Home | History | Annotate | Line # | Download | only in genfs
genfs_io.c revision 1.36.2.44
      1 /*	$NetBSD: genfs_io.c,v 1.36.2.44 2010/11/19 08:11:04 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: genfs_io.c,v 1.36.2.44 2010/11/19 08:11:04 uebayasi Exp $");
     35 
     36 #include "opt_xip.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/proc.h>
     41 #include <sys/kernel.h>
     42 #include <sys/mount.h>
     43 #include <sys/namei.h>
     44 #include <sys/vnode.h>
     45 #include <sys/fcntl.h>
     46 #include <sys/kmem.h>
     47 #include <sys/poll.h>
     48 #include <sys/mman.h>
     49 #include <sys/file.h>
     50 #include <sys/kauth.h>
     51 #include <sys/fstrans.h>
     52 #include <sys/buf.h>
     53 #include <sys/once.h>
     54 
     55 #include <miscfs/genfs/genfs.h>
     56 #include <miscfs/genfs/genfs_node.h>
     57 #include <miscfs/specfs/specdev.h>
     58 
     59 #include <uvm/uvm.h>
     60 #include <uvm/uvm_pager.h>
     61 
     62 #ifdef XIP
     63 static int genfs_do_getpages_xip_io(struct vnode *, voff_t, struct vm_page **,
     64     int *, int, vm_prot_t, int, int, const int);
     65 static int genfs_do_getpages_xip_io_done(struct vnode *, voff_t, struct vm_page **,
     66     int *, int, vm_prot_t, int, int, const int);
     67 static int genfs_do_putpages_xip(struct vnode *, off_t, off_t, int,
     68     struct vm_page **);
     69 #endif
     70 static int genfs_do_directio(struct vmspace *, vaddr_t, size_t, struct vnode *,
     71     off_t, enum uio_rw);
     72 static void genfs_dio_iodone(struct buf *);
     73 
     74 static int genfs_do_io(struct vnode *, off_t, vaddr_t, size_t, int, enum uio_rw,
     75     void (*)(struct buf *));
     76 static void genfs_rel_pages(struct vm_page **, int);
     77 static void genfs_markdirty(struct vnode *);
     78 
     79 int genfs_maxdio = MAXPHYS;
     80 
     81 static void
     82 genfs_rel_pages(struct vm_page **pgs, int npages)
     83 {
     84 	int i;
     85 
     86 	for (i = 0; i < npages; i++) {
     87 		struct vm_page *pg = pgs[i];
     88 
     89 		if (pg == NULL || pg == PGO_DONTCARE)
     90 			continue;
     91 		if (pg->flags & PG_FAKE) {
     92 			pg->flags |= PG_RELEASED;
     93 		}
     94 	}
     95 	mutex_enter(&uvm_pageqlock);
     96 	uvm_page_unbusy(pgs, npages);
     97 	mutex_exit(&uvm_pageqlock);
     98 }
     99 
    100 static void
    101 genfs_markdirty(struct vnode *vp)
    102 {
    103 	struct genfs_node * const gp = VTOG(vp);
    104 
    105 	KASSERT(mutex_owned(&vp->v_interlock));
    106 	gp->g_dirtygen++;
    107 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
    108 		vn_syncer_add_to_worklist(vp, filedelay);
    109 	}
    110 	if ((vp->v_iflag & (VI_WRMAP|VI_WRMAPDIRTY)) == VI_WRMAP) {
    111 		vp->v_iflag |= VI_WRMAPDIRTY;
    112 	}
    113 }
    114 
    115 /*
    116  * generic VM getpages routine.
    117  * Return PG_BUSY pages for the given range,
    118  * reading from backing store if necessary.
    119  */
    120 
    121 int
    122 genfs_getpages(void *v)
    123 {
    124 	struct vop_getpages_args /* {
    125 		struct vnode *a_vp;
    126 		voff_t a_offset;
    127 		struct vm_page **a_m;
    128 		int *a_count;
    129 		int a_centeridx;
    130 		vm_prot_t a_access_type;
    131 		int a_advice;
    132 		int a_flags;
    133 	} */ * const ap = v;
    134 
    135 	off_t diskeof, memeof;
    136 	int i, error, npages;
    137 	const int flags = ap->a_flags;
    138 	struct vnode * const vp = ap->a_vp;
    139 	struct uvm_object * const uobj = &vp->v_uobj;
    140 	kauth_cred_t const cred = curlwp->l_cred;		/* XXXUBC curlwp */
    141 	const bool async = (flags & PGO_SYNCIO) == 0;
    142 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
    143 	bool has_trans = false;
    144 	const bool overwrite = (flags & PGO_OVERWRITE) != 0;
    145 	const bool blockalloc = memwrite && (flags & PGO_NOBLOCKALLOC) == 0;
    146 	const bool glocked = (flags & PGO_GLOCKHELD) != 0;
    147 	UVMHIST_FUNC("genfs_getpages"); UVMHIST_CALLED(ubchist);
    148 
    149 	UVMHIST_LOG(ubchist, "vp %p off 0x%x/%x count %d",
    150 	    vp, ap->a_offset >> 32, ap->a_offset, *ap->a_count);
    151 
    152 	KASSERT(vp->v_type == VREG || vp->v_type == VDIR ||
    153 	    vp->v_type == VLNK || vp->v_type == VBLK);
    154 
    155 startover:
    156 	error = 0;
    157 	const voff_t origvsize = vp->v_size;
    158 	const off_t origoffset = ap->a_offset;
    159 	const int orignpages = *ap->a_count;
    160 
    161 	GOP_SIZE(vp, origvsize, &diskeof, 0);
    162 	if (flags & PGO_PASTEOF) {
    163 		off_t newsize;
    164 #if defined(DIAGNOSTIC)
    165 		off_t writeeof;
    166 #endif /* defined(DIAGNOSTIC) */
    167 
    168 		newsize = MAX(origvsize,
    169 		    origoffset + (orignpages << PAGE_SHIFT));
    170 		GOP_SIZE(vp, newsize, &memeof, GOP_SIZE_MEM);
    171 #if defined(DIAGNOSTIC)
    172 		GOP_SIZE(vp, vp->v_writesize, &writeeof, GOP_SIZE_MEM);
    173 		if (newsize > round_page(writeeof)) {
    174 			panic("%s: past eof: %" PRId64 " vs. %" PRId64,
    175 			    __func__, newsize, round_page(writeeof));
    176 		}
    177 #endif /* defined(DIAGNOSTIC) */
    178 	} else {
    179 		GOP_SIZE(vp, origvsize, &memeof, GOP_SIZE_MEM);
    180 	}
    181 	KASSERT(ap->a_centeridx >= 0 || ap->a_centeridx <= orignpages);
    182 	KASSERT((origoffset & (PAGE_SIZE - 1)) == 0 && origoffset >= 0);
    183 	KASSERT(orignpages > 0);
    184 
    185 	/*
    186 	 * Bounds-check the request.
    187 	 */
    188 
    189 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= memeof) {
    190 		if ((flags & PGO_LOCKED) == 0) {
    191 			mutex_exit(&uobj->vmobjlock);
    192 		}
    193 		UVMHIST_LOG(ubchist, "off 0x%x count %d goes past EOF 0x%x",
    194 		    origoffset, *ap->a_count, memeof,0);
    195 		error = EINVAL;
    196 		goto out_err;
    197 	}
    198 
    199 	/* uobj is locked */
    200 
    201 	if ((flags & PGO_NOTIMESTAMP) == 0 &&
    202 	    (vp->v_type != VBLK ||
    203 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
    204 		int updflags = 0;
    205 
    206 		if ((vp->v_mount->mnt_flag & MNT_NOATIME) == 0) {
    207 			updflags = GOP_UPDATE_ACCESSED;
    208 		}
    209 		if (memwrite) {
    210 			updflags |= GOP_UPDATE_MODIFIED;
    211 		}
    212 		if (updflags != 0) {
    213 			GOP_MARKUPDATE(vp, updflags);
    214 		}
    215 	}
    216 
    217 	/*
    218 	 * For PGO_LOCKED requests, just return whatever's in memory.
    219 	 */
    220 
    221 	if (flags & PGO_LOCKED) {
    222 #if 0
    223 		genfs_do_getpages_locked();
    224 	} else {
    225 		genfs_do_getpages_unlocked();
    226 	}
    227 }
    228 
    229 int
    230 genfs_do_getpages_locked()
    231 {
    232 #endif
    233 		int nfound;
    234 		struct vm_page *pg;
    235 
    236 #if 1
    237 		if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
    238 			*ap->a_count = 0;
    239 			return 0;
    240 		}
    241 #endif
    242 
    243 		KASSERT(!glocked);
    244 		npages = *ap->a_count;
    245 #if defined(DEBUG)
    246 		for (i = 0; i < npages; i++) {
    247 			pg = ap->a_m[i];
    248 			KASSERT(pg == NULL || pg == PGO_DONTCARE);
    249 		}
    250 #endif /* defined(DEBUG) */
    251 		nfound = uvn_findpages(uobj, origoffset, &npages,
    252 		    ap->a_m, UFP_NOWAIT|UFP_NOALLOC|(memwrite ? UFP_NORDONLY : 0));
    253 		KASSERT(npages == *ap->a_count);
    254 		if (nfound == 0) {
    255 			error = EBUSY;
    256 			goto out_err;
    257 		}
    258 		if (!genfs_node_rdtrylock(vp)) {
    259 			genfs_rel_pages(ap->a_m, npages);
    260 
    261 			/*
    262 			 * restore the array.
    263 			 */
    264 
    265 			for (i = 0; i < npages; i++) {
    266 				pg = ap->a_m[i];
    267 
    268 				if (pg != NULL && pg != PGO_DONTCARE) {
    269 					ap->a_m[i] = NULL;
    270 				}
    271 				KASSERT(pg == NULL || pg == PGO_DONTCARE);
    272 			}
    273 		} else {
    274 			genfs_node_unlock(vp);
    275 		}
    276 		error = (ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0);
    277 		if (error == 0 && memwrite) {
    278 			genfs_markdirty(vp);
    279 		}
    280 		goto out_err;
    281 	}
    282 	mutex_exit(&uobj->vmobjlock);
    283 #if 0
    284 }
    285 
    286 int
    287 genfs_do_getpages_unlocked()
    288 {
    289 #endif
    290 	/*
    291 	 * find the requested pages and make some simple checks.
    292 	 * leave space in the page array for a whole block.
