genfs_io.c revision 1.36.2.41 1 /* $NetBSD: genfs_io.c,v 1.36.2.41 2010/11/19 05:43:30 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.41 2010/11/19 05:43:30 uebayasi Exp $");
35
36 #include "opt_xip.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/kernel.h>
42 #include <sys/mount.h>
43 #include <sys/namei.h>
44 #include <sys/vnode.h>
45 #include <sys/fcntl.h>
46 #include <sys/kmem.h>
47 #include <sys/poll.h>
48 #include <sys/mman.h>
49 #include <sys/file.h>
50 #include <sys/kauth.h>
51 #include <sys/fstrans.h>
52 #include <sys/buf.h>
53 #include <sys/once.h>
54
55 #include <miscfs/genfs/genfs.h>
56 #include <miscfs/genfs/genfs_node.h>
57 #include <miscfs/specfs/specdev.h>
58
59 #include <uvm/uvm.h>
60 #include <uvm/uvm_pager.h>
61
62 #ifdef XIP
63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
64 int *, int, vm_prot_t, int, int);
65 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
66 struct vm_page **);
67 #endif
68 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
69 off_t, enum uio_rw);
70 static void genfs_dio_iodone(struct buf *);
71
72 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
73 void (*)(struct buf *));
74 static void genfs_rel_pages(struct vm_page **, int);
75 static void genfs_markdirty(struct vnode *);
76
77 int genfs_maxdio = MAXPHYS;
78
79 static void
80 genfs_rel_pages(struct vm_page **pgs, int npages)
81 {
82 int i;
83
84 for (i = 0; i < npages; i++) {
85 struct vm_page *pg = pgs[i];
86
87 if (pg == NULL || pg == PGO_DONTCARE)
88 continue;
89 if (pg->flags & PG_FAKE) {
90 pg->flags |= PG_RELEASED;
91 }
92 }
93 mutex_enter(&uvm_pageqlock);
94 uvm_page_unbusy(pgs, npages);
95 mutex_exit(&uvm_pageqlock);
96 }
97
98 static void
99 genfs_markdirty(struct vnode *vp)
100 {
101 struct genfs_node * const gp = VTOG(vp);
102
103 KASSERT(mutex_owned(&vp->v_interlock));
104 gp->g_dirtygen++;
105 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
106 vn_syncer_add_to_worklist(vp, filedelay);
107 }
108 if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
109 vp->v_iflag |= VI_WRMAPDIRTY;
110 }
111 }
112
113 /*
114 * generic VM getpages routine.
115 * Return PG_BUSY pages for the given range,
116 * reading from backing store if necessary.
117 */
118
119 int
120 genfs_getpages(void *v)
121 {
122 struct vop_getpages_args /* {
123 struct vnode *a_vp;
124 voff_t a_offset;
125 struct vm_page **a_m;
126 int *a_count;
127 int a_centeridx;
128 vm_prot_t a_access_type;
129 int a_advice;
130 int a_flags;
131 } */ * const ap = v;
132
133 off_t diskeof, memeof;
134 int i, error, npages;
135 const int flags = ap->a_flags;
136 struct vnode * const vp = ap->a_vp;
137 struct uvm_object * const uobj = &vp->v_uobj;
138 kauth_cred_t const cred = curlwp->l_cred; /* XXXUBC curlwp */
139 const bool async = (flags & PGO_SYNCIO) == 0;
140 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
141 bool has_trans = false;
142 const bool overwrite = (flags & PGO_OVERWRITE) != 0;
143 const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
144 const bool glocked = (flags & PGO_GLOCKHELD) != 0;
145 UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
146
147 UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
148 vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
149
150 KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
151 vp->v_type == VLNK || vp->v_type == VBLK);
152
153 startover:
154 error = 0;
155 const voff_t origvsize = vp->v_size;
156 const off_t origoffset = ap->a_offset;
157 const int orignpages = *ap->a_count;
158
159 GOP_SIZE(vp, origvsize, &diskeof, 0);
160 if (flags & PGO_PASTEOF) {
161 off_t newsize;
162 #if defined(DIAGNOSTIC)
163 off_t writeeof;
164 #endif /* defined(DIAGNOSTIC) */
165
166 newsize = MAX(origvsize,
167 origoffset + (orignpages << PAGE_SHIFT));
168 GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
169 #if defined(DIAGNOSTIC)
170 GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
171 if (newsize > round_page(writeeof)) {
172 panic("%s: past eof: %" PRId64 " vs. %" PRId64,
173 __func__, newsize, round_page(writeeof));
174 }
175 #endif /* defined(DIAGNOSTIC) */
176 } else {
177 GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
178 }
179 KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
180 KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
181 KASSERT(orignpages > 0);
182
183 /*
184 * Bounds-check the request.
185 */
186
187 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
188 if ((flags & PGO_LOCKED) == 0) {
189 mutex_exit(&uobj->vmobjlock);
190 }
191 UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
192 origoffset, *ap->a_count, memeof,0);
193 error = EINVAL;
194 goto out_err;
195 }
196
197 /* uobj is locked */
198
199 if ((flags & PGO_NOTIMESTAMP) == 0 &&
200 (vp->v_type != VBLK ||
201 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
202 int updflags = 0;
203
204 if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
205 updflags = GOP_UPDATE_ACCESSED;
206 }
207 if (memwrite) {
208 updflags |= GOP_UPDATE_MODIFIED;
209 }
210 if (updflags != 0) {
211 GOP_MARKUPDATE(vp, updflags);
212 }
213 }
214
215 /*
216 * For PGO_LOCKED requests, just return whatever's in memory.
217 */
218
219 if (flags & PGO_LOCKED) {
220 #if 0
221 genfs_do_getpages_locked();
222 } else {
223 genfs_do_getpages_unlocked();
224 }
225 }
226
227 int
228 genfs_do_getpages_locked()
229 {
230 #endif
231 int nfound;
232 struct vm_page *pg;
233
234 #if 1
235 if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
236 *ap->a_count = 0;
237 return 0;
238 }
239 #endif
240
241 KASSERT(!glocked);
242 npages = *ap->a_count;
243 #if defined(DEBUG)
244 for (i = 0; i < npages; i++) {
245 pg = ap->a_m[i];
246 KASSERT(pg == NULL || pg == PGO_DONTCARE);
247 }
248 #endif /* defined(DEBUG) */
249 nfound = uvn_findpages(uobj, origoffset, &npages,
250 ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
251 KASSERT(npages == *ap->a_count);
252 if (nfound == 0) {
253 error = EBUSY;
254 goto out_err;
255 }
256 if (!genfs_node_rdtrylock(vp)) {
257 genfs_rel_pages(ap->a_m, npages);
258
259 /*
260 * restore the array.
261 */
262
263 for (i = 0; i < npages; i++) {
264 pg = ap->a_m[i];
265
266 if (pg != NULL && pg != PGO_DONTCARE) {
267 ap->a_m[i] = NULL;
268 }
269 KASSERT(pg == NULL || pg == PGO_DONTCARE);
270 }
271 } else {
272 genfs_node_unlock(vp);
273 }
274 error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
275 if (error == 0 && memwrite) {
276 genfs_markdirty(vp);
277 }
278 goto out_err;
279 }
280 mutex_exit(&uobj->vmobjlock);
281 #if 0
282 }
283
284 int
285 genfs_do_getpages_unlocked()
286 {
287 #endif
288 #if 1
289 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
290 return genfs_do_getpages_xip_io(
291 ap->a_vp,
292 ap->a_offset,
293 ap->a_m,
294 ap->a_count,
295 ap->a_centeridx,
296 ap->a_access_type,
297 ap->a_advice,
298 ap->a_flags);
299 #endif
300 /*
301 * find the requested pages and make some simple checks.
302 * leave space in the page array for a whole block.
