genfs_io.c revision 1.36.2.39 1 /* $NetBSD: genfs_io.c,v 1.36.2.39 2010/11/19 04:46:24 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.39 2010/11/19 04:46:24 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef XIP
63 static int genfs_do_getpages_xip(void *);
64 static int genfs_do_getpages_xip1(struct vnode *, voff_t, struct vm_page **,
65 int *, int, vm_prot_t, int, int);
66 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
67 int *, int, vm_prot_t, int, int);
68 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
69 struct vm_page **);
70 #endif
71 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
72 off_t, enum uio_rw);
73 static void genfs_dio_iodone(struct buf *);
74
75 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
76 void (*)(struct buf *));
77 static void genfs_rel_pages(struct vm_page **, int);
78 static void genfs_markdirty(struct vnode *);
79
80 int genfs_maxdio = MAXPHYS;
81
82 static void
83 genfs_rel_pages(struct vm_page **pgs, int npages)
84 {
85 int i;
86
87 for (i = 0; i < npages; i++) {
88 struct vm_page *pg = pgs[i];
89
90 if (pg == NULL || pg == PGO_DONTCARE)
91 continue;
92 if (pg->flags & PG_FAKE) {
93 pg->flags |= PG_RELEASED;
94 }
95 }
96 mutex_enter(&uvm_pageqlock);
97 uvm_page_unbusy(pgs, npages);
98 mutex_exit(&uvm_pageqlock);
99 }
100
101 static void
102 genfs_markdirty(struct vnode *vp)
103 {
104 struct genfs_node * const gp = VTOG(vp);
105
106 KASSERT(mutex_owned(&vp->v_interlock));
107 gp->g_dirtygen++;
108 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
109 vn_syncer_add_to_worklist(vp, filedelay);
110 }
111 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
112 vp->v_iflag |= VI_WRMAPDIRTY;
113 }
114 }
115
116 /*
117 * generic VM getpages routine.
118 * Return PG_BUSY pages for the given range,
119 * reading from backing store if necessary.
120 */
121
122 int
123 genfs_getpages(void *v)
124 {
125 struct vop_getpages_args /* {
126 struct vnode *a_vp;
127 voff_t a_offset;
128 struct vm_page **a_m;
129 int *a_count;
130 int a_centeridx;
131 vm_prot_t a_access_type;
132 int a_advice;
133 int a_flags;
134 } */ * const ap = v;
135
136 off_t diskeof, memeof;
137 int i, error, npages;
138 const int flags = ap->a_flags;
139 struct vnode * const vp = ap->a_vp;
140 struct uvm_object * const uobj = &vp->v_uobj;
141 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
142 const bool async = (flags & PGO_SYNCIO) == 0;
143 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
144 bool has_trans = false;
145 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
146 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
147 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
148 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
149
150 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
151 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
152
153 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
154 vp->v_type == VLNK || vp->v_type == VBLK);
155
156 startover:
157 error = 0;
158 const voff_t origvsize = vp->v_size;
159 const off_t origoffset = ap->a_offset;
160 const int orignpages = *ap->a_count;
161
162 GOP_SIZE(vp, origvsize, &diskeof, 0);
163 if (flags & PGO_PASTEOF) {
164 off_t newsize;
165 #if defined(DIAGNOSTIC)
166 off_t writeeof;
167 #endif /* defined(DIAGNOSTIC) */
168
169 newsize = MAX(origvsize,
170 origoffset + (orignpages << PAGE_SHIFT));
171 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
172 #if defined(DIAGNOSTIC)
173 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
174 if (newsize > round_page(writeeof)) {
175 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
176 __func__, newsize, round_page(writeeof));
177 }
178 #endif /* defined(DIAGNOSTIC) */
179 } else {
180 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
181 }
182 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
183 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
184 KASSERT(orignpages > 0);
185
186 /*
187 * Bounds-check the request.
188 */
189
190 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
191 if ((flags & PGO_LOCKED) == 0) {
192 mutex_exit(&uobj->vmobjlock);
193 }
194 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
195 origoffset, *ap->a_count, memeof,0);
196 error = EINVAL;
197 goto out_err;
198 }
199
200 /* uobj is locked */
201
202 if ((flags & PGO_NOTIMESTAMP) == 0 &&
203 (vp->v_type != VBLK ||
204 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
205 int updflags = 0;
206
207 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
208 updflags = GOP_UPDATE_ACCESSED;
209 }
210 if (memwrite) {
211 updflags |= GOP_UPDATE_MODIFIED;
212 }
213 if (updflags != 0) {
214 GOP_MARKUPDATE(vp, updflags);
215 }
216 }
217
218 /*
219 * For PGO_LOCKED requests, just return whatever's in memory.
220 */
221
222 if (flags & PGO_LOCKED) {
223 #if 0
224 genfs_do_getpages_locked();
225 } else {
226 genfs_do_getpages_unlocked();
227 }
228 }
229
230 int
231 genfs_do_getpages_locked()
232 {
233 #endif
234 int nfound;
235 struct vm_page *pg;
236
237 #if 1
238 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
239 *ap->a_count = 0;
240 return 0;
241 }
242 #endif
243
244 KASSERT(!glocked);
245 npages = *ap->a_count;
246 #if defined(DEBUG)
247 for (i = 0; i < npages; i++) {
248 pg = ap->a_m[i];
249 KASSERT(pg == NULL || pg == PGO_DONTCARE);
250 }
251 #endif /* defined(DEBUG) */
252 nfound = uvn_findpages(uobj, origoffset, &npages,
253 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
254 KASSERT(npages == *ap->a_count);
255 if (nfound == 0) {
256 error = EBUSY;
257 goto out_err;
258 }
259 if (!genfs_node_rdtrylock(vp)) {
260 genfs_rel_pages(ap->a_m, npages);
261
262 /*
263 * restore the array.
264 */
265
266 for (i = 0; i < npages; i++) {
267 pg = ap->a_m[i];
268
269 if (pg != NULL && pg != PGO_DONTCARE) {
270 ap->a_m[i] = NULL;
271 }
272 KASSERT(pg == NULL || pg == PGO_DONTCARE);
273 }
274 } else {
275 genfs_node_unlock(vp);
276 }
277 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
278 if (error == 0 && memwrite) {
279 genfs_markdirty(vp);
280 }
281 goto out_err;
282 }
283 mutex_exit(&uobj->vmobjlock);
284 #if 0
285 }
286
287 int
288 genfs_do_getpages_unlocked()
289 {
290 #endif
291 #if 1
292 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
293 return genfs_do_getpages_xip(v);
294 #endif
295 /*
296 * find the requested pages and make some simple checks.
297 * leave space in the page array for a whole block.
298 */
299
300 const int fs_bshift = (vp->v_type != VBLK) ?
301 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
302 const int dev_bshift = (vp->v_type != VBLK) ?
303 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
304 const int fs_bsize = 1 << fs_bshift;
305 #define blk_mask (fs_bsize - 1)
306 #define trunc_blk(x) ((x) & ~blk_mask)
307 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
308
309 const int orignmempages = MIN(orignpages,
310 round_page(memeof - origoffset) >> PAGE_SHIFT);
311 npages = orignmempages;
312 const off_t startoffset = trunc_blk(origoffset);
313 const off_t endoffset = MIN(
314 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
315 round_page(memeof));
316 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
317
318 const int pgs_size = sizeof(struct vm_page *) *
319 ((endoffset - startoffset) >> PAGE_SHIFT);
320 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
321
322 if (pgs_size > sizeof(pgs_onstack)) {
323 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
324 if (pgs == NULL) {
325 pgs = pgs_onstack;
326 error = ENOMEM;
327 goto out_err;
328 }
329 } else {
330 pgs = pgs_onstack;
331 (void)memset(pgs, 0, pgs_size);
332 }
333
334 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
335 ridx, npages, startoffset, endoffset);
336
337 if (!has_trans) {
338 fstrans_start(vp->v_mount, FSTRANS_SHARED);
339 has_trans = true;
340 }
341
342 /*
343 * hold g_glock to prevent a race with truncate.