    293 	 */
    294 
    295 #define	vp2fs_bshift(vp) \
    296 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_fs_bshift : DEV_BSHIFT)
    297 #define	vp2dev_bshift(vp) \
    298 	(((vp)->v_type != VBLK) ? (vp)->v_mount->mnt_dev_bshift : DEV_BSHIFT)
    299 
    300 	const int fs_bshift = vp2fs_bshift(vp);
    301 	const int dev_bshift = vp2dev_bshift(vp);
    302 	const int fs_bsize = 1 << fs_bshift;
    303 #define	blk_mask	(fs_bsize - 1)
    304 #define	trunc_blk(x)	((x) & ~blk_mask)
    305 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    306 
    307 	const int orignmempages = MIN(orignpages,
    308 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    309 	npages = orignmempages;
    310 	const off_t startoffset = trunc_blk(origoffset);
    311 	const off_t endoffset = MIN(
    312 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    313 	    round_page(memeof));
    314 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    315 
    316 	const int pgs_size = sizeof(struct vm_page *) *
    317 	    ((endoffset - startoffset) >> PAGE_SHIFT);
    318 	struct vm_page **pgs, *pgs_onstack[UBC_MAX_PAGES];
    319 
    320 	if (pgs_size > sizeof(pgs_onstack)) {
    321 		pgs = kmem_zalloc(pgs_size, async ? KM_NOSLEEP : KM_SLEEP);
    322 		if (pgs == NULL) {
    323 			pgs = pgs_onstack;
    324 			error = ENOMEM;
    325 			goto out_err;
    326 		}
    327 	} else {
    328 		pgs = pgs_onstack;
    329 		(void)memset(pgs, 0, pgs_size);
    330 	}
    331 
    332 	UVMHIST_LOG(ubchist, "ridx %d npages %d startoff %ld endoff %ld",
    333 	    ridx, npages, startoffset, endoffset);
    334 
    335 	if (!has_trans) {
    336 		fstrans_start(vp->v_mount, FSTRANS_SHARED);
    337 		has_trans = true;
    338 	}
    339 
    340 	/*
    341 	 * hold g_glock to prevent a race with truncate.
    342 	 *
    343 	 * check if our idea of v_size is still valid.
    344 	 */
    345 
    346 	KASSERT(!glocked || genfs_node_wrlocked(vp));
    347 	if (!glocked) {
    348 		if (blockalloc) {
    349 			genfs_node_wrlock(vp);
    350 		} else {
    351 			genfs_node_rdlock(vp);
    352 		}
    353 	}
    354 	mutex_enter(&uobj->vmobjlock);
    355 	if (vp->v_size < origvsize) {
    356 		if (!glocked) {
    357 			genfs_node_unlock(vp);
    358 		}
    359 		if (pgs != pgs_onstack)
    360 			kmem_free(pgs, pgs_size);
    361 		goto startover;
    362 	}
    363 
    364 #if 1
    365 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    366 		goto find_pagecache_done;
    367 #endif
    368 
    369 	if (uvn_findpages(uobj, origoffset, &npages, &pgs[ridx],
    370 	    async ? UFP_NOWAIT : UFP_ALL) != orignmempages) {
    371 		if (!glocked) {
    372 			genfs_node_unlock(vp);
    373 		}
    374 		KASSERT(async != 0);
    375 		genfs_rel_pages(&pgs[ridx], orignmempages);
    376 		mutex_exit(&uobj->vmobjlock);
    377 		error = EBUSY;
    378 		goto out_err_free;
    379 	}
    380 
    381 	/*
    382 	 * if the pages are already resident, just return them.
    383 	 */
    384 
    385 	for (i = 0; i < npages; i++) {
    386 		struct vm_page *pg = pgs[ridx + i];
    387 
    388 		if ((pg->flags & PG_FAKE) ||
    389 		    (blockalloc && (pg->flags & PG_RDONLY))) {
    390 			break;
    391 		}
    392 	}
    393 	if (i == npages) {
    394 		if (!glocked) {
    395 			genfs_node_unlock(vp);
    396 		}
    397 		UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
    398 		npages += ridx;
    399 		goto out;
    400 	}
    401 
    402 	/*
    403 	 * if PGO_OVERWRITE is set, don't bother reading the pages.
    404 	 */
    405 
    406 	if (overwrite) {
    407 #if 0
    408 		genfs_do_getpages_overwrite();
    409 	} else {
    410 		genfs_do_getpages_io();
    411 	}
    412 }
    413 
    414 int
    415 genfs_do_getpages_overwrite()
    416 {
    417 	{
    418 #endif
    419 		if (!glocked) {
    420 			genfs_node_unlock(vp);
    421 		}
    422 		UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
    423 
    424 		for (i = 0; i < npages; i++) {
    425 			struct vm_page *pg = pgs[ridx + i];
    426 
    427 			pg->flags &= ~(PG_RDONLY|PG_CLEAN);
    428 		}
    429 		npages += ridx;
    430 		goto out;
    431 	}
    432 #if 0
    433 }
    434 
    435 int
    436 genfs_do_getpages_io()
    437 {
    438 #endif
    439 	/*
    440 	 * the page wasn't resident and we're not overwriting,
    441 	 * so we're going to have to do some i/o.
    442 	 * find any additional pages needed to cover the expanded range.
    443 	 */
    444 
    445 	npages = (endoffset - startoffset) >> PAGE_SHIFT;
    446 	if (startoffset != origoffset || npages != orignmempages) {
    447 		int npgs;
    448 
    449 		/*
    450 		 * we need to avoid deadlocks caused by locking
    451 		 * additional pages at lower offsets than pages we
    452 		 * already have locked.  unlock them all and start over.
    453 		 */
    454 
    455 		genfs_rel_pages(&pgs[ridx], orignmempages);
    456 		memset(pgs, 0, pgs_size);
    457 
    458 		UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
    459 		    startoffset, endoffset, 0,0);
    460 		npgs = npages;
    461 		if (uvn_findpages(uobj, startoffset, &npgs, pgs,
    462 		    async ? UFP_NOWAIT : UFP_ALL) != npages) {
    463 			if (!glocked) {
    464 				genfs_node_unlock(vp);
    465 			}
    466 			KASSERT(async != 0);
    467 			genfs_rel_pages(pgs, npages);
    468 			mutex_exit(&uobj->vmobjlock);
    469 			error = EBUSY;
    470 			goto out_err_free;
    471 		}
    472 	}
    473 
    474 #if 1
    475 find_pagecache_done:
    476 #endif
    477 
    478 	mutex_exit(&uobj->vmobjlock);
    479 
    480     {
    481 	size_t bytes, iobytes, tailstart, tailbytes, totalbytes, skipbytes;
    482 	vaddr_t kva = 0;
    483 	struct buf *bp = NULL, *mbp = NULL;
    484 	bool sawhole = false;
    485 
    486 	/*
    487 	 * read the desired page(s).
    488 	 */
    489 
    490 	totalbytes = npages << PAGE_SHIFT;
    491 	bytes = MIN(totalbytes, MAX(diskeof - startoffset, 0));
    492 	tailbytes = totalbytes - bytes;
    493 	skipbytes = 0;
    494 
    495 #if 1
    496 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    497 		goto genfs_getpages_bio_prepare_done;
    498 #endif
    499 
    500 	kva = uvm_pagermapin(pgs, npages,
    501 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
    502 
    503 	mbp = getiobuf(vp, true);
    504 	mbp->b_bufsize = totalbytes;
    505 	mbp->b_data = (void *)kva;
    506 	mbp->b_resid = mbp->b_bcount = bytes;
    507 	mbp->b_cflags = BC_BUSY;
    508 	if (async) {
    509 		mbp->b_flags = B_READ | B_ASYNC;
    510 		mbp->b_iodone = uvm_aio_biodone;
    511 	} else {
    512 		mbp->b_flags = B_READ;
    513 		mbp->b_iodone = NULL;
    514 	}
    515 	if (async)
    516 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
    517 	else
    518 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
    519 
    520 #if 1
    521 genfs_getpages_bio_prepare_done:
    522 #endif
    523 
    524 	/*
    525 	 * if EOF is in the middle of the range, zero the part past EOF.
    526 	 * skip over pages which are not PG_FAKE since in that case they have
    527 	 * valid data that we need to preserve.
    528 	 */
    529 
    530 	tailstart = bytes;
    531 	while (tailbytes > 0) {
    532 		const int len = PAGE_SIZE - (tailstart & PAGE_MASK);
    533 
    534 		KASSERT(len <= tailbytes);
    535 		if ((pgs[tailstart >> PAGE_SHIFT]->flags & PG_FAKE) != 0) {
    536 			memset((void *)(kva + tailstart), 0, len);
    537 			UVMHIST_LOG(ubchist, "tailbytes %p 0x%x 0x%x",
    538 			    kva, tailstart, len, 0);
    539 		}
    540 		tailstart += len;
    541 		tailbytes -= len;
    542 	}
    543 
    544 #if 1
    545 	if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
    546 		error = genfs_do_getpages_xip_io(
    547 			ap->a_vp,
    548 			ap->a_offset,
    549 			ap->a_m,
    550 			ap->a_count,
    551 			ap->a_centeridx,
    552 			ap->a_access_type,
    553 			ap->a_advice,
    554 			ap->a_flags,
    555 			orignmempages);
    556 		goto loopdone;
    557 	}
    558 #endif
    559 
    560 	/*
    561 	 * now loop over the pages, reading as needed.
    562 	 */
    563 
    564 	bp = NULL;
    565 	off_t offset;
    566 	for (offset = startoffset;
    567 	    bytes > 0;
    568 	    offset += iobytes, bytes -= iobytes) {
    569 		int run;
    570 		daddr_t lbn, blkno;
    571 		int pidx;
    572 		struct vnode *devvp;
    573 
    574 		/*
    575 		 * skip pages which don't need to be read.
    576 		 */
    577 
    578 		pidx = (offset - startoffset) >> PAGE_SHIFT;
    579 		while ((pgs[pidx]->flags & PG_FAKE) == 0) {
    580 			size_t b;
    581 
    582 			KASSERT((offset & (PAGE_SIZE - 1)) == 0);
    583 			if ((pgs[pidx]->flags & PG_RDONLY)) {
    584 				sawhole = true;
    585 			}
    586 			b = MIN(PAGE_SIZE, bytes);
    587 			offset += b;
    588 			bytes -= b;
    589 			skipbytes += b;
    590 			pidx++;
    591 			UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
    592 			    offset, 0,0,0);
    593 			if (bytes == 0) {
    594 				goto loopdone;
    595 			}
    596 		}
    597 
    598 		/*
    599 		 * bmap the file to find out the blkno to read from and
    600 		 * how much we can read in one i/o.  if bmap returns an error,
    601 		 * skip the rest of the top-level i/o.