303 */
304
305 const int fs_bshift = (vp->v_type != VBLK) ?
306 vp->v_mount->mnt_fs_bshift : DEV_BSHIFT;
307 const int dev_bshift = (vp->v_type != VBLK) ?
308 vp->v_mount->mnt_dev_bshift : DEV_BSHIFT;
309 const int fs_bsize = 1 << fs_bshift;
310 #define blk_mask (fs_bsize - 1)
311 #define trunc_blk(x) ((x) & ~blk_mask)
312 #define round_blk(x) (((x) + blk_mask) & ~blk_mask)
313
314 const int orignmempages = MIN(orignpages,
315 round_page(memeof - origoffset) >> PAGE_SHIFT);
316 npages = orignmempages;
317 const off_t startoffset = trunc_blk(origoffset);
318 const off_t endoffset = MIN(
319 round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
320 round_page(memeof));
321 const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
322
323 const int pgs_size = sizeof(struct vm_page *) *
324 ((endoffset - startoffset) >> PAGE_SHIFT);
325 struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
326
327 if (pgs_size > sizeof(pgs_onstack)) {
328 pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
329 if (pgs == NULL) {
330 pgs = pgs_onstack;
331 error = ENOMEM;
332 goto out_err;
333 }
334 } else {
335 pgs = pgs_onstack;
336 (void)memset(pgs, 0, pgs_size);
337 }
338
339 UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
340 ridx, npages, startoffset, endoffset);
341
342 if (!has_trans) {
343 fstrans_start(vp->v_mount, FSTRANS_SHARED);
344 has_trans = true;
345 }
346
347 /*
348 * hold g_glock to prevent a race with truncate.
349 *
350 * check if our idea of v_size is still valid.
351 */
352
353 KASSERT(!glocked || genfs_node_wrlocked(vp));
354 if (!glocked) {
355 if (blockalloc) {
356 genfs_node_wrlock(vp);
357 } else {
358 genfs_node_rdlock(vp);
359 }
360 }
361 mutex_enter(&uobj->vmobjlock);
362 if (vp->v_size < origvsize) {
363 if (!glocked) {
364 genfs_node_unlock(vp);
365 }
366 if (pgs != pgs_onstack)
367 kmem_free(pgs, pgs_size);
368 goto startover;
369 }
370
371 if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
372 async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
373 if (!glocked) {
374 genfs_node_unlock(vp);
375 }
376 KASSERT(async != 0);
377 genfs_rel_pages(&pgs[ridx], orignmempages);
378 mutex_exit(&uobj->vmobjlock);
379 error = EBUSY;
380 goto out_err_free;
381 }
382
383 /*
384 * if the pages are already resident, just return them.
385 */
386
387 for (i = 0; i < npages; i++) {
388 struct vm_page *pg = pgs[ridx + i];
389
390 if ((pg->flags & PG_FAKE) ||
391 (blockalloc && (pg->flags & PG_RDONLY))) {
392 break;
393 }
394 }
395 if (i == npages) {
396 if (!glocked) {
397 genfs_node_unlock(vp);
398 }
399 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
400 npages += ridx;
401 goto out;
402 }
403
404 /*
405 * if PGO_OVERWRITE is set, don't bother reading the pages.
406 */
407
408 if (overwrite) {
409 #if 0
410 genfs_do_getpages_overwrite();
411 } else {
412 genfs_do_getpages_io();
413 }
414 }
415
416 int
417 genfs_do_getpages_overwrite()
418 {
419 {
420 #endif
421 if (!glocked) {
422 genfs_node_unlock(vp);
423 }
424 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
425
426 for (i = 0; i < npages; i++) {
427 struct vm_page *pg = pgs[ridx + i];
428
429 pg->flags &= ~(PG_RDONLY|PG_CLEAN);
430 }
431 npages += ridx;
432 goto out;
433 }
434 #if 0
435 }
436
437 int
438 genfs_do_getpages_io()
439 {
440 #endif
441 /*
442 * the page wasn't resident and we're not overwriting,
443 * so we're going to have to do some i/o.
444 * find any additional pages needed to cover the expanded range.
445 */
446
447 npages = (endoffset - startoffset) >> PAGE_SHIFT;
448 if (startoffset != origoffset || npages != orignmempages) {
449 int npgs;
450
451 /*
452 * we need to avoid deadlocks caused by locking
453 * additional pages at lower offsets than pages we
454 * already have locked. unlock them all and start over.
455 */
456
457 genfs_rel_pages(&pgs[ridx], orignmempages);
458 memset(pgs, 0, pgs_size);
459
460 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
461 startoffset, endoffset, 0,0);
462 npgs = npages;
463 if (uvn_findpages(uobj, startoffset, &npgs, pgs,
464 async ? UFP_NOWAIT : UFP_ALL) != npages) {
465 if (!glocked) {
466 genfs_node_unlock(vp);
467 }
468 KASSERT(async != 0);
469 genfs_rel_pages(pgs, npages);
470 mutex_exit(&uobj->vmobjlock);
471 error = EBUSY;
472 goto out_err_free;
473 }
474 }
475
476 mutex_exit(&uobj->vmobjlock);
477
478 {
479 size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
480 vaddr_t kva;
481 struct buf *bp, *mbp;
482 bool sawhole = false;
483
484 /*
485 * read the desired page(s).
486 */
487
488 totalbytes = npages << PAGE_SHIFT;
489 bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
490 tailbytes = totalbytes - bytes;
491 skipbytes = 0;
492
493 kva = uvm_pagermapin(pgs, npages,
494 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
495
496 mbp = getiobuf(vp, true);
497 mbp->b_bufsize = totalbytes;
498 mbp->b_data = (void *)kva;
499 mbp->b_resid = mbp->b_bcount = bytes;
500 mbp->b_cflags = BC_BUSY;
501 if (async) {
502 mbp->b_flags = B_READ | B_ASYNC;
503 mbp->b_iodone = uvm_aio_biodone;
504 } else {
505 mbp->b_flags = B_READ;
506 mbp->b_iodone = NULL;
507 }
508 if (async)
509 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
510 else
511 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
512
513 /*
514 * if EOF is in the middle of the range, zero the part past EOF.
515 * skip over pages which are not PG_FAKE since in that case they have
516 * valid data that we need to preserve.
517 */
518
519 tailstart = bytes;
520 while (tailbytes > 0) {
521 const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
522
523 KASSERT(len <= tailbytes);
524 if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
525 memset((void *)(kva + tailstart), 0, len);
526 UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
527 kva, tailstart, len, 0);
528 }
529 tailstart += len;
530 tailbytes -= len;
531 }
532
533 /*
534 * now loop over the pages, reading as needed.
535 */
536
537 bp = NULL;
538 off_t offset;
539 for (offset = startoffset;
540 bytes > 0;
541 offset += iobytes, bytes -= iobytes) {
542 int run;
543 daddr_t lbn, blkno;
544 int pidx;
545 struct vnode *devvp;
546
547 /*
548 * skip pages which don't need to be read.
549 */
550
551 pidx = (offset - startoffset) >> PAGE_SHIFT;
552 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
553 size_t b;
554
555 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
556 if ((pgs[pidx]->flags & PG_RDONLY)) {
557 sawhole = true;
558 }
559 b = MIN(PAGE_SIZE, bytes);
560 offset += b;
561 bytes -= b;
562 skipbytes += b;
563 pidx++;
564 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
565 offset, 0,0,0);
566 if (bytes == 0) {
567 goto loopdone;
568 }
569 }
570
571 /*
572 * bmap the file to find out the blkno to read from and
573 * how much we can read in one i/o. if bmap returns an error,
574 * skip the rest of the top-level i/o.
575 */
576
577 lbn = offset >> fs_bshift;
578 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
579 if (error) {
580 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
581 lbn,error,0,0);
582 skipbytes += bytes;
583 bytes = 0;
584 goto loopdone;
585 }
586
587 /*
588 * see how many pages can be read with this i/o.