344 *
345 * check if our idea of v_size is still valid.
346 */
347
348 KASSERT(!glocked || genfs_node_wrlocked(vp));
349 if (!glocked) {
350 if (blockalloc) {
351 genfs_node_wrlock(vp);
352 } else {
353 genfs_node_rdlock(vp);
354 }
355 }
356 mutex_enter(&uobj->vmobjlock);
357 if (vp->v_size < origvsize) {
358 if (!glocked) {
359 genfs_node_unlock(vp);
360 }
361 if (pgs != pgs_onstack)
362 kmem_free(pgs, pgs_size);
363 goto startover;
364 }
365
366 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
367 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
368 if (!glocked) {
369 genfs_node_unlock(vp);
370 }
371 KASSERT(async != 0);
372 genfs_rel_pages(&pgs[ridx], orignmempages);
373 mutex_exit(&uobj->vmobjlock);
374 error = EBUSY;
375 goto out_err_free;
376 }
377
378 /*
379 * if the pages are already resident, just return them.
380 */
381
382 for (i = 0; i < npages; i++) {
383 struct vm_page *pg = pgs[ridx + i];
384
385 if ((pg->flags & PG_FAKE) ||
386 (blockalloc && (pg->flags & PG_RDONLY))) {
387 break;
388 }
389 }
390 if (i == npages) {
391 if (!glocked) {
392 genfs_node_unlock(vp);
393 }
394 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
395 npages += ridx;
396 goto out;
397 }
398
399 /*
400 * if PGO_OVERWRITE is set, don't bother reading the pages.
401 */
402
403 if (overwrite) {
404 #if 0
405 genfs_do_getpages_overwrite();
406 } else {
407 genfs_do_getpages_io();
408 }
409 }
410
411 int
412 genfs_do_getpages_overwrite()
413 {
414 {
415 #endif
416 if (!glocked) {
417 genfs_node_unlock(vp);
418 }
419 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
420
421 for (i = 0; i < npages; i++) {
422 struct vm_page *pg = pgs[ridx + i];
423
424 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
425 }
426 npages += ridx;
427 goto out;
428 }
429 #if 0
430 }
431
432 int
433 genfs_do_getpages_io()
434 {
435 #endif
436 /*
437 * the page wasn't resident and we're not overwriting,
438 * so we're going to have to do some i/o.
439 * find any additional pages needed to cover the expanded range.
440 */
441
442 npages = (endoffset - startoffset) >> PAGE_SHIFT;
443 if (startoffset != origoffset || npages != orignmempages) {
444 int npgs;
445
446 /*
447 * we need to avoid deadlocks caused by locking
448 * additional pages at lower offsets than pages we
449 * already have locked. unlock them all and start over.
450 */
451
452 genfs_rel_pages(&pgs[ridx], orignmempages);
453 memset(pgs, 0, pgs_size);
454
455 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
456 startoffset, endoffset, 0,0);
457 npgs = npages;
458 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
459 async ? UFP_NOWAIT : UFP_ALL) != npages) {
460 if (!glocked) {
461 genfs_node_unlock(vp);
462 }
463 KASSERT(async != 0);
464 genfs_rel_pages(pgs, npages);
465 mutex_exit(&uobj->vmobjlock);
466 error = EBUSY;
467 goto out_err_free;
468 }
469 }
470
471 mutex_exit(&uobj->vmobjlock);
472
473 {
474 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
475 vaddr_t kva;
476 struct buf *bp, *mbp;
477 bool sawhole = false;
478
479 /*
480 * read the desired page(s).
481 */
482
483 totalbytes = npages << PAGE_SHIFT;
484 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
485 tailbytes = totalbytes - bytes;
486 skipbytes = 0;
487
488 kva = uvm_pagermapin(pgs, npages,
489 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
490
491 mbp = getiobuf(vp, true);
492 mbp->b_bufsize = totalbytes;
493 mbp->b_data = (void *)kva;
494 mbp->b_resid = mbp->b_bcount = bytes;
495 mbp->b_cflags = BC_BUSY;
496 if (async) {
497 mbp->b_flags = B_READ | B_ASYNC;
498 mbp->b_iodone = uvm_aio_biodone;
499 } else {
500 mbp->b_flags = B_READ;
501 mbp->b_iodone = NULL;
502 }
503 if (async)
504 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
505 else
506 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
507
508 /*
509 * if EOF is in the middle of the range, zero the part past EOF.
510 * skip over pages which are not PG_FAKE since in that case they have
511 * valid data that we need to preserve.
512 */
513
514 tailstart = bytes;
515 while (tailbytes > 0) {
516 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
517
518 KASSERT(len <= tailbytes);
519 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
520 memset((void *)(kva + tailstart), 0, len);
521 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
522 kva, tailstart, len, 0);
523 }
524 tailstart += len;
525 tailbytes -= len;
526 }
527
528 /*
529 * now loop over the pages, reading as needed.
530 */
531
532 bp = NULL;
533 off_t offset;
534 for (offset = startoffset;
535 bytes > 0;
536 offset += iobytes, bytes -= iobytes) {
537 int run;
538 daddr_t lbn, blkno;
539 int pidx;
540 struct vnode *devvp;
541
542 /*
543 * skip pages which don't need to be read.
544 */
545
546 pidx = (offset - startoffset) >> PAGE_SHIFT;
547 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
548 size_t b;
549
550 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
551 if ((pgs[pidx]->flags & PG_RDONLY)) {
552 sawhole = true;
553 }
554 b = MIN(PAGE_SIZE, bytes);
555 offset += b;
556 bytes -= b;
557 skipbytes += b;
558 pidx++;
559 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
560 offset, 0,0,0);
561 if (bytes == 0) {
562 goto loopdone;
563 }
564 }
565
566 /*
567 * bmap the file to find out the blkno to read from and
568 * how much we can read in one i/o. if bmap returns an error,
569 * skip the rest of the top-level i/o.
570 */
571
572 lbn = offset >> fs_bshift;
573 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
574 if (error) {
575 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
576 lbn,error,0,0);
577 skipbytes += bytes;
578 bytes = 0;
579 goto loopdone;
580 }
581
582 /*
583 * see how many pages can be read with this i/o.
584 * reduce the i/o size if necessary to avoid
585 * overwriting pages with valid data.
586 */
587
588 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
589 bytes);
590 if (offset + iobytes > round_page(offset)) {
591 int pcount;
592
593 pcount = 1;
594 while (pidx + pcount < npages &&
595 pgs[pidx + pcount]->flags & PG_FAKE) {
596 pcount++;
597 }
598 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
599 (offset - trunc_page(offset)));
600 }
601
602 /*
603 * if this block isn't allocated, zero it instead of
604 * reading it. unless we are going to allocate blocks,
605 * mark the pages we zeroed PG_RDONLY.
