
978 * had a chance to modify it yet. if the PG_BUSY page is being
979 * paged out then it means that someone else has already started
980 * cleaning the page for us (how nice!). in this case, if we
981 * have syncio specified, then after we make our pass through the
982 * object we need to wait for the other PG_BUSY pages to clear
983 * off (i.e. we need to do an iosync). also note that once a
984 * page is PG_BUSY it must stay in its object until it is un-busyed.
985 *
986 * note on page traversal:
987 * we can traverse the pages in an object either by going down the
988 * linked list in "uobj->memq", or we can go over the address range
989 * by page doing hash table lookups for each address. depending
990 * on how many pages are in the object it may be cheaper to do one
991 * or the other. we set "by_list" to true if we are using memq.
992 * if the cost of a hash lookup was equal to the cost of the list
993 * traversal we could compare the number of pages in the start->stop
994 * range to the total number of pages in the object. however, it
995 * seems that a hash table lookup is more expensive than the linked
996 * list traversal, so we multiply the number of pages in the
997 * range by an estimate of the relatively higher cost of the hash lookup.
998 */
999
1000 int
1001 genfs_putpages(void *v)
1002 {
1003 struct vop_putpages_args /* {
1004 struct vnode *a_vp;
1005 voff_t a_offlo;
1006 voff_t a_offhi;
1007 int a_flags;
1008 } */ * const ap = v;
1009
1010 #ifdef XIP
1011 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1012 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1013 ap->a_flags, NULL);
1014 else
1015 #endif
1016 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1017 ap->a_flags, NULL);
1018 }
1019
1020 int
1021 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1022 int origflags, struct vm_page **busypg)
1023 {
1024 struct uvm_object * const uobj = &vp->v_uobj;
1025 kmutex_t * const slock = &uobj->vmobjlock;
1026 off_t off;
1027 /* Even for strange MAXPHYS, the shift rounds down to a page */
1028 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1029 int i, error, npages, nback;
1030 int freeflag;
1031 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1032 bool wasclean, by_list, needs_clean, yld;
1033 bool async = (origflags & PGO_SYNCIO) == 0;
1034 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1035 struct lwp * const l = curlwp ? curlwp : &lwp0;
1036 struct genfs_node * const gp = VTOG(vp);
1037 int flags;
1038 int dirtygen;
1039 bool modified;
1040 bool need_wapbl;
1041 bool has_trans;
1042 bool cleanall;
1043 bool onworklst;
1044
1045 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1046
1047 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1048 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1049 KASSERT(startoff < endoff || endoff == 0);
1050
1051 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1052 vp, uobj->uo_npages, startoff, endoff - startoff);
1053
1054 has_trans = false;
1055 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1056 (origflags & PGO_JOURNALLOCKED) == 0);
1057
1058 retry:
1059 modified = false;
1060 flags = origflags;
1061 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1062 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1063 if (uobj->uo_npages == 0) {
1064 if (vp->v_iflag & VI_ONWORKLST) {
1065 vp->v_iflag &= ~VI_WRMAPDIRTY;
1066 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1067 vn_syncer_remove_from_worklist(vp);
1068 }
1069 if (has_trans) {
1070 if (need_wapbl)
1071 WAPBL_END(vp->v_mount);
1072 fstrans_done(vp->v_mount);
1073 }
1074 mutex_exit(slock);
1075 return (0);
1076 }
1077
1078 /*
1079 * the vnode has pages, set up to process the request.
1080 */
1081
1082 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1083 mutex_exit(slock);
1084 if (pagedaemon) {
1085 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1086 if (error)
1087 return error;
1088 } else
1089 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1090 if (need_wapbl) {
1091 error = WAPBL_BEGIN(vp->v_mount);
1092 if (error) {
1093 fstrans_done(vp->v_mount);
1094 return error;
1095 }
1096 }
1097 has_trans = true;
1098 mutex_enter(slock);
1099 goto retry;
1100 }
1101
1102 error = 0;
1103 wasclean = (vp->v_numoutput == 0);
1104 off = startoff;
1105 if (endoff == 0 || flags & PGO_ALLPAGES) {
1106 endoff = trunc_page(LLONG_MAX);
1107 }
1108 by_list = (uobj->uo_npages <=
1109 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1110
1111 #if !defined(DEBUG)
1112 /*
1113 * if this vnode is known not to have dirty pages,
1114 * don't bother to clean it out.