589 * reduce the i/o size if necessary to avoid
590 * overwriting pages with valid data.
591 */
592
593 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
594 bytes);
595 if (offset + iobytes > round_page(offset)) {
596 int pcount;
597
598 pcount = 1;
599 while (pidx + pcount < npages &&
600 pgs[pidx + pcount]->flags & PG_FAKE) {
601 pcount++;
602 }
603 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
604 (offset - trunc_page(offset)));
605 }
606
607 /*
608 * if this block isn't allocated, zero it instead of
609 * reading it. unless we are going to allocate blocks,
610 * mark the pages we zeroed PG_RDONLY.
611 */
612
613 if (blkno == (daddr_t)-1) {
614 int holepages = (round_page(offset + iobytes) -
615 trunc_page(offset)) >> PAGE_SHIFT;
616 UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
617
618 sawhole = true;
619 memset((char *)kva + (offset - startoffset), 0,
620 iobytes);
621 skipbytes += iobytes;
622
623 for (i = 0; i < holepages; i++) {
624 if (memwrite) {
625 pgs[pidx + i]->flags &= ~PG_CLEAN;
626 }
627 if (!blockalloc) {
628 pgs[pidx + i]->flags |= PG_RDONLY;
629 }
630 }
631 continue;
632 }
633
634 /*
635 * allocate a sub-buf for this piece of the i/o
636 * (or just use mbp if there's only 1 piece),
637 * and start it going.
638 */
639
640 if (offset == startoffset && iobytes == bytes) {
641 bp = mbp;
642 } else {
643 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
644 vp, bp, vp->v_numoutput, 0);
645 bp = getiobuf(vp, true);
646 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
647 }
648 bp->b_lblkno = 0;
649
650 /* adjust physical blkno for partial blocks */
651 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
652 dev_bshift);
653
654 UVMHIST_LOG(ubchist,
655 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
656 bp, offset, bp->b_bcount, bp->b_blkno);
657
658 VOP_STRATEGY(devvp, bp);
659 }
660
661 loopdone:
662 nestiobuf_done(mbp, skipbytes, error);
663 if (async) {
664 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
665 if (!glocked) {
666 genfs_node_unlock(vp);
667 }
668 error = 0;
669 goto out_err_free;
670 }
671 if (bp != NULL) {
672 error = biowait(mbp);
673 }
674
675 /* Remove the mapping (make KVA available as soon as possible) */
676 uvm_pagermapout(kva, npages);
677
678 /*
679 * if this we encountered a hole then we have to do a little more work.
680 * for read faults, we marked the page PG_RDONLY so that future
681 * write accesses to the page will fault again.
682 * for write faults, we must make sure that the backing store for
683 * the page is completely allocated while the pages are locked.
684 */
685
686 if (!error && sawhole && blockalloc) {
687 /*
688 * XXX: This assumes that we come here only via
689 * the mmio path
690 */
691 if (vp->v_mount->mnt_wapbl) {
692 error = WAPBL_BEGIN(vp->v_mount);
693 }
694
695 if (!error) {
696 error = GOP_ALLOC(vp, startoffset,
697 npages << PAGE_SHIFT, 0, cred);
698 if (vp->v_mount->mnt_wapbl) {
699 WAPBL_END(vp->v_mount);
700 }
701 }
702
703 UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
704 startoffset, npages << PAGE_SHIFT, error,0);
705 if (!error) {
706 for (i = 0; i < npages; i++) {
707 struct vm_page *pg = pgs[i];
708
709 if (pg == NULL) {
710 continue;
711 }
712 pg->flags &= ~(PG_CLEAN|PG_RDONLY);
713 UVMHIST_LOG(ubchist, "mark dirty pg %p",
714 pg,0,0,0);
715 }
716 }
717 }
718 if (!glocked) {
719 genfs_node_unlock(vp);
720 }
721
722 putiobuf(mbp);
723 }
724
725 mutex_enter(&uobj->vmobjlock);
726
727 /*
728 * we're almost done! release the pages...
729 * for errors, we free the pages.
730 * otherwise we activate them and mark them as valid and clean.
731 * also, unbusy pages that were not actually requested.
732 */
733
734 if (error) {
735 for (i = 0; i < npages; i++) {
736 struct vm_page *pg = pgs[i];
737
738 if (pg == NULL) {
739 continue;
740 }
741 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
742 pg, pg->flags, 0,0);
743 if (pg->flags & PG_FAKE) {
744 pg->flags |= PG_RELEASED;
745 }
746 }
747 mutex_enter(&uvm_pageqlock);
748 uvm_page_unbusy(pgs, npages);
749 mutex_exit(&uvm_pageqlock);
750 mutex_exit(&uobj->vmobjlock);
751 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
752 goto out_err_free;
753 }
754
755 out:
756 UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
757 error = 0;
758 mutex_enter(&uvm_pageqlock);
759 for (i = 0; i < npages; i++) {
760 struct vm_page *pg = pgs[i];
761 if (pg == NULL) {
762 continue;
763 }
764 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
765 pg, pg->flags, 0,0);
766 if (pg->flags & PG_FAKE && !overwrite) {
767 pg->flags &= ~(PG_FAKE);
768 pmap_clear_modify(pgs[i]);
769 }
770 KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
771 if (i < ridx || i >= ridx + orignmempages || async) {
772 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
773 pg, pg->offset,0,0);
774 if (pg->flags & PG_WANTED) {
775 wakeup(pg);
776 }
777 if (pg->flags & PG_FAKE) {
778 KASSERT(overwrite);
779 uvm_pagezero(pg);
780 }
781 if (pg->flags & PG_RELEASED) {
782 uvm_pagefree(pg);
783 continue;
784 }
785 uvm_pageenqueue(pg);
786 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
787 UVM_PAGE_OWN(pg, NULL);
788 }
789 }
790 mutex_exit(&uvm_pageqlock);
791 if (memwrite) {
792 genfs_markdirty(vp);
793 }
794 mutex_exit(&uobj->vmobjlock);
795 if (ap->a_m != NULL) {
796 memcpy(ap->a_m, &pgs[ridx],
797 orignmempages * sizeof(struct vm_page *));
798 }
799
800 out_err_free:
801 if (pgs != NULL && pgs != pgs_onstack)
802 kmem_free(pgs, pgs_size);
803 out_err:
804 if (has_trans)
805 fstrans_done(vp->v_mount);
806 return error;
807 }
808
809 #ifdef XIP
810 /*
811 * genfs_do_getpages_xip_io
812 * Return "direct pages" of XIP vnode. The block addresses of XIP
813 * vnode pages are returned back to the VM fault handler as the
814 * actually mapped physical addresses.
815 */
816 static int
817 genfs_do_getpages_xip_io(
818 struct vnode *vp,
819 voff_t offset,
820 struct vm_page **pps,
821 int *npagesp,
822 int centeridx,
823 vm_prot_t access_type,
824 int advice,
825 int flags)
826 {
827 struct uvm_object * const uobj = &vp->v_uobj;
828
829 int error;
830 off_t eof, sbkoff, ebkoff, off;
831 int npages;
832 int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
833 int i;
834
835 UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
836
837 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
838 npages = MIN(*npagesp, round_page(eof - offset) >> PAGE_SHIFT);
839
840 fs_bshift = vp->v_mount->mnt_fs_bshift;
841 fs_bsize = 1 << fs_bshift;
842 dev_bshift = vp->v_mount->mnt_dev_bshift;
843 dev_bsize = 1 << dev_bshift;
844
845 sbkoff = offset & ~(fs_bsize - 1);
846 ebkoff = ((offset + PAGE_SIZE * npages) + (fs_bsize - 1)) &
847 ~(fs_bsize - 1);
848
849 UVMHIST_LOG(ubchist, "xip npages=%d sbkoff=%lx ebkoff=%lx",
850 npages, (long)sbkoff, (long)ebkoff, 0);
851
852 off = offset;
853 for (i = 0; i < npages; i++) {
854 daddr_t lbn, blkno;
855 int run;
856 struct vnode *devvp;
857
858 lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
859
860 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
861 KASSERT(error == 0);
862 UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
863 (long)lbn, (long)blkno, run, 0);
864
865 /*
866 * XIP page metadata assignment
867 * - Unallocated block is redirected to the dedicated zero'ed
868 * page.