606 */
607
608 if (blkno == (daddr_t)-1) {
609 int holepages = (round_page(offset + iobytes) -
610 trunc_page(offset)) >> PAGE_SHIFT;
611 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
612
613 sawhole = true;
614 memset((char *)kva + (offset - startoffset), 0,
615 iobytes);
616 skipbytes += iobytes;
617
618 for (i = 0; i < holepages; i++) {
619 if (memwrite) {
620 pgs[pidx + i]->flags &= ~PG_CLEAN;
621 }
622 if (!blockalloc) {
623 pgs[pidx + i]->flags |= PG_RDONLY;
624 }
625 }
626 continue;
627 }
628
629 /*
630 * allocate a sub-buf for this piece of the i/o
631 * (or just use mbp if there's only 1 piece),
632 * and start it going.
633 */
634
635 if (offset == startoffset && iobytes == bytes) {
636 bp = mbp;
637 } else {
638 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
639 vp, bp, vp->v_numoutput, 0);
640 bp = getiobuf(vp, true);
641 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
642 }
643 bp->b_lblkno = 0;
644
645 /* adjust physical blkno for partial blocks */
646 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
647 dev_bshift);
648
649 UVMHIST_LOG(ubchist,
650 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
651 bp, offset, bp->b_bcount, bp->b_blkno);
652
653 VOP_STRATEGY(devvp, bp);
654 }
655
656 loopdone:
657 nestiobuf_done(mbp, skipbytes, error);
658 if (async) {
659 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
660 if (!glocked) {
661 genfs_node_unlock(vp);
662 }
663 error = 0;
664 goto out_err_free;
665 }
666 if (bp != NULL) {
667 error = biowait(mbp);
668 }
669
670 /* Remove the mapping (make KVA available as soon as possible) */
671 uvm_pagermapout(kva, npages);
672
673 /*
674 * if this we encountered a hole then we have to do a little more work.
675 * for read faults, we marked the page PG_RDONLY so that future
676 * write accesses to the page will fault again.
677 * for write faults, we must make sure that the backing store for
678 * the page is completely allocated while the pages are locked.
679 */
680
681 if (!error && sawhole && blockalloc) {
682 /*
683 * XXX: This assumes that we come here only via
684 * the mmio path
685 */
686 if (vp->v_mount->mnt_wapbl) {
687 error = WAPBL_BEGIN(vp->v_mount);
688 }
689
690 if (!error) {
691 error = GOP_ALLOC(vp, startoffset,
692 npages << PAGE_SHIFT, 0, cred);
693 if (vp->v_mount->mnt_wapbl) {
694 WAPBL_END(vp->v_mount);
695 }
696 }
697
698 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
699 startoffset, npages << PAGE_SHIFT, error,0);
700 if (!error) {
701 for (i = 0; i < npages; i++) {
702 struct vm_page *pg = pgs[i];
703
704 if (pg == NULL) {
705 continue;
706 }
707 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
708 UVMHIST_LOG(ubchist, "mark dirty pg %p",
709 pg,0,0,0);
710 }
711 }
712 }
713 if (!glocked) {
714 genfs_node_unlock(vp);
715 }
716
717 putiobuf(mbp);
718 }
719
720 mutex_enter(&uobj->vmobjlock);
721
722 /*
723 * we're almost done! release the pages...
724 * for errors, we free the pages.
725 * otherwise we activate them and mark them as valid and clean.
726 * also, unbusy pages that were not actually requested.
727 */
728
729 if (error) {
730 for (i = 0; i < npages; i++) {
731 struct vm_page *pg = pgs[i];
732
733 if (pg == NULL) {
734 continue;
735 }
736 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
737 pg, pg->flags, 0,0);
738 if (pg->flags & PG_FAKE) {
739 pg->flags |= PG_RELEASED;
740 }
741 }
742 mutex_enter(&uvm_pageqlock);
743 uvm_page_unbusy(pgs, npages);
744 mutex_exit(&uvm_pageqlock);
745 mutex_exit(&uobj->vmobjlock);
746 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
747 goto out_err_free;
748 }
749
750 out:
751 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
752 error = 0;
753 mutex_enter(&uvm_pageqlock);
754 for (i = 0; i < npages; i++) {
755 struct vm_page *pg = pgs[i];
756 if (pg == NULL) {
757 continue;
758 }
759 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
760 pg, pg->flags, 0,0);
761 if (pg->flags & PG_FAKE && !overwrite) {
762 pg->flags &= ~(PG_FAKE);
763 pmap_clear_modify(pgs[i]);
764 }
765 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
766 if (i < ridx || i >= ridx + orignmempages || async) {
767 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
768 pg, pg->offset,0,0);
769 if (pg->flags & PG_WANTED) {
770 wakeup(pg);
771 }
772 if (pg->flags & PG_FAKE) {
773 KASSERT(overwrite);
774 uvm_pagezero(pg);
775 }
776 if (pg->flags & PG_RELEASED) {
777 uvm_pagefree(pg);
778 continue;
779 }
780 uvm_pageenqueue(pg);
781 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
782 UVM_PAGE_OWN(pg, NULL);
783 }
784 }
785 mutex_exit(&uvm_pageqlock);
786 if (memwrite) {
787 genfs_markdirty(vp);
788 }
789 mutex_exit(&uobj->vmobjlock);
790 if (ap->a_m != NULL) {
791 memcpy(ap->a_m, &pgs[ridx],
792 orignmempages * sizeof(struct vm_page *));
793 }
794
795 out_err_free:
796 if (pgs != NULL && pgs != pgs_onstack)
797 kmem_free(pgs, pgs_size);
798 out_err:
799 if (has_trans)
800 fstrans_done(vp->v_mount);
801 return error;
802 }
803
804 #ifdef XIP
805 /*
806 * genfs_do_getpages_xip
807 * Return "direct pages" of XIP vnode. The block addresses of XIP
808 * vnode pages are returned back to the VM fault handler as the
809 * actually mapped physical addresses.
810 */
811 static int
812 genfs_do_getpages_xip(void *v)
813 {
814 struct vop_getpages_args /* {
815 struct vnode *a_vp;
816 voff_t a_offset;
817 struct vm_page **a_m;
818 int *a_count;
819 int a_centeridx;
820 vm_prot_t a_access_type;
821 int a_advice;
822 int a_flags;
823 } */ * const ap = v;
824
825 UVMHIST_FUNC("genfs_do_getpages_xip"); UVMHIST_CALLED(ubchist);
826
827 return genfs_do_getpages_xip1(
828 ap->a_vp,
829 ap->a_offset,
830 ap->a_m,
831 ap->a_count,
832 ap->a_centeridx,
833 ap->a_access_type,
834 ap->a_advice,
835 ap->a_flags);
836 }
837
838 static int
839 genfs_do_getpages_xip1(
840 struct vnode *vp,
841 voff_t offset,
842 struct vm_page **pps,
843 int *npagesp,
844 int centeridx,
845 vm_prot_t access_type,
846 int advice,
847 int flags)
848 {
849
850 KASSERT((vp->v_vflag & VV_XIP) != 0);
851
852 if ((flags & PGO_LOCKED) != 0) {
853 *npagesp = 0;
854 return 0;
855 } else
856 return genfs_do_getpages_xip_io(
857 vp,
858 offset,
859 pps,
860 npagesp,
861 centeridx,
862 access_type,
863 advice,
864 flags);
865 }
866
867 static int
868 genfs_do_getpages_xip_io(
869 struct vnode *vp,
870 voff_t offset,
871 struct vm_page **pps,
872 int *npagesp,
873 int centeridx,
874 vm_prot_t access_type,
875 int advice,
876 int flags)
877 {
878 struct uvm_object * const uobj = &vp->v_uobj;
879
880 int error;
881 off_t eof, sbkoff, ebkoff, off;
882 int npages;
883 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
884 int i;
885
886 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
887
888 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
889 npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
890
891 fs_bshift = vp->v_mount->mnt_fs_bshift;
892 fs_bsize = 1 << fs_bshift;
893 dev_bshift = vp->v_mount->mnt_dev_bshift;
894 dev_bsize = 1 << dev_bshift;
895
896 sbkoff = offset & ~(fs_bsize - 1);
897 ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
898 ~(fs_bsize - 1);
899
900 UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
901 npages, (long)sbkoff, (long)ebkoff, 0);
902
903 off = offset;
904 for (i = 0; i < npages; i++) {
905 daddr_t lbn, blkno;
906 int run;
907 struct vnode *devvp;
908
909 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
910
911 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
912 KASSERT(error == 0);
913 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
914 (long)lbn, (long)blkno, run, 0);
915
916 /*
917 * XIP page metadata assignment
918 * - Unallocated block is redirected to the dedicated zero'ed
919 * page.