1115 */
1116
1117 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1118 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1119 goto skip_scan;
1120 }
1121 flags &= ~PGO_CLEANIT;
1122 }
1123 #endif /* !defined(DEBUG) */
1124
1125 /*
1126 * start the loop. when scanning by list, hold the last page
1127 * in the list before we start. pages allocated after we start
1128 * will be added to the end of the list, so we can stop at the
1129 * current last page.
1130 */
1131
1132 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1133 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1134 (vp->v_iflag & VI_ONWORKLST) != 0;
1135 dirtygen = gp->g_dirtygen;
1136 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1137 if (by_list) {
1138 curmp.flags = PG_MARKER;
1139 endmp.flags = PG_MARKER;
1140 pg = TAILQ_FIRST(&uobj->memq);
1141 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1142 } else {
1143 pg = uvm_pagelookup(uobj, off);
1144 }
1145 nextpg = NULL;
1146 while (by_list || off < endoff) {
1147
1148 /*
1149 * if the current page is not interesting, move on to the next.
1150 */
1151
1152 KASSERT(pg == NULL || pg->uobject == uobj ||
1153 (pg->flags & PG_MARKER) != 0);
1154 KASSERT(pg == NULL ||
1155 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1156 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1157 if (by_list) {
1158 if (pg == &endmp) {
1159 break;
1160 }
1161 if (pg->flags & PG_MARKER) {
1162 pg = TAILQ_NEXT(pg, listq.queue);
1163 continue;
1164 }
1165 if (pg->offset < startoff || pg->offset >= endoff ||
1166 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1167 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1168 wasclean = false;
1169 }
1170 pg = TAILQ_NEXT(pg, listq.queue);
1171 continue;
1172 }
1173 off = pg->offset;
1174 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1175 if (pg != NULL) {
1176 wasclean = false;
1177 }
1178 off += PAGE_SIZE;
1179 if (off < endoff) {
1180 pg = uvm_pagelookup(uobj, off);
1181 }
1182 continue;
1183 }
1184
1185 /*
1186 * if the current page needs to be cleaned and it's busy,
1187 * wait for it to become unbusy.
1188 */
1189
1190 yld = (l->l_cpu->ci_schedstate.spc_flags &
1191 SPCF_SHOULDYIELD) && !pagedaemon;
1192 if (pg->flags & PG_BUSY || yld) {
1193 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1194 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1195 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1196 error = EDEADLK;
1197 if (busypg != NULL)
1198 *busypg = pg;
1199 break;
1200 }
1201 if (pagedaemon) {
1202 /*
1203 * someone has taken the page while we
1204 * dropped the lock for fstrans_start.
1205 */
1206 break;
1207 }
1208 if (by_list) {
1209 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1210 UVMHIST_LOG(ubchist, "curmp next %p",
1211 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1212 }
1213 if (yld) {
1214 mutex_exit(slock);
1215 preempt();
1216 mutex_enter(slock);
1217 } else {
1218 pg->flags |= PG_WANTED;
1219 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1220 mutex_enter(slock);
1221 }
1222 if (by_list) {
1223 UVMHIST_LOG(ubchist, "after next %p",
1224 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1225 pg = TAILQ_NEXT(&curmp, listq.queue);
1226 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1227 } else {
1228 pg = uvm_pagelookup(uobj, off);
1229 }
1230 continue;
1231 }
1232
1233 /*
1234 * if we're freeing, remove all mappings of the page now.
1235 * if we're cleaning, check if the page is needs to be cleaned.
1236 */
1237
1238 if (flags & PGO_FREE) {
1239 pmap_page_protect(pg, VM_PROT_NONE);
1240 } else if (flags & PGO_CLEANIT) {
1241
1242 /*
1243 * if we still have some hope to pull this vnode off
1244 * from the syncer queue, write-protect the page.
1245 */
1246
1247 if (cleanall && wasclean &&
1248 gp->g_dirtygen == dirtygen) {
1249
1250 /*
1251 * uobj pages get wired only by uvm_fault
1252 * where uobj is locked.
1253 */
1254
1255 if (pg->wire_count == 0) {
1256 pmap_page_protect(pg,
1257 VM_PROT_READ|VM_PROT_EXECUTE);
1258 } else {
1259 cleanall = false;
1260 }
1261 }
1262 }
1263
1264 if (flags & PGO_CLEANIT) {
1265 needs_clean = pmap_clear_modify(pg) ||
1266 (pg->flags & PG_CLEAN) == 0;
1267 pg->flags |= PG_CLEAN;
1268 } else {
1269 needs_clean = false;
1270 }
1271
1272 /*
1273 * if we're cleaning, build a cluster.