869 */
870 if (blkno < 0) {
871 panic("XIP hole is not supported yet!");
872 } else {
873 daddr_t blk_off, fs_off;
874
875 blk_off = blkno << dev_bshift;
876 fs_off = off - (lbn << fs_bshift);
877
878 pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
879 blk_off + fs_off);
880 KASSERT(pps[i] != NULL);
881 }
882
883 UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
884 i,
885 (long)pps[i]->phys_addr,
886 pps[i],
887 0);
888
889 off += PAGE_SIZE;
890 }
891
892 mutex_enter(&uobj->vmobjlock);
893
894 for (i = 0; i < npages; i++) {
895 struct vm_page *pg = pps[i];
896
897 KASSERT((pg->flags & PG_RDONLY) != 0);
898 KASSERT((pg->flags & PG_BUSY) == 0);
899 KASSERT((pg->flags & PG_CLEAN) != 0);
900 KASSERT((pg->flags & PG_DEVICE) != 0);
901 pg->flags |= PG_BUSY;
902 pg->flags &= ~PG_FAKE;
903 pg->uobject = &vp->v_uobj;
904 }
905
906 mutex_exit(&uobj->vmobjlock);
907
908 *npagesp = npages;
909
910 return 0;
911 }
912 #endif
913
914 /*
915 * generic VM putpages routine.
916 * Write the given range of pages to backing store.
917 *
918 * => "offhi == 0" means flush all pages at or after "offlo".
919 * => object should be locked by caller. we return with the
920 * object unlocked.
921 * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
922 * thus, a caller might want to unlock higher level resources
923 * (e.g. vm_map) before calling flush.
924 * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
925 * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
926 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
927 * that new pages are inserted on the tail end of the list. thus,
928 * we can make a complete pass through the object in one go by starting
929 * at the head and working towards the tail (new pages are put in
930 * front of us).
931 * => NOTE: we are allowed to lock the page queues, so the caller
932 * must not be holding the page queue lock.
933 *
934 * note on "cleaning" object and PG_BUSY pages:
935 * this routine is holding the lock on the object. the only time
936 * that it can run into a PG_BUSY page that it does not own is if
937 * some other process has started I/O on the page (e.g. either
938 * a pagein, or a pageout). if the PG_BUSY page is being paged
939 * in, then it can not be dirty (!PG_CLEAN) because no one has
940 * had a chance to modify it yet. if the PG_BUSY page is being
941 * paged out then it means that someone else has already started
942 * cleaning the page for us (how nice!). in this case, if we
943 * have syncio specified, then after we make our pass through the
944 * object we need to wait for the other PG_BUSY pages to clear
945 * off (i.e. we need to do an iosync). also note that once a
946 * page is PG_BUSY it must stay in its object until it is un-busyed.
947 *
948 * note on page traversal:
949 * we can traverse the pages in an object either by going down the
950 * linked list in "uobj->memq", or we can go over the address range
951 * by page doing hash table lookups for each address. depending
952 * on how many pages are in the object it may be cheaper to do one
953 * or the other. we set "by_list" to true if we are using memq.
954 * if the cost of a hash lookup was equal to the cost of the list
955 * traversal we could compare the number of pages in the start->stop
956 * range to the total number of pages in the object. however, it
957 * seems that a hash table lookup is more expensive than the linked
958 * list traversal, so we multiply the number of pages in the
959 * range by an estimate of the relatively higher cost of the hash lookup.
960 */
961
962 int
963 genfs_putpages(void *v)
964 {
965 struct vop_putpages_args /* {
966 struct vnode *a_vp;
967 voff_t a_offlo;
968 voff_t a_offhi;
969 int a_flags;
970 } */ * const ap = v;
971
972 #ifdef XIP
973 if ((ap->a_vp->v_vflag & VV_XIP) != 0)
974 return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
975 ap->a_flags, NULL);
976 else
977 #endif
978 return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
979 ap->a_flags, NULL);
980 }
981
982 int
983 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
984 int origflags, struct vm_page **busypg)
985 {
986 struct uvm_object * const uobj = &vp->v_uobj;
987 kmutex_t * const slock = &uobj->vmobjlock;
988 off_t off;
989 /* Even for strange MAXPHYS, the shift rounds down to a page */
990 #define maxpages (MAXPHYS >> PAGE_SHIFT)
991 int i, error, npages, nback;
992 int freeflag;
993 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
994 bool wasclean, by_list, needs_clean, yld;
995 bool async = (origflags & PGO_SYNCIO) == 0;
996 bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
997 struct lwp * const l = curlwp ? curlwp : &lwp0;
998 struct genfs_node * const gp = VTOG(vp);
999 int flags;
1000 int dirtygen;
1001 bool modified;
1002 bool need_wapbl;
1003 bool has_trans;
1004 bool cleanall;
1005 bool onworklst;
1006
1007 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
1008
1009 KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
1010 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
1011 KASSERT(startoff < endoff || endoff == 0);
1012
1013 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1014 vp, uobj->uo_npages, startoff, endoff - startoff);
1015
1016 has_trans = false;
1017 need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
1018 (origflags & PGO_JOURNALLOCKED) == 0);
1019
1020 retry:
1021 modified = false;
1022 flags = origflags;
1023 KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
1024 (vp->v_iflag & VI_WRMAPDIRTY) == 0);
1025 if (uobj->uo_npages == 0) {
1026 if (vp->v_iflag & VI_ONWORKLST) {
1027 vp->v_iflag &= ~VI_WRMAPDIRTY;
1028 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1029 vn_syncer_remove_from_worklist(vp);
1030 }
1031 if (has_trans) {
1032 if (need_wapbl)
1033 WAPBL_END(vp->v_mount);
1034 fstrans_done(vp->v_mount);
1035 }
1036 mutex_exit(slock);
1037 return (0);
1038 }
1039
1040 /*
1041 * the vnode has pages, set up to process the request.
1042 */
1043
1044 if (!has_trans && (flags & PGO_CLEANIT) != 0) {
1045 mutex_exit(slock);
1046 if (pagedaemon) {
1047 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
1048 if (error)
1049 return error;
1050 } else
1051 fstrans_start(vp->v_mount, FSTRANS_LAZY);
1052 if (need_wapbl) {
1053 error = WAPBL_BEGIN(vp->v_mount);
1054 if (error) {
1055 fstrans_done(vp->v_mount);
1056 return error;
1057 }
1058 }
1059 has_trans = true;
1060 mutex_enter(slock);
1061 goto retry;
1062 }
1063
1064 error = 0;
1065 wasclean = (vp->v_numoutput == 0);
1066 off = startoff;
1067 if (endoff == 0 || flags & PGO_ALLPAGES) {
1068 endoff = trunc_page(LLONG_MAX);
1069 }
1070 by_list = (uobj->uo_npages <=
1071 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
1072
1073 #if !defined(DEBUG)
1074 /*
1075 * if this vnode is known not to have dirty pages,
1076 * don't bother to clean it out.