920 */
921 if (blkno < 0) {
922 panic("XIP hole is not supported yet!");
923 } else {
924 daddr_t blk_off, fs_off;
925
926 blk_off = blkno << dev_bshift;
927 fs_off = off - (lbn << fs_bshift);
928
929 pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
930 blk_off + fs_off);
931 KASSERT(pps[i] != NULL);
932 }
933
934 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
935 i,
936 (long)pps[i]->phys_addr,
937 pps[i],
938 0);
939
940 off += PAGE_SIZE;
941 }
942
943 mutex_enter(&uobj->vmobjlock);
944
945 for (i = 0; i < npages; i++) {
946 struct vm_page *pg = pps[i];
947
948 KASSERT((pg->flags & PG_RDONLY) != 0);
949 KASSERT((pg->flags & PG_BUSY) == 0);
950 KASSERT((pg->flags & PG_CLEAN) != 0);
951 KASSERT((pg->flags & PG_DEVICE) != 0);
952 pg->flags |= PG_BUSY;
953 pg->flags &= ~PG_FAKE;
954 pg->uobject = &vp->v_uobj;
955 }
956
957 mutex_exit(&uobj->vmobjlock);
958
959 *npagesp = npages;
960
961 return 0;
962 }
963 #endif
964
965 /*
966 * generic VM putpages routine.
967 * Write the given range of pages to backing store.
968 *
969 * => "offhi == 0" means flush all pages at or after "offlo".
970 * => object should be locked by caller. we return with the
971 * object unlocked.
972 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
973 * thus, a caller might want to unlock higher level resources
974 * (e.g. vm_map) before calling flush.
975 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
976 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
977 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
978 * that new pages are inserted on the tail end of the list. thus,
979 * we can make a complete pass through the object in one go by starting
980 * at the head and working towards the tail (new pages are put in
981 * front of us).
982 * => NOTE: we are allowed to lock the page queues, so the caller
983 * must not be holding the page queue lock.
984 *
985 * note on "cleaning" object and PG_BUSY pages:
986 * this routine is holding the lock on the object. the only time
987 * that it can run into a PG_BUSY page that it does not own is if
988 * some other process has started I/O on the page (e.g. either
989 * a pagein, or a pageout). if the PG_BUSY page is being paged
990 * in, then it can not be dirty (!PG_CLEAN) because no one has
991 * had a chance to modify it yet. if the PG_BUSY page is being
992 * paged out then it means that someone else has already started
993 * cleaning the page for us (how nice!). in this case, if we
994 * have syncio specified, then after we make our pass through the
995 * object we need to wait for the other PG_BUSY pages to clear
996 * off (i.e. we need to do an iosync). also note that once a
997 * page is PG_BUSY it must stay in its object until it is un-busyed.
998 *
999 * note on page traversal:
1000 * we can traverse the pages in an object either by going down the
1001 * linked list in "uobj->memq", or we can go over the address range
1002 * by page doing hash table lookups for each address. depending
1003 * on how many pages are in the object it may be cheaper to do one
1004 * or the other. we set "by_list" to true if we are using memq.
1005 * if the cost of a hash lookup was equal to the cost of the list
1006 * traversal we could compare the number of pages in the start->stop
1007 * range to the total number of pages in the object. however, it
1008 * seems that a hash table lookup is more expensive than the linked
1009 * list traversal, so we multiply the number of pages in the
1010 * range by an estimate of the relatively higher cost of the hash lookup.
1011 */
1012
1013 int
1014 genfs_putpages(void *v)
1015 {
1016 struct vop_putpages_args /* {
1017 struct vnode *a_vp;
1018 voff_t a_offlo;
1019 voff_t a_offhi;
1020 int a_flags;
1021 } */ * const ap = v;
1022
1023 #ifdef XIP
1024 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
1025 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
1026 ap->a_flags, NULL);
1027 else
1028 #endif
1029 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
1030 ap->a_flags, NULL);
1031 }
1032
1033 int
1034 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
1035 int origflags, struct vm_page **busypg)
1036 {
1037 struct uvm_object * const uobj = &vp->v_uobj;
1038 kmutex_t * const slock = &uobj->vmobjlock;
1039 off_t off;
1040 /* Even for strange MAXPHYS, the shift rounds down to a page */
1041 #define maxpages (MAXPHYS >> PAGE_SHIFT)
1042 int i, error, npages, nback;
1043 int freeflag;
1044 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
1045 bool wasclean, by_list, needs_clean, yld;
1046 bool async = (origflags & PGO_SYNCIO) == 0;
1047 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
1048 struct lwp * const l = curlwp ? curlwp : &lwp0;
1049 struct genfs_node * const gp = VTOG(vp);
1050 int flags;
1051 int dirtygen;
1052 bool modified;
1053 bool need_wapbl;
1054 bool has_trans;
1055 bool cleanall;
1056 bool onworklst;
1057
1058 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1059
1060 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1061 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1062 KASSERT(startoff < endoff || endoff == 0);
1063
1064 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1065 vp, uobj->uo_npages, startoff, endoff - startoff);
1066
1067 has_trans = false;
1068 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1069 (origflags & PGO_JOURNALLOCKED) == 0);
1070
1071 retry:
1072 modified = false;
1073 flags = origflags;
1074 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1075 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1076 if (uobj->uo_npages == 0) {
1077 if (vp->v_iflag & VI_ONWORKLST) {
1078 vp->v_iflag &= ~VI_WRMAPDIRTY;
1079 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1080 vn_syncer_remove_from_worklist(vp);
1081 }
1082 if (has_trans) {
1083 if (need_wapbl)
1084 WAPBL_END(vp->v_mount);
1085 fstrans_done(vp->v_mount);
1086 }
1087 mutex_exit(slock);
1088 return (0);
1089 }
1090
1091 /*
1092 * the vnode has pages, set up to process the request.
1093 */
1094
1095 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1096 mutex_exit(slock);
1097 if (pagedaemon) {
1098 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1099 if (error)
1100 return error;
1101 } else
1102 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1103 if (need_wapbl) {
1104 error = WAPBL_BEGIN(vp->v_mount);
1105 if (error) {
1106 fstrans_done(vp->v_mount);
1107 return error;
1108 }
1109 }
1110 has_trans = true;
1111 mutex_enter(slock);
1112 goto retry;
1113 }
1114
1115 error = 0;
1116 wasclean = (vp->v_numoutput == 0);
1117 off = startoff;
1118 if (endoff == 0 || flags & PGO_ALLPAGES) {
1119 endoff = trunc_page(LLONG_MAX);
1120 }
1121 by_list = (uobj->uo_npages <=
1122 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1123
1124 #if !defined(DEBUG)
1125 /*
1126 * if this vnode is known not to have dirty pages,
1127 * don't bother to clean it out.