1274 * the cluster will consist of pages which are currently dirty,
1275 * but they will be returned to us marked clean.
1276 * if not cleaning, just operate on the one page.
1277 */
1278
1279 if (needs_clean) {
1280 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1281 wasclean = false;
1282 memset(pgs, 0, sizeof(pgs));
1283 pg->flags |= PG_BUSY;
1284 UVM_PAGE_OWN(pg, "genfs_putpages");
1285
1286 /*
1287 * first look backward.
1288 */
1289
1290 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1291 nback = npages;
1292 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1293 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1294 if (nback) {
1295 memmove(&pgs[0], &pgs[npages - nback],
1296 nback * sizeof(pgs[0]));
1297 if (npages - nback < nback)
1298 memset(&pgs[nback], 0,
1299 (npages - nback) * sizeof(pgs[0]));
1300 else
1301 memset(&pgs[npages - nback], 0,
1302 nback * sizeof(pgs[0]));
1303 }
1304
1305 /*
1306 * then plug in our page of interest.
1307 */
1308
1309 pgs[nback] = pg;
1310
1311 /*
1312 * then look forward to fill in the remaining space in
1313 * the array of pages.
1314 */
1315
1316 npages = maxpages - nback - 1;
1317 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1318 &pgs[nback + 1],
1319 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1320 npages += nback + 1;
1321 } else {
1322 pgs[0] = pg;
1323 npages = 1;
1324 nback = 0;
1325 }
1326
1327 /*
1328 * apply FREE or DEACTIVATE options if requested.
1329 */
1330
1331 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1332 mutex_enter(&uvm_pageqlock);
1333 }
1334 for (i = 0; i < npages; i++) {
1335 tpg = pgs[i];
1336 KASSERT(tpg->uobject == uobj);
1337 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1338 pg = tpg;
1339 if (tpg->offset < startoff || tpg->offset >= endoff)
1340 continue;
1341 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1342 uvm_pagedeactivate(tpg);
1343 } else if (flags & PGO_FREE) {
1344 pmap_page_protect(tpg, VM_PROT_NONE);
1345 if (tpg->flags & PG_BUSY) {
1346 tpg->flags |= freeflag;
1347 if (pagedaemon) {
1348 uvm_pageout_start(1);
1349 uvm_pagedequeue(tpg);
1350 }
1351 } else {
1352
1353 /*
1354 * ``page is not busy''
1355 * implies that npages is 1
1356 * and needs_clean is false.
1357 */
1358
1359 nextpg = TAILQ_NEXT(tpg, listq.queue);
1360 uvm_pagefree(tpg);
1361 if (pagedaemon)
1362 uvmexp.pdfreed++;
1363 }
1364 }
1365 }
1366 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1367 mutex_exit(&uvm_pageqlock);
1368 }
1369 if (needs_clean) {
1370 modified = true;
1371
1372 /*
1373 * start the i/o. if we're traversing by list,
1374 * keep our place in the list with a marker page.
1375 */
1376
1377 if (by_list) {
1378 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1379 listq.queue);
1380 }
1381 mutex_exit(slock);
1382 error = GOP_WRITE(vp, pgs, npages, flags);
1383 mutex_enter(slock);
1384 if (by_list) {
1385 pg = TAILQ_NEXT(&curmp, listq.queue);
1386 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1387 }
1388 if (error) {
1389 break;
1390 }
1391 if (by_list) {
1392 continue;
1393 }
1394 }
1395
1396 /*
1397 * find the next page and continue if there was no error.
1398 */
1399
1400 if (by_list) {
1401 if (nextpg) {
1402 pg = nextpg;
1403 nextpg = NULL;
1404 } else {
1405 pg = TAILQ_NEXT(pg, listq.queue);
1406 }
1407 } else {
1408 off += (npages - nback) << PAGE_SHIFT;
1409 if (off < endoff) {
1410 pg = uvm_pagelookup(uobj, off);
1411 }
1412 }
1413 }
1414 if (by_list) {
1415 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1416 }
1417
1418 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1419 (vp->v_type != VBLK ||
1420 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1421 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1422 }
1423
1424 /*
1425 * if we're cleaning and there was nothing to clean,
1426 * take us off the syncer list. if we started any i/o
1427 * and we're doing sync i/o, wait for all writes to finish.