1077 */
1078
1079 if ((vp->v_iflag & VI_ONWORKLST) == 0) {
1080 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
1081 goto skip_scan;
1082 }
1083 flags &= ~PGO_CLEANIT;
1084 }
1085 #endif /* !defined(DEBUG) */
1086
1087 /*
1088 * start the loop. when scanning by list, hold the last page
1089 * in the list before we start. pages allocated after we start
1090 * will be added to the end of the list, so we can stop at the
1091 * current last page.
1092 */
1093
1094 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
1095 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
1096 (vp->v_iflag & VI_ONWORKLST) != 0;
1097 dirtygen = gp->g_dirtygen;
1098 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
1099 if (by_list) {
1100 curmp.flags = PG_MARKER;
1101 endmp.flags = PG_MARKER;
1102 pg = TAILQ_FIRST(&uobj->memq);
1103 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
1104 } else {
1105 pg = uvm_pagelookup(uobj, off);
1106 }
1107 nextpg = NULL;
1108 while (by_list || off < endoff) {
1109
1110 /*
1111 * if the current page is not interesting, move on to the next.
1112 */
1113
1114 KASSERT(pg == NULL || pg->uobject == uobj ||
1115 (pg->flags & PG_MARKER) != 0);
1116 KASSERT(pg == NULL ||
1117 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1118 (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
1119 if (by_list) {
1120 if (pg == &endmp) {
1121 break;
1122 }
1123 if (pg->flags & PG_MARKER) {
1124 pg = TAILQ_NEXT(pg, listq.queue);
1125 continue;
1126 }
1127 if (pg->offset < startoff || pg->offset >= endoff ||
1128 pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1129 if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1130 wasclean = false;
1131 }
1132 pg = TAILQ_NEXT(pg, listq.queue);
1133 continue;
1134 }
1135 off = pg->offset;
1136 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
1137 if (pg != NULL) {
1138 wasclean = false;
1139 }
1140 off += PAGE_SIZE;
1141 if (off < endoff) {
1142 pg = uvm_pagelookup(uobj, off);
1143 }
1144 continue;
1145 }
1146
1147 /*
1148 * if the current page needs to be cleaned and it's busy,
1149 * wait for it to become unbusy.
1150 */
1151
1152 yld = (l->l_cpu->ci_schedstate.spc_flags &
1153 SPCF_SHOULDYIELD) && !pagedaemon;
1154 if (pg->flags & PG_BUSY || yld) {
1155 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
1156 if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
1157 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
1158 error = EDEADLK;
1159 if (busypg != NULL)
1160 *busypg = pg;
1161 break;
1162 }
1163 if (pagedaemon) {
1164 /*
1165 * someone has taken the page while we
1166 * dropped the lock for fstrans_start.
1167 */
1168 break;
1169 }
1170 if (by_list) {
1171 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
1172 UVMHIST_LOG(ubchist, "curmp next %p",
1173 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1174 }
1175 if (yld) {
1176 mutex_exit(slock);
1177 preempt();
1178 mutex_enter(slock);
1179 } else {
1180 pg->flags |= PG_WANTED;
1181 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
1182 mutex_enter(slock);
1183 }
1184 if (by_list) {
1185 UVMHIST_LOG(ubchist, "after next %p",
1186 TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
1187 pg = TAILQ_NEXT(&curmp, listq.queue);
1188 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1189 } else {
1190 pg = uvm_pagelookup(uobj, off);
1191 }
1192 continue;
1193 }
1194
1195 /*
1196 * if we're freeing, remove all mappings of the page now.
1197 * if we're cleaning, check if the page is needs to be cleaned.
1198 */
1199
1200 if (flags & PGO_FREE) {
1201 pmap_page_protect(pg, VM_PROT_NONE);
1202 } else if (flags & PGO_CLEANIT) {
1203
1204 /*
1205 * if we still have some hope to pull this vnode off
1206 * from the syncer queue, write-protect the page.
1207 */
1208
1209 if (cleanall && wasclean &&
1210 gp->g_dirtygen == dirtygen) {
1211
1212 /*
1213 * uobj pages get wired only by uvm_fault
1214 * where uobj is locked.
1215 */
1216
1217 if (pg->wire_count == 0) {
1218 pmap_page_protect(pg,
1219 VM_PROT_READ|VM_PROT_EXECUTE);
1220 } else {
1221 cleanall = false;
1222 }
1223 }
1224 }
1225
1226 if (flags & PGO_CLEANIT) {
1227 needs_clean = pmap_clear_modify(pg) ||
1228 (pg->flags & PG_CLEAN) == 0;
1229 pg->flags |= PG_CLEAN;
1230 } else {
1231 needs_clean = false;
1232 }
1233
1234 /*
1235 * if we're cleaning, build a cluster.
1236 * the cluster will consist of pages which are currently dirty,
1237 * but they will be returned to us marked clean.
1238 * if not cleaning, just operate on the one page.
1239 */
1240
1241 if (needs_clean) {
1242 KDASSERT((vp->v_iflag & VI_ONWORKLST));
1243 wasclean = false;
1244 memset(pgs, 0, sizeof(pgs));
1245 pg->flags |= PG_BUSY;
1246 UVM_PAGE_OWN(pg, "genfs_putpages");
1247
1248 /*
1249 * first look backward.
1250 */
1251
1252 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
1253 nback = npages;
1254 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
1255 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
1256 if (nback) {
1257 memmove(&pgs[0], &pgs[npages - nback],
1258 nback * sizeof(pgs[0]));
1259 if (npages - nback < nback)
1260 memset(&pgs[nback], 0,
1261 (npages - nback) * sizeof(pgs[0]));
1262 else
1263 memset(&pgs[npages - nback], 0,
1264 nback * sizeof(pgs[0]));
1265 }
1266
1267 /*
1268 * then plug in our page of interest.
1269 */
1270
1271 pgs[nback] = pg;
1272
1273 /*
1274 * then look forward to fill in the remaining space in
1275 * the array of pages.
1276 */
1277
1278 npages = maxpages - nback - 1;
1279 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
1280 &pgs[nback + 1],
1281 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
1282 npages += nback + 1;
1283 } else {
1284 pgs[0] = pg;
1285 npages = 1;
1286 nback = 0;
1287 }
1288
1289 /*
1290 * apply FREE or DEACTIVATE options if requested.
1291 */
1292
1293 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1294 mutex_enter(&uvm_pageqlock);
1295 }
1296 for (i = 0; i < npages; i++) {
1297 tpg = pgs[i];
1298 KASSERT(tpg->uobject == uobj);
1299 if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
1300 pg = tpg;
1301 if (tpg->offset < startoff || tpg->offset >= endoff)
1302 continue;
1303 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
1304 uvm_pagedeactivate(tpg);
1305 } else if (flags & PGO_FREE) {
1306 pmap_page_protect(tpg, VM_PROT_NONE);
1307 if (tpg->flags & PG_BUSY) {
1308 tpg->flags |= freeflag;
1309 if (pagedaemon) {
1310 uvm_pageout_start(1);
1311 uvm_pagedequeue(tpg);
1312 }
1313 } else {
1314
1315 /*
1316 * ``page is not busy''
1317 * implies that npages is 1
1318 * and needs_clean is false.
1319 */
1320
1321 nextpg = TAILQ_NEXT(tpg, listq.queue);
1322 uvm_pagefree(tpg);
1323 if (pagedaemon)
1324 uvmexp.pdfreed++;
1325 }
1326 }
1327 }
1328 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
1329 mutex_exit(&uvm_pageqlock);
1330 }
1331 if (needs_clean) {
1332 modified = true;
1333
1334 /*
1335 * start the i/o. if we're traversing by list,
1336 * keep our place in the list with a marker page.
1337 */
1338
1339 if (by_list) {
1340 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
1341 listq.queue);
1342 }
1343 mutex_exit(slock);
1344 error = GOP_WRITE(vp, pgs, npages, flags);
1345 mutex_enter(slock);
1346 if (by_list) {
1347 pg = TAILQ_NEXT(&curmp, listq.queue);
1348 TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
1349 }
1350 if (error) {
1351 break;
1352 }
1353 if (by_list) {
1354 continue;
1355 }
1356 }
1357
1358 /*
1359 * find the next page and continue if there was no error.