    602 		 */
    603 
    604 		lbn = offset >> fs_bshift;
    605 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    606 		if (error) {
    607 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
    608 			    lbn,error,0,0);
    609 			skipbytes += bytes;
    610 			bytes = 0;
    611 			goto loopdone;
    612 		}
    613 
    614 		/*
    615 		 * see how many pages can be read with this i/o.
    616 		 * reduce the i/o size if necessary to avoid
    617 		 * overwriting pages with valid data.
    618 		 */
    619 
    620 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
    621 		    bytes);
    622 		if (offset + iobytes > round_page(offset)) {
    623 			int pcount;
    624 
    625 			pcount = 1;
    626 			while (pidx + pcount < npages &&
    627 			    pgs[pidx + pcount]->flags & PG_FAKE) {
    628 				pcount++;
    629 			}
    630 			iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
    631 			    (offset - trunc_page(offset)));
    632 		}
    633 
    634 		/*
    635 		 * if this block isn't allocated, zero it instead of
    636 		 * reading it.  unless we are going to allocate blocks,
    637 		 * mark the pages we zeroed PG_RDONLY.
    638 		 */
    639 
    640 		if (blkno == (daddr_t)-1) {
    641 			int holepages = (round_page(offset + iobytes) -
    642 			    trunc_page(offset)) >> PAGE_SHIFT;
    643 			UVMHIST_LOG(ubchist, "lbn 0x%x -> HOLE", lbn,0,0,0);
    644 
    645 			sawhole = true;
    646 			memset((char *)kva + (offset - startoffset), 0,
    647 			    iobytes);
    648 			skipbytes += iobytes;
    649 
    650 			for (i = 0; i < holepages; i++) {
    651 				if (memwrite) {
    652 					pgs[pidx + i]->flags &= ~PG_CLEAN;
    653 				}
    654 				if (!blockalloc) {
    655 					pgs[pidx + i]->flags |= PG_RDONLY;
    656 				}
    657 			}
    658 			continue;
    659 		}
    660 
    661 		/*
    662 		 * allocate a sub-buf for this piece of the i/o
    663 		 * (or just use mbp if there's only 1 piece),
    664 		 * and start it going.
    665 		 */
    666 
    667 		if (offset == startoffset && iobytes == bytes) {
    668 			bp = mbp;
    669 		} else {
    670 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
    671 			    vp, bp, vp->v_numoutput, 0);
    672 			bp = getiobuf(vp, true);
    673 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
    674 		}
    675 		bp->b_lblkno = 0;
    676 
    677 		/* adjust physical blkno for partial blocks */
    678 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
    679 		    dev_bshift);
    680 
    681 		UVMHIST_LOG(ubchist,
    682 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
    683 		    bp, offset, bp->b_bcount, bp->b_blkno);
    684 
    685 		VOP_STRATEGY(devvp, bp);
    686 	}
    687 
    688 loopdone:
    689 #if 1
    690 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
    691 		goto genfs_getpages_biodone_done;
    692 #endif
    693 #if 0
    694 
    695 int
    696 genfs_getpages_biodone()
    697 {
    698 #endif
    699 	nestiobuf_done(mbp, skipbytes, error);
    700 	if (async) {
    701 		UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
    702 		if (!glocked) {
    703 			genfs_node_unlock(vp);
    704 		}
    705 		error = 0;
    706 		goto out_err_free;
    707 	}
    708 	if (bp != NULL) {
    709 		error = biowait(mbp);
    710 	}
    711 
    712 	/* Remove the mapping (make KVA available as soon as possible) */
    713 	uvm_pagermapout(kva, npages);
    714 
    715 	/*
    716 	 * if this we encountered a hole then we have to do a little more work.
    717 	 * for read faults, we marked the page PG_RDONLY so that future
    718 	 * write accesses to the page will fault again.
    719 	 * for write faults, we must make sure that the backing store for
    720 	 * the page is completely allocated while the pages are locked.
    721 	 */
    722 
    723 	if (!error && sawhole && blockalloc) {
    724 		/*
    725 		 * XXX: This assumes that we come here only via
    726 		 * the mmio path
    727 		 */
    728 		if (vp->v_mount->mnt_wapbl) {
    729 			error = WAPBL_BEGIN(vp->v_mount);
    730 		}
    731 
    732 		if (!error) {
    733 			error = GOP_ALLOC(vp, startoffset,
    734 			    npages << PAGE_SHIFT, 0, cred);
    735 			if (vp->v_mount->mnt_wapbl) {
    736 				WAPBL_END(vp->v_mount);
    737 			}
    738 		}
    739 
    740 		UVMHIST_LOG(ubchist, "gop_alloc off 0x%x/0x%x -> %d",
    741 		    startoffset, npages << PAGE_SHIFT, error,0);
    742 		if (!error) {
    743 			for (i = 0; i < npages; i++) {
    744 				struct vm_page *pg = pgs[i];
    745 
    746 				if (pg == NULL) {
    747 					continue;
    748 				}
    749 				pg->flags &= ~(PG_CLEAN|PG_RDONLY);
    750 				UVMHIST_LOG(ubchist, "mark dirty pg %p",
    751 				    pg,0,0,0);
    752 			}
    753 		}
    754 	}
    755 
    756 	putiobuf(mbp);
    757 #if 0
    758 }
    759 
    760 #endif
    761 #if 1
    762 genfs_getpages_biodone_done:
    763 	{}
    764 #endif
    765     }
    766 
    767 	if (!glocked) {
    768 		genfs_node_unlock(vp);
    769 	}
    770 
    771 #if 1
    772 	if ((ap->a_vp->v_vflag & VV_XIP) != 0) {
    773 		error = genfs_do_getpages_xip_io_done(
    774 			ap->a_vp,
    775 			ap->a_offset,
    776 			ap->a_m,
    777 			ap->a_count,
    778 			ap->a_centeridx,
    779 			ap->a_access_type,
    780 			ap->a_advice,
    781 			ap->a_flags,
    782 			orignmempages);
    783 		goto genfs_getpages_generic_io_done_done;
    784 	}
    785 #endif
    786 #if 0
    787 	else {
    788 		error = genfs_getpages_generic_io_done();
    789 	}
    790 }
    791 
    792 int
    793 genfs_getpages_generic_io_done()
    794 {
    795 #endif
    796 
    797 	mutex_enter(&uobj->vmobjlock);
    798 
    799 	/*
    800 	 * we're almost done!  release the pages...
    801 	 * for errors, we free the pages.
    802 	 * otherwise we activate them and mark them as valid and clean.
    803 	 * also, unbusy pages that were not actually requested.
    804 	 */
    805 
    806 	if (error) {
    807 		for (i = 0; i < npages; i++) {
    808 			struct vm_page *pg = pgs[i];
    809 
    810 			if (pg == NULL) {
    811 				continue;
    812 			}
    813 			UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    814 			    pg, pg->flags, 0,0);
    815 			if (pg->flags & PG_FAKE) {
    816 				pg->flags |= PG_RELEASED;
    817 			}
    818 		}
    819 		mutex_enter(&uvm_pageqlock);
    820 		uvm_page_unbusy(pgs, npages);
    821 		mutex_exit(&uvm_pageqlock);
    822 		mutex_exit(&uobj->vmobjlock);
    823 		UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
    824 		goto out_err_free;
    825 	}
    826 
    827 out:
    828 	UVMHIST_LOG(ubchist, "succeeding, npages %d", npages,0,0,0);
    829 	error = 0;
    830 	mutex_enter(&uvm_pageqlock);
    831 	for (i = 0; i < npages; i++) {
    832 		struct vm_page *pg = pgs[i];
    833 		if (pg == NULL) {
    834 			continue;
    835 		}
    836 		UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
    837 		    pg, pg->flags, 0,0);
    838 		if (pg->flags & PG_FAKE && !overwrite) {
    839 			pg->flags &= ~(PG_FAKE);
    840 			pmap_clear_modify(pgs[i]);
    841 		}
    842 		KASSERT(!memwrite || !blockalloc || (pg->flags & PG_RDONLY) == 0);
    843 		if (i < ridx || i >= ridx + orignmempages || async) {
    844 			UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
    845 			    pg, pg->offset,0,0);
    846 			if (pg->flags & PG_WANTED) {
    847 				wakeup(pg);
    848 			}
    849 			if (pg->flags & PG_FAKE) {
    850 				KASSERT(overwrite);
    851 				uvm_pagezero(pg);
    852 			}
    853 			if (pg->flags & PG_RELEASED) {
    854 				uvm_pagefree(pg);
    855 				continue;
    856 			}
    857 			uvm_pageenqueue(pg);
    858 			pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
    859 			UVM_PAGE_OWN(pg, NULL);
    860 		}
    861 	}
    862 	mutex_exit(&uvm_pageqlock);
    863 
    864 	if (memwrite) {
    865 		genfs_markdirty(vp);
    866 	}
    867 	mutex_exit(&uobj->vmobjlock);
    868 	if (ap->a_m != NULL) {
    869 		memcpy(ap->a_m, &pgs[ridx],
    870 		    orignmempages * sizeof(struct vm_page *));
    871 	}
    872 #if 0
    873 }
    874 
    875 #endif
    876 #if 1
    877 genfs_getpages_generic_io_done_done:
    878 	{}
    879 #endif
    880 
    881 out_err_free:
    882 	if (pgs != NULL && pgs != pgs_onstack)
    883 		kmem_free(pgs, pgs_size);
    884 out_err:
    885 	if (has_trans)
    886 		fstrans_done(vp->v_mount);
    887 	return error;
    888 }
    889 
    890 #ifdef XIP
    891 /*
    892  * genfs_do_getpages_xip_io
    893  *      Return "direct pages" of XIP vnode.  The block addresses of XIP
    894  *      vnode pages are returned back to the VM fault handler as the
    895  *	actually mapped physical addresses.