1428 */
1429
1430 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1431 (vp->v_iflag & VI_ONWORKLST) != 0) {
1432 #if defined(DEBUG)
1433 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1434 if ((pg->flags & PG_MARKER) != 0) {
1435 continue;
1436 }
1437 if ((pg->flags & PG_CLEAN) == 0) {
1438 printf("%s: %p: !CLEAN\n", __func__, pg);
1439 }
1440 if (pmap_is_modified(pg)) {
1441 printf("%s: %p: modified\n", __func__, pg);
1442 }
1443 }
1444 #endif /* defined(DEBUG) */
1445 vp->v_iflag &= ~VI_WRMAPDIRTY;
1446 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1447 vn_syncer_remove_from_worklist(vp);
1448 }
1449
1450 #if !defined(DEBUG)
1451 skip_scan:
1452 #endif /* !defined(DEBUG) */
1453
1454 /* Wait for output to complete. */
1455 if (!wasclean && !async && vp->v_numoutput != 0) {
1456 while (vp->v_numoutput != 0)
1457 cv_wait(&vp->v_cv, slock);
1458 }
1459 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1460 mutex_exit(slock);
1461
1462 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1463 /*
1464 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1465 * retrying is not a big deal because, in many cases,
1466 * uobj->uo_npages is already 0 here.
1467 */
1468 mutex_enter(slock);
1469 goto retry;
1470 }
1471
1472 if (has_trans) {
1473 if (need_wapbl)
1474 WAPBL_END(vp->v_mount);
1475 fstrans_done(vp->v_mount);
1476 }
1477
1478 return (error);
1479 }
1480
1481 #ifdef XIP
1482 int
1483 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1484 int flags, struct vm_page **busypg)
1485 {
1486 struct uvm_object *uobj = &vp->v_uobj;
1487 #ifdef DIAGNOSTIC
1488 struct genfs_node * const gp = VTOG(vp);
1489 #endif
1490
1491 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1492
1493 KASSERT(mutex_owned(&uobj->vmobjlock));
1494 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1495 KASSERT(vp->v_numoutput == 0);
1496 KASSERT(gp->g_dirtygen == 0);
1497
1498 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1499 vp, uobj->uo_npages, startoff, endoff - startoff);
1500
1501 /*
1502 * XIP pages are read-only, and never become dirty. They're also never
1503 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1504 * pages, so we ignore them.
1505 */
1506 if ((flags & PGO_FREE) == 0)
1507 goto done;
1508
1509 /*
1510 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1511 * mappings of both XIP pages and XIP zero pages.
1512 *
1513 * Zero page is freed when one of its mapped offset is freed, even if
1514 * one file (vnode) has many holes and mapping its zero page to all
1515 * of those hole pages.
1516 *
1517 * We don't know which pages are currently mapped in the given vnode,
1518 * because XIP pages are not added to vnode. What we can do is to
1519 * locate pages by querying the filesystem as done in getpages. Call
1520 * genfs_do_getpages_xip1().
1521 */
1522
1523 off_t off, eof;
1524 struct vm_page *zero_page;
1525 bool put_zero_page;
1526
1527 off = trunc_page(startoff);
1528 if (endoff == 0 || (flags & PGO_ALLPAGES))
1529 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1530 else
1531 eof = endoff;
1532
1533 zero_page = uvm_pagelookup(uobj, 0);
1534 KASSERT(zero_page != NULL || uobj->uo_npages == 0);
1535 KASSERT(zero_page == NULL || uobj->uo_npages == 1);
1536 put_zero_page = false;
1537
1538 while (off < eof) {
1539 int npages, orignpages, error, i;
1540 struct vm_page *pgs[maxpages], *pg;
1541
1542 npages = round_page(eof - off) >> PAGE_SHIFT;
1543 if (npages > maxpages)
1544 npages = maxpages;
1545
1546 orignpages = npages;
1547 KASSERT(mutex_owned(&uobj->vmobjlock));
1548 error = genfs_do_getpages_xip1(vp, off, pgs, &npages, 0,
1549 VM_PROT_ALL, 0, 0);
1550 KASSERT(error == 0);
1551 KASSERT(npages == orignpages);
1552 mutex_enter(&uobj->vmobjlock);
1553 for (i = 0; i < npages; i++) {
1554 pg = pgs[i];
1555 if (pg == NULL || pg == PGO_DONTCARE)
1556 continue;
1557 if (pg == uvm_page_zeropage)
1558 /* Do nothing for holes. */
1559 continue;
1560 /*
1561 * Freeing normal XIP pages; nothing to do.