1128 */
1129
1130 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1131 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1132 goto skip_scan;
1133 }
1134 flags &= ~PGO_CLEANIT;
1135 }
1136 #endif /* !defined(DEBUG) */
1137
1138 /*
1139 * start the loop. when scanning by list, hold the last page
1140 * in the list before we start. pages allocated after we start
1141 * will be added to the end of the list, so we can stop at the
1142 * current last page.
1143 */
1144
1145 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1146 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1147 (vp->v_iflag & VI_ONWORKLST) != 0;
1148 dirtygen = gp->g_dirtygen;
1149 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1150 if (by_list) {
1151 curmp.flags = PG_MARKER;
1152 endmp.flags = PG_MARKER;
1153 pg = TAILQ_FIRST(&uobj->memq);
1154 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1155 } else {
1156 pg = uvm_pagelookup(uobj, off);
1157 }
1158 nextpg = NULL;
1159 while (by_list || off < endoff) {
1160
1161 /*
1162 * if the current page is not interesting, move on to the next.
1163 */
1164
1165 KASSERT(pg == NULL || pg->uobject == uobj ||
1166 (pg->flags & PG_MARKER) != 0);
1167 KASSERT(pg == NULL ||
1168 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1169 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1170 if (by_list) {
1171 if (pg == &endmp) {
1172 break;
1173 }
1174 if (pg->flags & PG_MARKER) {
1175 pg = TAILQ_NEXT(pg, listq.queue);
1176 continue;
1177 }
1178 if (pg->offset < startoff || pg->offset >= endoff ||
1179 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1180 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1181 wasclean = false;
1182 }
1183 pg = TAILQ_NEXT(pg, listq.queue);
1184 continue;
1185 }
1186 off = pg->offset;
1187 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1188 if (pg != NULL) {
1189 wasclean = false;
1190 }
1191 off += PAGE_SIZE;
1192 if (off < endoff) {
1193 pg = uvm_pagelookup(uobj, off);
1194 }
1195 continue;
1196 }
1197
1198 /*
1199 * if the current page needs to be cleaned and it's busy,
1200 * wait for it to become unbusy.
1201 */
1202
1203 yld = (l->l_cpu->ci_schedstate.spc_flags &
1204 SPCF_SHOULDYIELD) && !pagedaemon;
1205 if (pg->flags & PG_BUSY || yld) {
1206 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1207 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1208 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1209 error = EDEADLK;
1210 if (busypg != NULL)
1211 *busypg = pg;
1212 break;
1213 }
1214 if (pagedaemon) {
1215 /*
1216 * someone has taken the page while we
1217 * dropped the lock for fstrans_start.
1218 */
1219 break;
1220 }
1221 if (by_list) {
1222 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1223 UVMHIST_LOG(ubchist, "curmp next %p",
1224 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1225 }
1226 if (yld) {
1227 mutex_exit(slock);
1228 preempt();
1229 mutex_enter(slock);
1230 } else {
1231 pg->flags |= PG_WANTED;
1232 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1233 mutex_enter(slock);
1234 }
1235 if (by_list) {
1236 UVMHIST_LOG(ubchist, "after next %p",
1237 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1238 pg = TAILQ_NEXT(&curmp, listq.queue);
1239 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1240 } else {
1241 pg = uvm_pagelookup(uobj, off);
1242 }
1243 continue;
1244 }
1245
1246 /*
1247 * if we're freeing, remove all mappings of the page now.
1248 * if we're cleaning, check if the page is needs to be cleaned.
1249 */
1250
1251 if (flags & PGO_FREE) {
1252 pmap_page_protect(pg, VM_PROT_NONE);
1253 } else if (flags & PGO_CLEANIT) {
1254
1255 /*
1256 * if we still have some hope to pull this vnode off
1257 * from the syncer queue, write-protect the page.
1258 */
1259
1260 if (cleanall && wasclean &&
1261 gp->g_dirtygen == dirtygen) {
1262
1263 /*
1264 * uobj pages get wired only by uvm_fault
1265 * where uobj is locked.
1266 */
1267
1268 if (pg->wire_count == 0) {
1269 pmap_page_protect(pg,
1270 VM_PROT_READ|VM_PROT_EXECUTE);
1271 } else {
1272 cleanall = false;
1273 }
1274 }
1275 }
1276
1277 if (flags & PGO_CLEANIT) {
1278 needs_clean = pmap_clear_modify(pg) ||
1279 (pg->flags & PG_CLEAN) == 0;
1280 pg->flags |= PG_CLEAN;
1281 } else {
1282 needs_clean = false;
1283 }
1284
1285 /*
1286 * if we're cleaning, build a cluster.
1287 * the cluster will consist of pages which are currently dirty,
1288 * but they will be returned to us marked clean.
1289 * if not cleaning, just operate on the one page.
1290 */
1291
1292 if (needs_clean) {
1293 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1294 wasclean = false;
1295 memset(pgs, 0, sizeof(pgs));
1296 pg->flags |= PG_BUSY;
1297 UVM_PAGE_OWN(pg, "genfs_putpages");
1298
1299 /*
1300 * first look backward.
1301 */
1302
1303 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1304 nback = npages;
1305 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1306 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1307 if (nback) {
1308 memmove(&pgs[0], &pgs[npages - nback],
1309 nback * sizeof(pgs[0]));
1310 if (npages - nback < nback)
1311 memset(&pgs[nback], 0,
1312 (npages - nback) * sizeof(pgs[0]));
1313 else
1314 memset(&pgs[npages - nback], 0,
1315 nback * sizeof(pgs[0]));
1316 }
1317
1318 /*
1319 * then plug in our page of interest.
1320 */
1321
1322 pgs[nback] = pg;
1323
1324 /*
1325 * then look forward to fill in the remaining space in
1326 * the array of pages.
1327 */
1328
1329 npages = maxpages - nback - 1;
1330 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1331 &pgs[nback + 1],
1332 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1333 npages += nback + 1;
1334 } else {
1335 pgs[0] = pg;
1336 npages = 1;
1337 nback = 0;
1338 }
1339
1340 /*
1341 * apply FREE or DEACTIVATE options if requested.
1342 */
1343
1344 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1345 mutex_enter(&uvm_pageqlock);
1346 }
1347 for (i = 0; i < npages; i++) {
1348 tpg = pgs[i];
1349 KASSERT(tpg->uobject == uobj);
1350 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1351 pg = tpg;
1352 if (tpg->offset < startoff || tpg->offset >= endoff)
1353 continue;
1354 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1355 uvm_pagedeactivate(tpg);
1356 } else if (flags & PGO_FREE) {
1357 pmap_page_protect(tpg, VM_PROT_NONE);
1358 if (tpg->flags & PG_BUSY) {
1359 tpg->flags |= freeflag;
1360 if (pagedaemon) {
1361 uvm_pageout_start(1);
1362 uvm_pagedequeue(tpg);
1363 }
1364 } else {
1365
1366 /*
1367 * ``page is not busy''
1368 * implies that npages is 1
1369 * and needs_clean is false.
1370 */
1371
1372 nextpg = TAILQ_NEXT(tpg, listq.queue);
1373 uvm_pagefree(tpg);
1374 if (pagedaemon)
1375 uvmexp.pdfreed++;
1376 }
1377 }
1378 }
1379 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1380 mutex_exit(&uvm_pageqlock);
1381 }
1382 if (needs_clean) {
1383 modified = true;
1384
1385 /*
1386 * start the i/o. if we're traversing by list,
1387 * keep our place in the list with a marker page.