    896  */
    897 static int
    898 genfs_do_getpages_xip_io(
    899 	struct vnode *vp,
    900 	voff_t origoffset,
    901 	struct vm_page **pps,
    902 	int *npagesp,
    903 	int centeridx,
    904 	vm_prot_t access_type,
    905 	int advice,
    906 	int flags,
    907 	const int orignmempages)
    908 {
    909 	const int fs_bshift = vp2fs_bshift(vp);
    910 	const int dev_bshift = vp2dev_bshift(vp);
    911 	const int fs_bsize = 1 << fs_bshift;
    912 #if 0
    913 #define	blk_mask	(fs_bsize - 1)
    914 #define	trunc_blk(x)	((x) & ~blk_mask)
    915 #define	round_blk(x)	(((x) + blk_mask) & ~blk_mask)
    916 
    917 	const int orignmempages = MIN(orignpages,
    918 	    round_page(memeof - origoffset) >> PAGE_SHIFT);
    919 	npages = orignmempages;
    920 	const off_t startoffset = trunc_blk(origoffset);
    921 	const off_t endoffset = MIN(
    922 	    round_page(round_blk(origoffset + (npages << PAGE_SHIFT))),
    923 	    round_page(memeof));
    924 	const int ridx = (origoffset - startoffset) >> PAGE_SHIFT;
    925 #endif
    926 
    927 	int error;
    928 	off_t off;
    929 #if 0
    930 	off_t memeof;
    931 	int orignmempages;
    932 #endif
    933 	int i;
    934 
    935 	UVMHIST_FUNC("genfs_do_getpages_xip_io"); UVMHIST_CALLED(ubchist);
    936 
    937 	KASSERT(((flags & PGO_GLOCKHELD) != 0) || genfs_node_rdlocked(vp));
    938 
    939 #if 0
    940 	GOP_SIZE(vp, vp->v_size, &memeof, GOP_SIZE_MEM);
    941 	orignmempages = MIN(orignpages, round_page(memeof - origoffset) >> PAGE_SHIFT);
    942 #endif
    943 
    944 #if 0
    945 	int fs_bshift, fs_bsize, dev_bshift, dev_bsize;
    946 
    947 	fs_bshift = vp->v_mount->mnt_fs_bshift;
    948 	fs_bsize = 1 << fs_bshift;
    949 	dev_bshift = vp->v_mount->mnt_dev_bshift;
    950 	dev_bsize = 1 << dev_bshift;
    951 #endif
    952 
    953 #ifdef UVMHIST
    954 	const off_t startoffset = trunc_blk(origoffset);
    955 	const off_t endoffset = round_blk(origoffset + PAGE_SIZE * orignmempages);
    956 #endif
    957 
    958 	UVMHIST_LOG(ubchist, "xip npages=%d startoffset=%lx endoffset=%lx",
    959 	    orignmempages, (long)startoffset, (long)endoffset, 0);
    960 
    961 	off = origoffset;
    962 	for (i = 0; i < orignmempages; i++) {
    963 		daddr_t lbn, blkno;
    964 		int run;
    965 		struct vnode *devvp;
    966 
    967 		lbn = (off & ~(fs_bsize - 1)) >> fs_bshift;
    968 
    969 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
    970 		KASSERT(error == 0);
    971 		UVMHIST_LOG(ubchist, "xip VOP_BMAP: lbn=%ld blkno=%ld run=%d",
    972 		    (long)lbn, (long)blkno, run, 0);
    973 
    974 		/*
    975 		 * XIP page metadata assignment
    976 		 * - Unallocated block is redirected to the dedicated zero'ed
    977 		 *   page.
    978 		 */
    979 		if (blkno < 0) {
    980 			panic("XIP hole is not supported yet!");
    981 		} else {
    982 			daddr_t blk_off, fs_off;
    983 
    984 			blk_off = blkno << dev_bshift;
    985 			fs_off = off - (lbn << fs_bshift);
    986 
    987 			pps[i] = uvn_findpage_xip(devvp, &vp->v_uobj,
    988 			    blk_off + fs_off);
    989 			KASSERT(pps[i] != NULL);
    990 		}
    991 
    992 		UVMHIST_LOG(ubchist, "xip pgs %d => phys_addr=0x%lx (%p)",
    993 			i,
    994 			(long)pps[i]->phys_addr,
    995 			pps[i],
    996 			0);
    997 
    998 		off += PAGE_SIZE;
    999 	}
   1000 
   1001 	return 0;
   1002 }
   1003 
   1004 int
   1005 genfs_do_getpages_xip_io_done(
   1006 	struct vnode *vp,
   1007 	voff_t origoffset,
   1008 	struct vm_page **pps,
   1009 	int *npagesp,
   1010 	int centeridx,
   1011 	vm_prot_t access_type,
   1012 	int advice,
   1013 	int flags,
   1014 	const int orignmempages)
   1015 {
   1016 	struct uvm_object * const uobj = &vp->v_uobj;
   1017 	int i;
   1018 
   1019 	mutex_enter(&uobj->vmobjlock);
   1020 
   1021 	for (i = 0; i < orignmempages; i++) {
   1022 		struct vm_page *pg = pps[i];
   1023 
   1024 		KASSERT((pg->flags & PG_RDONLY) != 0);
   1025 		KASSERT((pg->flags & PG_BUSY) == 0);
   1026 		KASSERT((pg->flags & PG_CLEAN) != 0);
   1027 		KASSERT((pg->flags & PG_DEVICE) != 0);
   1028 		pg->flags |= PG_BUSY;
   1029 		pg->flags &= ~PG_FAKE;
   1030 		pg->uobject = &vp->v_uobj;
   1031 	}
   1032 
   1033 	mutex_exit(&uobj->vmobjlock);
   1034 
   1035 	*npagesp = orignmempages;
   1036 
   1037 	return 0;
   1038 }
   1039 #endif
   1040 
   1041 /*
   1042  * generic VM putpages routine.
   1043  * Write the given range of pages to backing store.
   1044  *
   1045  * => "offhi == 0" means flush all pages at or after "offlo".
   1046  * => object should be locked by caller.  we return with the
   1047  *      object unlocked.
   1048  * => if PGO_CLEANIT or PGO_SYNCIO is set, we may block (due to I/O).
   1049  *	thus, a caller might want to unlock higher level resources
   1050  *	(e.g. vm_map) before calling flush.
   1051  * => if neither PGO_CLEANIT nor PGO_SYNCIO is set, we will not block
   1052  * => if PGO_ALLPAGES is set, then all pages in the object will be processed.
   1053  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
   1054  *	that new pages are inserted on the tail end of the list.   thus,
   1055  *	we can make a complete pass through the object in one go by starting
   1056  *	at the head and working towards the tail (new pages are put in
   1057  *	front of us).
   1058  * => NOTE: we are allowed to lock the page queues, so the caller
   1059  *	must not be holding the page queue lock.
   1060  *
   1061  * note on "cleaning" object and PG_BUSY pages:
   1062  *	this routine is holding the lock on the object.   the only time
   1063  *	that it can run into a PG_BUSY page that it does not own is if
   1064  *	some other process has started I/O on the page (e.g. either
   1065  *	a pagein, or a pageout).    if the PG_BUSY page is being paged
   1066  *	in, then it can not be dirty (!PG_CLEAN) because no one has
   1067  *	had a chance to modify it yet.    if the PG_BUSY page is being
   1068  *	paged out then it means that someone else has already started
   1069  *	cleaning the page for us (how nice!).    in this case, if we
   1070  *	have syncio specified, then after we make our pass through the
   1071  *	object we need to wait for the other PG_BUSY pages to clear
   1072  *	off (i.e. we need to do an iosync).   also note that once a
   1073  *	page is PG_BUSY it must stay in its object until it is un-busyed.
   1074  *
   1075  * note on page traversal:
   1076  *	we can traverse the pages in an object either by going down the
   1077  *	linked list in "uobj->memq", or we can go over the address range
   1078  *	by page doing hash table lookups for each address.    depending
   1079  *	on how many pages are in the object it may be cheaper to do one
   1080  *	or the other.   we set "by_list" to true if we are using memq.
   1081  *	if the cost of a hash lookup was equal to the cost of the list
   1082  *	traversal we could compare the number of pages in the start->stop
   1083  *	range to the total number of pages in the object.   however, it
   1084  *	seems that a hash table lookup is more expensive than the linked
   1085  *	list traversal, so we multiply the number of pages in the
   1086  *	range by an estimate of the relatively higher cost of the hash lookup.
   1087  */
   1088 
   1089 int
   1090 genfs_putpages(void *v)
   1091 {
   1092 	struct vop_putpages_args /* {
   1093 		struct vnode *a_vp;
   1094 		voff_t a_offlo;
   1095 		voff_t a_offhi;
   1096 		int a_flags;
   1097 	} */ * const ap = v;
   1098 
   1099 #ifdef XIP
   1100 	if ((ap->a_vp->v_vflag & VV_XIP) != 0)
   1101 		return genfs_do_putpages_xip(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1102 		    ap->a_flags, NULL);
   1103 	else
   1104 #endif
   1105 	return genfs_do_putpages(ap->a_vp, ap->a_offlo, ap->a_offhi,
   1106 	    ap->a_flags, NULL);
   1107 }
   1108 
   1109 int
   1110 genfs_do_putpages(struct vnode *vp, off_t startoff, off_t endoff,
   1111     int origflags, struct vm_page **busypg)
   1112 {
   1113 	struct uvm_object * const uobj = &vp->v_uobj;
   1114 	kmutex_t * const slock = &uobj->vmobjlock;
   1115 	off_t off;
   1116 	/* Even for strange MAXPHYS, the shift rounds down to a page */
   1117 #define maxpages (MAXPHYS >> PAGE_SHIFT)
   1118 	int i, error, npages, nback;
   1119 	int freeflag;
   1120 	struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
   1121 	bool wasclean, by_list, needs_clean, yld;
   1122 	bool async = (origflags & PGO_SYNCIO) == 0;
   1123 	bool pagedaemon = curlwp == uvm.pagedaemon_lwp;
   1124 	struct lwp * const l = curlwp ? curlwp : &lwp0;
   1125 	struct genfs_node * const gp = VTOG(vp);
   1126 	int flags;
   1127 	int dirtygen;
   1128 	bool modified;
   1129 	bool need_wapbl;
   1130 	bool has_trans;
   1131 	bool cleanall;
   1132 	bool onworklst;
   1133 
   1134 	UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
   1135 
   1136 	KASSERT(origflags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
   1137 	KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
   1138 	KASSERT(startoff < endoff || endoff == 0);
   1139 
   1140 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1141 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1142 
   1143 	has_trans = false;
   1144 	need_wapbl = (!pagedaemon && vp->v_mount && vp->v_mount->mnt_wapbl &&
   1145 	    (origflags & PGO_JOURNALLOCKED) == 0);
   1146 
   1147 retry:
   1148 	modified = false;
   1149 	flags = origflags;
   1150 	KASSERT((vp->v_iflag & VI_ONWORKLST) != 0 ||
   1151 	    (vp->v_iflag & VI_WRMAPDIRTY) == 0);
   1152 	if (uobj->uo_npages == 0) {
   1153 		if (vp->v_iflag & VI_ONWORKLST) {
   1154 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   1155 			if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1156 				vn_syncer_remove_from_worklist(vp);
   1157 		}
   1158 		if (has_trans) {
   1159 			if (need_wapbl)
   1160 				WAPBL_END(vp->v_mount);
   1161 			fstrans_done(vp->v_mount);
   1162 		}
   1163 		mutex_exit(slock);
   1164 		return (0);
   1165 	}
   1166 
   1167 	/*
   1168 	 * the vnode has pages, set up to process the request.