1562 */
1563 pmap_page_protect(pg, VM_PROT_NONE);
1564 KASSERT((pg->flags & PG_BUSY) != 0);
1565 KASSERT((pg->flags & PG_RDONLY) != 0);
1566 KASSERT((pg->flags & PG_CLEAN) != 0);
1567 KASSERT((pg->flags & PG_FAKE) == 0);
1568 KASSERT((pg->flags & PG_DEVICE) != 0);
1569 pg->flags &= ~PG_BUSY;
1570 }
1571 off += npages << PAGE_SHIFT;
1572 }
1573
1574 KASSERT(uobj->uo_npages == 0);
1575
1576 done:
1577 KASSERT(mutex_owned(&uobj->vmobjlock));
1578 mutex_exit(&uobj->vmobjlock);
1579 return 0;
1580 }
1581 #endif
1582
1583 int
1584 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1585 {
1586 off_t off;
1587 vaddr_t kva;
1588 size_t len;
1589 int error;
1590 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1591
1592 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1593 vp, pgs, npages, flags);
1594
1595 off = pgs[0]->offset;
1596 kva = uvm_pagermapin(pgs, npages,
1597 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1598 len = npages << PAGE_SHIFT;
1599
1600 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1601 uvm_aio_biodone);
1602
1603 return error;
1604 }
1605
1606 int
1607 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1608 {
1609 off_t off;
1610 vaddr_t kva;
1611 size_t len;
1612 int error;
1613 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1614
1615 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1616 vp, pgs, npages, flags);
1617
1618 off = pgs[0]->offset;
1619 kva = uvm_pagermapin(pgs, npages,
1620 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1621 len = npages << PAGE_SHIFT;
1622
1623 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1624 uvm_aio_biodone);
1625
1626 return error;
1627 }
1628
1629 /*
1630 * Backend routine for doing I/O to vnode pages. Pages are already locked
1631 * and mapped into kernel memory. Here we just look up the underlying
1632 * device block addresses and call the strategy routine.
1633 */
1634
1635 static int
1636 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1637 enum uio_rw rw, void (*iodone)(struct buf *))
1638 {
1639 int s, error;
1640 int fs_bshift, dev_bshift;
1641 off_t eof, offset, startoffset;
1642 size_t bytes, iobytes, skipbytes;
1643 struct buf *mbp, *bp;
1644 const bool async = (flags & PGO_SYNCIO) == 0;
1645 const bool iowrite = rw == UIO_WRITE;
1646 const int brw = iowrite ? B_WRITE : B_READ;
1647 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1648
1649 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1650 vp, kva, len, flags);
1651
1652 KASSERT(vp->v_size <= vp->v_writesize);
1653 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1654 if (vp->v_type != VBLK) {
1655 fs_bshift = vp->v_mount->mnt_fs_bshift;
1656 dev_bshift = vp->v_mount->mnt_dev_bshift;
1657 } else {
1658 fs_bshift = DEV_BSHIFT;
1659 dev_bshift = DEV_BSHIFT;
1660 }
1661 error = 0;
1662 startoffset = off;
1663 bytes = MIN(len, eof - startoffset);
1664 skipbytes = 0;
1665 KASSERT(bytes != 0);
1666
1667 if (iowrite) {
1668 mutex_enter(&vp->v_interlock);
1669 vp->v_numoutput += 2;
1670 mutex_exit(&vp->v_interlock);
1671 }
1672 mbp = getiobuf(vp, true);
1673 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1674 vp, mbp, vp->v_numoutput, bytes);
1675 mbp->b_bufsize = len;
1676 mbp->b_data = (void *)kva;
1677 mbp->b_resid = mbp->b_bcount = bytes;
1678 mbp->b_cflags = BC_BUSY | BC_AGE;
1679 if (async) {
1680 mbp->b_flags = brw | B_ASYNC;
1681 mbp->b_iodone = iodone;
1682 } else {
1683 mbp->b_flags = brw;
1684 mbp->b_iodone = NULL;
1685 }
1686 if (curlwp == uvm.pagedaemon_lwp)
1687 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1688 else if (async)
1689 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1690 else
1691 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1692
1693 bp = NULL;
1694 for (offset = startoffset;
1695 bytes > 0;
1696 offset += iobytes, bytes -= iobytes) {
1697 int run;
1698 daddr_t lbn, blkno;
1699 struct vnode *devvp;
1700
1701 /*
1702 * bmap the file to find out the blkno to read from and
1703 * how much we can read in one i/o. if bmap returns an error,
1704 * skip the rest of the top-level i/o.