1388 */
1389
1390 if (by_list) {
1391 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1392 listq.queue);
1393 }
1394 mutex_exit(slock);
1395 error = GOP_WRITE(vp, pgs, npages, flags);
1396 mutex_enter(slock);
1397 if (by_list) {
1398 pg = TAILQ_NEXT(&curmp, listq.queue);
1399 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1400 }
1401 if (error) {
1402 break;
1403 }
1404 if (by_list) {
1405 continue;
1406 }
1407 }
1408
1409 /*
1410 * find the next page and continue if there was no error.
1411 */
1412
1413 if (by_list) {
1414 if (nextpg) {
1415 pg = nextpg;
1416 nextpg = NULL;
1417 } else {
1418 pg = TAILQ_NEXT(pg, listq.queue);
1419 }
1420 } else {
1421 off += (npages - nback) << PAGE_SHIFT;
1422 if (off < endoff) {
1423 pg = uvm_pagelookup(uobj, off);
1424 }
1425 }
1426 }
1427 if (by_list) {
1428 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1429 }
1430
1431 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1432 (vp->v_type != VBLK ||
1433 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1434 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1435 }
1436
1437 /*
1438 * if we're cleaning and there was nothing to clean,
1439 * take us off the syncer list. if we started any i/o
1440 * and we're doing sync i/o, wait for all writes to finish.
1441 */
1442
1443 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1444 (vp->v_iflag & VI_ONWORKLST) != 0) {
1445 #if defined(DEBUG)
1446 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1447 if ((pg->flags & PG_MARKER) != 0) {
1448 continue;
1449 }
1450 if ((pg->flags & PG_CLEAN) == 0) {
1451 printf("%s: %p: !CLEAN\n", __func__, pg);
1452 }
1453 if (pmap_is_modified(pg)) {
1454 printf("%s: %p: modified\n", __func__, pg);
1455 }
1456 }
1457 #endif /* defined(DEBUG) */
1458 vp->v_iflag &= ~VI_WRMAPDIRTY;
1459 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1460 vn_syncer_remove_from_worklist(vp);
1461 }
1462
1463 #if !defined(DEBUG)
1464 skip_scan:
1465 #endif /* !defined(DEBUG) */
1466
1467 /* Wait for output to complete. */
1468 if (!wasclean && !async && vp->v_numoutput != 0) {
1469 while (vp->v_numoutput != 0)
1470 cv_wait(&vp->v_cv, slock);
1471 }
1472 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1473 mutex_exit(slock);
1474
1475 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1476 /*
1477 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1478 * retrying is not a big deal because, in many cases,
1479 * uobj->uo_npages is already 0 here.
1480 */
1481 mutex_enter(slock);
1482 goto retry;
1483 }
1484
1485 if (has_trans) {
1486 if (need_wapbl)
1487 WAPBL_END(vp->v_mount);
1488 fstrans_done(vp->v_mount);
1489 }
1490
1491 return (error);
1492 }
1493
1494 #ifdef XIP
1495 int
1496 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1497 int flags, struct vm_page **busypg)
1498 {
1499 struct uvm_object *uobj = &vp->v_uobj;
1500 #ifdef DIAGNOSTIC
1501 struct genfs_node * const gp = VTOG(vp);
1502 #endif
1503
1504 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1505
1506 KASSERT(mutex_owned(&uobj->vmobjlock));
1507 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1508 KASSERT(vp->v_numoutput == 0);
1509 KASSERT(gp->g_dirtygen == 0);
1510
1511 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1512 vp, uobj->uo_npages, startoff, endoff - startoff);
1513
1514 /*
1515 * XIP pages are read-only, and never become dirty. They're also never
1516 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1517 * pages, so we ignore them.
1518 */
1519 if ((flags & PGO_FREE) == 0)
1520 goto done;
1521
1522 /*
1523 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1524 * mappings of both XIP pages and XIP zero pages.
1525 *
1526 * Zero page is freed when one of its mapped offset is freed, even if
1527 * one file (vnode) has many holes and mapping its zero page to all
1528 * of those hole pages.
1529 *
1530 * We don't know which pages are currently mapped in the given vnode,
1531 * because XIP pages are not added to vnode. What we can do is to
1532 * locate pages by querying the filesystem as done in getpages. Call
1533 * genfs_do_getpages_xip1().
1534 */
1535
1536 off_t off, eof;
1537
1538 off = trunc_page(startoff);
1539 if (endoff == 0 || (flags & PGO_ALLPAGES))
1540 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1541 else
1542 eof = endoff;
1543
1544 while (off < eof) {
1545 int npages, orignpages, error, i;
1546 struct vm_page *pgs[maxpages], *pg;
1547
1548 npages = round_page(eof - off) >> PAGE_SHIFT;
1549 if (npages > maxpages)
1550 npages = maxpages;
1551
1552 orignpages = npages;
1553 KASSERT(mutex_owned(&uobj->vmobjlock));
1554 mutex_exit(&uobj->vmobjlock);
1555 error = genfs_do_getpages_xip1(vp, off, pgs, &npages, 0,
1556 VM_PROT_ALL, 0, 0);
1557 KASSERT(error == 0);
1558 KASSERT(npages == orignpages);
1559 mutex_enter(&uobj->vmobjlock);
1560 for (i = 0; i < npages; i++) {
1561 pg = pgs[i];
1562 if (pg == NULL || pg == PGO_DONTCARE)
1563 continue;
1564 /*
1565 * Freeing normal XIP pages; nothing to do.
1566 */
1567 pmap_page_protect(pg, VM_PROT_NONE);
1568 KASSERT((pg->flags & PG_BUSY) != 0);
1569 KASSERT((pg->flags & PG_RDONLY) != 0);
1570 KASSERT((pg->flags & PG_CLEAN) != 0);
1571 KASSERT((pg->flags & PG_FAKE) == 0);
1572 KASSERT((pg->flags & PG_DEVICE) != 0);
1573 pg->flags &= ~PG_BUSY;
1574 }
1575 off += npages << PAGE_SHIFT;
1576 }
1577
1578 KASSERT(uobj->uo_npages == 0);
1579
1580 done:
1581 KASSERT(mutex_owned(&uobj->vmobjlock));
1582 mutex_exit(&uobj->vmobjlock);
1583 return 0;
1584 }
1585 #endif
1586
1587 int
1588 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1589 {
1590 off_t off;
1591 vaddr_t kva;
1592 size_t len;
1593 int error;
1594 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1595
1596 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1597 vp, pgs, npages, flags);
1598
1599 off = pgs[0]->offset;
1600 kva = uvm_pagermapin(pgs, npages,
1601 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1602 len = npages << PAGE_SHIFT;
1603
1604 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1605 uvm_aio_biodone);
1606
1607 return error;
1608 }
1609
1610 int
1611 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1612 {
1613 off_t off;
1614 vaddr_t kva;
1615 size_t len;
1616 int error;
1617 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1618
1619 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1620 vp, pgs, npages, flags);
1621
1622 off = pgs[0]->offset;
1623 kva = uvm_pagermapin(pgs, npages,
1624 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1625 len = npages << PAGE_SHIFT;
1626
1627 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1628 uvm_aio_biodone);
1629
1630 return error;
1631 }
1632
1633 /*
1634 * Backend routine for doing I/O to vnode pages. Pages are already locked
1635 * and mapped into kernel memory. Here we just look up the underlying
1636 * device block addresses and call the strategy routine.