   1169 	 */
   1170 
   1171 	if (!has_trans && (flags & PGO_CLEANIT) != 0) {
   1172 		mutex_exit(slock);
   1173 		if (pagedaemon) {
   1174 			error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
   1175 			if (error)
   1176 				return error;
   1177 		} else
   1178 			fstrans_start(vp->v_mount, FSTRANS_LAZY);
   1179 		if (need_wapbl) {
   1180 			error = WAPBL_BEGIN(vp->v_mount);
   1181 			if (error) {
   1182 				fstrans_done(vp->v_mount);
   1183 				return error;
   1184 			}
   1185 		}
   1186 		has_trans = true;
   1187 		mutex_enter(slock);
   1188 		goto retry;
   1189 	}
   1190 
   1191 	error = 0;
   1192 	wasclean = (vp->v_numoutput == 0);
   1193 	off = startoff;
   1194 	if (endoff == 0 || flags & PGO_ALLPAGES) {
   1195 		endoff = trunc_page(LLONG_MAX);
   1196 	}
   1197 	by_list = (uobj->uo_npages <=
   1198 	    ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
   1199 
   1200 #if !defined(DEBUG)
   1201 	/*
   1202 	 * if this vnode is known not to have dirty pages,
   1203 	 * don't bother to clean it out.
   1204 	 */
   1205 
   1206 	if ((vp->v_iflag & VI_ONWORKLST) == 0) {
   1207 		if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
   1208 			goto skip_scan;
   1209 		}
   1210 		flags &= ~PGO_CLEANIT;
   1211 	}
   1212 #endif /* !defined(DEBUG) */
   1213 
   1214 	/*
   1215 	 * start the loop.  when scanning by list, hold the last page
   1216 	 * in the list before we start.  pages allocated after we start
   1217 	 * will be added to the end of the list, so we can stop at the
   1218 	 * current last page.
   1219 	 */
   1220 
   1221 	cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
   1222 	    startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
   1223 	    (vp->v_iflag & VI_ONWORKLST) != 0;
   1224 	dirtygen = gp->g_dirtygen;
   1225 	freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
   1226 	if (by_list) {
   1227 		curmp.flags = PG_MARKER;
   1228 		endmp.flags = PG_MARKER;
   1229 		pg = TAILQ_FIRST(&uobj->memq);
   1230 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
   1231 	} else {
   1232 		pg = uvm_pagelookup(uobj, off);
   1233 	}
   1234 	nextpg = NULL;
   1235 	while (by_list || off < endoff) {
   1236 
   1237 		/*
   1238 		 * if the current page is not interesting, move on to the next.
   1239 		 */
   1240 
   1241 		KASSERT(pg == NULL || pg->uobject == uobj ||
   1242 		    (pg->flags & PG_MARKER) != 0);
   1243 		KASSERT(pg == NULL ||
   1244 		    (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
   1245 		    (pg->flags & (PG_BUSY|PG_MARKER)) != 0);
   1246 		if (by_list) {
   1247 			if (pg == &endmp) {
   1248 				break;
   1249 			}
   1250 			if (pg->flags & PG_MARKER) {
   1251 				pg = TAILQ_NEXT(pg, listq.queue);
   1252 				continue;
   1253 			}
   1254 			if (pg->offset < startoff || pg->offset >= endoff ||
   1255 			    pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1256 				if (pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1257 					wasclean = false;
   1258 				}
   1259 				pg = TAILQ_NEXT(pg, listq.queue);
   1260 				continue;
   1261 			}
   1262 			off = pg->offset;
   1263 		} else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT)) {
   1264 			if (pg != NULL) {
   1265 				wasclean = false;
   1266 			}
   1267 			off += PAGE_SIZE;
   1268 			if (off < endoff) {
   1269 				pg = uvm_pagelookup(uobj, off);
   1270 			}
   1271 			continue;
   1272 		}
   1273 
   1274 		/*
   1275 		 * if the current page needs to be cleaned and it's busy,
   1276 		 * wait for it to become unbusy.
   1277 		 */
   1278 
   1279 		yld = (l->l_cpu->ci_schedstate.spc_flags &
   1280 		    SPCF_SHOULDYIELD) && !pagedaemon;
   1281 		if (pg->flags & PG_BUSY || yld) {
   1282 			UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
   1283 			if (flags & PGO_BUSYFAIL && pg->flags & PG_BUSY) {
   1284 				UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
   1285 				error = EDEADLK;
   1286 				if (busypg != NULL)
   1287 					*busypg = pg;
   1288 				break;
   1289 			}
   1290 			if (pagedaemon) {
   1291 				/*
   1292 				 * someone has taken the page while we
   1293 				 * dropped the lock for fstrans_start.
   1294 				 */
   1295 				break;
   1296 			}
   1297 			if (by_list) {
   1298 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
   1299 				UVMHIST_LOG(ubchist, "curmp next %p",
   1300 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1301 			}
   1302 			if (yld) {
   1303 				mutex_exit(slock);
   1304 				preempt();
   1305 				mutex_enter(slock);
   1306 			} else {
   1307 				pg->flags |= PG_WANTED;
   1308 				UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
   1309 				mutex_enter(slock);
   1310 			}
   1311 			if (by_list) {
   1312 				UVMHIST_LOG(ubchist, "after next %p",
   1313 				    TAILQ_NEXT(&curmp, listq.queue), 0,0,0);
   1314 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1315 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1316 			} else {
   1317 				pg = uvm_pagelookup(uobj, off);
   1318 			}
   1319 			continue;
   1320 		}
   1321 
   1322 		/*
   1323 		 * if we're freeing, remove all mappings of the page now.
   1324 		 * if we're cleaning, check if the page is needs to be cleaned.
   1325 		 */
   1326 
   1327 		if (flags & PGO_FREE) {
   1328 			pmap_page_protect(pg, VM_PROT_NONE);
   1329 		} else if (flags & PGO_CLEANIT) {
   1330 
   1331 			/*
   1332 			 * if we still have some hope to pull this vnode off
   1333 			 * from the syncer queue, write-protect the page.
   1334 			 */
   1335 
   1336 			if (cleanall && wasclean &&
   1337 			    gp->g_dirtygen == dirtygen) {
   1338 
   1339 				/*
   1340 				 * uobj pages get wired only by uvm_fault
   1341 				 * where uobj is locked.
   1342 				 */
   1343 
   1344 				if (pg->wire_count == 0) {
   1345 					pmap_page_protect(pg,
   1346 					    VM_PROT_READ|VM_PROT_EXECUTE);
   1347 				} else {
   1348 					cleanall = false;
   1349 				}
   1350 			}
   1351 		}
   1352 
   1353 		if (flags & PGO_CLEANIT) {
   1354 			needs_clean = pmap_clear_modify(pg) ||
   1355 			    (pg->flags & PG_CLEAN) == 0;
   1356 			pg->flags |= PG_CLEAN;
   1357 		} else {
   1358 			needs_clean = false;
   1359 		}
   1360 
   1361 		/*
   1362 		 * if we're cleaning, build a cluster.
   1363 		 * the cluster will consist of pages which are currently dirty,
   1364 		 * but they will be returned to us marked clean.
   1365 		 * if not cleaning, just operate on the one page.
   1366 		 */
   1367 
   1368 		if (needs_clean) {
   1369 			KDASSERT((vp->v_iflag & VI_ONWORKLST));
   1370 			wasclean = false;
   1371 			memset(pgs, 0, sizeof(pgs));
   1372 			pg->flags |= PG_BUSY;
   1373 			UVM_PAGE_OWN(pg, "genfs_putpages");
   1374 
   1375 			/*
   1376 			 * first look backward.
   1377 			 */
   1378 
   1379 			npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
   1380 			nback = npages;
   1381 			uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
   1382 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
   1383 			if (nback) {
   1384 				memmove(&pgs[0], &pgs[npages - nback],
   1385 				    nback * sizeof(pgs[0]));
   1386 				if (npages - nback < nback)
   1387 					memset(&pgs[nback], 0,
   1388 					    (npages - nback) * sizeof(pgs[0]));
   1389 				else
   1390 					memset(&pgs[npages - nback], 0,
   1391 					    nback * sizeof(pgs[0]));
   1392 			}
   1393 
   1394 			/*
   1395 			 * then plug in our page of interest.
   1396 			 */
   1397 
   1398 			pgs[nback] = pg;
   1399 
   1400 			/*
   1401 			 * then look forward to fill in the remaining space in
   1402 			 * the array of pages.
   1403 			 */
   1404 
   1405 			npages = maxpages - nback - 1;
   1406 			uvn_findpages(uobj, off + PAGE_SIZE, &npages,
   1407 			    &pgs[nback + 1],
   1408 			    UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
   1409 			npages += nback + 1;
   1410 		} else {
   1411 			pgs[0] = pg;
   1412 			npages = 1;
   1413 			nback = 0;
   1414 		}
   1415 
   1416 		/*
   1417 		 * apply FREE or DEACTIVATE options if requested.
   1418 		 */
   1419 
   1420 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1421 			mutex_enter(&uvm_pageqlock);
   1422 		}
   1423 		for (i = 0; i < npages; i++) {
   1424 			tpg = pgs[i];
   1425 			KASSERT(tpg->uobject == uobj);
   1426 			if (by_list && tpg == TAILQ_NEXT(pg, listq.queue))
   1427 				pg = tpg;
   1428 			if (tpg->offset < startoff || tpg->offset >= endoff)
   1429 				continue;
   1430 			if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
   1431 				uvm_pagedeactivate(tpg);
   1432 			} else if (flags & PGO_FREE) {
   1433 				pmap_page_protect(tpg, VM_PROT_NONE);
   1434 				if (tpg->flags & PG_BUSY) {
   1435 					tpg->flags |= freeflag;
   1436 					if (pagedaemon) {
   1437 						uvm_pageout_start(1);
   1438 						uvm_pagedequeue(tpg);
   1439 					}
   1440 				} else {
   1441 
   1442 					/*
   1443 					 * ``page is not busy''
   1444 					 * implies that npages is 1
   1445 					 * and needs_clean is false.