1705 */
1706
1707 lbn = offset >> fs_bshift;
1708 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1709 if (error) {
1710 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1711 lbn,error,0,0);
1712 skipbytes += bytes;
1713 bytes = 0;
1714 goto loopdone;
1715 }
1716
1717 /*
1718 * see how many pages can be read with this i/o.
1719 * reduce the i/o size if necessary to avoid
1720 * overwriting pages with valid data.
1721 */
1722
1723 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1724 bytes);
1725
1726 /*
1727 * if this block isn't allocated, zero it instead of
1728 * reading it. unless we are going to allocate blocks,
1729 * mark the pages we zeroed PG_RDONLY.
1730 */
1731
1732 if (blkno == (daddr_t)-1) {
1733 if (!iowrite) {
1734 memset((char *)kva + (offset - startoffset), 0,
1735 iobytes);
1736 }
1737 skipbytes += iobytes;
1738 continue;
1739 }
1740
1741 /*
1742 * allocate a sub-buf for this piece of the i/o
1743 * (or just use mbp if there's only 1 piece),
1744 * and start it going.
1745 */
1746
1747 if (offset == startoffset && iobytes == bytes) {
1748 bp = mbp;
1749 } else {
1750 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1751 vp, bp, vp->v_numoutput, 0);
1752 bp = getiobuf(vp, true);
1753 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1754 }
1755 bp->b_lblkno = 0;
1756
1757 /* adjust physical blkno for partial blocks */
1758 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1759 dev_bshift);
1760
1761 UVMHIST_LOG(ubchist,
1762 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1763 bp, offset, bp->b_bcount, bp->b_blkno);
1764
1765 VOP_STRATEGY(devvp, bp);
1766 }
1767
1768 loopdone:
1769 if (skipbytes) {
1770 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1771 }
1772 nestiobuf_done(mbp, skipbytes, error);
1773 if (async) {
1774 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1775 return (0);
1776 }
1777 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1778 error = biowait(mbp);
1779 s = splbio();
1780 (*iodone)(mbp);
1781 splx(s);
1782 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1783 return (error);
1784 }
1785
1786 int
1787 genfs_compat_getpages(void *v)
1788 {
1789 struct vop_getpages_args /* {
1790 struct vnode *a_vp;
1791 voff_t a_offset;
1792 struct vm_page **a_m;
1793 int *a_count;
1794 int a_centeridx;
1795 vm_prot_t a_access_type;
1796 int a_advice;
1797 int a_flags;
1798 } */ *ap = v;
1799
1800 off_t origoffset;
1801 struct vnode *vp = ap->a_vp;
1802 struct uvm_object *uobj = &vp->v_uobj;
1803 struct vm_page *pg, **pgs;
1804 vaddr_t kva;
1805 int i, error, orignpages, npages;
1806 struct iovec iov;
1807 struct uio uio;
1808 kauth_cred_t cred = curlwp->l_cred;
1809 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1810
1811 error = 0;
1812 origoffset = ap->a_offset;
1813 orignpages = *ap->a_count;
1814 pgs = ap->a_m;
1815
1816 if (ap->a_flags & PGO_LOCKED) {
1817 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1818 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1819
1820 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1821 if (error == 0 && memwrite) {
1822 genfs_markdirty(vp);
1823 }
1824 return error;
1825 }
1826 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1827 mutex_exit(&uobj->vmobjlock);
1828 return EINVAL;
1829 }
1830 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1831 mutex_exit(&uobj->vmobjlock);
1832 return 0;
1833 }
1834 npages = orignpages;
1835 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1836 mutex_exit(&uobj->vmobjlock);
1837 kva = uvm_pagermapin(pgs, npages,
1838 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1839 for (i = 0; i < npages; i++) {
1840 pg = pgs[i];
1841 if ((pg->flags & PG_FAKE) == 0) {
1842 continue;
1843 }
1844 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1845 iov.iov_len = PAGE_SIZE;
1846 uio.uio_iov = &iov;
1847 uio.uio_iovcnt = 1;