1637 */
1638
1639 static int
1640 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1641 enum uio_rw rw, void (*iodone)(struct buf *))
1642 {
1643 int s, error;
1644 int fs_bshift, dev_bshift;
1645 off_t eof, offset, startoffset;
1646 size_t bytes, iobytes, skipbytes;
1647 struct buf *mbp, *bp;
1648 const bool async = (flags & PGO_SYNCIO) == 0;
1649 const bool iowrite = rw == UIO_WRITE;
1650 const int brw = iowrite ? B_WRITE : B_READ;
1651 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1652
1653 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1654 vp, kva, len, flags);
1655
1656 KASSERT(vp->v_size <= vp->v_writesize);
1657 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1658 if (vp->v_type != VBLK) {
1659 fs_bshift = vp->v_mount->mnt_fs_bshift;
1660 dev_bshift = vp->v_mount->mnt_dev_bshift;
1661 } else {
1662 fs_bshift = DEV_BSHIFT;
1663 dev_bshift = DEV_BSHIFT;
1664 }
1665 error = 0;
1666 startoffset = off;
1667 bytes = MIN(len, eof - startoffset);
1668 skipbytes = 0;
1669 KASSERT(bytes != 0);
1670
1671 if (iowrite) {
1672 mutex_enter(&vp->v_interlock);
1673 vp->v_numoutput += 2;
1674 mutex_exit(&vp->v_interlock);
1675 }
1676 mbp = getiobuf(vp, true);
1677 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1678 vp, mbp, vp->v_numoutput, bytes);
1679 mbp->b_bufsize = len;
1680 mbp->b_data = (void *)kva;
1681 mbp->b_resid = mbp->b_bcount = bytes;
1682 mbp->b_cflags = BC_BUSY | BC_AGE;
1683 if (async) {
1684 mbp->b_flags = brw | B_ASYNC;
1685 mbp->b_iodone = iodone;
1686 } else {
1687 mbp->b_flags = brw;
1688 mbp->b_iodone = NULL;
1689 }
1690 if (curlwp == uvm.pagedaemon_lwp)
1691 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1692 else if (async)
1693 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1694 else
1695 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1696
1697 bp = NULL;
1698 for (offset = startoffset;
1699 bytes > 0;
1700 offset += iobytes, bytes -= iobytes) {
1701 int run;
1702 daddr_t lbn, blkno;
1703 struct vnode *devvp;
1704
1705 /*
1706 * bmap the file to find out the blkno to read from and
1707 * how much we can read in one i/o. if bmap returns an error,
1708 * skip the rest of the top-level i/o.
1709 */
1710
1711 lbn = offset >> fs_bshift;
1712 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1713 if (error) {
1714 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1715 lbn,error,0,0);
1716 skipbytes += bytes;
1717 bytes = 0;
1718 goto loopdone;
1719 }
1720
1721 /*
1722 * see how many pages can be read with this i/o.
1723 * reduce the i/o size if necessary to avoid
1724 * overwriting pages with valid data.
1725 */
1726
1727 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1728 bytes);
1729
1730 /*
1731 * if this block isn't allocated, zero it instead of
1732 * reading it. unless we are going to allocate blocks,
1733 * mark the pages we zeroed PG_RDONLY.
1734 */
1735
1736 if (blkno == (daddr_t)-1) {
1737 if (!iowrite) {
1738 memset((char *)kva + (offset - startoffset), 0,
1739 iobytes);
1740 }
1741 skipbytes += iobytes;
1742 continue;
1743 }
1744
1745 /*
1746 * allocate a sub-buf for this piece of the i/o
1747 * (or just use mbp if there's only 1 piece),
1748 * and start it going.
1749 */
1750
1751 if (offset == startoffset && iobytes == bytes) {
1752 bp = mbp;
1753 } else {
1754 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1755 vp, bp, vp->v_numoutput, 0);
1756 bp = getiobuf(vp, true);
1757 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1758 }
1759 bp->b_lblkno = 0;
1760
1761 /* adjust physical blkno for partial blocks */
1762 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1763 dev_bshift);
1764
1765 UVMHIST_LOG(ubchist,
1766 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1767 bp, offset, bp->b_bcount, bp->b_blkno);
1768
1769 VOP_STRATEGY(devvp, bp);
1770 }
1771
1772 loopdone:
1773 if (skipbytes) {
1774 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1775 }
1776 nestiobuf_done(mbp, skipbytes, error);
1777 if (async) {
1778 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1779 return (0);
1780 }
1781 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1782 error = biowait(mbp);
1783 s = splbio();
1784 (*iodone)(mbp);
1785 splx(s);
1786 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1787 return (error);
1788 }
1789
1790 int
1791 genfs_compat_getpages(void *v)
1792 {
1793 struct vop_getpages_args /* {
1794 struct vnode *a_vp;
1795 voff_t a_offset;
1796 struct vm_page **a_m;
1797 int *a_count;
1798 int a_centeridx;
1799 vm_prot_t a_access_type;
1800 int a_advice;
1801 int a_flags;
1802 } */ *ap = v;
1803
1804 off_t origoffset;
1805 struct vnode *vp = ap->a_vp;
1806 struct uvm_object *uobj = &vp->v_uobj;
1807 struct vm_page *pg, **pgs;
1808 vaddr_t kva;
1809 int i, error, orignpages, npages;
1810 struct iovec iov;
1811 struct uio uio;
1812 kauth_cred_t cred = curlwp->l_cred;
1813 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1814
1815 error = 0;
1816 origoffset = ap->a_offset;
1817 orignpages = *ap->a_count;
1818 pgs = ap->a_m;
1819
1820 if (ap->a_flags & PGO_LOCKED) {
1821 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1822 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1823
1824 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1825 if (error == 0 && memwrite) {
1826 genfs_markdirty(vp);
1827 }
1828 return error;
1829 }
1830 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1831 mutex_exit(&uobj->vmobjlock);
1832 return EINVAL;
1833 }
1834 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1835 mutex_exit(&uobj->vmobjlock);
1836 return 0;
1837 }
1838 npages = orignpages;
1839 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1840 mutex_exit(&uobj->vmobjlock);
1841 kva = uvm_pagermapin(pgs, npages,
1842 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1843 for (i = 0; i < npages; i++) {
1844 pg = pgs[i];
1845 if ((pg->flags & PG_FAKE) == 0) {
1846 continue;
1847 }
1848 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1849 iov.iov_len = PAGE_SIZE;
1850 uio.uio_iov = &iov;
1851 uio.uio_iovcnt = 1;
1852 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1853 uio.uio_rw = UIO_READ;
1854 uio.uio_resid = PAGE_SIZE;
1855 UIO_SETUP_SYSSPACE(&uio);
1856 /* XXX vn_lock */
1857 error = VOP_READ(vp, &uio, 0, cred);
1858 if (error) {
1859 break;
1860 }
1861 if (uio.uio_resid) {
1862 memset(iov.iov_base, 0, uio.uio_resid);
1863 }
1864 }
1865 uvm_pagermapout(kva, npages);
1866 mutex_enter(&uobj->vmobjlock);
1867 mutex_enter(&uvm_pageqlock);
1868 for (i = 0; i < npages; i++) {
1869 pg = pgs[i];
1870 if (error && (pg->flags & PG_FAKE) != 0) {
1871 pg->flags |= PG_RELEASED;
1872 } else {
1873 pmap_clear_modify(pg);
1874 uvm_pageactivate(pg);
1875 }
1876 }
1877 if (error) {
1878 uvm_page_unbusy(pgs, npages);
1879 }
1880 mutex_exit(&uvm_pageqlock);
1881 if (error == 0 && memwrite) {
1882 genfs_markdirty(vp);
1883 }
1884 mutex_exit(&uobj->vmobjlock);
1885 return error;
1886 }
1887
1888 int
1889 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1890 int flags)
1891 {
1892 off_t offset;
1893 struct iovec iov;
1894 struct uio uio;
1895 kauth_cred_t cred = curlwp->l_cred;
1896 struct buf *bp;
1897 vaddr_t kva;
1898 int error;
1899
1900 offset = pgs[0]->offset;
1901 kva = uvm_pagermapin(pgs, npages,
1902 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1903
1904 iov.iov_base = (void *)kva;
1905 iov.iov_len = npages << PAGE_SHIFT;
1906 uio.uio_iov = &iov;
1907 uio.uio_iovcnt = 1;
1908 uio.uio_offset = offset;
1909 uio.uio_rw = UIO_WRITE;
1910 uio.uio_resid = npages << PAGE_SHIFT;
1911 UIO_SETUP_SYSSPACE(&uio);
1912 /* XXX vn_lock */
1913 error = VOP_WRITE(vp, &uio, 0, cred);
1914
1915 mutex_enter(&vp->v_interlock);
1916 vp->v_numoutput++;
1917 mutex_exit(&vp->v_interlock);
1918
1919 bp = getiobuf(vp, true);
1920 bp->b_cflags = BC_BUSY | BC_AGE;
1921 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1922 bp->b_data = (char *)kva;
1923 bp->b_bcount = npages << PAGE_SHIFT;
1924 bp->b_bufsize = npages << PAGE_SHIFT;
1925 bp->b_resid = 0;
1926 bp->b_error = error;
1927 uvm_aio_aiodone(bp);
1928 return (error);
1929 }
1930
1931 /*
1932 * Process a uio using direct I/O. If we reach a part of the request
1933 * which cannot be processed in this fashion for some reason, just return.