1360 */
1361
1362 if (by_list) {
1363 if (nextpg) {
1364 pg = nextpg;
1365 nextpg = NULL;
1366 } else {
1367 pg = TAILQ_NEXT(pg, listq.queue);
1368 }
1369 } else {
1370 off += (npages - nback) << PAGE_SHIFT;
1371 if (off < endoff) {
1372 pg = uvm_pagelookup(uobj, off);
1373 }
1374 }
1375 }
1376 if (by_list) {
1377 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
1378 }
1379
1380 if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
1381 (vp->v_type != VBLK ||
1382 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
1383 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
1384 }
1385
1386 /*
1387 * if we're cleaning and there was nothing to clean,
1388 * take us off the syncer list. if we started any i/o
1389 * and we're doing sync i/o, wait for all writes to finish.
1390 */
1391
1392 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
1393 (vp->v_iflag & VI_ONWORKLST) != 0) {
1394 #if defined(DEBUG)
1395 TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
1396 if ((pg->flags & PG_MARKER) != 0) {
1397 continue;
1398 }
1399 if ((pg->flags & PG_CLEAN) == 0) {
1400 printf("%s: %p: !CLEAN\n", __func__, pg);
1401 }
1402 if (pmap_is_modified(pg)) {
1403 printf("%s: %p: modified\n", __func__, pg);
1404 }
1405 }
1406 #endif /* defined(DEBUG) */
1407 vp->v_iflag &= ~VI_WRMAPDIRTY;
1408 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
1409 vn_syncer_remove_from_worklist(vp);
1410 }
1411
1412 #if !defined(DEBUG)
1413 skip_scan:
1414 #endif /* !defined(DEBUG) */
1415
1416 /* Wait for output to complete. */
1417 if (!wasclean && !async && vp->v_numoutput != 0) {
1418 while (vp->v_numoutput != 0)
1419 cv_wait(&vp->v_cv, slock);
1420 }
1421 onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
1422 mutex_exit(slock);
1423
1424 if ((flags & PGO_RECLAIM) != 0 && onworklst) {
1425 /*
1426 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
1427 * retrying is not a big deal because, in many cases,
1428 * uobj->uo_npages is already 0 here.
1429 */
1430 mutex_enter(slock);
1431 goto retry;
1432 }
1433
1434 if (has_trans) {
1435 if (need_wapbl)
1436 WAPBL_END(vp->v_mount);
1437 fstrans_done(vp->v_mount);
1438 }
1439
1440 return (error);
1441 }
1442
1443 #ifdef XIP
1444 int
1445 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
1446 int flags, struct vm_page **busypg)
1447 {
1448 struct uvm_object *uobj = &vp->v_uobj;
1449 #ifdef DIAGNOSTIC
1450 struct genfs_node * const gp = VTOG(vp);
1451 #endif
1452
1453 UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
1454
1455 KASSERT(mutex_owned(&uobj->vmobjlock));
1456 KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
1457 KASSERT(vp->v_numoutput == 0);
1458 KASSERT(gp->g_dirtygen == 0);
1459
1460 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
1461 vp, uobj->uo_npages, startoff, endoff - startoff);
1462
1463 /*
1464 * XIP pages are read-only, and never become dirty. They're also never
1465 * queued. PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
1466 * pages, so we ignore them.
1467 */
1468 if ((flags & PGO_FREE) == 0)
1469 goto done;
1470
1471 /*
1472 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
1473 * mappings of both XIP pages and XIP zero pages.
1474 *
1475 * Zero page is freed when one of its mapped offset is freed, even if
1476 * one file (vnode) has many holes and mapping its zero page to all
1477 * of those hole pages.
1478 *
1479 * We don't know which pages are currently mapped in the given vnode,
1480 * because XIP pages are not added to vnode. What we can do is to
1481 * locate pages by querying the filesystem as done in getpages. Call
1482 * genfs_do_getpages_xip_io().
1483 */
1484
1485 off_t off, eof;
1486
1487 off = trunc_page(startoff);
1488 if (endoff == 0 || (flags & PGO_ALLPAGES))
1489 GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
1490 else
1491 eof = endoff;
1492
1493 while (off < eof) {
1494 int npages, orignpages, error, i;
1495 struct vm_page *pgs[maxpages], *pg;
1496
1497 npages = round_page(eof - off) >> PAGE_SHIFT;
1498 if (npages > maxpages)
1499 npages = maxpages;
1500
1501 orignpages = npages;
1502 KASSERT(mutex_owned(&uobj->vmobjlock));
1503 mutex_exit(&uobj->vmobjlock);
1504 error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
1505 VM_PROT_ALL, 0, 0);
1506 KASSERT(error == 0);
1507 KASSERT(npages == orignpages);
1508 mutex_enter(&uobj->vmobjlock);
1509 for (i = 0; i < npages; i++) {
1510 pg = pgs[i];
1511 if (pg == NULL || pg == PGO_DONTCARE)
1512 continue;
1513 /*
1514 * Freeing normal XIP pages; nothing to do.
1515 */
1516 pmap_page_protect(pg, VM_PROT_NONE);
1517 KASSERT((pg->flags & PG_BUSY) != 0);
1518 KASSERT((pg->flags & PG_RDONLY) != 0);
1519 KASSERT((pg->flags & PG_CLEAN) != 0);
1520 KASSERT((pg->flags & PG_FAKE) == 0);
1521 KASSERT((pg->flags & PG_DEVICE) != 0);
1522 pg->flags &= ~PG_BUSY;
1523 }
1524 off += npages << PAGE_SHIFT;
1525 }
1526
1527 KASSERT(uobj->uo_npages == 0);
1528
1529 done:
1530 KASSERT(mutex_owned(&uobj->vmobjlock));
1531 mutex_exit(&uobj->vmobjlock);
1532 return 0;
1533 }
1534 #endif
1535
1536 int
1537 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1538 {
1539 off_t off;
1540 vaddr_t kva;
1541 size_t len;
1542 int error;
1543 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1544
1545 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1546 vp, pgs, npages, flags);
1547
1548 off = pgs[0]->offset;
1549 kva = uvm_pagermapin(pgs, npages,
1550 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1551 len = npages << PAGE_SHIFT;
1552
1553 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1554 uvm_aio_biodone);
1555
1556 return error;
1557 }
1558
1559 int
1560 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
1561 {
1562 off_t off;
1563 vaddr_t kva;
1564 size_t len;
1565 int error;
1566 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1567
1568 UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
1569 vp, pgs, npages, flags);
1570
1571 off = pgs[0]->offset;
1572 kva = uvm_pagermapin(pgs, npages,
1573 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1574 len = npages << PAGE_SHIFT;
1575
1576 error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
1577 uvm_aio_biodone);
1578
1579 return error;
1580 }
1581
1582 /*
1583 * Backend routine for doing I/O to vnode pages. Pages are already locked
1584 * and mapped into kernel memory. Here we just look up the underlying
1585 * device block addresses and call the strategy routine.