1848 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1849 uio.uio_rw = UIO_READ;
1850 uio.uio_resid = PAGE_SIZE;
1851 UIO_SETUP_SYSSPACE(&uio);
1852 /* XXX vn_lock */
1853 error = VOP_READ(vp, &uio, 0, cred);
1854 if (error) {
1855 break;
1856 }
1857 if (uio.uio_resid) {
1858 memset(iov.iov_base, 0, uio.uio_resid);
1859 }
1860 }
1861 uvm_pagermapout(kva, npages);
1862 mutex_enter(&uobj->vmobjlock);
1863 mutex_enter(&uvm_pageqlock);
1864 for (i = 0; i < npages; i++) {
1865 pg = pgs[i];
1866 if (error && (pg->flags & PG_FAKE) != 0) {
1867 pg->flags |= PG_RELEASED;
1868 } else {
1869 pmap_clear_modify(pg);
1870 uvm_pageactivate(pg);
1871 }
1872 }
1873 if (error) {
1874 uvm_page_unbusy(pgs, npages);
1875 }
1876 mutex_exit(&uvm_pageqlock);
1877 if (error == 0 && memwrite) {
1878 genfs_markdirty(vp);
1879 }
1880 mutex_exit(&uobj->vmobjlock);
1881 return error;
1882 }
1883
1884 int
1885 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1886 int flags)
1887 {
1888 off_t offset;
1889 struct iovec iov;
1890 struct uio uio;
1891 kauth_cred_t cred = curlwp->l_cred;
1892 struct buf *bp;
1893 vaddr_t kva;
1894 int error;
1895
1896 offset = pgs[0]->offset;
1897 kva = uvm_pagermapin(pgs, npages,
1898 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1899
1900 iov.iov_base = (void *)kva;
1901 iov.iov_len = npages << PAGE_SHIFT;
1902 uio.uio_iov = &iov;
1903 uio.uio_iovcnt = 1;
1904 uio.uio_offset = offset;
1905 uio.uio_rw = UIO_WRITE;
1906 uio.uio_resid = npages << PAGE_SHIFT;
1907 UIO_SETUP_SYSSPACE(&uio);
1908 /* XXX vn_lock */
1909 error = VOP_WRITE(vp, &uio, 0, cred);
1910
1911 mutex_enter(&vp->v_interlock);
1912 vp->v_numoutput++;
1913 mutex_exit(&vp->v_interlock);
1914
1915 bp = getiobuf(vp, true);
1916 bp->b_cflags = BC_BUSY | BC_AGE;
1917 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1918 bp->b_data = (char *)kva;
1919 bp->b_bcount = npages << PAGE_SHIFT;
1920 bp->b_bufsize = npages << PAGE_SHIFT;
1921 bp->b_resid = 0;
1922 bp->b_error = error;
1923 uvm_aio_aiodone(bp);
1924 return (error);
1925 }
1926
1927 /*
1928 * Process a uio using direct I/O. If we reach a part of the request
1929 * which cannot be processed in this fashion for some reason, just return.
1930 * The caller must handle some additional part of the request using
1931 * buffered I/O before trying direct I/O again.
1932 */
1933
1934 void
1935 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1936 {
1937 struct vmspace *vs;
1938 struct iovec *iov;
1939 vaddr_t va;
1940 size_t len;
1941 const int mask = DEV_BSIZE - 1;
1942 int error;
1943 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1944 (ioflag & IO_JOURNALLOCKED) == 0);
1945
1946 /*
1947 * We only support direct I/O to user space for now.
1948 */
1949
1950 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1951 return;
1952 }
1953
1954 /*
1955 * If the vnode is mapped, we would need to get the getpages lock
1956 * to stabilize the bmap, but then we would get into trouble whil e
1957 * locking the pages if the pages belong to this same vnode (or a
1958 * multi-vnode cascade to the same effect). Just fall back to
1959 * buffered I/O if the vnode is mapped to avoid this mess.
1960 */
1961
1962 if (vp->v_vflag & VV_MAPPED) {
1963 return;
1964 }
1965
1966 if (need_wapbl) {
1967 error = WAPBL_BEGIN(vp->v_mount);
1968 if (error)
1969 return;
1970 }
1971
1972 /*
1973 * Do as much of the uio as possible with direct I/O.
1974 */
1975
1976 vs = uio->uio_vmspace;
1977 while (uio->uio_resid) {
1978 iov = uio->uio_iov;
1979 if (iov->iov_len == 0) {
1980 uio->uio_iov++;
1981 uio->uio_iovcnt--;
1982 continue;
1983 }
1984 va = (vaddr_t)iov->iov_base;
1985 len = MIN(iov->iov_len, genfs_maxdio);
1986 len &= ~mask;
1987
1988 /*
1989 * If the next chunk is smaller than DEV_BSIZE or extends past
1990 * the current EOF, then fall back to buffered I/O.