1934 * The caller must handle some additional part of the request using
1935 * buffered I/O before trying direct I/O again.
1936 */
1937
1938 void
1939 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1940 {
1941 struct vmspace *vs;
1942 struct iovec *iov;
1943 vaddr_t va;
1944 size_t len;
1945 const int mask = DEV_BSIZE - 1;
1946 int error;
1947 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1948 (ioflag & IO_JOURNALLOCKED) == 0);
1949
1950 /*
1951 * We only support direct I/O to user space for now.
1952 */
1953
1954 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1955 return;
1956 }
1957
1958 /*
1959 * If the vnode is mapped, we would need to get the getpages lock
1960 * to stabilize the bmap, but then we would get into trouble whil e
1961 * locking the pages if the pages belong to this same vnode (or a
1962 * multi-vnode cascade to the same effect). Just fall back to
1963 * buffered I/O if the vnode is mapped to avoid this mess.
1964 */
1965
1966 if (vp->v_vflag & VV_MAPPED) {
1967 return;
1968 }
1969
1970 if (need_wapbl) {
1971 error = WAPBL_BEGIN(vp->v_mount);
1972 if (error)
1973 return;
1974 }
1975
1976 /*
1977 * Do as much of the uio as possible with direct I/O.
1978 */
1979
1980 vs = uio->uio_vmspace;
1981 while (uio->uio_resid) {
1982 iov = uio->uio_iov;
1983 if (iov->iov_len == 0) {
1984 uio->uio_iov++;
1985 uio->uio_iovcnt--;
1986 continue;
1987 }
1988 va = (vaddr_t)iov->iov_base;
1989 len = MIN(iov->iov_len, genfs_maxdio);
1990 len &= ~mask;
1991
1992 /*
1993 * If the next chunk is smaller than DEV_BSIZE or extends past
1994 * the current EOF, then fall back to buffered I/O.
1995 */
1996
1997 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1998 break;
1999 }
2000
2001 /*
2002 * Check alignment. The file offset must be at least
2003 * sector-aligned. The exact constraint on memory alignment
2004 * is very hardware-dependent, but requiring sector-aligned
2005 * addresses there too is safe.
2006 */
2007
2008 if (uio->uio_offset & mask || va & mask) {
2009 break;
2010 }
2011 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
2012 uio->uio_rw);
2013 if (error) {
2014 break;
2015 }
2016 iov->iov_base = (char *)iov->iov_base + len;
2017 iov->iov_len -= len;
2018 uio->uio_offset += len;
2019 uio->uio_resid -= len;
2020 }
2021
2022 if (need_wapbl)
2023 WAPBL_END(vp->v_mount);
2024 }
2025
2026 /*
2027 * Iodone routine for direct I/O. We don't do much here since the request is
2028 * always synchronous, so the caller will do most of the work after biowait().
2029 */
2030
2031 static void
2032 genfs_dio_iodone(struct buf *bp)
2033 {
2034
2035 KASSERT((bp->b_flags & B_ASYNC) == 0);
2036 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
2037 mutex_enter(bp->b_objlock);
2038 vwakeup(bp);
2039 mutex_exit(bp->b_objlock);
2040 }
2041 putiobuf(bp);
2042 }
2043
2044 /*
2045 * Process one chunk of a direct I/O request.
2046 */
2047
2048 static int
2049 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
2050 off_t off, enum uio_rw rw)
2051 {
2052 struct vm_map *map;
2053 struct pmap *upm, *kpm;
2054 size_t klen = round_page(uva + len) - trunc_page(uva);
2055 off_t spoff, epoff;
2056 vaddr_t kva, puva;
2057 paddr_t pa;
2058 vm_prot_t prot;
2059 int error, rv, poff, koff;
2060 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2061 (rw == UIO_WRITE ? PGO_FREE : 0);
2062
2063 /*
2064 * For writes, verify that this range of the file already has fully
2065 * allocated backing store. If there are any holes, just punt and
2066 * make the caller take the buffered write path.
2067 */
2068
2069 if (rw == UIO_WRITE) {
2070 daddr_t lbn, elbn, blkno;
2071 int bsize, bshift, run;
2072
2073 bshift = vp->v_mount->mnt_fs_bshift;
2074 bsize = 1 << bshift;
2075 lbn = off >> bshift;
2076 elbn = (off + len + bsize - 1) >> bshift;
2077 while (lbn < elbn) {
2078 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2079 if (error) {
2080 return error;
2081 }
2082 if (blkno == (daddr_t)-1) {
2083 return ENOSPC;
2084 }
2085 lbn += 1 + run;
2086 }
2087 }
2088
2089 /*
2090 * Flush any cached pages for parts of the file that we're about to
2091 * access. If we're writing, invalidate pages as well.
2092 */
2093
2094 spoff = trunc_page(off);
2095 epoff = round_page(off + len);
2096 mutex_enter(&vp->v_interlock);
2097 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2098 if (error) {
2099 return error;
2100 }
2101
2102 /*
2103 * Wire the user pages and remap them into kernel memory.
2104 */
2105
2106 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2107 error = uvm_vslock(vs, (void *)uva, len, prot);
2108 if (error) {
2109 return error;
2110 }
2111
2112 map = &vs->vm_map;
2113 upm = vm_map_pmap(map);
2114 kpm = vm_map_pmap(kernel_map);
2115 kva = uvm_km_alloc(kernel_map, klen, 0,
2116 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2117 puva = trunc_page(uva);
2118 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2119 rv = pmap_extract(upm, puva + poff, &pa);
2120 KASSERT(rv);
2121 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2122 }
2123 pmap_update(kpm);
2124
2125 /*
2126 * Do the I/O.
2127 */
2128
2129 koff = uva - trunc_page(uva);
2130 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2131 genfs_dio_iodone);
2132
2133 /*
2134 * Tear down the kernel mapping.
2135 */
2136
2137 pmap_remove(kpm, kva, kva + klen);
2138 pmap_update(kpm);
2139 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2140
2141 /*
2142 * Unwire the user pages.
2143 */
2144
2145 uvm_vsunlock(vs, (void *)uva, len);
2146 return error;
2147 }
2148
2149