1586 */
1587
1588 static int
1589 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
1590 enum uio_rw rw, void (*iodone)(struct buf *))
1591 {
1592 int s, error;
1593 int fs_bshift, dev_bshift;
1594 off_t eof, offset, startoffset;
1595 size_t bytes, iobytes, skipbytes;
1596 struct buf *mbp, *bp;
1597 const bool async = (flags & PGO_SYNCIO) == 0;
1598 const bool iowrite = rw == UIO_WRITE;
1599 const int brw = iowrite ? B_WRITE : B_READ;
1600 UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1601
1602 UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
1603 vp, kva, len, flags);
1604
1605 KASSERT(vp->v_size <= vp->v_writesize);
1606 GOP_SIZE(vp, vp->v_writesize, &eof, 0);
1607 if (vp->v_type != VBLK) {
1608 fs_bshift = vp->v_mount->mnt_fs_bshift;
1609 dev_bshift = vp->v_mount->mnt_dev_bshift;
1610 } else {
1611 fs_bshift = DEV_BSHIFT;
1612 dev_bshift = DEV_BSHIFT;
1613 }
1614 error = 0;
1615 startoffset = off;
1616 bytes = MIN(len, eof - startoffset);
1617 skipbytes = 0;
1618 KASSERT(bytes != 0);
1619
1620 if (iowrite) {
1621 mutex_enter(&vp->v_interlock);
1622 vp->v_numoutput += 2;
1623 mutex_exit(&vp->v_interlock);
1624 }
1625 mbp = getiobuf(vp, true);
1626 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1627 vp, mbp, vp->v_numoutput, bytes);
1628 mbp->b_bufsize = len;
1629 mbp->b_data = (void *)kva;
1630 mbp->b_resid = mbp->b_bcount = bytes;
1631 mbp->b_cflags = BC_BUSY | BC_AGE;
1632 if (async) {
1633 mbp->b_flags = brw | B_ASYNC;
1634 mbp->b_iodone = iodone;
1635 } else {
1636 mbp->b_flags = brw;
1637 mbp->b_iodone = NULL;
1638 }
1639 if (curlwp == uvm.pagedaemon_lwp)
1640 BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
1641 else if (async)
1642 BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
1643 else
1644 BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
1645
1646 bp = NULL;
1647 for (offset = startoffset;
1648 bytes > 0;
1649 offset += iobytes, bytes -= iobytes) {
1650 int run;
1651 daddr_t lbn, blkno;
1652 struct vnode *devvp;
1653
1654 /*
1655 * bmap the file to find out the blkno to read from and
1656 * how much we can read in one i/o. if bmap returns an error,
1657 * skip the rest of the top-level i/o.
1658 */
1659
1660 lbn = offset >> fs_bshift;
1661 error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
1662 if (error) {
1663 UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
1664 lbn,error,0,0);
1665 skipbytes += bytes;
1666 bytes = 0;
1667 goto loopdone;
1668 }
1669
1670 /*
1671 * see how many pages can be read with this i/o.
1672 * reduce the i/o size if necessary to avoid
1673 * overwriting pages with valid data.
1674 */
1675
1676 iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
1677 bytes);
1678
1679 /*
1680 * if this block isn't allocated, zero it instead of
1681 * reading it. unless we are going to allocate blocks,
1682 * mark the pages we zeroed PG_RDONLY.
1683 */
1684
1685 if (blkno == (daddr_t)-1) {
1686 if (!iowrite) {
1687 memset((char *)kva + (offset - startoffset), 0,
1688 iobytes);
1689 }
1690 skipbytes += iobytes;
1691 continue;
1692 }
1693
1694 /*
1695 * allocate a sub-buf for this piece of the i/o
1696 * (or just use mbp if there's only 1 piece),
1697 * and start it going.
1698 */
1699
1700 if (offset == startoffset && iobytes == bytes) {
1701 bp = mbp;
1702 } else {
1703 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1704 vp, bp, vp->v_numoutput, 0);
1705 bp = getiobuf(vp, true);
1706 nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
1707 }
1708 bp->b_lblkno = 0;
1709
1710 /* adjust physical blkno for partial blocks */
1711 bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
1712 dev_bshift);
1713
1714 UVMHIST_LOG(ubchist,
1715 "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1716 bp, offset, bp->b_bcount, bp->b_blkno);
1717
1718 VOP_STRATEGY(devvp, bp);
1719 }
1720
1721 loopdone:
1722 if (skipbytes) {
1723 UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
1724 }
1725 nestiobuf_done(mbp, skipbytes, error);
1726 if (async) {
1727 UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
1728 return (0);
1729 }
1730 UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
1731 error = biowait(mbp);
1732 s = splbio();
1733 (*iodone)(mbp);
1734 splx(s);
1735 UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
1736 return (error);
1737 }
1738
1739 int
1740 genfs_compat_getpages(void *v)
1741 {
1742 struct vop_getpages_args /* {
1743 struct vnode *a_vp;
1744 voff_t a_offset;
1745 struct vm_page **a_m;
1746 int *a_count;
1747 int a_centeridx;
1748 vm_prot_t a_access_type;
1749 int a_advice;
1750 int a_flags;
1751 } */ *ap = v;
1752
1753 off_t origoffset;
1754 struct vnode *vp = ap->a_vp;
1755 struct uvm_object *uobj = &vp->v_uobj;
1756 struct vm_page *pg, **pgs;
1757 vaddr_t kva;
1758 int i, error, orignpages, npages;
1759 struct iovec iov;
1760 struct uio uio;
1761 kauth_cred_t cred = curlwp->l_cred;
1762 const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
1763
1764 error = 0;
1765 origoffset = ap->a_offset;
1766 orignpages = *ap->a_count;
1767 pgs = ap->a_m;
1768
1769 if (ap->a_flags & PGO_LOCKED) {
1770 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1771 UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
1772
1773 error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
1774 if (error == 0 && memwrite) {
1775 genfs_markdirty(vp);
1776 }
1777 return error;
1778 }
1779 if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
1780 mutex_exit(&uobj->vmobjlock);
1781 return EINVAL;
1782 }
1783 if ((ap->a_flags & PGO_SYNCIO) == 0) {
1784 mutex_exit(&uobj->vmobjlock);
1785 return 0;
1786 }
1787 npages = orignpages;
1788 uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
1789 mutex_exit(&uobj->vmobjlock);
1790 kva = uvm_pagermapin(pgs, npages,
1791 UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
1792 for (i = 0; i < npages; i++) {
1793 pg = pgs[i];
1794 if ((pg->flags & PG_FAKE) == 0) {
1795 continue;
1796 }
1797 iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
1798 iov.iov_len = PAGE_SIZE;
1799 uio.uio_iov = &iov;
1800 uio.uio_iovcnt = 1;
1801 uio.uio_offset = origoffset + (i << PAGE_SHIFT);
1802 uio.uio_rw = UIO_READ;
1803 uio.uio_resid = PAGE_SIZE;
1804 UIO_SETUP_SYSSPACE(&uio);
1805 /* XXX vn_lock */
1806 error = VOP_READ(vp, &uio, 0, cred);
1807 if (error) {
1808 break;
1809 }
1810 if (uio.uio_resid) {
1811 memset(iov.iov_base, 0, uio.uio_resid);
1812 }
1813 }
1814 uvm_pagermapout(kva, npages);
1815 mutex_enter(&uobj->vmobjlock);
1816 mutex_enter(&uvm_pageqlock);
1817 for (i = 0; i < npages; i++) {
1818 pg = pgs[i];
1819 if (error && (pg->flags & PG_FAKE) != 0) {
1820 pg->flags |= PG_RELEASED;
1821 } else {
1822 pmap_clear_modify(pg);
1823 uvm_pageactivate(pg);
1824 }
1825 }
1826 if (error) {
1827 uvm_page_unbusy(pgs, npages);
1828 }
1829 mutex_exit(&uvm_pageqlock);
1830 if (error == 0 && memwrite) {
1831 genfs_markdirty(vp);
1832 }
1833 mutex_exit(&uobj->vmobjlock);
1834 return error;
1835 }
1836
1837 int
1838 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
1839 int flags)
1840 {
1841 off_t offset;
1842 struct iovec iov;
1843 struct uio uio;
1844 kauth_cred_t cred = curlwp->l_cred;
1845 struct buf *bp;
1846 vaddr_t kva;
1847 int error;
1848
1849 offset = pgs[0]->offset;
1850 kva = uvm_pagermapin(pgs, npages,
1851 UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
1852
1853 iov.iov_base = (void *)kva;
1854 iov.iov_len = npages << PAGE_SHIFT;
1855 uio.uio_iov = &iov;
1856 uio.uio_iovcnt = 1;
1857 uio.uio_offset = offset;
1858 uio.uio_rw = UIO_WRITE;
1859 uio.uio_resid = npages << PAGE_SHIFT;
1860 UIO_SETUP_SYSSPACE(&uio);
1861 /* XXX vn_lock */
1862 error = VOP_WRITE(vp, &uio, 0, cred);
1863
1864 mutex_enter(&vp->v_interlock);
1865 vp->v_numoutput++;
1866 mutex_exit(&vp->v_interlock);
1867
1868 bp = getiobuf(vp, true);
1869 bp->b_cflags = BC_BUSY | BC_AGE;
1870 bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
1871 bp->b_data = (char *)kva;
1872 bp->b_bcount = npages << PAGE_SHIFT;
1873 bp->b_bufsize = npages << PAGE_SHIFT;
1874 bp->b_resid = 0;
1875 bp->b_error = error;
1876 uvm_aio_aiodone(bp);
1877 return (error);
1878 }
1879
1880 /*
1881 * Process a uio using direct I/O. If we reach a part of the request
1882 * which cannot be processed in this fashion for some reason, just return.