1991 */
1992
1993 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1994 break;
1995 }
1996
1997 /*
1998 * Check alignment. The file offset must be at least
1999 * sector-aligned. The exact constraint on memory alignment
2000 * is very hardware-dependent, but requiring sector-aligned
2001 * addresses there too is safe.
2002 */
2003
2004 if (uio->uio_offset & mask || va & mask) {
2005 break;
2006 }
2007 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2008 uio->uio_rw);
2009 if (error) {
2010 break;
2011 }
2012 iov->iov_base = (char *)iov->iov_base + len;
2013 iov->iov_len -= len;
2014 uio->uio_offset += len;
2015 uio->uio_resid -= len;
2016 }
2017
2018 if (need_wapbl)
2019 WAPBL_END(vp->v_mount);
2020 }
2021
2022 /*
2023 * Iodone routine for direct I/O. We don't do much here since the request is
2024 * always synchronous, so the caller will do most of the work after biowait().
2025 */
2026
2027 static void
2028 genfs_dio_iodone(struct buf *bp)
2029 {
2030
2031 KASSERT((bp->b_flags & B_ASYNC) == 0);
2032 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2033 mutex_enter(bp->b_objlock);
2034 vwakeup(bp);
2035 mutex_exit(bp->b_objlock);
2036 }
2037 putiobuf(bp);
2038 }
2039
2040 /*
2041 * Process one chunk of a direct I/O request.
2042 */
2043
2044 static int
2045 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2046 off_t off, enum uio_rw rw)
2047 {
2048 struct vm_map *map;
2049 struct pmap *upm, *kpm;
2050 size_t klen = round_page(uva + len) - trunc_page(uva);
2051 off_t spoff, epoff;
2052 vaddr_t kva, puva;
2053 paddr_t pa;
2054 vm_prot_t prot;
2055 int error, rv, poff, koff;
2056 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2057 (rw == UIO_WRITE ? PGO_FREE : 0);
2058
2059 /*
2060 * For writes, verify that this range of the file already has fully
2061 * allocated backing store. If there are any holes, just punt and
2062 * make the caller take the buffered write path.
2063 */
2064
2065 if (rw == UIO_WRITE) {
2066 daddr_t lbn, elbn, blkno;
2067 int bsize, bshift, run;
2068
2069 bshift = vp->v_mount->mnt_fs_bshift;
2070 bsize = 1 << bshift;
2071 lbn = off >> bshift;
2072 elbn = (off + len + bsize - 1) >> bshift;
2073 while (lbn < elbn) {
2074 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2075 if (error) {
2076 return error;
2077 }
2078 if (blkno == (daddr_t)-1) {
2079 return ENOSPC;
2080 }
2081 lbn += 1 + run;
2082 }
2083 }
2084
2085 /*
2086 * Flush any cached pages for parts of the file that we're about to
2087 * access. If we're writing, invalidate pages as well.
2088 */
2089
2090 spoff = trunc_page(off);
2091 epoff = round_page(off + len);
2092 mutex_enter(&vp->v_interlock);
2093 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2094 if (error) {
2095 return error;
2096 }
2097
2098 /*
2099 * Wire the user pages and remap them into kernel memory.
2100 */
2101
2102 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2103 error = uvm_vslock(vs, (void *)uva, len, prot);
2104 if (error) {
2105 return error;
2106 }
2107
2108 map = &vs->vm_map;
2109 upm = vm_map_pmap(map);
2110 kpm = vm_map_pmap(kernel_map);
2111 kva = uvm_km_alloc(kernel_map, klen, 0,
2112 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2113 puva = trunc_page(uva);
2114 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2115 rv = pmap_extract(upm, puva + poff, &pa);
2116 KASSERT(rv);
2117 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2118 }
2119 pmap_update(kpm);
2120
2121 /*
2122 * Do the I/O.
2123 */
2124
2125 koff = uva - trunc_page(uva);
2126 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2127 genfs_dio_iodone);
2128
2129 /*
2130 * Tear down the kernel mapping.
2131 */
2132
2133 pmap_remove(kpm, kva, kva + klen);
2134 pmap_update(kpm);
2135 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2136
2137 /*
2138 * Unwire the user pages.
2139 */
2140
2141 uvm_vsunlock(vs, (void *)uva, len);
2142 return error;
2143 }
2144
2145