   1446 					 */
   1447 
   1448 					nextpg = TAILQ_NEXT(tpg, listq.queue);
   1449 					uvm_pagefree(tpg);
   1450 					if (pagedaemon)
   1451 						uvmexp.pdfreed++;
   1452 				}
   1453 			}
   1454 		}
   1455 		if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
   1456 			mutex_exit(&uvm_pageqlock);
   1457 		}
   1458 		if (needs_clean) {
   1459 			modified = true;
   1460 
   1461 			/*
   1462 			 * start the i/o.  if we're traversing by list,
   1463 			 * keep our place in the list with a marker page.
   1464 			 */
   1465 
   1466 			if (by_list) {
   1467 				TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
   1468 				    listq.queue);
   1469 			}
   1470 			mutex_exit(slock);
   1471 			error = GOP_WRITE(vp, pgs, npages, flags);
   1472 			mutex_enter(slock);
   1473 			if (by_list) {
   1474 				pg = TAILQ_NEXT(&curmp, listq.queue);
   1475 				TAILQ_REMOVE(&uobj->memq, &curmp, listq.queue);
   1476 			}
   1477 			if (error) {
   1478 				break;
   1479 			}
   1480 			if (by_list) {
   1481 				continue;
   1482 			}
   1483 		}
   1484 
   1485 		/*
   1486 		 * find the next page and continue if there was no error.
   1487 		 */
   1488 
   1489 		if (by_list) {
   1490 			if (nextpg) {
   1491 				pg = nextpg;
   1492 				nextpg = NULL;
   1493 			} else {
   1494 				pg = TAILQ_NEXT(pg, listq.queue);
   1495 			}
   1496 		} else {
   1497 			off += (npages - nback) << PAGE_SHIFT;
   1498 			if (off < endoff) {
   1499 				pg = uvm_pagelookup(uobj, off);
   1500 			}
   1501 		}
   1502 	}
   1503 	if (by_list) {
   1504 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
   1505 	}
   1506 
   1507 	if (modified && (vp->v_iflag & VI_WRMAPDIRTY) != 0 &&
   1508 	    (vp->v_type != VBLK ||
   1509 	    (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
   1510 		GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
   1511 	}
   1512 
   1513 	/*
   1514 	 * if we're cleaning and there was nothing to clean,
   1515 	 * take us off the syncer list.  if we started any i/o
   1516 	 * and we're doing sync i/o, wait for all writes to finish.
   1517 	 */
   1518 
   1519 	if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
   1520 	    (vp->v_iflag & VI_ONWORKLST) != 0) {
   1521 #if defined(DEBUG)
   1522 		TAILQ_FOREACH(pg, &uobj->memq, listq.queue) {
   1523 			if ((pg->flags & PG_MARKER) != 0) {
   1524 				continue;
   1525 			}
   1526 			if ((pg->flags & PG_CLEAN) == 0) {
   1527 				printf("%s: %p: !CLEAN\n", __func__, pg);
   1528 			}
   1529 			if (pmap_is_modified(pg)) {
   1530 				printf("%s: %p: modified\n", __func__, pg);
   1531 			}
   1532 		}
   1533 #endif /* defined(DEBUG) */
   1534 		vp->v_iflag &= ~VI_WRMAPDIRTY;
   1535 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
   1536 			vn_syncer_remove_from_worklist(vp);
   1537 	}
   1538 
   1539 #if !defined(DEBUG)
   1540 skip_scan:
   1541 #endif /* !defined(DEBUG) */
   1542 
   1543 	/* Wait for output to complete. */
   1544 	if (!wasclean && !async && vp->v_numoutput != 0) {
   1545 		while (vp->v_numoutput != 0)
   1546 			cv_wait(&vp->v_cv, slock);
   1547 	}
   1548 	onworklst = (vp->v_iflag & VI_ONWORKLST) != 0;
   1549 	mutex_exit(slock);
   1550 
   1551 	if ((flags & PGO_RECLAIM) != 0 && onworklst) {
   1552 		/*
   1553 		 * in the case of PGO_RECLAIM, ensure to make the vnode clean.
   1554 		 * retrying is not a big deal because, in many cases,
   1555 		 * uobj->uo_npages is already 0 here.
   1556 		 */
   1557 		mutex_enter(slock);
   1558 		goto retry;
   1559 	}
   1560 
   1561 	if (has_trans) {
   1562 		if (need_wapbl)
   1563 			WAPBL_END(vp->v_mount);
   1564 		fstrans_done(vp->v_mount);
   1565 	}
   1566 
   1567 	return (error);
   1568 }
   1569 
   1570 #ifdef XIP
   1571 int
   1572 genfs_do_putpages_xip(struct vnode *vp, off_t startoff, off_t endoff,
   1573     int flags, struct vm_page **busypg)
   1574 {
   1575 	struct uvm_object *uobj = &vp->v_uobj;
   1576 #ifdef DIAGNOSTIC
   1577 	struct genfs_node * const gp = VTOG(vp);
   1578 #endif
   1579 
   1580 	UVMHIST_FUNC("genfs_do_putpages_xip"); UVMHIST_CALLED(ubchist);
   1581 
   1582 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1583 	KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
   1584 	KASSERT(vp->v_numoutput == 0);
   1585 	KASSERT(gp->g_dirtygen == 0);
   1586 
   1587 	UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
   1588 	    vp, uobj->uo_npages, startoff, endoff - startoff);
   1589 
   1590 	/*
   1591 	 * XIP pages are read-only, and never become dirty.  They're also never
   1592 	 * queued.  PGO_DEACTIVATE and PGO_CLEANIT are meaningless for XIP
   1593 	 * pages, so we ignore them.
   1594 	 */
   1595 	if ((flags & PGO_FREE) == 0)
   1596 		goto done;
   1597 
   1598 	/*
   1599 	 * For PGO_FREE (or (PGO_CLEANIT | PGO_FREE)), we invalidate MMU
   1600 	 * mappings of both XIP pages and XIP zero pages.
   1601 	 *
   1602 	 * Zero page is freed when one of its mapped offset is freed, even if
   1603 	 * one file (vnode) has many holes and mapping its zero page to all
   1604 	 * of those hole pages.
   1605 	 *
   1606 	 * We don't know which pages are currently mapped in the given vnode,
   1607 	 * because XIP pages are not added to vnode.  What we can do is to
   1608 	 * locate pages by querying the filesystem as done in getpages.  Call
   1609 	 * genfs_do_getpages_xip_io().
   1610 	 */
   1611 
   1612 	off_t off, eof;
   1613 
   1614 	off = trunc_page(startoff);
   1615 	if (endoff == 0 || (flags & PGO_ALLPAGES))
   1616 		GOP_SIZE(vp, vp->v_size, &eof, GOP_SIZE_MEM);
   1617 	else
   1618 		eof = endoff;
   1619 
   1620 	while (off < eof) {
   1621 		int npages, orignpages, error, i;
   1622 		struct vm_page *pgs[maxpages], *pg;
   1623 
   1624 		npages = round_page(eof - off) >> PAGE_SHIFT;
   1625 		if (npages > maxpages)
   1626 			npages = maxpages;
   1627 
   1628 		orignpages = npages;
   1629 		KASSERT(mutex_owned(&uobj->vmobjlock));
   1630 		mutex_exit(&uobj->vmobjlock);
   1631 		error = genfs_do_getpages_xip_io(vp, off, pgs, &npages, 0,
   1632 		    VM_PROT_ALL, 0, PGO_GLOCKHELD, orignpages);
   1633 		KASSERT(error == 0);
   1634 		KASSERT(npages == orignpages);
   1635 		mutex_enter(&uobj->vmobjlock);
   1636 		for (i = 0; i < npages; i++) {
   1637 			pg = pgs[i];
   1638 			if (pg == NULL || pg == PGO_DONTCARE)
   1639 				continue;
   1640 			/*
   1641 			 * Freeing normal XIP pages; nothing to do.
   1642 			 */
   1643 			pmap_page_protect(pg, VM_PROT_NONE);
   1644 			KASSERT((pg->flags & PG_RDONLY) != 0);
   1645 			KASSERT((pg->flags & PG_CLEAN) != 0);
   1646 			KASSERT((pg->flags & PG_FAKE) == 0);
   1647 			KASSERT((pg->flags & PG_DEVICE) != 0);
   1648 			pg->flags &= ~PG_BUSY;
   1649 		}
   1650 		off += npages << PAGE_SHIFT;
   1651 	}
   1652 
   1653 	KASSERT(uobj->uo_npages == 0);
   1654 
   1655 done:
   1656 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1657 	mutex_exit(&uobj->vmobjlock);
   1658 	return 0;
   1659 }
   1660 #endif
   1661 
   1662 int
   1663 genfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1664 {
   1665 	off_t off;
   1666 	vaddr_t kva;
   1667 	size_t len;
   1668 	int error;
   1669 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1670 
   1671 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1672 	    vp, pgs, npages, flags);
   1673 
   1674 	off = pgs[0]->offset;
   1675 	kva = uvm_pagermapin(pgs, npages,
   1676 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1677 	len = npages << PAGE_SHIFT;
   1678 
   1679 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1680 			    uvm_aio_biodone);
   1681 
   1682 	return error;
   1683 }
   1684 
   1685 int
   1686 genfs_gop_write_rwmap(struct vnode *vp, struct vm_page **pgs, int npages, int flags)
   1687 {
   1688 	off_t off;
   1689 	vaddr_t kva;
   1690 	size_t len;
   1691 	int error;
   1692 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1693 
   1694 	UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
   1695 	    vp, pgs, npages, flags);
   1696 
   1697 	off = pgs[0]->offset;
   1698 	kva = uvm_pagermapin(pgs, npages,
   1699 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1700 	len = npages << PAGE_SHIFT;
   1701 
   1702 	error = genfs_do_io(vp, off, kva, len, flags, UIO_WRITE,
   1703 			    uvm_aio_biodone);
   1704 
   1705 	return error;
   1706 }
   1707 
   1708 /*
   1709  * Backend routine for doing I/O to vnode pages.  Pages are already locked
   1710  * and mapped into kernel memory.  Here we just look up the underlying
   1711  * device block addresses and call the strategy routine.