1883 * The caller must handle some additional part of the request using
1884 * buffered I/O before trying direct I/O again.
1885 */
1886
1887 void
1888 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
1889 {
1890 struct vmspace *vs;
1891 struct iovec *iov;
1892 vaddr_t va;
1893 size_t len;
1894 const int mask = DEV_BSIZE - 1;
1895 int error;
1896 bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
1897 (ioflag & IO_JOURNALLOCKED) == 0);
1898
1899 /*
1900 * We only support direct I/O to user space for now.
1901 */
1902
1903 if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
1904 return;
1905 }
1906
1907 /*
1908 * If the vnode is mapped, we would need to get the getpages lock
1909 * to stabilize the bmap, but then we would get into trouble whil e
1910 * locking the pages if the pages belong to this same vnode (or a
1911 * multi-vnode cascade to the same effect). Just fall back to
1912 * buffered I/O if the vnode is mapped to avoid this mess.
1913 */
1914
1915 if (vp->v_vflag & VV_MAPPED) {
1916 return;
1917 }
1918
1919 if (need_wapbl) {
1920 error = WAPBL_BEGIN(vp->v_mount);
1921 if (error)
1922 return;
1923 }
1924
1925 /*
1926 * Do as much of the uio as possible with direct I/O.
1927 */
1928
1929 vs = uio->uio_vmspace;
1930 while (uio->uio_resid) {
1931 iov = uio->uio_iov;
1932 if (iov->iov_len == 0) {
1933 uio->uio_iov++;
1934 uio->uio_iovcnt--;
1935 continue;
1936 }
1937 va = (vaddr_t)iov->iov_base;
1938 len = MIN(iov->iov_len, genfs_maxdio);
1939 len &= ~mask;
1940
1941 /*
1942 * If the next chunk is smaller than DEV_BSIZE or extends past
1943 * the current EOF, then fall back to buffered I/O.
1944 */
1945
1946 if (len == 0 || uio->uio_offset + len > vp->v_size) {
1947 break;
1948 }
1949
1950 /*
1951 * Check alignment. The file offset must be at least
1952 * sector-aligned. The exact constraint on memory alignment
1953 * is very hardware-dependent, but requiring sector-aligned
1954 * addresses there too is safe.
1955 */
1956
1957 if (uio->uio_offset & mask || va & mask) {
1958 break;
1959 }
1960 error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
1961 uio->uio_rw);
1962 if (error) {
1963 break;
1964 }
1965 iov->iov_base = (char *)iov->iov_base + len;
1966 iov->iov_len -= len;
1967 uio->uio_offset += len;
1968 uio->uio_resid -= len;
1969 }
1970
1971 if (need_wapbl)
1972 WAPBL_END(vp->v_mount);
1973 }
1974
1975 /*
1976 * Iodone routine for direct I/O. We don't do much here since the request is
1977 * always synchronous, so the caller will do most of the work after biowait().
1978 */
1979
1980 static void
1981 genfs_dio_iodone(struct buf *bp)
1982 {
1983
1984 KASSERT((bp->b_flags & B_ASYNC) == 0);
1985 if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
1986 mutex_enter(bp->b_objlock);
1987 vwakeup(bp);
1988 mutex_exit(bp->b_objlock);
1989 }
1990 putiobuf(bp);
1991 }
1992
1993 /*
1994 * Process one chunk of a direct I/O request.
1995 */
1996
1997 static int
1998 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
1999 off_t off, enum uio_rw rw)
2000 {
2001 struct vm_map *map;
2002 struct pmap *upm, *kpm;
2003 size_t klen = round_page(uva + len) - trunc_page(uva);
2004 off_t spoff, epoff;
2005 vaddr_t kva, puva;
2006 paddr_t pa;
2007 vm_prot_t prot;
2008 int error, rv, poff, koff;
2009 const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
2010 (rw == UIO_WRITE ? PGO_FREE : 0);
2011
2012 /*
2013 * For writes, verify that this range of the file already has fully
2014 * allocated backing store. If there are any holes, just punt and
2015 * make the caller take the buffered write path.
2016 */
2017
2018 if (rw == UIO_WRITE) {
2019 daddr_t lbn, elbn, blkno;
2020 int bsize, bshift, run;
2021
2022 bshift = vp->v_mount->mnt_fs_bshift;
2023 bsize = 1 << bshift;
2024 lbn = off >> bshift;
2025 elbn = (off + len + bsize - 1) >> bshift;
2026 while (lbn < elbn) {
2027 error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
2028 if (error) {
2029 return error;
2030 }
2031 if (blkno == (daddr_t)-1) {
2032 return ENOSPC;
2033 }
2034 lbn += 1 + run;
2035 }
2036 }
2037
2038 /*
2039 * Flush any cached pages for parts of the file that we're about to
2040 * access. If we're writing, invalidate pages as well.
2041 */
2042
2043 spoff = trunc_page(off);
2044 epoff = round_page(off + len);
2045 mutex_enter(&vp->v_interlock);
2046 error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
2047 if (error) {
2048 return error;
2049 }
2050
2051 /*
2052 * Wire the user pages and remap them into kernel memory.
2053 */
2054
2055 prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
2056 error = uvm_vslock(vs, (void *)uva, len, prot);
2057 if (error) {
2058 return error;
2059 }
2060
2061 map = &vs->vm_map;
2062 upm = vm_map_pmap(map);
2063 kpm = vm_map_pmap(kernel_map);
2064 kva = uvm_km_alloc(kernel_map, klen, 0,
2065 UVM_KMF_VAONLY | UVM_KMF_WAITVA);
2066 puva = trunc_page(uva);
2067 for (poff = 0; poff < klen; poff += PAGE_SIZE) {
2068 rv = pmap_extract(upm, puva + poff, &pa);
2069 KASSERT(rv);
2070 pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
2071 }
2072 pmap_update(kpm);
2073
2074 /*
2075 * Do the I/O.
2076 */
2077
2078 koff = uva - trunc_page(uva);
2079 error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
2080 genfs_dio_iodone);
2081
2082 /*
2083 * Tear down the kernel mapping.
2084 */
2085
2086 pmap_remove(kpm, kva, kva + klen);
2087 pmap_update(kpm);
2088 uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
2089
2090 /*
2091 * Unwire the user pages.
2092 */
2093
2094 uvm_vsunlock(vs, (void *)uva, len);
2095 return error;
2096 }
2097
2098