   1712  */
   1713 
   1714 static int
   1715 genfs_do_io(struct vnode *vp, off_t off, vaddr_t kva, size_t len, int flags,
   1716     enum uio_rw rw, void (*iodone)(struct buf *))
   1717 {
   1718 	int s, error;
   1719 	int fs_bshift, dev_bshift;
   1720 	off_t eof, offset, startoffset;
   1721 	size_t bytes, iobytes, skipbytes;
   1722 	struct buf *mbp, *bp;
   1723 	const bool async = (flags & PGO_SYNCIO) == 0;
   1724 	const bool iowrite = rw == UIO_WRITE;
   1725 	const int brw = iowrite ? B_WRITE : B_READ;
   1726 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
   1727 
   1728 	UVMHIST_LOG(ubchist, "vp %p kva %p len 0x%x flags 0x%x",
   1729 	    vp, kva, len, flags);
   1730 
   1731 	KASSERT(vp->v_size <= vp->v_writesize);
   1732 	GOP_SIZE(vp, vp->v_writesize, &eof, 0);
   1733 	if (vp->v_type != VBLK) {
   1734 		fs_bshift = vp->v_mount->mnt_fs_bshift;
   1735 		dev_bshift = vp->v_mount->mnt_dev_bshift;
   1736 	} else {
   1737 		fs_bshift = DEV_BSHIFT;
   1738 		dev_bshift = DEV_BSHIFT;
   1739 	}
   1740 	error = 0;
   1741 	startoffset = off;
   1742 	bytes = MIN(len, eof - startoffset);
   1743 	skipbytes = 0;
   1744 	KASSERT(bytes != 0);
   1745 
   1746 	if (iowrite) {
   1747 		mutex_enter(&vp->v_interlock);
   1748 		vp->v_numoutput += 2;
   1749 		mutex_exit(&vp->v_interlock);
   1750 	}
   1751 	mbp = getiobuf(vp, true);
   1752 	UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
   1753 	    vp, mbp, vp->v_numoutput, bytes);
   1754 	mbp->b_bufsize = len;
   1755 	mbp->b_data = (void *)kva;
   1756 	mbp->b_resid = mbp->b_bcount = bytes;
   1757 	mbp->b_cflags = BC_BUSY | BC_AGE;
   1758 	if (async) {
   1759 		mbp->b_flags = brw | B_ASYNC;
   1760 		mbp->b_iodone = iodone;
   1761 	} else {
   1762 		mbp->b_flags = brw;
   1763 		mbp->b_iodone = NULL;
   1764 	}
   1765 	if (curlwp == uvm.pagedaemon_lwp)
   1766 		BIO_SETPRIO(mbp, BPRIO_TIMELIMITED);
   1767 	else if (async)
   1768 		BIO_SETPRIO(mbp, BPRIO_TIMENONCRITICAL);
   1769 	else
   1770 		BIO_SETPRIO(mbp, BPRIO_TIMECRITICAL);
   1771 
   1772 	bp = NULL;
   1773 	for (offset = startoffset;
   1774 	    bytes > 0;
   1775 	    offset += iobytes, bytes -= iobytes) {
   1776 		int run;
   1777 		daddr_t lbn, blkno;
   1778 		struct vnode *devvp;
   1779 
   1780 		/*
   1781 		 * bmap the file to find out the blkno to read from and
   1782 		 * how much we can read in one i/o.  if bmap returns an error,
   1783 		 * skip the rest of the top-level i/o.
   1784 		 */
   1785 
   1786 		lbn = offset >> fs_bshift;
   1787 		error = VOP_BMAP(vp, lbn, &devvp, &blkno, &run);
   1788 		if (error) {
   1789 			UVMHIST_LOG(ubchist, "VOP_BMAP lbn 0x%x -> %d\n",
   1790 			    lbn,error,0,0);
   1791 			skipbytes += bytes;
   1792 			bytes = 0;
   1793 			goto loopdone;
   1794 		}
   1795 
   1796 		/*
   1797 		 * see how many pages can be read with this i/o.
   1798 		 * reduce the i/o size if necessary to avoid
   1799 		 * overwriting pages with valid data.
   1800 		 */
   1801 
   1802 		iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
   1803 		    bytes);
   1804 
   1805 		/*
   1806 		 * if this block isn't allocated, zero it instead of
   1807 		 * reading it.  unless we are going to allocate blocks,
   1808 		 * mark the pages we zeroed PG_RDONLY.
   1809 		 */
   1810 
   1811 		if (blkno == (daddr_t)-1) {
   1812 			if (!iowrite) {
   1813 				memset((char *)kva + (offset - startoffset), 0,
   1814 				    iobytes);
   1815 			}
   1816 			skipbytes += iobytes;
   1817 			continue;
   1818 		}
   1819 
   1820 		/*
   1821 		 * allocate a sub-buf for this piece of the i/o
   1822 		 * (or just use mbp if there's only 1 piece),
   1823 		 * and start it going.
   1824 		 */
   1825 
   1826 		if (offset == startoffset && iobytes == bytes) {
   1827 			bp = mbp;
   1828 		} else {
   1829 			UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
   1830 			    vp, bp, vp->v_numoutput, 0);
   1831 			bp = getiobuf(vp, true);
   1832 			nestiobuf_setup(mbp, bp, offset - startoffset, iobytes);
   1833 		}
   1834 		bp->b_lblkno = 0;
   1835 
   1836 		/* adjust physical blkno for partial blocks */
   1837 		bp->b_blkno = blkno + ((offset - ((off_t)lbn << fs_bshift)) >>
   1838 		    dev_bshift);
   1839 
   1840 		UVMHIST_LOG(ubchist,
   1841 		    "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
   1842 		    bp, offset, bp->b_bcount, bp->b_blkno);
   1843 
   1844 		VOP_STRATEGY(devvp, bp);
   1845 	}
   1846 
   1847 loopdone:
   1848 	if (skipbytes) {
   1849 		UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
   1850 	}
   1851 	nestiobuf_done(mbp, skipbytes, error);
   1852 	if (async) {
   1853 		UVMHIST_LOG(ubchist, "returning 0 (async)", 0,0,0,0);
   1854 		return (0);
   1855 	}
   1856 	UVMHIST_LOG(ubchist, "waiting for mbp %p", mbp,0,0,0);
   1857 	error = biowait(mbp);
   1858 	s = splbio();
   1859 	(*iodone)(mbp);
   1860 	splx(s);
   1861 	UVMHIST_LOG(ubchist, "returning, error %d", error,0,0,0);
   1862 	return (error);
   1863 }
   1864 
   1865 int
   1866 genfs_compat_getpages(void *v)
   1867 {
   1868 	struct vop_getpages_args /* {
   1869 		struct vnode *a_vp;
   1870 		voff_t a_offset;
   1871 		struct vm_page **a_m;
   1872 		int *a_count;
   1873 		int a_centeridx;
   1874 		vm_prot_t a_access_type;
   1875 		int a_advice;
   1876 		int a_flags;
   1877 	} */ *ap = v;
   1878 
   1879 	off_t origoffset;
   1880 	struct vnode *vp = ap->a_vp;
   1881 	struct uvm_object *uobj = &vp->v_uobj;
   1882 	struct vm_page *pg, **pgs;
   1883 	vaddr_t kva;
   1884 	int i, error, orignpages, npages;
   1885 	struct iovec iov;
   1886 	struct uio uio;
   1887 	kauth_cred_t cred = curlwp->l_cred;
   1888 	const bool memwrite = (ap->a_access_type & VM_PROT_WRITE) != 0;
   1889 
   1890 	error = 0;
   1891 	origoffset = ap->a_offset;
   1892 	orignpages = *ap->a_count;
   1893 	pgs = ap->a_m;
   1894 
   1895 	if (ap->a_flags & PGO_LOCKED) {
   1896 		uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
   1897 		    UFP_NOWAIT|UFP_NOALLOC| (memwrite ? UFP_NORDONLY : 0));
   1898 
   1899 		error = ap->a_m[ap->a_centeridx] == NULL ? EBUSY : 0;
   1900 		if (error == 0 && memwrite) {
   1901 			genfs_markdirty(vp);
   1902 		}
   1903 		return error;
   1904 	}
   1905 	if (origoffset + (ap->a_centeridx << PAGE_SHIFT) >= vp->v_size) {
   1906 		mutex_exit(&uobj->vmobjlock);
   1907 		return EINVAL;
   1908 	}
   1909 	if ((ap->a_flags & PGO_SYNCIO) == 0) {
   1910 		mutex_exit(&uobj->vmobjlock);
   1911 		return 0;
   1912 	}
   1913 	npages = orignpages;
   1914 	uvn_findpages(uobj, origoffset, &npages, pgs, UFP_ALL);
   1915 	mutex_exit(&uobj->vmobjlock);
   1916 	kva = uvm_pagermapin(pgs, npages,
   1917 	    UVMPAGER_MAPIN_READ | UVMPAGER_MAPIN_WAITOK);
   1918 	for (i = 0; i < npages; i++) {
   1919 		pg = pgs[i];
   1920 		if ((pg->flags & PG_FAKE) == 0) {
   1921 			continue;
   1922 		}
   1923 		iov.iov_base = (char *)kva + (i << PAGE_SHIFT);
   1924 		iov.iov_len = PAGE_SIZE;
   1925 		uio.uio_iov = &iov;
   1926 		uio.uio_iovcnt = 1;
   1927 		uio.uio_offset = origoffset + (i << PAGE_SHIFT);
   1928 		uio.uio_rw = UIO_READ;
   1929 		uio.uio_resid = PAGE_SIZE;
   1930 		UIO_SETUP_SYSSPACE(&uio);
   1931 		/* XXX vn_lock */
   1932 		error = VOP_READ(vp, &uio, 0, cred);
   1933 		if (error) {
   1934 			break;
   1935 		}
   1936 		if (uio.uio_resid) {
   1937 			memset(iov.iov_base, 0, uio.uio_resid);
   1938 		}
   1939 	}
   1940 	uvm_pagermapout(kva, npages);
   1941 	mutex_enter(&uobj->vmobjlock);
   1942 	mutex_enter(&uvm_pageqlock);
   1943 	for (i = 0; i < npages; i++) {
   1944 		pg = pgs[i];
   1945 		if (error && (pg->flags & PG_FAKE) != 0) {
   1946 			pg->flags |= PG_RELEASED;
   1947 		} else {
   1948 			pmap_clear_modify(pg);
   1949 			uvm_pageactivate(pg);
   1950 		}
   1951 	}
   1952 	if (error) {
   1953 		uvm_page_unbusy(pgs, npages);
   1954 	}
   1955 	mutex_exit(&uvm_pageqlock);
   1956 	if (error == 0 && memwrite) {
   1957 		genfs_markdirty(vp);
   1958 	}
   1959 	mutex_exit(&uobj->vmobjlock);
   1960 	return error;
   1961 }
   1962 
   1963 int
   1964 genfs_compat_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
   1965     int flags)
   1966 {
   1967 	off_t offset;
   1968 	struct iovec iov;
   1969 	struct uio uio;
   1970 	kauth_cred_t cred = curlwp->l_cred;
   1971 	struct buf *bp;
   1972 	vaddr_t kva;
   1973 	int error;
   1974 
   1975 	offset = pgs[0]->offset;
   1976 	kva = uvm_pagermapin(pgs, npages,
   1977 	    UVMPAGER_MAPIN_WRITE | UVMPAGER_MAPIN_WAITOK);
   1978 
   1979 	iov.iov_base = (void *)kva;
   1980 	iov.iov_len = npages << PAGE_SHIFT;
   1981 	uio.uio_iov = &iov;
   1982 	uio.uio_iovcnt = 1;
   1983 	uio.uio_offset = offset;
   1984 	uio.uio_rw = UIO_WRITE;
   1985 	uio.uio_resid = npages << PAGE_SHIFT;
   1986 	UIO_SETUP_SYSSPACE(&uio);
   1987 	/* XXX vn_lock */
   1988 	error = VOP_WRITE(vp, &uio, 0, cred);
   1989 
   1990 	mutex_enter(&vp->v_interlock);
   1991 	vp->v_numoutput++;
   1992 	mutex_exit(&vp->v_interlock);
   1993 
   1994 	bp = getiobuf(vp, true);
   1995 	bp->b_cflags = BC_BUSY | BC_AGE;
   1996 	bp->b_lblkno = offset >> vp->v_mount->mnt_fs_bshift;
   1997 	bp->b_data = (char *)kva;
   1998 	bp->b_bcount = npages << PAGE_SHIFT;
   1999 	bp->b_bufsize = npages << PAGE_SHIFT;
   2000 	bp->b_resid = 0;
   2001 	bp->b_error = error;
   2002 	uvm_aio_aiodone(bp);
   2003 	return (error);
   2004 }
   2005 
   2006 /*
   2007  * Process a uio using direct I/O.  If we reach a part of the request
   2008  * which cannot be processed in this fashion for some reason, just return.
   2009  * The caller must handle some additional part of the request using
   2010  * buffered I/O before trying direct I/O again.
   2011  */
   2012 
   2013 void
   2014 genfs_directio(struct vnode *vp, struct uio *uio, int ioflag)
   2015 {
   2016 	struct vmspace *vs;
   2017 	struct iovec *iov;
   2018 	vaddr_t va;
   2019 	size_t len;
   2020 	const int mask = DEV_BSIZE - 1;
   2021 	int error;
   2022 	bool need_wapbl = (vp->v_mount && vp->v_mount->mnt_wapbl &&
   2023 	    (ioflag & IO_JOURNALLOCKED) == 0);
   2024 
   2025 	/*
   2026 	 * We only support direct I/O to user space for now.
   2027 	 */
   2028 
   2029 	if (VMSPACE_IS_KERNEL_P(uio->uio_vmspace)) {
   2030 		return;
   2031 	}
   2032 
   2033 	/*
   2034 	 * If the vnode is mapped, we would need to get the getpages lock
   2035 	 * to stabilize the bmap, but then we would get into trouble whil e
   2036 	 * locking the pages if the pages belong to this same vnode (or a
   2037 	 * multi-vnode cascade to the same effect).  Just fall back to
   2038 	 * buffered I/O if the vnode is mapped to avoid this mess.
   2039 	 */
   2040 
   2041 	if (vp->v_vflag & VV_MAPPED) {
   2042 		return;
   2043 	}
   2044 
   2045 	if (need_wapbl) {
   2046 		error = WAPBL_BEGIN(vp->v_mount);
   2047 		if (error)
   2048 			return;
   2049 	}
   2050 
   2051 	/*
   2052 	 * Do as much of the uio as possible with direct I/O.
   2053 	 */
   2054 
   2055 	vs = uio->uio_vmspace;
   2056 	while (uio->uio_resid) {
   2057 		iov = uio->uio_iov;
   2058 		if (iov->iov_len == 0) {
   2059 			uio->uio_iov++;
   2060 			uio->uio_iovcnt--;
   2061 			continue;
   2062 		}
   2063 		va = (vaddr_t)iov->iov_base;
   2064 		len = MIN(iov->iov_len, genfs_maxdio);
   2065 		len &= ~mask;
   2066 
   2067 		/*
   2068 		 * If the next chunk is smaller than DEV_BSIZE or extends past
   2069 		 * the current EOF, then fall back to buffered I/O.
   2070 		 */
   2071 
   2072 		if (len == 0 || uio->uio_offset + len > vp->v_size) {
   2073 			break;
   2074 		}
   2075 
   2076 		/*
   2077 		 * Check alignment.  The file offset must be at least
   2078 		 * sector-aligned.  The exact constraint on memory alignment
   2079 		 * is very hardware-dependent, but requiring sector-aligned
   2080 		 * addresses there too is safe.
   2081 		 */
   2082 
   2083 		if (uio->uio_offset & mask || va & mask) {
   2084 			break;
   2085 		}
   2086 		error = genfs_do_directio(vs, va, len, vp, uio->uio_offset,
   2087 					  uio->uio_rw);
   2088 		if (error) {
   2089 			break;
   2090 		}
   2091 		iov->iov_base = (char *)iov->iov_base + len;
   2092 		iov->iov_len -= len;
   2093 		uio->uio_offset += len;
   2094 		uio->uio_resid -= len;
   2095 	}
   2096 
   2097 	if (need_wapbl)
   2098 		WAPBL_END(vp->v_mount);
   2099 }
   2100 
   2101 /*
   2102  * Iodone routine for direct I/O.  We don't do much here since the request is
   2103  * always synchronous, so the caller will do most of the work after biowait().
   2104  */
   2105 
   2106 static void
   2107 genfs_dio_iodone(struct buf *bp)
   2108 {
   2109 
   2110 	KASSERT((bp->b_flags & B_ASYNC) == 0);
   2111 	if ((bp->b_flags & B_READ) == 0 && (bp->b_cflags & BC_AGE) != 0) {
   2112 		mutex_enter(bp->b_objlock);
   2113 		vwakeup(bp);
   2114 		mutex_exit(bp->b_objlock);
   2115 	}
   2116 	putiobuf(bp);
   2117 }
   2118 
   2119 /*
   2120  * Process one chunk of a direct I/O request.
   2121  */
   2122 
   2123 static int
   2124 genfs_do_directio(struct vmspace *vs, vaddr_t uva, size_t len, struct vnode *vp,
   2125     off_t off, enum uio_rw rw)
   2126 {
   2127 	struct vm_map *map;
   2128 	struct pmap *upm, *kpm;
   2129 	size_t klen = round_page(uva + len) - trunc_page(uva);
   2130 	off_t spoff, epoff;
   2131 	vaddr_t kva, puva;
   2132 	paddr_t pa;
   2133 	vm_prot_t prot;
   2134 	int error, rv, poff, koff;
   2135 	const int pgoflags = PGO_CLEANIT | PGO_SYNCIO | PGO_JOURNALLOCKED |
   2136 		(rw == UIO_WRITE ? PGO_FREE : 0);
   2137 
   2138 	/*
   2139 	 * For writes, verify that this range of the file already has fully
   2140 	 * allocated backing store.  If there are any holes, just punt and
   2141 	 * make the caller take the buffered write path.
   2142 	 */
   2143 
   2144 	if (rw == UIO_WRITE) {
   2145 		daddr_t lbn, elbn, blkno;
   2146 		int bsize, bshift, run;
   2147 
   2148 		bshift = vp->v_mount->mnt_fs_bshift;
   2149 		bsize = 1 << bshift;
   2150 		lbn = off >> bshift;
   2151 		elbn = (off + len + bsize - 1) >> bshift;
   2152 		while (lbn < elbn) {
   2153 			error = VOP_BMAP(vp, lbn, NULL, &blkno, &run);
   2154 			if (error) {
   2155 				return error;
   2156 			}
   2157 			if (blkno == (daddr_t)-1) {
   2158 				return ENOSPC;
   2159 			}
   2160 			lbn += 1 + run;
   2161 		}
   2162 	}
   2163 
   2164 	/*
   2165 	 * Flush any cached pages for parts of the file that we're about to
   2166 	 * access.  If we're writing, invalidate pages as well.
   2167 	 */
   2168 
   2169 	spoff = trunc_page(off);
   2170 	epoff = round_page(off + len);
   2171 	mutex_enter(&vp->v_interlock);
   2172 	error = VOP_PUTPAGES(vp, spoff, epoff, pgoflags);
   2173 	if (error) {
   2174 		return error;
   2175 	}
   2176 
   2177 	/*
   2178 	 * Wire the user pages and remap them into kernel memory.
   2179 	 */
   2180 
   2181 	prot = rw == UIO_READ ? VM_PROT_READ | VM_PROT_WRITE : VM_PROT_READ;
   2182 	error = uvm_vslock(vs, (void *)uva, len, prot);
   2183 	if (error) {
   2184 		return error;
   2185 	}
   2186 
   2187 	map = &vs->vm_map;
   2188 	upm = vm_map_pmap(map);
   2189 	kpm = vm_map_pmap(kernel_map);
   2190 	kva = uvm_km_alloc(kernel_map, klen, 0,
   2191 			   UVM_KMF_VAONLY | UVM_KMF_WAITVA);
   2192 	puva = trunc_page(uva);
   2193 	for (poff = 0; poff < klen; poff += PAGE_SIZE) {
   2194 		rv = pmap_extract(upm, puva + poff, &pa);
   2195 		KASSERT(rv);
   2196 		pmap_enter(kpm, kva + poff, pa, prot, prot | PMAP_WIRED);
   2197 	}
   2198 	pmap_update(kpm);
   2199 
   2200 	/*
   2201 	 * Do the I/O.
   2202 	 */
   2203 
   2204 	koff = uva - trunc_page(uva);
   2205 	error = genfs_do_io(vp, off, kva + koff, len, PGO_SYNCIO, rw,
   2206 			    genfs_dio_iodone);
   2207 
   2208 	/*
   2209 	 * Tear down the kernel mapping.
   2210 	 */
   2211 
   2212 	pmap_remove(kpm, kva, kva + klen);
   2213 	pmap_update(kpm);
   2214 	uvm_km_free(kernel_map, kva, klen, UVM_KMF_VAONLY);
   2215 
   2216 	/*
   2217 	 * Unwire the user pages.
   2218 	 */
   2219 
   2220 	uvm_vsunlock(vs, (void *)uva, len);
   2221 	return error;
   2222 }
   2223 
   2224